
HAL Id: hal-04631570
https://hal.science/hal-04631570v1

Submitted on 2 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Misspecification analysis of gamma- and inverse
Gaussian-based perturbed degradation processes

Nicola Esposito, Agostino Mele, Bruno BC Castanier, Massimiliano Giorgio

To cite this version:
Nicola Esposito, Agostino Mele, Bruno BC Castanier, Massimiliano Giorgio. Misspecification analysis
of gamma- and inverse Gaussian-based perturbed degradation processes. Applied Stochastic Models
in Business and Industry, 2023, 237 (3), pp.109320. �10.1002/asmb.2824�. �hal-04631570�

https://hal.science/hal-04631570v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Received: 30 November 2022 Revised: 5 September 2023 Accepted: 7 September 2023

DOI: 10.1002/asmb.2824

R E S E A R C H A R T I C L E

Misspecification analysis of gamma- and inverse
Gaussian-based perturbed degradation processes

Nicola Esposito1 Agostino Mele2,3 Bruno Castanier4 Massimiliano Giorgio1

1Università di Napoli Federico II, Napoli,
Italy
2Dipartimento di Ingegneria, Università
degli studi della Campania “Luigi
Vanvitelli”, Aversa, Italy
3Kineton, Napoli, Italy
4Laris, Polytech Angers/Université
d’Angers, Angers, France

Correspondence
Massimiliano Giorgio, Università di
Napoli Federico II, Napoli, Italy.
Email: massimiliano.giorgio@unina.it

Funding information
Université Franco Italienne within the
frame of the chapitre 2 of Vinci project,
Grant/Award Number: subvention N◦

C2-221; Università di Napoli Federico II in
the frame of the international agreement
between Dipartimento di Ingegneria
Industriale and Polytech Angers,
Grant/Award Numbers: codice
identificativo 000011--ALTRI-2021-M-
GIORGIO_001_001, prot. 40162 del
20/4/2021; WISE project of the Région
Pays de la Loire (France)

Abstract
Albeit not equivalent, in many applications the gamma and the inverse Gaussian
processes are treated as if they were. This circumstance makes the misspecifica-
tion problem of these models interesting and important, especially when data
are affected by measurement errors, since noisy/perturbed data do not allow
to verify whether the selected model is actually able to adequately fit the real
(hidden) degradation process. Motivated by the above considerations, in this
paper we conduct a large Monte Carlo study to evaluate whether and how the
presence of measurement errors affects this misspecification issue. The study is
performed considering as reference models a perturbed gamma process recently
proposed in the literature and a new perturbed inverse Gaussian process that
share the same non-Gaussian distributed error term. As an alternative option,
we also analyze the more classical case where the error term is Gaussian dis-
tributed. We consider both the situation where the true model is the perturbed
gamma and the one where it is the perturbed inverse Gaussian. Model parame-
ters are estimated from perturbed data using the maximum likelihood method.
Estimates are retrieved by using a new sequential Monte Carlo EM algorithm,
which use allows to hugely mitigate the severe numerical issues posed by the
direct maximization of the likelihood. The risk of incurring in a misspecifica-
tion is evaluated as percentage of times the Akaike information criterion leads to
select the wrong model. The severity of a misspecification is evaluated in terms
of its impact on maximum likelihood estimate of the mean remaining useful life.

K E Y W O R D S

expectation–maximization algorithm, gamma process, inverse Gaussian process, measurement
errors, model misspecification, particle filter

1 INTRODUCTION

The gamma and the inverse Gaussian processes are widely applied in engineering and reliability.1–12 Indeed, both are con-
sidered natural choices for modeling monotonic degradation phenomena. In particular, even though they are not fully
equivalent, in many applications these models are treated as if they were. This situation makes the model misspecification
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issue of gamma and inverse Gaussian processes interesting and important. However, discriminating between these models
is not a simple task, especially when available experimental data are contaminated by measurement errors, a situation that
is often encountered in practical applications, mainly when data are collected through in-service and/or non-destructive
inspection methods.13 In fact, noisy/perturbed data do not allow to directly evaluate the ability of the model to describe
the hidden degradation process, which is the primary aim of using a degradation model selection criterion in reliabil-
ity and maintenance applications. Despite its importance, the misspecification issue of gamma and inverse Gaussian
processes has been rarely addressed in the literature. In fact, more specifically, while the basic problem is addressed
in Zhang and Revie14 and Tseng and Yao,15 to the best of our knowledge, in the literature there are no papers deal-
ing with this misspecification issue that focus on situations where available data are contaminated by measurement
errors.

Motivated by these considerations, in this article, we conduct a large Monte Carlo study aimed at investigating whether
and how the presence of measurement errors affects the misspecification issue of gamma and inverse Gaussian processes.

The study is carried out considering as competing models a perturbed gamma process (PGP) recently proposed by
Giorgio et al.16 and a new perturbed inverse Gaussian process (PIGP) that share the same error term. In addition, to facili-
tate the comparative analysis, the (hidden) inverse Gaussian process (IGP) is formulated by using a new parameterization
that allows the considered competing models to share the same parameters and the same functional forms of the mean
and variance functions.

As in Giorgio et al.,16 the error term is supposed to depend (in stochastic sense) on the hidden degradation level and,
conditionally to the degradation level, is modeled as a 3-parameter inverse gamma random variable. This modeling solu-
tion distinguishes the considered models from other perturbed degradation models suggested in the literature, where the
error is modeled by using a Gaussian distribution and is assumed to be stochastically independent of the hidden degrada-
tion process.13,17–20 Moreover, it ensures that the perturbed measurement is nonnegative, a result that is not guaranteed
in the case where the error term is described by using the Gaussian model, especially when the magnitude of the standard
deviation of the error term is comparable to that of the measured degradation level.

Nonetheless, for the sake of generality, as an alternative modeling solution, we have also examined the case where the
error term is modeled by using a Gaussian distribution. Also in this second case, by following Pulcini,21 we have assumed
that the measurement error depends in stochastic sense on the measured degradation level. Yet, as a special case of this
latter model, we have also considered the classical assumption where the error is independent of the hidden degradation
process.

Both the misspecification of a PGP with a PIGP and the symmetric case of the misspecification of a PIGP with a PGP
are considered. Model parameters are estimated from perturbed data by using the maximum likelihood (ML) method.

The fitting ability of the considered competing perturbed models is evaluated by using the Akaike information crite-
rion (AIC).22 The risk of incurring in a misspecification is evaluated as percentage of times the AIC leads to select the
wrong model. The severity of a misspecification is evaluated in terms of its impact on ML estimate of the mean remaining
useful life (MRUL). The impact of the presence of measurement errors on risk and consequences of incurring in a mis-
specification is evaluated by comparing the obtained results with those obtained by carrying out the same misspecification
analysis in the absence of measurement errors.

Unfortunately, as it also occurs in the case of gamma- and inverse Gaussian-based perturbed degradation models,
computing the likelihood functions, which are not available in closed form, requires intensive numerical methods that,
at the same time, increase the computational burden and exacerbate convergence issues of numerical optimization algo-
rithms used to retrieve the ML estimates. Indeed, mainly due to numerical problems and long computational times,
the performance of ML estimators of parameters of the gamma- and inverse Gaussian-based perturbed degradation pro-
cesses, and/or functions thereof, are typically investigated by using a relatively small number (e.g., 100 or 200) of synthetic
datasets (i.e., number of replications), a situation that does not allow to obtain results characterized by an adequate degree
of accuracy.

In order to overcome this limitation, as an additional contribution of this paper, we suggest and adopt a new sequential
Monte Carlo expectation–maximization (EM) algorithm, which allows to drastically simplify the estimation task and
(consequently) to find a better tradeoff between precision and computational affordability of the Monte Carlo study. In
fact, the use of this algorithm allows us to perform a Monte Carlo study where each index of interest is evaluated on the
basis of 2000 simulated datasets.

However, even by adopting the suggested algorithm, the considered misspecification study remains a very time con-
suming task. This is mainly because a correct application of the Akaike information criterion requires a very accurate
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evaluation of ML estimates of the 5-parameter log-likelihood functions of the competing models, which in about 6% of
cases differ only in the fourth significant figure and more rarely (in less than 1% of cases) only in the fifth significant
figure. In the case of the suggested sequential Monte Carlo EM algorithm, the needed accuracy can be obtained only by
using a very high number of particles (say, 500,000 or more), a circumstance that significantly affects the computational
burden.

The rest of the paper is structured as it follows. Section 2 introduces the considered competing perturbed degradation
models. Section 3 deals with the formulation of the cumulative distribution function of the remaining useful life. Section 4
is devoted to the formulation of the likelihood function. Section 5 describes the performed misspecification study in
detail, illustrates the Monte Carlo approach adopted to develop it, and reports obtained results and related comments.
Section 6 provides some conclusions. Appendices A and B illustrate the EM algorithm and the particle filter method used
to compute the ML estimates of model parameters and functions thereof.

2 PERTURBED GAMMA AND PERTURBED INVERSE GAUSSIAN
DEGRADATION PROCESSES

A perturbed stochastic process {Z(t); t ≥ 0} is customarily formulated as in (1):

{Z(t) = W(t) + 𝜀(t); t ≥ 0}, (1)

where {W(t); t ≥ 0} is the actual (hidden) degradation process and 𝜀(t) is a perturbing term, here intended as a measure-
ment error. To provide a full stochastic description of the process {Z(t); t ≥ 0} it is necessary to define the hidden process
{W(t); t ≥ 0}, the error term 𝜀(t), and their mutual stochastic relationship.

