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ABSTRACT
We introduce a deep learning framework leveraging YOLOv8 ar-
chitecture to automate the localization of Removable Urban Pave-
ments (RUPs) using UAV imagery. The core idea behind RUPs is to
provide pavements that can be quickly opened and closed using
lightweight on-site equipment. This approach aims to efficiently
restore the street’s original appearance and functionalities within
a short timeframe, typically just a few hours. Our study explores
the feasibility of autonomously localizing RUP elements, paving
the way for robotic-driven replacement with prefabricated, fully
functional components. Moreover, the integration of UAV data en-
hances safety and accessibility to challenging areas. Experimental
results underscore the efficacy of our approach in achieving precise
localization and thereby enabling proactive maintenance efforts.

CCS CONCEPTS
• Computing methodologies → Object detection; Scene un-
derstanding; Vision for robotics.
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Object detection, Removable Urban Pavements, UAV imagery, Road
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1 INTRODUCTION
In a strategy aimed at managing efficiently risks with limited bud-
gets, it is crucial to deal with the hazards while deepening our
understanding of transportation infrastructure. The goal is to exe-
cute maintenance measures that are corrective, preventative, and/or
predictive, reducing risks to a level that is deemed acceptable. Thus,
the monitoring of pavements, especially in a preventive capacity,
plays a pivotal role in the approach to risk analysis. It becomes
imperative in this scenario to gain a better grasp of their structural
behavior and acquire dependable data for robust risk assessments.

With this aim, the European project HERON strives to merge
repair and/or replacement actions with automated identification of
potentially defective areas [19]. Embedded within this context is
the Forever Open Road (FOR) principle formulated by the Forum of
European National Highway Research Laboratories (FEHRL). The
French declination of FOR is called “Route de 5ème generation”
(meaning 5th generation road) [6], and has led to various research
projects, among which the development and optimization of the
RUP (Removable Urban Pavements) slabs, which are illustrated in
Fig. 1.

As a matter of fact, the H2020 project HERON answers to the
three FOR principles: resilience, automation, and adaptability. More
specifically, HERON seeks to develop an integrated automated sys-
tem for road network maintenance and rehabilitation. This includes
use cases such as crack sealing, pothole patching, rejuvenation of
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Figure 1: RUP (hexagonal slab).

asphalt pavement, detection and removal of traffic obstacles, identi-
fication of marking defects, autonomous handling of elements in
RUPs, and more, with a particular focus on this latter innovative
technology. To complete these objectives, the HERON system in-
corporates an instrumented autonomous terrestrial robotic vehicle
(Unmanned Ground Vehicle - UGV) and aerial drones (Unmanned
Aerial Vehicle - UAV) for coordinating maintenance and interven-
tion phases. It also includes a detection interface for enhanced
structural condition monitoring, augmented reality visualization
tools, data processing mechanisms, and workflow coordination uti-
lizing deep learning techniques, such as the You Only Look Once
(YOLO) object detection method [20, 42].

Ultimately, HERON facilitates a modular design of the opera-
tional system, enhancing capabilities and adaptability for trans-
portation infrastructures [7]. This approach reduces human risks,
maintenance expenses, and traffic disturbances, thereby enhanc-
ing network efficiency [21, 33]. One of the innovative structures
under scrutiny within the project is RUP. Gustave Eiffel University
is actively engaged in designing, implementing, testing, and vali-
dating RUP on various test sites (see Fig. 2) in France and various
load conditions. This facilitates comprehensive trials where the
HERON project integrates with a multi-technique Non-Destructive
Techniques (NDT) framework.

Figure 2: RUP test site.

