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Self-Learning e-Skin Respirometer for Pulmonary Disease
Detection

Anand Babu,* Getnet Kassahun, Isabelle Dufour, Dipankar Mandal,*
and Damien Thuau*

Amid the landscape of respiratory health, lung disorders stand out as the
primary contributors to pulmonary intricacies and respiratory diseases. Timely
precautions through accurate diagnosis hold the key to mitigating their
impact. Nevertheless, the existing conventional methods of lungs monitoring
exhibit limitations due to bulky instruments, intrusive techniques, manual
data recording, and discomfort in continuous measurements. In this context,
an unintrusive organic wearable piezoelectric electronic-skin respirometer
(eSR) exhibiting a high-sensitivity (385 mV N−1), precise conversion factor
(12 mL mV−1), high signal-to-noise ratio (58 dB), and a low limit of detection
down to 100 mL is demonstrated, which is perfectly suitable to record diverse
breathing signals. To empower the eSR with early diagnosis functionality,
self-learning capability is further added by integrating the respirometer with
the machine learning algorithms. Among various tested algorithms, gradient
boosting regression emerges as the most suitable, leveraging sequential
model refinement to achieve an accuracy exceeding 95% in detection of
chronic obstructive pulmonary diseases (COPD). From conception to
validation, the approach not only provides an alternative pathway for tracking
the progression of lung diseases but also has the capability to replace the
conventional techniques, with the conformable AI-empowered respirometer.
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1. Introduction

Breathing is a fundamental aspect of res-
piratory physiology that provides vital in-
formation on pulmonary symptoms aid-
ing in the assessment of chronic obstruc-
tive pulmonary diseases (COPDs) and
other lung disorders.[1–3] Accurate mea-
surement and surveillance of breathing
features is challenging, due to the bulky
nature and limited accessibility of con-
ventional equipment such as spirometry,
peak flow meter, body plethysmography,
and gas diffusion tests to name a few.
Moreover, these equipment need trained
personals, specialized techniques, man-
ual data recording, and dedicated test-
ing facilities.[4–6] The invasive and cum-
bersome aspects of some of the tech-
niques also limit their practicality in
certain conditions, including continu-
ous long-term monitoring during physi-
cal activities.[7–11] In contrast, the recent
advancement in wearable sensor tech-
nologies have opened new possibilities

for capturing physiological signals in a non-invasive and unob-
trusive manner. Screen printing stands out as one of the promis-
ing techniques for printing the adaptable electronic-skin (e-skin),
with its versatility, scalability, and customizability that offers pre-
cise deposition of functional materials onto different surfaces.
On the contrary to other fabrication techniques, screen printing
technologies allow printed sensors that are lightweight, flexible,
and can be easily integrated into garments facilitating continu-
ous monitoring in daily life activities.[12–14] Incorporating self-
powered materials (such as piezoelectric materials) into printing
processes adds a noteworthy advantage as comparison to their
counterparts like capacitive and piezoresistive materials, which
necessitate external biasing for operation.

Noteworthy to mention, the accurate measurement of breath-
ing features such as tidal volume, inspiration capacity (IC), and
forced expiratory volume in 1 s (FEV1), aids in the diagnosis
and monitoring of progressive respiratory disorders and lung
diseases, such as COPDs, asthma, idiopathic pulmonary fibro-
sis (IPF), and others.[15,16] For instance, reduced tidal volume is
indicative of impaired lung function or respiratory muscle weak-
ness, while, elevated tidal volume gives information about hy-
perinflation or increased work of breathing. Similarly, reduced
IC and FEV1 values probed the presence of COPDs, signal-
ing airflow limitation, airway obstruction, and emphysematous
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Figure 1. a) Cross section view is depicted in schematic illustration of our piezoelectric printed organic transducer. b) Electric displacement—electric
field (D,E) loops. c) XRD pattern in the 2𝜃 range [10°, 30°] of P(VDF-co-TrFE) copolymer measured at room temperature; d) PFM amplitude and e) phase
loop of P(VDF-co-TrFE). f) Frequency and temperature-dependent dielectric constant and loss of P(VDF-co-TrFE).