In this paper, it is assumed that:

i. the hidden process might be either a gamma process (GP) or an IGP. Given that both processes have independent
increments, both are fully defined by the distribution of their generic increment ΔW(t, t + 𝜏) = W(t + 𝜏) −W(t) and
by an initial condition, here W(0) = 0.
The probability density function (pdf) of the increment ΔW(t, t + 𝜏) of the GP is expressed by using the classical
parametrization (2):

fΔW(t,t+𝜏)(𝛿) =
𝛿
Δ𝜂(t,t+𝜏)−1

𝜃
Δ𝜂(t,t+𝜏) ⋅ Γ(Δ𝜂(t, t + 𝜏))

⋅ e−𝛿∕𝜃, 𝛿 > 0, (2)

where Γ(⋅) is the complete gamma function, 𝜃 (𝜃 > 0) is the scale parameter, 𝜂(t) is a non-negative monotonic
increasing function, here referred to as the age function, and Δ𝜂(t, t + 𝜏) = 𝜂(t + 𝜏) − 𝜂(t).
Differently, in order to facilitate the misspecification study, the pdf of the increment ΔW(t, t + 𝜏) of the IGP is
expressed by using the following special form:

fΔW(t,t+𝜏)(𝛿) =
Δ𝜂(t, t + 𝜏)

√
2 ⋅ 𝜋 ⋅ 𝜃−1 ⋅ 𝛿3

⋅ e−
[𝛿−𝜃⋅Δ𝜂(t,t+𝜏)]2

2⋅𝜃⋅𝛿 , 𝛿 ≥ 0, (3)

which can be easily obtained from the classical functional form of the pdf of the increment of the IGP:8

fΔW(t,t+𝜏)(𝛿) =
√
λ ⋅ [ΔΛ(t, t + 𝜏)]2

2 ⋅ 𝜋 ⋅ 𝛿3 ⋅ e−
λ⋅[𝛿−𝜇⋅ΔΛ(t,t+𝜏)]2

2⋅𝜇2 ⋅𝛿 , 𝛿 ≥ 0, (4)

where Λ(t) is a nonnegative monotonic increasing function, ΔΛ(t, t + 𝜏) = Λ(t + 𝜏) − Λ(t), and 𝜇 and λ are positive
valued parameters, by setting 𝜇2∕λ = 𝜃 and 𝜇 ⋅ ΔΛ(t, t + 𝜏) = Δ𝜂(t, t + 𝜏).
The main advantage of using the parametrization (3) is that it allows the considered competing processes to share the
same parameters and the same functional forms of the mean E{W(t)} and variance V{W(t)} functions, which can be
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ESPOSITO et al. 643

expressed as in (5) and (6), respectively:

E{W(t)} = 𝜃 ⋅ 𝜂(t), (5)

V{W(t)} = 𝜃2 ⋅ 𝜂(t). (6)

In fact, under the classical parameterization (4) the mean and variance functions of the IGP are equal to E{W(t)} =
𝜇 ⋅ 𝛬(t) and V{W(t)} = [𝜇 ⋅ 𝛬(t)]3∕𝜆, respectively.
From (2), the cumulative distribution function (cdf) of the increment ΔW(t, t + 𝜏) of the GP results in:

FΔW(t,t+𝜏)(𝛿) =
𝛾(Δ𝜂(t, t + 𝜏), 𝛿∕𝜃)
Γ(Δ𝜂(t, t + 𝜏))

, 𝛿 ≥ 0, (7)

where 𝛾(⋅) is the lower incomplete gamma function. Likewise, from (3), under the IGP the same cdf has the following
(special) expression:

FΔW(t,t+𝜏)(𝛿) = Φ

(
𝛿 − 𝜃 ⋅ Δ𝜂(t, t + 𝜏)

√
𝜃 ⋅ 𝛿

)

+ e𝜃⋅Δ𝜂(t,t+𝜏) ⋅Φ

(

−𝛿 + 𝜃 ⋅ Δ𝜂(t, t + 𝜏)√
𝜃 ⋅ 𝛿

)

, 𝛿 ≥ 0, (8)

where Φ(⋅) is the standard normal cdf.
In this article, both under the gamma and the inverse Gaussian models, the age function 𝜂(t) is modeled by using the
very flexible and largely adopted power law functional form 𝜂(t) = (t∕a)b.

ii. To model the perturbing term 𝜀(t) we consider two different options:
(1) by following Giorgio et al.,16 we assume that 𝜀(t) depends in a stochastic sense on the hidden degradation level

W(t) and that, given W(t), is conditionally distributed as a 3-parameter inverse gamma random variable. The
conditional pdf of the error term 𝜀(t), given W(t) = w, is expressed as follows:

f𝜀(t)∣W(t)(𝜀|w) =
(𝛼(w))𝛽(w) ⋅ (𝜀 + w)−𝛽(w)−1

Γ(𝛽(w))
⋅ e−

𝛼(w)
𝜀+w , 𝜀 ≥ −w, (9)

where 𝛽(w) = 𝜑 ⋅ w2−𝜈 + 2, 𝜑 > 0, −∞ < 𝜈 < ∞, and 𝛼(w) = (𝛽(w) − 1) ⋅ w. As remarked in Giorgio et al.,16 this
modeling solution ensures that the perturbed measurement Z(t) = W(t) + 𝜀(t) is non-negative and enables to easily
model cases where the measurement error depends (in stochastic sense) on the measured degradation level, two
situations that are often encountered in practical applications.

Under this setting, the conditional mean and variance of 𝜀(t), given W(t) = w, can be expressed as in (10) and
(11), respectively:

E{𝜀(t)|W(t) = w} = 𝛼(w)
𝛽(w) − 1

− w = 0, (10)

V{𝜀(t)|W(t) = w} = (𝛼(w))2

(𝛽(w) − 1)2 ⋅ (𝛽(w) − 2)
= w𝜈

𝜑

. (11)

Thus, from (1), the perturbed measurement Z(t), given W(t) = w, has conditional pdf:

fZ(t)∣W(t)(z|w) =
(𝛼(w))𝛽(w) ⋅ z−𝛽(w)−1

Γ(𝛽(w))
⋅ e−

𝛼(w)
z , z ≥ 0, (12)

conditional mean:

E{Z(t)|W(t) = w} = E{𝜀(t)|W(t) = w} + w = w, (13)
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644 ESPOSITO et al.

and conditional variance:

V{Z(t)|W(t) = w} = V{𝜀(t)|W(t) = w} = w𝜈

𝜑

. (14)

(2) inspired by Pulcini,21 as an alternative modeling solution, we assume that 𝜀(t) is Gaussian distributed with zero
mean and variance that depends on W(t). Specifically, in this second case, the conditional pdf of the error term
𝜀(t), given W(t) = w, is formulated as:

f𝜀(t)∣W(t)(𝜀|w) =
1

√
2 ⋅ 𝜋 ⋅ 𝜎2(w)

⋅ e−
1
2
⋅ 𝜀

2

𝜎
2(w) ,−∞ < 𝜀 <∞, (15)

where, 𝜎2(w) = w𝜈∕𝜑,𝜑 > 0, and −∞ < 𝜈 <∞.
Hence, from (1), the perturbed measurement Z(t), given W(t) = w, has conditional pdf:

fZ(t)∣W(t)(z|w) =
1

√
2 ⋅ 𝜋 ⋅ 𝜎2(w)

⋅ e−
1
2
⋅ (z−w)2

𝜎
2(w) ,−∞ < z <∞, (16)

conditional mean E{Z(t)|W(t) = w} = w, and conditional variance V{Z(t)|W(t) = w} = w𝜈∕𝜑.
Indeed, this alternative setting has been specifically chosen because it allows 𝜀(t) and Z(t), given W(t) = w, to have
the same conditional mean and variance as they have under the error model (1). Pulcini21 used this modeling
solution to formulate a PGP. Successively, Hao et al.23 and Sun et al.24 used it to formulate a PIGP.

iii. for any n > 1, the measurement error 𝜀
(

tj
)

given W
(

tj
)

is conditionally independent both of 𝜀(tk) and W(tk) ∀k ≠
j (j, k = 1, … ,n). Thus, equivalently, the perturbed observation Z

(
tj
)

given W
(

tj
)

is conditionally independent both
of Z(tk) and W(tk) ∀k ≠ j, (j, k = 1, … ,n).

Under these assumptions, from (5), (10), and (13), by using the law of total mean, the (marginal) means of 𝜀(t) and Z(t),
under all the considered perturbed processes (i.e., under all the possible combinations of hidden processes and error
terms) result in:

E{𝜀(t)} = E{E{𝜀(t)|W(t)}} = E{0} = 0, (17)

and

E{Z(t)} = E{E{Z(t)|W(t)}} = E{W(t)} = 𝜃 ⋅ 𝜂(t). (18)

Similarly, from (6), (11), (13), and (14), by exploiting the law of total variance, the marginal variances of 𝜀(t) and Z(t)
are equal to:

V{𝜀(t)} = V{E{𝜀(t)|W(t)}} + E{V{𝜀(t)|W(t)}} = V{0} + E{V{𝜀(t)|W(t)}} = E{(W(t))𝜈}
𝜑

, (19)

and

V{Z(t)} = V{E{Z(t)|W(t)}} + E{V{Z(t)|W(t)}} = V{W(t)} + E
{
(W(t))𝜈

𝜑

}
= 𝜃2 ⋅ 𝜂(t) + E{(W(t))𝜈}

𝜑

, (20)

where the fractal moment E{(W(t))𝜈} (in general) depends on the hidden process. In fact, in the case of the PGP
E{(W(t))𝜈} is equal to:

E{(W(t))𝜈} = 𝜃𝜈 ⋅ Γ(𝜂(t) + 𝜈)
Γ(𝜂(t))

,
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ESPOSITO et al. 645

while under the PIGP it is given by the following integral:

E{(W(t))𝜈} = 𝜂(t)
√

2 ⋅ 𝜋 ⋅ 𝜃−1
⋅
∫

∞

0
w𝜈− 3

2 ⋅ e−
[w−𝜃⋅𝜂(t)]2

2⋅𝜃⋅w ⋅ dw

that (in general) is not available in closed form.
However, if 𝜈 = 0, 1, or 2, also V{𝜀(t)} and V{Z(t)} do not depend on the hidden model. In fact, if 𝜈 = 0 it is

V{𝜀(t)} = 1
𝜑

and

V{Z(t)} = 𝜃2 ⋅ 𝜂(t) + 1
𝜑

.

Likewise, if 𝜈 = 1 it is

V{𝜀(t)} = 𝜃 ⋅ 𝜂(t)
𝜑

and

V{Z(t)} = 𝜃2 ⋅ 𝜂(t) + 𝜃 ⋅ 𝜂(t)
𝜑

.

Notably, in this case the ratio between V{Z(t)} and V{W(t)} does not depend on t:

V{Z(t)}
V{W(t)}

=
𝜃

2 ⋅ 𝜂(t) + 𝜃⋅𝜂(t)
𝜑

𝜃
2 ⋅ 𝜂(t)

= 1 + 1
𝜃 ⋅ 𝜑

. (21)

Again, by using similar arguments, if 𝜈 = 2, given that under the considered parameterization the two hidden
processes have the same mean and variance (and hence the same second moment), under both processes it is:

E
{
(W(t))2

}
= 𝜃2 ⋅ 𝜂(t) ⋅ (𝜂(t) + 1)

and thus, it results:

V{𝜀(t)} = 𝜃2 ⋅
𝜂(t) ⋅ (𝜂(t) + 1)

𝜑

and

V{Z(t)} = 𝜃2 ⋅
{
𝜂(t) + 𝜂(t) ⋅ (𝜂(t) + 1)

𝜑

}
.