On pavement, anomalies often result from the degradation of un-
derground networks (sewage, electricity, telecommunications, etc.),
requiring project owners to intervene. By coordinating all work,
we can avoid presenting an inconsistent image of interventions

by different companies and save users from unnecessary expenses.
However, experience shows that the best coordination is limited
by the policies and time constraints of each stakeholder, each re-
sponding to real objectives that are not easily reconcilable with the
overall goal. The result of this observation is a pavement that is
quickly deformed by repeated openings and closures of trenches,
despite the quality of the compaction implementation. Sometimes
imperfect repairs no longer ensure complete waterproofing and
homogeneity of the entire structure. Consequently, these multi-
ple maintenance interventions have a significant impact on the
operating budget.

To resolve this, the RUP emerges as a solution. It is a pavement
that can be quickly opened and closed, using lightweight equip-
ment, and allows easy access to the sub-base and the underground
networks. This original design is based on hexagonal prefabricated
concrete slabs, supported by an original excavatable and draining
cement-treated base, all on a supporting platform reminding the
multilayer structures of a standard pavement [11]. A straight RUP
structure comprises various elements: whole hexagons in the center
of the pavement, half-hexagons arranged at the edges, all intercon-
nected with a "concrete key" (shoulder located at the base of the
slab), and pavers surrounding the entire structure. Sanded joints
seal the gaps between the slabs. Note that the presence of vertical
holes allows water drainage (see Fig. 1 and Fig. 3).

Figure 3: Implementation of RUP on a structure.

Civil engineering structures, including road infrastructures, are
traditionally examined by technicians using rope and harness equip-
ment, alongwith constructionmachinery like lifts and cranes. These
conventional methods of inspection not only present safety hazards,
potentially resulting in worker accidents and injuries, but are also
expensive and time-intensive [28]. Moreover, they necessitate the
use of bulky machinery, causing disruptions in road and water-
way traffic. Damage identification is typically done visually, which
could lead to undetected damage in hard-to-reach areas of the struc-
tures. As such, it is essential to implement innovative inspection
techniques that enhance the efficiency of defect detection while
simultaneously ensuring the safety of workers [5, 24, 30].

UAVs present numerous benefits in operations involving the
collection of remote sensing data. Specifically, the use of drone
technology allows for the safe and remote acquisition of data from
areas that are otherwise virtually or physically inaccessible. In par-
allel, drones enable the efficient collection of timely and on-demand
imagery [10], circumventing the need for short-term traffic arrange-
ments that necessitate lengthy permit processes and often result
in traffic congestion, shutdowns, accidents, and CO2 emissions.
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Therefore, it is emphasized that UAVs are emerging as a viable and
cost-effective means of obtaining high-quality image data, which
includes crucial spatial, textural, and chromatic information about
the structure being inspected [3, 44, 55].

The deployment of drones will facilitate the surveillance of hard-
to-reach road infrastructures. In terms of road maintenance, drones
can provide an up-to-date model of defects, enabling the planning
of automated actions for subsequent maintenance tasks [29]. This
eliminates the need for personnel to conduct visual inspections
(which often involve driving vehicles and walking on the road),
thereby reducing the risk of accidents [48]. Drone technology has
the potential to decrease the overall expense of these costly op-
erations. As a result, the utilization of aerial drones can offer a
comprehensive view of the area undergoing maintenance or up-
grade interventions.

Simultaneously, the efficient examination of road defects is a
vital responsibility for engineers as it contributes to the safety and
durability of road infrastructures [41]. Conventional road inspec-
tion methods can be laborious, costly, and often lack precision,
making it challenging to detect defects before they escalate into
significant issues. However, the emergence of deep learning al-
gorithms has introduced a novel and more efficient method for
road defect inspection [26]. By processing vast amounts of data,
these deep networks can pinpoint, categorize, and localize even the
minutest defects, such as cracks or potholes, facilitating focused
repairs and more strategic maintenance plans [4, 23, 25, 47]. In this
context, this paper assesses the efficacy of a YOLO object detector
that leverages UAV imagery to establish an image-based automated
system for effective point of interest detection and classification in
road networks [35, 36, 39].