changes. These parameters not only serve as diagnostic and
prognostic markers but also guide personalized treatment strate-
gies, highlighting their critical role in managing respiratory
diseases and its progressive nature. Early detection of these
biomarkers can enable timely interventions and better disease
management.[17–21] In addition to disease detection, in the realm
of sports and exercise physiology, these biomarkers serve as
an essential metric for evaluating aerobic capacity, and exercise
performance, providing insights into breathing patterns during
physical activities.[22,23] Integrating self-learning capabilities into
systems involves the utilization of machine learning (ML) al-
gorithms. These algorithms operate on data driven techniques,
leveraging data analysis to make informed decisions and identify
unknown samples. For instance, the algorithms detect anomalies
in biomarkers through learning process, enabling it to track the
progression of diseases effectively.[24–29]

In this study, we demonstrate a ML integrated organic eSR able
to record diverse breathing signals. A self-learning functionality
has been added by harnessing the potent breathing descriptors
with ML. A comprehensive study is carried out to find the most
suitable prediction algorithms including random forest regres-
sion (RFR), gradient boost regression (GBR), linear regression
(LR), support vector machines (SVM), and ridge regression (RR),
among them GBR was found to be the most effective one with
accuracy over 95% and root mean square error 0.298. Thus, eSR
provides a non-invasive and practical solution for tracking and
early prediction of progressive lung diseases that helps to take
the diagnosis measures in early stage for personalized disease
management.

2. Results and Discussion

To capture precise respiratory signals, piezoelectric eSRs
are fabricated using a sequential screen-printing process,
which involves layering poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT: PSS) as the bottom electrode,
polyvinylidene fluoride trifluoroethylene (P(VDF-co-TrFE)) as
the electroactive material, and (PEDOT: PSS) as the top electrode
onto a flexible polyethylene naphthalate (PEN) substrate, as
depicted in Figure 1a. Polarization of the P(VDF-co-TrFE) thin
film is accomplished by applying an electric field across the
PEDOT:PSS electrodes deposited on outer surfaces. Electric
displacement–electric field (D,E) loops are recorded with a TF
Analyzer 2000 (aixACCT System) at 300 K (Figure 1b), where
increasing the applied electric field resulted in a systematic
increase in the remnant polarization (Pr). Well-saturated hys-
teresis loops are obtained at 150 MV m−1. The typical Pr and
coercive field (Ec) values are found 6.2 μC cm−2 and 67 MV m−1,
respectively, indicating that the polymer can sustain an electric
field as high as 150 MV m−1. To further ensure the good quality
of the printed P(VDF-co-TrFE) copolymer, XRD characterization
is carried out, and displays a diffraction peak at 2𝜃 = 20.0°,
which corresponds to an interchain lattice spacing of 4.439 Å
(calculated from Bragg’s equation 2d sin 𝜃 = n𝜆) from the (110,
200) reflection in ferroelectric crystalline phases (Figure 1c). At
the nanoscale, local switching piezoelectric measurements, and
piezoresponse force microscopy (PFM) are employed to track the
polarization switching corresponding to the applied voltage in
a direction perpendicular to the substrate. The P(VDF-co-TrFE)
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Figure 2. a) Schematic illustrating the calibration process of eSR for detection of tidal volume. b) Sensitivity measurement and c) Signal-to-noise ratio
(SNR) at a constant force for eSRs with varying thicknesses of P(VDF-co-TrFE) d) Calibration plot of tidal volume measurement with the eSR.

thin films represent polarization switching pertaining to the
piezo-ferro-electric behavior as shown by the butterfly loop
behavior of PFM amplitude and the presence of a large hys-
teresis in the phase versus DC voltage is shown in Figure 1d,e,
respectively. A 5× 5 μm PFM scan reveals local variations of
the amplitude and phase of the electromechanical response of
the piezoelectric material highlighting the high electroactive
activity of the semi-crystalline polymer thin film (Figure S1,
Supporting Information). To emphasize the thermal stability
of the eSR, dielectric measurements are performed at different
temperatures using a Solatron 1260 A impedance analyzer. A
sinusoidal tension of 1 V amplitude between 102 and 105 Hz
is applied to determine the complex relative permittivity 𝜖 (𝜖′,
𝜖’’ and tan 𝛿 = 𝜖’’/𝜖’) over a temperature range of 20–50 °C
(Figure 1f). The relatively small variation of dielectric constant
and losses as temperature increases, demonstrates that this eSR
is suitable for wearable human respiratory monitoring.