Finally, it is worth to remark that:

• both when the hidden process is the gamma or the inverse Gaussian one, the perturbed process {Z(t), t ≥ 0} is
non-Markovian.

• under the error model (1), when 𝜈 = 0, although the conditional mean and variance of the error term do not depend
on W(t), 𝜀(t) still stochastically depends on W(t) because its support depends on it. In fact, from (9), under this setting
it is 𝜀 ≥ −w.

• under the error model (2), when 𝜈 = 0, 𝜀(t) is stochastically independent of W(t). Hence, in this latter case, the
error model (2) reduces to the classical model adopted in the majority of existing literature on perturbed degradation
models.13,17-20
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646 ESPOSITO et al.

3 CDF OF RUL

A unit is assumed to fail when its true degradation level passes a preassigned failure threshold D. Hence, the lifetime X
of the unit is defined as the first passage time of the hidden degradation process to the threshold D:

X = inf{x ∶ W(x) > D}.

Accordingly, its remaining useful life RUL(t) at time t is defined as follows:

RUL(t) = max{0,X − t}.

It is assumed that failures are not self-announcing25,26 and that a failed unit may continue to operate, albeit with
(possibly) reduced performance. Thus, due to the presence of measurement errors, it is also supposed that a perturbed
measurement of the degradation state of the unit does not permit to assess with certainty whether a unit is already failed
or not.

Under these assumptions, by following Esposito et al.,27 considered that both the gamma and inverse Gaussian pro-
cesses are monotonic increasing and that both have independent increments, the conditional cdf FRUL(t)⌈Z(t)(𝜏|z(t)) of the
RUL(t) given Z(t) = z(t), is formulated as follows:

FRUL(t)|Z(t)(𝜏|z(t)) = P[RUL(t) ≤ 𝜏|Z(t) = z(t)] = P[W(t + 𝜏) > D|Z(t) = z(t)]

= 1 − FW(t+𝜏)∣Z(t)(D|z(t)) = 1 −
∫

D

0
FΔW(t,t+𝜏)(D − w) ⋅ fW(t)∣Z(t)(w|z(t)) ⋅ dw, (22)

where Z(t) =
{

Z
(

tj
)
; j ≥ 1, tj ≤ t

}
denotes the set of measurements collected up to and included the time t and z(t) ={

z
(

tj
)
; j ≥ 1, tj ≤ t

}
denotes its realization.

Note that, due to the presence of measurement errors, given that failures are not self-announcing, in general it results
FRUL(t)(0|z(t)) > 0. Moreover, for t < t1 (that is, before the first measurement time) Z(t) should be intended as the empty
set so that, in this case, FW(t+𝜏)∣Z(t)(D|z(t)) coincides with FW(t+𝜏)(D).

From (22), given Z(t) = z(t), the conditional mean of the RUL(t), MRUL(t|Z(t) = z(t)), can be computed as:

MRUL(t|Z(t) = z(t)) =
∫

∞

0

(
1 − FRUL(t)(𝜏|z(t))

)
⋅ d𝜏 =

∫

∞

0
FW(t+𝜏)∣Z(t)(D|z(t)) ⋅ d𝜏. (23)

Unfortunately, under both the considered models, the cdf FW(t+𝜏)∣Z(t)(D|z(t)) is not available in closed form. Hence, the cdf
of RUL(t) in (22) and the related conditional mean MRUL(t|Z(t) = z(t)) in (23) are computed by using the particle filter
algorithm illustrated in Appendix B.

4 LIKELIHOOD FUNCTION

Let us consider m identical units, operating under homogeneous conditions, that are subjected to periodic inspections,
aimed at measuring their degradation level, and let us suppose that measurements are affected by errors. Then, let us
denote by ti,j (j = 1, … ,ni;ni ≥ 1) the age of the ith unit (i = 1, … ,m) at the epoch of the jth inspection, by Zi,j = Z

(
ti,j
)
the

perturbed degradation level of the unit i at ti,j, and by zi,j its realization.
With these notations, under both the considered models, the likelihood function L(𝝃; z) of the perturbed data can be

formulated as:

L(𝝃; z) =
m∏

i=1

ni∏

j=1
fZi,j|Zi,j−1

(
zi,j||zi,j−1

)
, (24)

where 𝝃 = (a, b, 𝜃, 𝜑, 𝜈) is the vector of model parameters, z =
{

z1,n1 , … , zm,nm

}
is the realization of the whole set of

available noisy measurements Z =
{

Z1,n1 , … ,Zm,nm

}
, Zi,j =

{
Zi,1, … ,Zi,j

}
is the set of perturbed measurements of the
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ESPOSITO et al. 647

degradation state of the unit i collected up to time ti,j, zi,j =
{

zi,1, … , zi,j
}

is the realization of Zi,j, ti,0 = 0, Zi,0 and zi,0 are
the empty set, and fZi,1|Zi,0

(
zi,1||zi,0

)
= fZi,1

(
zi,1
)
.

Unfortunately, due to the fact that {Z(t); t ≥ 0} is not a Markov process, the pdfs in the likelihood function (24) are
not available in closed form and their computation is extremely demanding. However, they can be efficiently computed,
for any i = 1, … ,m and j = 1, … ,ni, by using the recursive Equations (25)–(27):

f Wi,j|Zi,j−1

(
wi,j||zi,j−1

)
=
∫

wi,j

0
fΔWi,j|Wi,j−1

(
wi,j − wi,j−1||wi,j−1

)
⋅ f Wi,j−1|Zi,j−1

(
wi,j−1||zi,j−1

)
⋅ dwi,j−1 (25)

fZi,j|Zi,j−1

(
zi,j||zi,j−1

)
=
∫

∞

0
fZi,j∣Wi,j

(
zi,j||wi,j

)
⋅ fWi,j∣Zi,j−1

(
wi,j||zi,j−1

)
⋅ dwi,j, (26)

fWi,j|Zi,j

(
wi,j||zi,j

)
=

fZi,j∣Wi,j

(
zi,j||wi,j

)
⋅ fWi,j∣Zi,j−1

(
wi,j||zi,j−1

)

fZi,j∣Zi,j−1

(
zi,j||zi,j−1

) , (27)

where Wi,j = W
(

ti,j
)

denotes the hidden (true) degradation level of the unit i at time ti,j, ΔWi,j = ΔW
(

ti,j−1, ti,j
)
= Wi,j −

Wi,j−1 is the hidden (true) degradation increment of the unit i in the interval
(

ti,j−1, ti,j
)
, wi,j is the realization of Wi,j, and

Δwi,j = wi,j − wi,j−1 is the realization of ΔWi,j. Details about the derivation of (25)–(27) are given in Esposito et al.27

In this paper the likelihood function (24) is computed (numerically) via the particle filter described in Appendix B,
which takes advantage of Equations (25)–(27). The ML estimate ̂𝝃 of 𝝃 is the value of 𝝃 that maximizes (over the param-
eter space) the likelihood function. However, the direct maximization of this likelihood function still poses serious
convergence issues and carries a heavy computational burden. For this reason, the ML estimates of model parameters are
retrieved by using a new expectation maximization particle filter algorithm (described in Appendix A) that significantly
reduces these issues. In fact, the adoption of this maximization strategy is crucial for carrying out the misspecification
analysis performed in this paper which is based on a Monte Carlo study where the estimation procedure is repeated
thousands of times.

5 MISSPECIFICATION ANALYSIS

Two misspecification issues have been addressed: namely, the misspecification of a PGP with a PIGP and the symmetric
case of a misspecification of a PIGP with a PGP.

To this aim, we have developed a large Monte Carlo study where three realistic experimental scenarios are simulated
by using the setups described in Table 1. As already mentioned in Section 2, the age function is modeled by using the
widely adopted power law function 𝜂(t) = (t∕a)b.

In particular, this specific choice of the parameters 𝜑 and 𝜈 allows (see (21)) to calibrate the error term so that the
ratio between the variance of perturbed and hidden processes (i.e., V{Z(t)}∕V{W(t)}) is time independent and equal to
1 + 1∕(𝜃 ⋅ 𝜑) = 1.10, under all the considered setups. This means that the variance of the error term depends on the size
of the measured degradation level and that, due to the presence of the measurement errors, (∀t > 0) the variance of Z(t)
is 10% higher than the variance of W(t).

We have firstly investigated the case where the error term is modeled by using the option (1). Under each setup,
we have used the true model (i.e., either the PGP or the PIGP, depending on the misspecification issue of concern) to
generate Nt = 2000 synthetic datasets. Each dataset consists of m = 6 degradation paths, which simulate the evolution of
the perturbed degradation levels of as many degrading units. Each path consists of ni = 6 perturbed measurements, taken
at equally spaced inspection times t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 5, and t6 = 6, expressed in time units, that are the
same for all the units (that is: ti,j = tj = j,∀i, j, i = 1, … ,m and j = 1, … , 6). Together with each perturbed measurement

T A B L E 1 Setups 𝒜 , ℬ, and 𝒞 used to generate the datasets.

Setup a b 𝜽 𝝋 𝝂

𝒜 1.25 1 1.25 8 1

ℬ 1 1 1 10 1

𝒞 0.5 1 0.5 20 1
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648 ESPOSITO et al.

F I G U R E 1 Pdf of the increments ΔW
(

tj−1, tj
)

of the considered hidden competing processes under the adopted setups.

we also kept the value of the measured (hidden) degradation level, which is generated (as an intermediate result) by the
algorithm that we have adopted to generate the perturbed data. The true values of the hidden (i.e., measured) degradation
levels are used to perform comparative analyses.

Note that, under all the considered setups the hidden processes are homogeneous (i.e., the parameter b is always set to
1). Hence, given that they also have independent increments, and that measurement times are equally spaced, the hidden
increments W(t1),ΔW(t1, t2), … ,ΔW(t5, t6) (where W(t1) ≡ ΔW(t0, t1)) of any considered degradation path are always
independent and identically distributed. Moreover, as remarked in Section 2, given the setup, the mean and variance of
these increments do not depend on the considered (i.e., either gamma or inverse Gaussian) hidden model.

These convenient setups allow to create, without loss of generality, a direct and easily interpretable link between the
risk of misspecification and the parameter a of the age function.