The remainder of the paper is organized as follows. In section
2, we provide an overview of related work on object detection
related to road infrastructures as well as our contribution to the
field. In section 3, we describe the proposed method in detail, as
well as its components and architecture. In section 4, we analyze
the utilized dataset, training procedure, and experimental results as
well as present the performance of our proposed method. Finally,
we conclude the paper in section 5 and discuss potential future
work in the field of computer vision systems related to the concept
of RUPs.

2 PREVIOUS WORK
The literature encompasses a variety of notable research endeavors
on road infrastructure monitoring through the utilization of deep
learning and in particular object detection methodologies. For in-
stance, in [38], a real-time YOLO object detection system applied to
the pre-processed radar range-Doppler-angle power spectrum was
utilized for single-shot detection and classification of road users.

Another relevant aspect pertains to obstacle recognition in road
images [22], where obstacle detection and avoidance for driver-
less cars were implemented using Convolutional Neural Networks
(CNNs) [43]. Additionally, [40] employed a Faster Region-based
convolutional neural network to detect and classify on-road ob-
stacles such as vehicles, pedestrians, and animals. Furthermore, in
the work of [14] a deep learning model was developed to simulate

driving behaviors by integrating dynamic vehicle information with
image data to enhance the performance of self-driving vehicles.

In [46], road surface monitoring with smartphones equipped
with GPS and inertial sensors was investigated, leveraging wavelet
decomposition analysis for processing inertial sensor signals and
Support Vector Machine (SVM) for anomaly detection and classi-
fication. Moreover, [32] proposed a system for autonomous and
comprehensive road infrastructure condition monitoring, suggest-
ing methodologies that could incorporate automatic ground truth
data collection for supervised machine learning. Additionally, [49]
focused on a segment-based spatial stratified heterogeneity ap-
proach to assess the holistic impacts of variables such as vehicles,
climate, road properties, and socioeconomic conditions on pave-
ment infrastructure performance.

Lastly, [8] and [13] delved into the deployment of various Ma-
chine Learning (ML) algorithms, including Support Vector Machine,
Random Forest, Naïve Bayes, Artificial Neural Networks, and Con-
volutional Neural Networks, for ML-based pavement evaluation
and inspection of image contents for vehicle safety systems pur-
poses, respectively. Nevertheless, the literature lacks any studies
focused on the localization and inspection of the novel concept of
RUP structures.

2.1 Our Contribution
Inspired by the above research work, in the present study, we
present the development of an object detection deep learning frame-
work based on the YOLOv8 architecture for the automated localiza-
tion of RUP slabs by utilizing UAV images. The central idea behind
the RUPs is to provide pavements that can be quickly opened and
closed using lightweight on-site equipment [11]. This approach
aims to efficiently restore the street’s original appearance and func-
tionalities within a short timeframe, typically just a few hours.
Autonomous localization and inspection of deteriorated RUP el-
ements through state-of-the-art deep learning frameworks can
enable robotic-driven autonomous replacement of the slabs with
full-functioned components. For instance, when a defected RUP is
detected, it could be easily removed by a UGV using a standardized
robotic procedure and be replaced by another pre-fabricated slab
[34]. Lastly, the integration of artificial intelligence models with
UAV imagery not only enhances safety but also provides access
to areas that are typically challenging to reach, both virtually and
physically [31, 52]. This synergy enables efficient localization and
inspection of RUP elements, paving the way for more effective
maintenance and monitoring strategies.

3 SYSTEM ARCHITECTURE
3.1 The RUP concept
In 2020, as part of a mechanical and hydraulic design study on
RUP, the Gustave Eiffel University (Nantes, France) constructed
a test section measuring 8.51 meters in length and 2.31 meters in
width. This section comprises slabs with a 46 cm edge and 23 cm
thickness, including a surface layer of 4 cm porous concrete for the
22 double-layer hexagonal slabs with a weight of around 280 kg, 4
cm hydraulic concrete for the 15 half-edge slabs, and 2 single-layer
quarter-slabs (see Fig. 4).
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Figure 4: Construction of the test structure at Gustave Eiffel
University.