The calibration of the eSR has been carried out using commer-
cial spirometry (Smart spirometer, Spirolink), where the mea-
surement of airflow with spirometry and the corresponding volt-
age produced from eSR, placed on the chest were recorded simul-
taneously (Figure 2a). Various eSRs of different thicknesses (2.5,
5.0 and 7.5 μm) of the active material layers have been fabricated
to investigate the influence of the thickness on the respirome-
ter performances. The output voltage response of these eSRs are
found to increase as the thickness of the electroactive material
increases. Concretely, the sensitivity shows more than two-fold
enhancement and jumps from 150 to 400 mV N−1 with the thick-
ness variation of P(VDF-co-TrFE) from 2.5 to 7.5 μm (Figure 2b).

A high signal-to-noise ratio (SNR) is essential for acquiring pre-
cise signals, enabling the respirometer to extract the desired sig-
nals by eliminating the background noise. The thicker eSR ex-
hibits a higher signal-to-noise ratio (SNR) (58 dB) (Figure 2c).
Herein, 58 dB is found to be sufficient enough to detect subtle
changes in breathing patterns, indicating its efficacy in capturing
variations in respiratory patterns without further increasing the
thickness of the active layer.[30–34] The eSR presents a high con-
version factor (12 mL mV−1) coupled with a low limit detection
of tidal volume (100 mL) (Figure 2d), which makes it a promis-
ing respirometer wearable device even at a low value of detection.
(Section S1, Supporting Information)

To equip the eSR with self-learning capabilities for COPD de-
tection, machine learning algorithms have been integrated. Over
the last years, ML-integrated sensors have revolutionized disease
surveillance, offering portable, non-invasive means to continu-
ously monitor physiological biomarkers. Among global health
challenges like COVID-19, their role became crucial in curbing
immediate disease spread.[35–40] In this context, Figure 3a out-
lines the step-by-step process of the self-learning eSR involved
in the prediction methodology. The process workflow chart indi-
cates the logical sequence of data acquisition, preprocessing, fea-
ture extraction, algorithm selection, model training, and breath-
ing pattern prediction (Section S2, Supporting Information). A
detailed investigation of different regression algorithms has been
carried out, particularly, random forest regression (RFR), gra-
dient boosting regression (GBR), linear regression (LR), sup-
port vector regression (SVR), and ridge regression (RR). To un-
derstand the relationship among different breathing descriptors
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Figure 3. a) Workflow of the investigation of finding the robust algorithm for tidal volume prediction. b) True and predicted values of tidal volume for
different ML algorithms.

(amplitude, area under curve (AUC) and rate), a correlation ma-
trix has been plotted, which quantifies the strength and nature of
the relationships among different descriptors (Figure S2, Sup-
porting Information). Further visualization of the distribution
of descriptors in the respiratory signals, pair plot has been uti-
lized, providing insights into understanding the complex interac-
tions and dependencies,[36] (Figure S3, Supporting Information).
Figure 3b represents the comparison plots between the true tidal
volume and predicted by different algorithms. Extensive overlap-
ping between the true and predicted tidal volume such as for GBR
and RFR indicates high-fidelity prediction in contrast to LR and
RR models that exhibit medium accuracy in predictions and even
SVR shows the worst prediction (Figure S4, Section S1, Support-
ing Information).

The consistency of the performance of these algorithms to pre-
dict tidal volume is further highlighted by comparing the Root
Mean Squared Error (RMSE) values and coefficient of determina-
tion (R2) (Figure S5, Supporting Information). Figure 4a displays
the RMSE values obtained for each algorithm, providing a quan-
titative measure of the prediction accuracy. Lower RMSE values
indicate higher prediction accuracy, similarly, R2 is a statistical
measure indicating the proportion of variance in the breathing
pattern data. Figure 4b illustrates R2 scores achieved by the dif-
ferent algorithms for tidal volume prediction. RFR presents a low
RMSE of 3.47 and a high R2 of 0.9999, indicating accurate predic-
tions, and capturing a significant portion of variance. While GBR
combines multiple weak prediction models (decision trees) se-
quentially by fitting new models to the residuals of previous mod-
els depicts a low RMSE of 0.2982, and a high R2 of 0.9998, indi-