In fact, considered that, both in the case of PGP and PIGP, as Δ𝜂
(

tj−1, tj
)

increases, due to the central limit theorem,
the increment ΔW

(
tj−1, tj

)
tends in distribution to a Gaussian random variable, it is reasonable to expect that, under the

considered setups, the similarity between the distributions of the mentioned increments, and consequently the risk of
incurring in a misspecification, increases with Δ𝜂

(
tj−1, tj

)
and thus, being Δ𝜂

(
tj−1, tj

)
= a−1, decreases with a. Indeed,

Δ𝜂
(

tj−1, tj
)

is equal to 0.8 under the setup 𝒜 , to 1 under the setup ℬ, and to 2 under the setup 𝒞 .
This situation is clearly highlighted in Figure 1, where the solid lines (in red) are the pdfs of the mentioned increments

under the PGP and the dashed lines (in blue) are the corresponding pdfs under the PIGP. From Figure 1 it is evident that
the similarity between the two increments increases moving from the setup 𝒜 to the setup 𝒞 .

In fact, the setups in Table 1 have been specially designed to simulate scenarios with increasing (i.e., from 𝒜 to 𝒞 )
risk of incurring in a model misspecification. The values of 𝜃 have been calibrated so that the mean function of the PGP
and PIGP (as well as the mean function of the corresponding hidden models) is the same under all considered setups.
The variance of Z(t) and W(t), for any given t > 0, decreases moving from the setup 𝒜 to the setup 𝒞 .

Each dataset has been used to perform ML estimates of the parameters (a, b, 𝜃, 𝜑, 𝜈) of both the PGP and PIGP. Then,
dataset by dataset, the AIC has been used to select the model that provides the best fit for that dataset. A misspecification
is assumed to occur when the AIC leads to select the wrong model (that is, the PIGP in the case of a dataset generated by
using the PGP and the PGP in the case of a dataset generated by using the PIGP). Under each considered setup, results
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ESPOSITO et al. 649

obtained by performing these analyses have been used to evaluate the percent risk of misspecification as:

rm(%) =
(

Nm

Nt

)
⋅ 100, (28)

where Nm indicates the number of datasets where a misspecification occurred and Nt is the total number of datasets (i.e.,
2000) used to conduct the analyses. For the index rm(%) we have computed six values, three values from the datasets
generated under the PGP process and three from those generated under the PIGP, which provide (under each setup) the
risk of incurring in a misspecification of a PGP with a PIGP and the risk of incurring in the misspecification of a PIGP
with a PGP, respectively.

The consequences of a misspecification have been evaluated in terms of its impact on the estimate of the mean
remaining useful life, measured by the root mean square error (RMSE) of the ML estimators of the MRUL(6) as:

RMSEM,d =

√√√√√
Nd∑

k=1

6∑

i=1

(
M̂RUL(6)M,k,i −MRUL(6)k,i

)

6 ⋅ Nd
, (29)

where:

1. The subscript d of RMSEM,d specifies which are the Nd datasets used to compute the index. In particular, d = t indicates
that RMSEM,d is calculated by using all the Nt datasets, d = m indicates that it is calculated by using only the Nm
datasets that did not lead to a misspecification, and d = m indicates that it is calculated by considering only the Nm
datasets that led to a misspecification.

2. The subscript M of RMSEM,d specifies which is the model used to estimate the MRUL(6). In particular, M = PGP
indicates the estimates are obtained by using the PGP while M = PIGP indicates that the estimates are obtained by
using the PIGP.

3. MRUL(6)k,i is the true value of the MRUL of the unit whose degradation path, up to t6 = 6, is described by the ith path
(i = 1, … ,m) of the kth dataset (k = 1, … ,Nd). In fact, MRUL(6)k,i is computed, path by path, under the true model
(i.e., the model used to simulate the data) as follows:

MRUL(6)k,i = MRUL
(

t||W(6)k,i = w(6)k,i
)
=
∫

∞

0
FW(t+𝜏)∣W(6)k,i

(
D||w(6)k,i

)
⋅ d𝜏

=
∫

∞

0
FΔW(t,t+𝜏)

(
D − w(6)k,i

)
⋅ d𝜏

(30)

where FΔW(t,t+𝜏)(⋅) is either the CDF (7) or (8), depending on the true model (i.e., PGP or PIGP, respectively), with
parameters set to the values reported in Table 1 (according to the considered setup), and w(6)k,i is the true (hidden)
value of the degradation level of ith unit of the kth dataset at t6 = 6 (i.e., the true value of W(6)k,i), which in this
simulation study is known. From each dataset six values of MRUL(6)i,k are obtained.

4. M̂RUL(6)M,k,i is the ML estimate of the MRUL of the unit whose observed degradation history, up to t6 = 6, is described
by the ith perturbed path of the kth dataset, here denoted as Z(6)k,i. M̂RUL(6)M,k,i is computed as in (23), by using the
model M (i.e., either M = PGP or the M = PIGP) with parameters set to the corresponding ML estimates obtained,
under the same model M, from the kth dataset. In this case the distribution of the RUL used to compute the MRUL
is conditional to Z(6)k,i = z(6)k,i. This estimate depends on the dataset, on the model M, and on the whole perturbed
degradation path of the considered unit (note that both the PGP and PIGP are non-Markovian). From each dataset
are obtained twelve values of M̂RUL(6)M,k,i, six under the PGP and six under the PIGP. Hence, M̂RUL(6)M,k,i differs
from the true value MRUL(6)k,i because it is conditional to the perturbed measurements instead than on the true
(hidden) degradation level and because model parameters are estimated. Moreover, it is worth to underline that, when
M̂RUL(6)M,k,i is computed by using the wrong model the ML estimates of model parameters are obtained by using the
wrong model;

Next, we have repeated the same analyses by modeling the error term according to the option (2).
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650 ESPOSITO et al.

T A B L E 2 Setups 𝒜 , ℬ, and 𝒞 used to generate the datasets when 𝜈 = 0.

Setup a b 𝜽 𝝋 𝝂

𝒜 1.25 1 1.25 8/3 0

ℬ 1 1 1 10/3 0

𝒞 0.5 1 0.5 20/3 0

Furthermore, under both the error models (1) and (2), we have also considered the case where 𝜈 = 0. In this latter
case, the simulated data used to conduct the Monte Carlo study have been generated by using the setups described in
Table 2, which differ from those given in Table 1 for the parameters of the error term only.

In particular, differently than under the setups reported in Table 1, in this case the ratio between the variance of
perturbed and hidden processes (i.e., V{Z(t)}∕V{W(t)}) is not time independent. In fact, under each setup (i.e., 𝒜 ,ℬ,
and 𝒞 , respectively); here, the value of the parameter 𝜑 has been selected to set the variance of the error term (that is
equal to V{𝜀(t)} = 1∕𝜑) to the value that V{𝜀(t)}assumes at t = 3, when 𝜑 and 𝜈 are those given in Table 1. Note that
under the setups given in Table 1 V{𝜀(t)} increases linearly from t = 0, where it is null, to t = 6, where it is equal to 6∕𝜑.
Thus, adopting the setups given in Table 2 allows to set V{𝜀(t)} to the value that the same variance assumes in mean
over the time interval (0, 6) under the setups given in Table 1. Accordingly, under the setups given in Table 2, given that
V{𝜀(t)}) does not depend on t, the ratio V{Z(t)}∕V{W(t)} decreases as t increases.

It is worth to remark again that, under the option (2) when 𝜈 = 0, the adopted modeling solution reduces to the
classical case where the error term is Gaussian distributed and independent of the measured degradation level.

Here, for the convenience of the readers, we report a scheme of the step-by-step procedure we have used to evaluate
the risk and consequences of model misspecification under a given setup and a given true model:

1. select the true model (i.e., either PGP or the PIGP with a given error model) and a setup (i.e., either𝒜 ,ℬ, or𝒞 ) from
Table 1 or Table 2, depending on 𝜈;

2. repeat steps 3–6 Nt = 2000 times;
3. under the true model, simulate a synthetic dataset. At this step the true hidden degradation values, generated at an

intermediate step of the simulation, are also kept;
4. use the EM algorithm and the particle filter described in Appendices A and B to compute the ML estimates of the

parameters of both the PGP and the PIGP. This step defines the “estimated processes” (i.e., the PGP and PIGP calibrated
by using the ML estimates of model parameters);

5. use the AIC to select the best model. In case of incorrect diagnosis (i.e., if the selected model is not the one used to
generate the dataset) a misspecification is assumed to have occurred;

6. path by path (i.e., for any k = 1, 2, … , 2000 and i = 1, 2, … , 6) compute MRUL(6)k,i under the model used to generate
the data and M̂RUL(6)M,k,i both under the (estimated) PGP and the PIGP;

7. use the results obtained by these 2000 iterations to compute the indices (28) and (29).

For the sake of comparison, the same analysis has also been performed in the absence of measurement errors (i.e.,
by assuming that measurements provide exact values of measured degradation levels). In this latter case the competing
models are the GP and the IGP and the datasets used to perform the Monte Carlo study have been generated under the
hidden models with parameters (i.e., a, b, and 𝜃) set to the values given in Table 1 (which, as mentioned above, coincide
with those given in Table 2).

The results of the mentioned analyses are reported in Sections 5.1 and 5.2.

5.1 Risk of incurring in a misspecification

Table 3 reports the values of the percent risk of incurring in a misspecification both when the true model is the PGP and
when the true model is the PIGP (i.e., in the symmetric case). The index rm(%) is evaluated as in (28). This table refers
to the case where the error term is modeled by using the option (1). The setups used to generate the data are those given
in Table 1. As mentioned above, Nt, Nm, and Nm indicate the total number of datasets used to perform the analysis, the
number of datasets that did not lead to a misspecification, and the number of datasets that led to a misspecification,
respectively.
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ESPOSITO et al. 651

T A B L E 3 Risk of misspecification when the error term is modeled by using the option (1).

True process Setup Nt Nm Nm rm(%)

PGP 𝒜 2000 1362 638 31.9

ℬ 2000 1252 748 37.4

𝒞 2000 1065 935 46.8

PIGP 𝒜 2000 1484 516 25.8

ℬ 2000 1470 530 26.5

𝒞 2000 1368 632 31.6

T A B L E 4 Risk of misspecification in the absence of measurement errors.