These slabs have undergone an accelerated test with a fatigue
carousel. Since 1984, Gustave Eiffel University has had a system
to test pavements under heavy vehicle loads at speeds up to 100
km/h (see Fig. 5). This helps validate new structures by testing
for fatigue before moving to larger road tests. So, from Novem-
ber 2020 to February 2021, the RUPs structure was subjected to
200,000 cycles of loading by a half-axle with dual wheels loaded at
65 kN (which corresponds on average to traffic between 45 and 91
buses/day/direction for 20 years). One of the current objectives is
to identify potential structural anomalies of RUPs through multi-
technique methods on the surface and subsurface [45].

Figure 5: Fatigue Carousel (Gustave Eiffel University –
Nantes, France).

3.2 UAV imagery
The DJI Air 2S (see Fig. 6) represents a notable advancement in con-
sumer drone technology, offering engineer experts an auxiliary tool
for effective infrastructure inspection using aerial imagery. More
specifically, equipped with a 1-inch CMOS sensor, the drone is capa-
ble of capturing high-resolution 20-megapixel stills and recording
5.4K video at 30 frames per second [37, 50]. It is also noted that

its compact and lightweight design enhances portability, enabling
users to easily transport it to various inspection sites. In parallel,
the DJI Air 2S offers a range of intelligent flight features and safety
functions aimed at improving the overall flying experience. These
include advanced obstacle sensors and intelligent flight modes such
as Spotlight 2.0, ActiveTrack 4.0, and Point of Interest 3.0, enabling
precise tracking of subjects. Lastly, features like AirSense, which
alerts users to nearby aircraft, and Return-to-Home ensure safe and
reliable operation during flights.

Figure 6: DJI Air 2S.

3.3 YOLOv8
YOLOv8 was introduced by Ultralytics on January 10th, 2023 [16].
Building upon the groundwork laid by the successful YOLOv5 net-
work, YOLOv8 represents a significant advancement in the fields
of object detection, image classification, and instance segmenta-
tion [27]. Mirroring its predecessors, YOLOv8 maintains the three
primary architectural components characteristic of the YOLO frame-
work, the (i) backbone, (ii) neck, and (iii) head [12, 17, 22]. As one
can observe in Fig. 7, these three components collaborate seamlessly,
and in particular, the backbone extracts features from the images,
the neck combines these features, and the head makes predictions
regarding object locations and classes [9].

Figure 7: YOLOv8 architecture.

One notable aspect of YOLOv8 is its departure from the anchor-
box approach seen in previous YOLO models, instead adopting an
anchor-free model [53]. The specific innovative shift enables direct
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prediction of an object’s center, addressing challenges associated
with anchor boxes such as limited generalization and difficulties in
handling irregularities. By reducing the number of box predictions,
YOLOv8 improves the speed of the Non-Maximum Suppression
(NMS) process, a critical post-processing step responsible for refin-
ing candidate detections following inference [15, 27].

Additionally, YOLOv8 introduces architectural enhancements
related to convolutions, which are the core components of neu-
ral networks. The integration of C2f in place of C3, coupled with
substituting the initial 6 × 6 convolution in the stem with a 3 × 3
convolution, has led to a more efficient and adaptable model struc-
ture [2, 27]. In this updated design, outputs from the Bottleneck,
consisting of two 3 × 3 convolutions with residual connections, are
concatenated, departing from the C3 setup where only the output
of the final Bottleneck was utilized [1]. This adjustment bolsters the
model’s structural robustness, pushing the boundaries of YOLOv8’s
capabilities in computer vision tasks.