cating its sequential model refinement leads to improved predic-
tions. LR assumes linearity and models the relationship between
input features (x1, x2, …, xi) and the target variable (y) using a lin-
ear equation, here, LR struggles with complex patterns, resulting
in higher RMSE (162), and lower R2 (0.136). SVR handles com-
plex relationships and non-linear data by finding a hyperplane
that best fits the data suboptimal performance (RMSE = 192,
R2 = 0.16913), and RR performs similarly to SVR (RMSE = 162,
R2 = 0.4070), possibly due to the linear nature limiting complex
data handling.[41–43] The ten fold cross-validation is a critical val-
idation technique that helps to evaluate the universality of the
algorithm by splitting data into ten splits (folds) and iteratively
using each fold as a validation set (Figure 4c). It reduces the
risk of overfitting/underfitting and thus provides a more reliable
and generalized performance estimation (Section S3, Support-
ing Information).[44,45] RMSE values of tenfold cross-validation
achieved in different algorithms are displayed in Figure 4d. RFR
and GBR demonstrate consistent accuracy and precision in pre-
dicting tidal volume, possessing lower RMSE, GBR standing out
as the most precise. LR and SVR exhibit wider prediction error
range, indicating low sensitivity to data splits and potential strug-
gles with capturing complex patterns while RR represents mod-
erate consistency, performing less precisely than GBR,and RFR
but more stable than LR and SVR (associate discussion S4, Sup-
porting Information).

Figure 5 displays the flow diagram of the self-learning eSR
for the prediction of COPD biomarkers. Figure 5a displayed the
placing of the eSR on the chest. The enlarged view (bottom) rep-
resents the cross-sectional view of eSR while the top figure shows
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Figure 4. a) Root means square error (RMSE) and b) R2 of different investigated algorithms. c) Schematic illustration of ten-fold validation. d) RMSE
values of ten-fold validation for different employed algorithms.

the acquired respiratory signals with eSR. Figure 5b presents
a schematic of the machine learning (ML) model while the
top enlarged view represents the mathematical equations used
for mean square error (MSE), and the argument of minimum
distance in the case of SVM, the bottom view shows the typical
architecture of the neural network. Figure 5c shows a schematic
of COPD-affected lungs, the top enlarged view represents the
lung arteries affected with Emphysema, while the bottom view
displays the insight structure of chronic bronchitis-affected
lungs.[46,47]

To demonstrate the real-time ability of eSR for COPD biomark-
ers monitoring, respiratory signals for different disease condi-
tions have been carried out using a respiratory mannequin sim-
ulator at SimBA-S healthcare platform, University of Bordeaux,
France (Figure 6a). In particular, various COPD conditions have
been simulated using the Monnal T60 healthcare signal acqui-
sition instrument from air-liquid that allowed us to compre-
hensively test and validate our eSR.[48] By simulating diverse
COPD conditions, we validate the reliability, and robustness of
our respirometer able to record respiratory signals of different
breathing conditions as shown in Figure 6b. To detect COPDs
particularly emphysema and chronic bronchitis, IC and FEV1
have been selected as the key biomarkers, since these are not ef-
fectively tracked by the tidal volume measurement. For instance,
in emphysema, the destruction of alveoli and loss of lung elastic-
ity led to air trapping, dynamic hyperinflation, and increased air-
way resistance, resulting in a decreased inspiratory capacity.[46]

This impairs the ability to efficiently inhale air, contributing to
respiratory limitations, it lowers from 2600 mL in healthy con-

ditions to 1800 mL for emphysema affected (Figure 6c). Simi-
larly, in chronic bronchitis decreased FEV1 is primarily caused
by chronic inflammation, excessive mucus production, and struc-
tural changes in the airways, leading to narrowed passages and
reduced lung elasticity. It collectively impedes the smooth flow
of air during forced expiration, contributing to impaired lung
function, as FEV1 decreases from 90% to 42% for healthy and
affected patients, respectively (Figure 6d). To early predict the
different COPDs particularly emphysema and chronic bronchi-
tis, acquired data from the disease simulator has been utilized
as input in the ML model, while taking IC and FEV1 as a
descriptor.[47–49] Class-wise performance has been evaluated by
utilizing the Receiver Operating Characteristic (ROC) curve for
each class, demonstrating the ability of the model to distinguish
between the true positive rate (TPR), and false positive rate (FPR).
Subsequently, our SVM classification model can distinguish be-
tween the healthy volunteers and COPD-affected patients with a
classification accuracy of over 95% (Figure 6f), with a precision of
0.96 and a recall of 0.97. To test the robustness of the ML model
at optimized parameters, accuracy, and loss function have been
calculated with respect to different training/testing proportions
(Figure S6, Supporting Information).