True process Setup Nt Nm Nm rm(%)

GP 𝒜 2000 1888 112 5.60

ℬ 2000 1806 194 9.70

𝒞 2000 1541 459 22.9

IGP 𝒜 2000 1843 157 7.85

ℬ 2000 1814 186 9.30

𝒞 2000 1665 335 16.7

Table 4 reports, by using the same notations, the results of the same analyses in the absence of measurement errors.
Table 3 shows that, under all setups, the risk of incurring in a misspecification of a PGP with a PIGP is about 5% − 10%

higher than the one of misspecifying a PIGP by a PGP. As expected, in both cases the risk increases moving from the setup
𝒜 to the setup 𝒞 . In the worst-case scenario, represented by the setup 𝒞 , the risk of a wrong diagnosis when the true
model is the PGP is close to 50%, whereas when the true model is the PIGP it is close to 30%.

Results reported in Table 3 also show that the risk of misspecification depends on the setup more when the true model
is the PGP than when the true model is the PIGP. An intuitive explanation for this is that passing from the setup 𝒜 to
the setup𝒞 the shape of the pdf of the increments of the hidden IGP depicted in Figure 1 changes less than the shape of
the pdf of the increments of the GP. Moreover, it seems that, under every setup, when the true process is the PIGP, it is
often possible to find a PGP that fits the simulated data in an acceptable manner, while the PIGP more rarely allows to
adequately fit PGP data generated under the setups 𝒜 and ℬ, where the increments W(t1),ΔW(t1, t2), … ,ΔW(t5, t6) of
the hidden process are gamma distributed with shape parameter (i.e., Δ𝜂(t1),Δ𝜂(t1, t2), … ,Δ𝜂(t5, t6)) smaller than 1. In
fact, from Figure 1, it is apparent that while the pdf of the increments of the GP obtained under the setup 𝒞 is relatively
similar to the pdfs of the increments of the IGP obtained under the setups𝒜 ,ℬ, and𝒞 , none of pdfs obtained under the
IGP is similar to the pdf of the increments of the GP obtained under the setups 𝒜 and ℬ.

The comparison with the results reported in Table 4 shows that, under all the setups, the presence of measurement
errors increases the risk of incurring in a misspecification. Obviously, this result was expected, since perturbed data do
not allow to directly verify whether the selected model is actually able to adequately fit the true (hidden) degradation
data, being only useful to check the ability of the perturbed model to fit the perturbed measurements.

Table 4 also shows that in the absence of measurement errors the risk of misspecifying a GP with an IGP is close to
the one of misspecifying an IGP with a GP. Nonetheless, it seems again that the risk of misspecifying an IGP with a GP
depends on the setup less than the risk of misspecifying a GP with an IGP.

Table 5 reports the values of the percent risk of incurring in a misspecification in the case the error term is modeled
according to the option (2). The index rm(%) is evaluated as in (28). The setups used to generate the data are again those
given in Table 1.

Results reported in Tables 3 and 5 show that the risk of misspecifying a PGP with a PIGP does not significantly depend
on the option adopted to model the error term. Moreover, they also show that, when the true model is the PIGP, results
obtained by adopting the error term (2) differ from, and are closer to each other than, those obtained by adopting the error
term (1). In fact, it seems that modeling the error term according to the option (2) increases the risk of misspecifying a
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652 ESPOSITO et al.

T A B L E 5 Risk of misspecification when the error term is modeled by using the option (2).

True process Setup Nt Nm Nm rm(%)

PGP 𝒜 2000 1376 624 31.2

ℬ 2000 1256 744 37.2

𝒞 2000 1067 933 46.7

PIGP 𝒜 2000 1296 704 35.2

ℬ 2000 1292 708 35.4

𝒞 2000 1334 666 33.3

T A B L E 6 Risk of misspecification when the error term is modeled by using the option (1) with 𝜈 = 0.

True process Setup Nt Nm Nm rm(%)

PGP 𝒜 2000 1307 693 34.6

ℬ 2000 1278 722 36.1

𝒞 2000 1157 843 42.2

PIGP 𝒜 2000 1459 541 27.1

ℬ 2000 1439 561 28.1

𝒞 2000 1326 674 33.7

PIGP with a PGP and reduces the sensitivity of the mentioned risk on the setup. Indeed, somewhat surprisingly, Table 5
also shows that the risk of misspecifying a PIGP with a PGP under the setup𝒞 is very close to (and even slightly smaller
than) the corresponding risk computed under the setups𝒜 andℬ. We have carefully checked and confirmed these latter
results in various ways, yet we do not have an intuitive explanation for them. In fact, we cannot exclude that the value
obtained for rm(%) under the setup𝒞 is smaller than those obtained under the other setups only for a matter of numerical
accuracy. Indeed, the log-likelihood functions computed under the PIGP and PGP (i.e., those used to calculate the AIC
index) in about 6% of cases differ only in the fourth significant figure and in less than 1% of cases only in the fifth significant
figure, which the (time-demanding) numerical procedure used to compute the log-likelihood does not always allow to
calculate in a sufficiently accurate manner.

As we have already mentioned above, the error term (2) allows the perturbed measurement to assume negative values,
a result that in many applications can be unrealistic. About this point, we note that, in the case of the datasets used to
produce the results reported in Table 5, when the true model is the PGP we have obtained 989 out of 72,000 negative
perturbed measurements under the setup𝒜, 607 out of 72,000 negative perturbed measurements under the setupℬ, and
69 out of 72,000 negative perturbed measurements under the setup 𝒞. While, when the true model is the PIGP we have
obtained 443 negative perturbed measurements under the setup 𝒜, 227 under the setup ℬ, and 17 under the setup 𝒞.

Finally, Tables 6 and 7 report the values of the percent risk of incurring in a misspecification in the cases where the
error term is modeled by using the setups reported in Table 2 (i.e., in the case 𝜈 = 0). In particular, Table 6 refers to
the cases where the error term is modeled by using the option (1), while Table 7 reports the results obtained by using
the option (2).

Here, in the case of the datasets used to produce the results reported in Table 7, we have obtained 3390 negative
perturbed measurements under the setup𝒜, 2687 negative perturbed measurements under the setupℬ, and 990 negative
perturbed measurements under the setup𝒞 when the true model is the PGP. Similarly, when the true model is the PIGP,
we have obtained 2643 negative perturbed measurements under the setup𝒜 , 2016 under the setupℬ, and 718 under the
setup 𝒞.

In general, by comparing Tables 3 and 5 with Tables 6 and 7, it seems that, when 𝜈 = 0 the risk of misspecifying a PGP
with a PIGP is similar to the one computed when 𝜈 = 1. Yet, it also seems that, when 𝜈 = 0 the mentioned risk depends
on the setup less than when 𝜈 = 1, especially when the error term is modeled by using the option (2). The same effect is
also observed when the true model is the PIGP. However, from the same tables, it also seems that the risk of misspecifying
the PIGP with a PGP under the setups given in Table 2 is higher than under those given in Table 1.
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ESPOSITO et al. 653

T A B L E 7 Risk of misspecification when the error term is modeled by using the option (2) with 𝜈 = 0.

True process Setup Nt Nm Nm rm(%)

PGP 𝒜 2000 1247 753 37.7

ℬ 2000 1242 758 37.9

𝒞 2000 1139 861 43.1

PIGP 𝒜 2000 1216 784 39.2

ℬ 2000 1195 805 40.3

𝒞 2000 1185 815 40.7

It should be emphasized that, strictly speaking, the results obtained by setting 𝜈 = 0 and 𝜈 = 1 are not entirely compa-
rable to each other because, as mentioned before, while under the setups reported in Table 1 the variance of the error term,
𝜀(t), is proportional to the measured degradation level W(t), under the setups given in Table 2 the variance of 𝜀(t) does not
depend on W(t). However, a possible intuitive explanation of the difference existing between the results obtained when
𝜈 = 0 and when 𝜈 = 1 can be given by focusing on the importance of the measurement obtained at the first measurement
epoch. Indeed, as shown in Figure 1, the shapes of the pdfs of the increments of the hidden GP and IGP mainly differ in
the left tail. The same figure also shows that the difference diminishes as 𝜂(t) increases (i.e., moving from the setup 𝒜
to the setup 𝒞 ). For the same reasons the considered shapes become more and more similar as t increases, because 𝜂(t)
increases with t and both the gamma and the inverse Gaussian random variables, as 𝜂(t) increases, tend in distribution
to a Gaussian random variable (i.e., to the same Gaussian random variable, because the considered competing hidden
processes have identical mean and variance functions). Based on this reasoning, it is reasonable to expect that the first
perturbed measurements are the most useful to identify the hidden processes. Consequently, given that V{𝜀(t)} at t = 1
is larger when 𝜈 = 0 than when 𝜈 = 1, it results that the perturbed measurements performed at t = 1 when 𝜈 = 0 are less
useful to identify the hidden model than the corresponding measurements performed when 𝜈 = 1.

5.2 Consequences of incurring in a misspecification

Table 8 reports the values of the index RMSEM,d computed when the error term is modeled according to the option (1). To
assess the prognostic abilities of the competing models on a short, medium, and long timespan, we used three different
values of the threshold: namely, wM = 7.5, wM = 9, and wM = 12. For the sake of simplicity, this piece of information is
not included in the notation of the RMSE, but is directly provided in the headings of the tables. The first column of Table 8
specifies which is the true model. The second column indicates the setup under which the RMSE is computed. Details
about these setups are given in Table 1. The third column specifies the model used to compute M̂RUL(6)M,k,i, which is
also the one used to obtain the MLEs of model parameters. Finally, the fourth column specifies the datasets used to
compute the index. With the same notations as Tables 3–7, the subscripts t,m, and m indicate that the RMSE is evaluated
by using all the Nt datasets, only the Nm datasets where a misspecification occurred, and only the Nm datasets where a
misspecification did not occur, respectively.

So, for example, the values reported in the fourth row of Table 8 are the RMSEs of the ML estimator of MRUL(6),
computed as in (29), for all the considered thresholds, by using a PIGP with model parameters set to their ML estimates
obtained from the Nm datasets generated under a PGP (calibrated according to the setup𝒜 ) that led to a misspecification.

Table 8 shows that the prognostic abilities of the considered competing perturbed models are quite similar both when
the true model is the PGP and when the true model is the PIGP. In addition, as expected, obtained results also show that
the difference between the RMSEs obtained under the considered perturbed models decreases moving from the setup
𝒜 to the setup 𝒞 . In fact, this is a direct consequence of the circumstance that (as shown by Figure 1) passing from the
setup 𝒜 to the setup 𝒞 the difference between the pdfs of the already mentioned increments of the hidden processes
diminishes.