Continuing its commitment to addressing objects of diverse
scales, YOLOv8 integrates the Spatial Pyramid Pooling Feature
(SPPF) [54]. Additionally, the model employs an online image aug-
mentation strategy during the training procedure, including mosaic
augmentation. This process involves stitching together four images,
allowing the network to learn from objects in new locations, partial
occlusion scenarios, and against varying surrounding pixels [51].

Acknowledging the requirements of the various different com-
puter vision applications, YOLOv8, like its predecessors, is available
in multiple versions that are presented in Table 1 below. In harness-
ing the capabilities of a drone for various applications, integrating
the small version of YOLOv8 presents a compelling proposition [18].
By leveraging the lightweight design and optimized computational
efficiency of YOLOv8s, the system can strike a balance between
accuracy and computational complexity, making it particularly suit-
able for real-time applications. This integration enables the drone
to swiftly process imagery captured during flight, facilitating rapid
object detection and analysis without compromising accuracy.

Model Size (pixels) Params (M) FLOPs (B)
YOLOv8n 640 3.2 8.7
YOLOv8s 640 11.2 28.6
YOLOv8m 640 25.9 78.9
YOLOv8l 640 43.7 165.2
YOLOv8x 640 68.2 257.8

Table 1: Details of the various YOLOv8 variants.

4 EXPERIMENTAL EVALUATION
4.1 Dataset Description
To train and evaluate the proposed methodology, a DJI Air 2S (see
Fig. 6), which was described in section 3.2, was utilized, in combina-
tion with the DJI Smart Controller (see Fig. 8). More specifically, the
experiments took place in the surrounding area of Gustave Eiffel
University premises in Bouguenais, near Nantes, France.

To properly acquire the necessary RGB data manual flights were
planned and executed, while the image overlap (forward and side),
camera angle and flight altitude were properly adjusted during the

Figure 8: DJI Smart Controller for Air2S.

flights according to the needs and complexity of the wider area.
During the data acquisition the UAV performed three flight strips at
5m, 10m and 15m above the ground covering an area of 25m × 10m.
The RGB data exhibit an aspect ratio of 16:9 and in particular a pixel
resolution of 5,472 × 3,078. An indicative photographic example is
illustrated in Fig. 9 below.

Figure 9: Indicative image from the utilized dataset.

It is also highlighted that the images were captured under ad-
verse weather conditions, characterized by heavy rain and strong
winds with gusts. To this end, it is worth mentioning that the data
acquisition process using the UAV can be challenging or even im-
possible due to several restrictions. The weather conditions may
not make it possible to plan and execute a flight, the vegetation
and terrain may also be a restriction since the aircraft is not able
to go near any obstacles. Other parameters that should always be
taken into consideration are the flight restrictions and regulations
of each area (no-fly zones) as well as the flight time limitation of
the UAV (approximately 30 minutes).

After the data acquisition procedure, 70 images that depict the
RUP structure were manually annotated and verified by engineer
experts under the framework of the H2020 HERON project [19].
The dataset was partitioned into three distinct sets for training,
validation, and testing, with 70%, 15%, and 15% of the data allocated
to each, respectively. During the annotation process, two classes
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were considered, based on the shape, material, and color of the
slab, as well as its location on the RUP structure. In particular, (i)
Slab_H represents the central slabs characterized by a hexagonal
shape and dark gray color (see the red bounding box in Fig. 10a),
while (ii) Slab_T refers to the slabs positioned on the sides of the
RUP structure, featuring a trapezoidal shape and light gray color
(see the pink bounding box in Fig. 10b). The dataset of this paper is
available online at: https://github.com/ikatsamenis/RUP-UAV/

(a) Hexagonal slab (Slab_H). (b) Trapezoidal slab (Slab_T).

Figure 10: The two different slab classes.