3. Conclusion

An organic and conformable e-skin respirometer has been
demonstrated for identifying the biomarkers of progressive
lung diseases through monitoring of respiratory signals. A self-
learning capability has been included by the integration of ma-
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Figure 5. The process flow diagram of COPD biomarkers prediction: a) Data acquisition: eSR on the chest (center) with its cross-view structure (bottom)
and enlarged view represents acquired respiratory signals (top). b) ML Model Training with the typical schematic of neural network (bottom) and the
mathematical equations used (top). c) COPD detection with affected lungs (center) with zoomed view on the region of the lungs where emphysema
(bottom) and chronic bronchitis (top) took place.

chine learning algorithms. Among the different algorithms in-
vestigated, GBR is found to be the most reliable one for classify-
ing the various respiratory diseases, particularly emphysema, and
chronic bronchitis with the classification exceeding 95%. In con-
trast to the specialized techniques, manual data recording, dedi-
cated testing facilities, and invasive techniques, our organic self-
learning eSR provides an alternative solution by allowing real-
time monitoring and autonomous detection of COPDs.

4. Experimental Section
Fabrication and Characterization of the Sensor: Utilizing an Ekra X5

screen, the piezoelectric sensor underwent comprehensive screen print-
ing for varying thicknesses (2.5, 5.0, and 7.5 μm), achieved by precise con-
trol of layer deposition during the printing process. In the initial phase,
bottom electrodes were meticulously screen-printed onto a polyethylene
naphthalate (PEN) substrate using a PEDOT: PSS ink (EL-P5015) procured
from Agfa. The application involved a pressure of 80 N and a speed of

Figure 6. a) Disease simulator for different COPD disease recognition. b) recorded signal of different respiratory conditions with eSR. c) Effect on
Inspiration capacity (IC) and d) forced expiration volume in 1 s. for healthy lungs and the COPD diseases affected e) ROC plot to evaluate the class wise
discriminating ability of the mode f) Confusion matrix for the classification of emphysema, and chronic bronchitis.
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100 mm s−1, followed by annealing at 120 °C for 15 min. Subsequently, the
piezoelectric semi-crystalline polymer P(VDF-co-TrFE) was screen-printed
from a specialized piezoelectric ink (FC20 INK P) sourced from Piezotech
Arkema. A dual annealing process ensured, involving steps at 80 °C for
5 min and 135 °C for 30 min immediately post-printing. Finally, mirror-
ing the conditions employed for the bottom electrodes, the top electrodes
were meticulously printed to complete the sensor assembly.

Characterization Techniques: A digital storage oscilloscope
(DSOX1102G, Keysight) was used to acquire the open-circuit volt-
age and physiological signals. The respiratory data recording was
performed on the simulator at the SimBA-S health simulation platform at
Bordeaux University (Figure S7, Supporting Information).

Data Acquisition: In the non-invasive mode, all measurements were
conducted, with the author assuming the role of the volunteer. Prior to
data recording, explicit written consent was obtained.

Development of Machine Learning Algorithms: In the regression analy-
sis, a diverse set of machine learning algorithms was applied to address
specific tasks. RFR was employed using Python, NumPy, and Matplotlib,
where the dataset underwent preprocessing, and one-hot encoding, and
was split into training and testing sets. GBR utilized boosting techniques
and similar preprocessing steps for evaluation. LR focused on Python,
NumPy, and Matplotlib, employing one-hot encoding and visualizing the
regression line. SVR utilized Python, NumPy, and Matplotlib with one-hot
encoding and visualizations for assessing performance. RR was imple-
mented using Python, NumPy, and Matplotlib, with separate X and Y data
frames and one-hot encoding. Each algorithm’s performance was evalu-
ated using appropriate regression metrics and visualized to provide in-
sights into their effectiveness in the respective tasks. Detailed information
regarding each algorithm has been provided in the Section S5 (Supporting
Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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