Table 9 reports the results obtained by performing the same analyses in the absence of measurement errors.
The comparison between the results reported in Table 8 and those reported in Table 9 shows how the presence of

measurement errors impacts on the estimation of the MRUL(6). In fact, it is evident that if by one side the presence of
measurement errors negatively affects the performances of the ML estimator of MRUL(6) constructed under the right
perturbed model (i.e., by using the PGP when the data are generated under a PGP or by using a PIGP when the true model
is a PIGP), on the other side it also allows to mitigate the effect of using the wrong model. This is especially clear if one
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654 ESPOSITO et al.

T A B L E 8 RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled by using the option (1).

RMSEM,d

True model Setup M d wM = 7.5 wM = 9 wM = 12

PGP 𝒜 PGP m 1.67 2.34 3.99

PIGP m 1.53 2.13 3.60

PGP m 1.89 2.64 4.44

PIGP m 1.94 2.69 4.46

PGP t 1.74 2.44 4.14

PIGP t 1.67 2.32 3.89

ℬ PGP m 1.38 1.92 3.21

PIGP m 1.32 1.84 3.09

PGP m 1.37 1.91 3.20

PIGP m 1.33 1.85 3.07

PGP t 1.38 1.92 3.20

PIGP t 1.32 1.84 3.08

𝒞 PGP m 0.76 1.09 1.89

PIGP m 0.74 1.07 1.85

PGP m 0.78 1.12 1.92

PIGP m 0.78 1.11 1.91

PGP t 0.77 1.10 1.90

PIGP t 0.76 1.09 1.88

PIGP 𝒜 PGP m 1.56 2.20 3.72

PIGP m 1.52 2.14 3.60

PGP m 1.54 2.17 3.64

PIGP m 1.38 1.91 3.14

PGP t 1.56 2.19 3.70

PIGP t 1.49 2.08 3.49

ℬ PGP m 1.26 1.77 2.98

PIGP m 1.21 1.69 2.83

PGP m 1.29 1.84 3.15

PIGP m 1.20 1.69 2.87

PGP t 1.27 1.79 3.03

PIGP t 1.21 1.69 2.84

𝒞 PGP m 0.74 1.04 1.77

PIGP m 0.73 1.02 1.74

PGP m 0.77 1.10 1.90

PIGP m 0.75 1.06 1.83

PGP t 0.75 1.06 1.81

PIGP t 0.73 1.04 1.77
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ESPOSITO et al. 655

T A B L E 9 RMSEM,d of the ML estimators of MRUL(6) in the absence of measurement errors.

RMSEM,d

True model Setup M d wM = 7.5 wM = 9 wM = 12

GP 𝒜 GP m 1.24 1.79 3.08

IGP m 4.01 ⋅ 1011 1.70 ⋅ 1012 1.70 ⋅ 1013

GP m 0.94 1.36 2.34

IGP m 2.03 2.75 4.38

GP t 1.23 1.76 3.04

IGP t 3.90 ⋅ 1011 1.66 ⋅ 1012 1.62 ⋅ 1013

ℬ GP m 0.96 1.41 2.47

IGP m 2.92 ⋅ 1014 2.10 ⋅ 1015 3.79 ⋅ 1016

GP m 0.75 1.09 1.90

IGP m 1.22 1.73 2.92

GP t 0.94 1.39 2.43

IGP t 2.77 ⋅ 1014 1.99 ⋅ 1015 3.60 ⋅ 1016

𝒞 GP m 0.51 0.81 1.53

IGP m 1.63 2.54 4.98

GP m 0.50 0.80 1.50

IGP m 0.60 0.93 1.73

GP t 0.51 0.81 1.53

IGP t 1.46 2.28 4.45

IGP 𝒜 GP m 0.96 1.47 2.67

IGP m 1.07 1.61 2.89

GP m 0.81 1.21 2.12

IGP m 0.85 1.25 2.17

GP t 0.83 1.23 2.16

IGP t 0.87 1.28 2.24

ℬ GP m 0.71 1.12 2.08

IGP m 0.73 1.13 2.08

GP m 0.70 1.06 1.91

IGP m 1.73 1.09 1.95

GP t 0.70 1.07 1.93

IGP t 0.73 1.10 1.96

𝒞 GP m 0.37 0.62 1.20

IGP m 0.38 0.63 1.22

GP m 0.43 0.69 1.32

IGP m 0.43 0.69 1.30

GP t 0.42 0.68 1.30

IGP t 0.42 0.68 1.29
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656 ESPOSITO et al.

T A B L E 10 RMSEM,d of the ML estimators of MRUL(6), when the error term is modeled by using the option (2).

RMSEM,d

True model Setup M d wM = 7.5 wM = 9 wM = 12

PGP 𝒜 PGP m 1.73 2.44 4.15

PIGP m 1.70 2.36 3.94

PGP m 2.04 2.85 4.81

PIGP m 2.02 2.79 4.64

PGP t 1.83 2.57 4.37

PIGP t 1.80 2.50 4.17

ℬ PGP m 1.33 1.85 3.12

PIGP m 1.29 1.80 3.02

PGP m 1.50 2.14 3.67

PIGP m 1.51 2.14 3.68

PGP t 1.39 1.96 3.33

PIGP t 1.37 1.93 3.28

𝒞 PGP m 0.76 1.08 1.86

PIGP m 0.75 1.08 1.85

PGP m 0.75 1.06 1.82

PIGP m 0.75 1.07 1.84

PGP t 0.75 1.07 1.84

PIGP t 0.75 1.07 1.84

PIGP 𝒜 PGP m 1.59 2.21 3.70

PIGP m 1.49 2.07 3.45

PGP m 1.51 2.14 3.69

PIGP m 1.46 2.05 3.50

PGP t 1.56 2.18 3.70

PIGP t 1.48 2.06 3.46

ℬ PGP m 1.27 1.78 2.99

PIGP m 1.18 1.64 2.74

PGP m 1.32 1.88 3.26

PIGP m 1.26 1.78 3.03

PGP t 1.29 1.82 3.08

PIGP t 1.21 1.69 2.84

𝒞 PGP m 0.76 1.08 1.86

PIGP m 0.73 1.04 1.79

PGP m 0.77 1.10 1.92

PIGP m 0.74 1.06 1.83

PGP t 0.76 1.09 1.88

PIGP t 0.74 1.05 1.80
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ESPOSITO et al. 657

T A B L E 11 RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled by using the option (1) with 𝜈 = 0.

RMSEM,d

True model Setup M d wM = 7.5 wM = 9 wM = 12

PGP 𝒜 PGP m 1.42 1.97 3.29

PIGP m 1.28 1.77 2.93

PGP m 1.64 2.31 3.95

PIGP m 1.71 2.42 4.17

PGP t 1.50 2.09 3.53

PIGP t 1.45 2.02 3.41

ℬ PGP m 1.27 1.80 3.07

PIGP m 1.16 1.64 2.81

PGP m 1.35 1.88 3.16

PIGP m 1.21 1.68 2.81

PGP t 1.30 1.83 3.1

PIGP t 1.18 1.66 2.81

𝒞 PGP m 0.73 1.07 1.92

PIGP m 0.72 1.05 1.89

PGP m 0.74 1.07 1.89

PIGP m 0.73 1.07 1.88

PGP t 0.73 1.07 1.90

PIGP t 0.72 1.06 1.89

PIGP 𝒜 PGP m 1.36 1.90 3.21

PIGP m 1.25 1.74 2.91

PGP m 1.83 2.64 4.61

PIGP m 1.61 2.31 3.99

PGP t 1.50 2.13 3.65

PIGP t 1.36 1.91 3.24

ℬ PGP m 1.11 1.56 2.66

PIGP m 1.04 1.45 2.46

PGP m 1.40 2.04 3.64

PIGP m 1.24 1.79 3.13

PGP t 1.20 1.71 2.97

PIGP t 1.10 1.56 2.67

𝒞 PGP m 0.66 0.96 1.7

PIGP m 0.63 0.92 1.62

PGP m 0.72 1.07 1.94

PIGP m 0.69 1.02 1.82

PGP t 0.68 1.00 1.78

PIGP t 0.65 0.95 1.69
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658 ESPOSITO et al.

T A B L E 12 RMSEM,d of the ML estimators of MRUL(6) when the error term is modeled by using the option (2) with 𝜈 = 0.

RMSEM,d

True model Setup M d wM = 7.5 wM = 9 wM = 12

PGP 𝒜 PGP m 1.76 2.48 4.23

PIGP m 1.77 2.46 4.14

PGP m 2.03 2.95 5.27

PIGP m 2.13 3.08 5.49

PGP t 1.87 2.67 4.65

PIGP t 1.91 2.71 4.70

ℬ PGP m 1.36 1.93 3.29

PIGP m 1.31 1.84 3.12

PGP m 1.39 1.99 3.49

PIGP m 1.38 1.98 3.46

PGP t 1.37 1.95 3.36

PIGP t 1.33 1.90 3.25

𝒞 PGP m 0.71 1.03 1.82

PIGP m 0.69 1.02 1.79

PGP m 0.65 0.95 1.70

PIGP m 0.64 0.94 1.69

PGP t 0.68 1.00 1.77

PIGP t 0.67 0.98 1.75

PIGP 𝒜 PGP m 1.59 2.24 3.85

PIGP m 1.47 2.08 3.55

PGP m 1.61 2.31 4.07

PIGP m 1.54 2.21 3.86

PGP t 1.59 2.27 3.94

PIGP t 1.50 2.13 3.67

ℬ PGP m 1.21 1.71 2.94

PIGP m 1.13 1.60 2.73

PGP m 1.33 1.92 3.39

PIGP m 1.26 1.82 3.20

PGP t 1.26 1.80 3.13

PIGP t 1.19 1.69 2.93

𝒞 PGP m 0.68 0.99 1.79

PIGP m 0.66 0.96 1.73

PGP m 0.71 1.05 1.87

PIGP m 0.68 1.00 1.79

PGP t 0.69 1.02 1.82

PIGP t 0.67 0.98 1.75

 15264025, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2824 by U
niversité d'A

ngers, W
iley O

nline L
ibrary on [02/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ESPOSITO et al. 659

compares the results reported in the first half of Table 8, where the true model is the PGP, with those reported in the first
half of Table 9, where the true model is the GP. In fact, for example, while the RMSEs reported in the fifth row of Table 9
(obtained under the setup 𝒜 by using the right GP) differ by several orders of magnitude from the RMSEs reported in
the sixth row of the same table (obtained under the setup 𝒜 , by using the wrong IGP), the RMSEs reported in the fifth
and sixth row of Table 8 (obtained under the right PGP and the wrong PIGP, respectively) are very close to each other. A
similar situation is evidenced by the results reported in the eleventh and twelfth row of the same tables (i.e., in the case
of the setup ℬ).