4.2 Experimental Setup - Model Training
As already analyzed in Section 3, in this study, we leverage the
compact architecture of the small version of YOLOv8 (see Table
1) to address the inherent trade-off between accuracy and com-
putational efficiency, particularly in the context of drone-based
applications. By incorporating this lightweight network, our sys-
tem aims to achieve real-time object detection capabilities while
ensuring minimal computational burden. This strategic integration
enables the drone to efficiently process captured imagery during
flight operations, facilitating rapid analysis of the environment
without compromising on the accuracy of detected objects. To-
wards this direction, the deep model takes up less than 25 MB of
storage and thus can be easily embedded in low-memory digital
devices or systems, including drones and microcontrollers. The
YOLOv8s detector was trained and evaluated using an NVIDIA
Tesla T4 GPU with 12 GB of memory, provided by Google Colab.
We trained the network, using batches of size 16, for 100 epochs,
and set the input image resolution to 640 × 640 pixels. Indicative
outputs of the utilized YOLOv8s model are illustrated in Fig. 11.

4.3 Performance Metrics
The evaluation of the implemented architecture involves analyzing
various well-established metrics, detailed in subsequent paragraphs.
Before introducing each metric, it’s essential to note the use of four
key components for assessing deep learning model performance:
true positives (TP) for correctly classified positive instances, true
negatives (TN) for correctly classified negatives, false positives
(FP) for incorrectly classified positives, and false negatives (FN)
for incorrectly classified negatives. These parameters form the
basis for defining performance metrics, providing insight into the
effectiveness of the utilized deep network.

Precision (Prec) measures the proportion of true positive predic-
tions out of all positive predictions made by the model. It assesses

the accuracy of positive identifications, with higher precision in-
dicating fewer false positive predictions. Precision is crucial in
scenarios where minimizing false alarms is vital and is calculated
as follows:

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

Recall (Rec), also known as sensitivity, quantifies the model’s
ability to identify all relevant instances, measuring the proportion
of true positive predictions out of all actual positives in the dataset.
A higher recall indicates that the model captures a greater portion of
relevant instances. In applications where missing positive instances
is costly, high recall is essential. Its formula is expressed as:

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

F1-score (F1) is the harmonic mean of precision and recall, pro-
viding a single metric that balances both precision and recall. It is
particularly useful when there is a need to strike a balance between
minimizing false positives and false negatives. F1-score is calculated
as follows:

𝐹1 =
2 · 𝑃𝑟𝑒𝑐 · 𝑅𝑒𝑐
𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐

=
𝑇𝑃

𝑇𝑃 + 1
2 (𝐹𝑃 + 𝐹𝑁 )

(3)

Average Precision (AP) is a pivotal metric in the domain of object
detection, serving as a gauge of a model’s precision-recall trade-
off for individual object classes. It measures the area under the
precision-recall curve, reflecting how effectively a model balances
precision and recall across various confidence thresholds. A higher
AP score indicates superior performance, showcasing the model’s
capability to precisely identify objects while minimizing false pos-
itives. If we represent the precision-recall curve as 𝑝 (𝑟 ), then the
AP can be computed as follows:

𝐴𝑃 =

∫ 1

0
𝑝 (𝑟 )𝑑𝑟 (4)

Mean Average Precision (mAP) extends the assessment of AP by
computing the average of AP scores across multiple object classes.
By aggregating the AP scores, mAP offers a comprehensive eval-
uation of a model’s overall detection performance across diverse
classes. A higher mAP signifies a model’s proficiency in accurately
detecting objects across the entire spectrum of classes, contributing
to a more holistic understanding of its capabilities. Therefore, in
this study, we compute the mean Average Precision (mAP) for each
localization scenario using the following formula, where 𝑁 denotes
the total number of slab categories:

𝑚𝐴𝑃 =
1
𝑁

𝑁∑︁
𝑘=1

𝐴𝑃𝑘 (5)

Lastly, it is noted that in the present paper, we use mAP50 and
mAP50:95 which are variants of the mAP metric. These metrics
focus on different aspects of object detection performance. On the
one hand, mAP50 calculates the average precision at a single Inter-
section over Union (IoU) threshold of 0.5, providing insight into a
model’s performance under less strict localization criteria. On the
other hand, mAP50:95 computes the average precision over a range
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(a) Input RGB image (b) Detection of the hexagonal slabs (c) Detection of the trapezoidal slabs

Figure 11: Indicative outputs of the YOLOv8s model.

of IoU thresholds from 0.5 to 0.95, offering a more nuanced assess-
ment of a model’s detection accuracy across a broader spectrum of
localization thresholds.