Indeed, more specifically, the results reported in Table 9 also show that, even in the absence of measurement error,
the use of a good model selection criterion (such as the AIC) allows to greatly mitigate the consequences of adopting the
wrong model. In fact, the results reported in the third and fourth row of Table 9 show that the ML estimators constructed
under the wrong and right models in the case of the datasets, generated under the setup𝒜 , that led to a misspecification
(that is, those for which the AIC suggests the use of the wrong model) behave in a very similar manner. This conclusion
is further strengthened by the results reported in the first and second row of Table 9 (i.e., those obtained by using only
the datasets for which the AIC leads to select the right model) which as those reported in the fifth and sixth row of the
same table, differ from each other by several orders of magnitude. In other words, from the results obtained under the
setup 𝒜 when the true model is the GP (i.e., in the absence of measurement error) it appears that the huge difference
existing between the RMSEs computed on the basis of the estimates of the MRUL obtained from all the datasets by using
the right GP and the wrong IGP (i.e., the difference existing between the results reported in the fifth row and in the sixth
row of Table 9) is due to the (poor) estimates of the MRUL obtained under the wrong IGP from the datasets that do not
cause a misspecification. The results reported in the seventh, eighth, ninth, and tenth row of Table 9 show that the same
situation occurs also in the case of the setup ℬ.

It is also interesting to note that, as shown by the results reported in the second part of Table 9, when the true model is
the IGP the performances of the estimators constructed under the GP and the IGP seem to have very similar performances,
regardless of whether a misspecification has occurred or not. As we have already remarked by commenting the results in
Table 3, even in the absence of measurement error, the differences existing between the results obtained when the true
process is the GP and when it is the IGP are probably due to the circumstance that when the true process is the IGP under
all the setups it is possible to find a GP that fits the simulated data in an acceptable manner, whereas the IGP more rarely
allows to adequately fit GP data generated under the setups𝒜 andℬ. In fact, as shown in Figure 1, while the gamma pdf
can assume shapes that are similar to those of all the inverse Gaussian pdfs depicted in that figure, the inverse Gaussian
pdf cannot assume shapes just as similar to the gamma pdfs corresponding to the setups 𝒜 and ℬ.

Table 10 reports the values of the index RMSEM,d computed when the error term is modeled according to the option (2).
The RMSEM,d computed in these cases are very similar to those reported in Table 9. That is, it seems that the shape of the
distribution of the error term does not significantly affect the properties of the ML estimator of the MRUL.

Finally, Tables 11 and 12 report the values of the index RMSEM,d computed when 𝜈 = 0 and the error term is modeled
according to the options (1) and (2), respectively. The RMSEM,d computed in these cases are very similar to those reported
in Tables 8 and 10. That is, it seems that also this specific feature of the distribution of the error term (i.e., setting 𝜈 = 0
or 𝜈 = 1) does not significantly affect the properties of the ML estimator of MRUL.

6 CONCLUSIONS

In this paper, we have investigated risk and consequences of the misspecification of a PGP with a PIGP and the
symmetrical misspecification problem of a PIGP with a PGP. Two different models are used to describe the error term.

To facilitate the misspecification study, the (hidden) IGP is formulated by using a new parameterization that allows
the considered competing models to share the same parameters and the same functional forms of mean and variance
functions.

To conduct the analyses we have carried out a large Monte Carlo study where six realistic experimental scenarios,
characterized by different misspecification risk, are simulated by using as many model setups. A setup defines the true
model, which is either a PGP or a PIGP, depending on the misspecification issue of concern. Hence, with six setups, two
hidden models, and two error models, we have defined 24 true models (i.e., 12 PGPs and 12 PIGPs). Each true model has
been used to generate 2000 synthetic datasets, each one consisting of the degradation paths of six units. Together with
each perturbed measurement we also kept the value of the measured (hidden) degradation level, which is generated at
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an intermediate step of the algorithm that we have adopted to generate the perturbed data. The true values of the hidden
degradation level are used in the analysis for comparative purposes.

From each dataset, we have estimated the parameters of both the competing perturbed processes by using the ML
method. Hence, path by path we have estimated the mean remaining useful life by using the model estimated from the
dataset which contains the considered path.

The ML estimation of the parameters of the competing perturbed models has been performed by using a new
expectation–maximization particle filter algorithm. Dataset by dataset the model selection has been performed by using
the Akaike information criterion. A misspecification has been assumed to occur when the Akaike information criterion
has led to select the wrong model (i.e., for example, if it has led to select the PGP in the case of a dataset that has been
generated under the PIGP).

All the estimates have been used to compute the risk of incurring in a misspecification and to evaluate its
effect on the ML estimates of the mean remaining useful life. Finally, for the sake of comparison, the same study
has also been repeated in the absence of measurement errors (that is, by considering as competing models a GP
and an IGP).

Obtained results demonstrate that, when the error term is modeled by adopting the option (1) (i.e., by using the
3-parameter inverse gamma distribution) the risk of incurring in a misspecification (as expected) is significantly influ-
enced by the value of the shape parameter of the degradation increment of the hidden process (be it gamma or inverse
Gaussian) defined between successive measurement times. Furthermore, and more specifically, it also seems that the
risk of misspecifying a PGP by a PIGP depends on the setup more than the risk of misspecifying a PIGP with a PGP.
In fact, while the PGP often allows to fit PIGP data in an acceptable manner independently of the setup, the PIGP
more rarely allows to adequately fit PGP data generated under the setups 𝒜 and ℬ (i.e., cases where the increments
of the hidden process between successive inspection epochs are gamma distributed with shape parameter smaller than
or equal to 1).

The results obtained by modeling the error term according to the option (2) (i.e., by using a Gaussian distribution)
indicate that the shape of the error term does not significantly influence the risk of misspecifying a PGP with a PIGP.
Contrarily, it seems that modeling the error term according to the option (2) increases the risk of misspecifying a PIGP
with a PGP and reduces the sensitivity of the mentioned risk on the setup.

Finally, the results obtained by setting 𝜈 = 0 indicate that also this modeling option does not significantly affect the
risk of misspecifying a PGP with a PIGP. Yet, it also seems that, when 𝜈 = 0 the mentioned risk depends on the setup
less than when 𝜈 = 1, especially when the error term is modeled by using the option (2). The same effect is also observed
when the true model is the PIGP. However, in this case, it also seems that when 𝜈 = 0 the risk of misspecifying the PIGP
with a PGP is higher than when 𝜈 = 1.

Obtained results also clearly show that the presence of measurement errors significantly increases the risk of selecting
the wrong model. Obviously, this result was expected, since perturbed data do not allow to directly check whether the
selected model is actually able to adequately fit the real (hidden) degradation process, being only useful to check the
ability of the perturbed model to fit the perturbed measurements.

With respect to the consequences produced by a misspecification, obtained results show that the maximum likeli-
hood estimators of the (perturbed measurements based) mean remaining useful life constructed under the competing
perturbed processes, irrespectively of the model used to describe the error term, have very similar performances, regard-
less of whether a misspecification has occurred. Moreover, the comparison of the results obtained in the presence of
measurement errors with those obtained in its absence shows that if on one side the presence of measurement errors
negatively affects the performances of the maximum likelihood estimator of the mean remaining useful life constructed
under the right perturbed model, it also mitigates (with respect to the case where measurement errors are absent)
the consequences of using the wrong model, especially when the true hidden process is the GP. However, the results
obtained in the absence of measurement errors also show that, when the true model is the GP, even in experimental
situations where the consequences of the use of the wrong model could be extremely severe, adopting an appropri-
ate model selection procedure (such as the Akaike information criterion), allows to hugely mitigate the effect of a
misspecification.
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APPENDIX A. THE EM ALGORITHM

The EM algorithm is a general approach for the iterative computation of ML estimates in the presence of missing val-
ues and/or incomplete observations (see, e.g., Dempster et al.28). It consists of a two-step sequence, an expectation step
(E-step) and a maximization step (M-step), that is iterated until a predefined convergence condition is reached.

In this paper, we treat as missing data the (unknown) values w = {w1, … ,wm} of the (unobservable) true degradation
levels W = {W1, … ,Wm} of the m units at the measurement times, where wi =

{
wi,1, … ,wi,ni

}
is the realization of

Wi =
{

Wi,1, … ,Wi,ni

}
. Obviously, the observed data consist in the realizations z =

{
z1, … , zm,

}
of the related perturbed

measurements Z =
{

Z1, … ,Zm,
}

, where zi =
{

zi,1, … , zi,ni

}
is the realization of Zi =

{
Zi,1, … ,Zi,ni

}
.

Under this setup, the complete likelihood (i.e., the likelihood formulated considering all data, available and missing)
can be formulated as follows:

L(𝝃; z,w) =
m∏

i=1
fZi∣Wi(zi|wi) ⋅ fWi(wi) ⋅ dwi,

where

fZi∣Wi(zi|wi) =
ni∏

j=1
fZi,j∣Wi,j

(
zi,j|wi,j

)
,

fWi (wi) =
ni∏

j=1
fΔWi,j

(
Δwi,j

)
,

where fΔWi,j

(
Δwi,j

)
is either the pdf in (2) or in (3), depending on the hidden model, and fZi,j∣Wi,j

(
zi,j|wi,j

)
is either the pdf

in (12) or in (16), depending on the model used to describe the error term.
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Thus, the complete likelihood function can be expressed as:

L(𝝃; z,w) =
m∏

i=1

ni∏

j=1
fZi,j∣Wi,j

(
zi,j
|||wi,j

)
⋅

m∏

i=1

ni∏

j=1
fΔWi,j

(
Δwi,j

)
(A1)

and the corresponding log-likelihood function can be written as:

l(𝝃; z,w) =
m∑

i=1

ni∑

j=1
ln
(

fZi,j∣Wi,j

(
zi,j
|||wi,j

))
+

m∑

i=1

ni∑

j=1
ln
(

fΔWi,j

(
Δwi,j

))
. (A2)

At the (h + 1)th iteration, the E-step consists in computing the conditional mean Q
(
𝝃|𝝃(h)

)
:

Q
(
𝝃
|||𝝃
(h)
)
= E

{
l(𝝃; z,W)|||Z = z, 𝝃(h)

}
(A3)

of the complete log-likelihood with respect to W by using its conditional distribution, given Z = z, with parameter vector
𝝃 set to its tentative estimate available after the hth iteration, denoted by 𝝃(h). Under the perturbed models described in
Section 2, the conditional distribution of W given Z = z does not allow for a closed form expression. Hence, the E-step is
performed by using the particle filter-based approach described in Appendix B.