4.4 Experimental Results
As already mentioned, Fig. 11 depicts representative detection out-
puts of the YOLO network utilized for localizing RUP elements. In
parallel, as can be seen in Table 2 the results of YOLOv8s showcase
remarkable precision and recall values with average scores over
99%. In particular, average precision is reported at 99.8%, suggesting
that nearly all positive predictions made by the model are indeed
correct. Similarly, the average recall rate stands at 99.1%, indicating
that the network effectively identifies the vast majority of positive
instances in the dataset. These high precision and recall scores
are further corroborated by mAP metrics, with both mAP50 and
mAP50-95 values exceeding 98%. The consistency across differ-
ent evaluation metrics underscores the robustness of the model in
accurately detecting slabs across the entire dataset.

Class Precision Recall F1-score mAP50 mAP50:95
all 99.8% 99.1% 99.4% 99.5% 98.0%

Slab_H 99.9% 100% 100% 99.5% 98.0%
Slab_T 99.7% 98.2% 98.9% 99.5% 98.1%
Table 2: Performance metrics of the YOLOv8s model.

Further analysis reveals even more impressive performance for
individual slab classes. The Slab_H class exhibits near-perfect pre-
cision of 99.9%, coupled with flawless recall of 100%. This implies
that the model not only identifies all instances of the hexagonal
slabs but also minimizes false positive predictions to an exceptional
degree. Similarly, the Slab_T class demonstrates strong precision
of 99.7% and respectable recall of 98.2%, highlighting the detec-
tor’s capability to accurately detect instances of this class while
maintaining a low false positive rate. The mAP metrics for both
classes are consistent with the overall high performance, indicating
the model’s ability to maintain precision and recall at different
confidence thresholds.

In conclusion, the reported results that are demostrated in Table
2, as well as the indicative object detection outputs that are depicted
in Fig. 11, reflect the high accuracy and reliability of the YOLOv8s
model, with exceptional F1-scores across both slab classes. The
model’s ability to achieve near-perfect performance for individ-
ual classes underscores its effectiveness in accurately identifying
objects of interest while minimizing false positives. These results
provide confidence in the model’s capability to generalize well to
unseen data and showcase its potential for real-world applications
in localization tasks that are related to the RUP scenario.
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5 CONCLUSIONS
In conclusion, our study introduces a novel approach for the auto-
mated localization of RUP elements using a deep learning frame-
work based on YOLOv8s architecture and UAV imagery. By lever-
aging this technology, we aim to streamline the process of effec-
tively localizing the slabs leading to more efficient maintenance
and monitoring strategies in the future. Our experimental results
demonstrate the feasibility and efficacy of this approach, showcas-
ing its potential to significantly enhance RUP structure inspection
and enhance bolster street infrastructure resilience.

Further analysis, research andworkwill be carried out in order to
produce point clouds from the acquired digital images by exploiting
Structure from Motion (SfM) and Multi-view Stereo (MVS) recon-
struction algorithms to compare them with LiDAR products that
will also be acquired in the project’s lifetime in order to annotate
the necessary data and detect the RUP slabs in the 3D point clouds.
Lastly, exploring various state-of-the-art instance segmentation
models could present an opportunity to advance the object detec-
tion task towards pixel-wise segmentation of the slabs, thereby
enhancing the granularity and accuracy of our analysis.
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