The corresponding M-step consists in finding the new tentative estimate 𝝃(h+1) that, by definition, is the value of 𝝃 that
maximizes the function Q

(
𝝃|𝝃(h)

)
.

In the case of the considered perturbed models, the advantages of adopting the EM approach mainly lie in this latter
step, because the conditional expectation Q

(
𝝃|𝝃(h)

)
= Q

(
a, b, 𝜃, 𝜑, 𝜈|𝝃(h)

)
splits into the sum of the functions QE

(
𝜑, 𝜈|𝝃(h)

)

and QH
(

a, b, 𝜃|𝝃(h)
)
, where QE

(
𝜑, 𝜈|𝝃(h)

)
:

QE
(
𝜑, 𝜈|𝝃(h)

)
=

m∑

i=1

ni∑

j=1
E
{

ln
(

fZi,j∣Wi,j

(
zi,j
|||Wi,j

))|||Zi = zi, 𝝃
(h)
}

given 𝝃(h), depends only on the parameters 𝜑 and 𝜈 of the perturbing term, and QH
(

a, b, 𝜃|𝝃(h)
)

QH

(
a, b, 𝜃|||𝝃

(h)
)
=

m∑

i=1

ni∑

j=1
E
{

ln
(

fΔWi,j

(
ΔWi,j

))|||Zi = zi, 𝝃
(h)
}

depends only on the parameters of the hidden model.
Obviously, the functional form of QE

(
𝜑, 𝜈|𝝃(h)

)
and QH

(
a, b, 𝜃|𝝃(h)

)
also depends on the model adopted to describe

the error term and hidden process, respectively.
In fact, when the error term is modeled by using the option (1) (i.e., by using the inverse gamma conditional pdf (9))

QE
(
𝜑, 𝜈|𝝃(h)

)
reduces to:

Q1
E
(
𝜑, 𝜈|𝝃(h)

)
= −

m∑

i=1

ni∑

j=1

E
{
𝛼

(
Wi,j

)|||Zi = zi, 𝝃
(h)
}

zi,j
+

m∑

i=1

ni∑

j=1
E
{
𝛽

(
Wi,j

)
⋅ ln

(
𝛼

(
Wi,j

))|||Zi = zi, 𝝃
(h)
}

−
m∑

i=1

ni∑

j=1
E
{
𝛽

(
Wi,j

)|||Zi = zi, 𝝃
(h)
}
⋅ ln

(
zi,j
)
−

m∑

i=1

ni∑

j=1
E
{

ln
(
Γ
(
𝛽

(
Wi,j

)))|||Zi = zi, 𝝃
(h)
}
. (A4)

whereas, when the error term is modeled by using the option (2) (i.e., by using the Gaussian conditional pdf (15)),
QE
(
𝜑, 𝜈|𝝃(h)

)
reduces to:

Q2
E
(
𝜑, 𝜈|𝝃(h)

)
= −nt

2
⋅ ln(2𝜋) + nt

2
⋅ ln(𝜑) − 𝜈

2
⋅

m∑

i=1

ni∑

j=1
E
{

ln
(

Wi,j
)|||Zi = zi, 𝝃

(h)
}

− 𝜑

2
⋅

m∑

i=1

ni∑

j=1
E

{ (
zi,j −Wi,j

)2

W 𝜈

i,j

||||||
Zi = zi, 𝝃

(h)

}

, (A5)

 15264025, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2824 by U
niversité d'A

ngers, W
iley O

nline L
ibrary on [02/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



664 ESPOSITO et al.

where the superscripts 1 and 2 in Q1
E
(
𝜑, 𝜈|𝝃(h)

)
and Q2

E
(
𝜑, 𝜈|𝝃(h)

)
indicate the option adopted to model the error term, in

agreement with the symbols introduced in Section 2.
Similarly, from (2), under the GP, the function QH

(
a, b, 𝜃|𝝃(h)

)
, takes the form:

QG
H
(

a, b, 𝜃|𝝃(h)
)
= −

∑m
i=1E

{
Wi,ni

||Zi = zi, 𝝃
(h)}

𝜃

+
m∑

i=1

ni∑

j=1

[( ti,j

a

)b

−
( ti,j−1

a

)b
]

⋅ E
{

ln
(
ΔWi,j

)|||Zi = zi, 𝝃
(h)
}

− ln(𝜃) ⋅
m∑

i=1

( ti,ni

a

)b

−
m∑

i=1

ni∑

j=1
ln

(

Γ

(( ti,j

a

)b

−
( ti,j−1

a

)b
))

, (A6)

whereas, from (3), under the inverse Gaussian process it reduces to

QIG
H
(

a, b, 𝜃|𝝃(h)
)
= −nt

2
⋅ ln(2 ⋅ 𝜋) + nt

2
⋅ ln(𝜃) − nt ⋅ b ⋅ ln(a) − 3

2
⋅

m∑

i=1

ni∑

j=1
E
{

ln
(
ΔWi,j

)
|Zi = zi, 𝝃

(h)}

− 1
2 ⋅ 𝜃

⋅
m∑

i=1
E
{

Wi,ni
||Zi = zi, 𝝃

(h)} − 𝜃

2 ⋅ a2⋅b
⋅

m∑

i=1

ni∑

j=1
E
⎧
⎪
⎨
⎪
⎩

(
tb
i,j − tb

i,j−1

)2

ΔWi,j

||||||||

Zi = zi, 𝝃
(h)

⎫
⎪
⎬
⎪
⎭

+ 1
ab
⋅

m∑

i=1
tb
i,ni
+

m∑

i=1

ni∑

j=1
ln
(

tb
i,j − tb

i,j−1

)
. (A7)

where nt =
∑m

i=1ni and the superscripts G and IG in QG
H
(

a, b, 𝜃|𝝃(h)
)

and QIG
H
(

a, b, 𝜃|𝝃(h)
)

indicate that the hidden process
used to compute QH

(
a, b, 𝜃|𝝃(h)

)
are the gamma and the inverse Gaussian, respectively. Both in (A6) and (A7) the age

function is modeled as 𝜂(t) = (t∕a)b.
The expressions in (A5), (A6) and (A7) can be further simplified. In fact, from (A5), by solving with respect to 𝜑 the

equation:

𝜕Q2
E

(
𝜑, 𝜈

|||𝝃
(h)
)

𝜕𝜑

= 0

the explicit form

𝜑̃

(
𝜈
|||𝝃
(h)
)
= nt

∑m
i=1
∑ni

j=1E
{
(zi,j−Wi,j)2

W𝜈

i,j

||||
Zi = zi, 𝝃

(h)
} (A8)

is obtained for the value 𝜑̃
(
𝜈|𝝃(h)

)
that maximizes (A6) with respect to 𝜑 when 𝜈 is set to the values indicated in the

parentheses on the left side of the equation. By exploiting this result, 𝜈(h+1) can be obtained by numerically maximizing
this 1-parameter function:

Q2
E

(
𝜈
|||𝜑̃, 𝝃

(h)
)
= −nt

2
⋅ ln(2𝜋) + nt

2
⋅ ln(𝜑̃) − 𝜈

2
⋅

m∑

i=1

ni∑

j=1
E
{

ln
(

Wi,j
)|||Zi = zi, 𝝃

(h)
}
− nt

2
.

Then, 𝜑(h+1) can be obtained from (A8) by setting 𝜈 = 𝜈(h+1).
Similarly, from (A6), by solving with respect to 𝜃 the equation:

𝜕QG
H
(

a, b, 𝜃|𝝃(h)
)

𝜕𝜃

= 0,

the explicit form

𝜃

(
a, b|𝝃(h)

)
=
∑m

i=1E
{

Wi,ni
||Zi = zi, 𝝃

(h)}

∑m
i=1

( ti,ni
a

)b
(A9)
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ESPOSITO et al. 665

is obtained for the value 𝜃(a, b) that maximizes (A6) with respect to 𝜃 when a and b are set to the values indicated in
the parentheses on the left side of the equation. By exploiting this result, a(h+1) and b(h+1) can be obtained by numerically
maximizing the following 2-parameter function:

QG
H

(
a, b|||𝜃, 𝝃

(h)
)
= −

m∑

i=1

ni∑

j=1
ln

(

Γ

(( ti,j

a

)b

−
( ti,j−1

a

)b
))

+
m∑

i=1

ni∑

j=1

[( ti,j

a

)b

−
( ti,j−1

a

)b
]

⋅ E
{

ln
(
ΔWi,j

)|||Zi = zi, 𝝃
(h)
}

+
⎡
⎢
⎢
⎢
⎣

1 + ln
⎛
⎜
⎜
⎜
⎝

∑m
i=1E

{
Wi,ni |Zi = zi, 𝝃

(h)}

∑m
i=1

( ti,ni
a

)b

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

⋅
m∑

i=1

( ti,ni

a

)b

.

Then, 𝜃(h+1) can be obtained from (A9) by setting a = a(h+1) and b = b(h+1).
Finally, in the case of the IGP, from (A7), by solving with respect to 𝜃 and a the system of equations:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕QIG
H

(
a, b, 𝜃|||𝝃

(h)
)

𝜕𝜃

= 0

𝜕QIG
H

(
a, b, 𝜃|||𝝃

(h)
)

𝜕a
= 0

the following explicit forms are obtained:

𝜃

(
b|𝝃(h)

)
=

⎡
⎢
⎢
⎣

∑m
i=1E

{
Wi,ni

|||Zi=zi,𝝃
(h)
}

∑m
i=1tb

i,ni

⎤
⎥
⎥
⎦

2

⋅
∑m

i=1
∑ni

j=1E

{ (
tb
i,j−tb

i,j−1

)2

ΔWi,j

||||||
Zi = zi, 𝝃

(h)

}

−
∑m

i=1E
{

Wi,ni

|||Zi = zi, 𝝃
(h)
}

nt
(A10)

ã
(

b|𝝃(h)
)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑m
i=1E

{
Wi,ni

|||Zi=zi,𝝃
(h)
}

∑m
i=1tb

i,ni

⋅
∑m

i=1
∑ni

j=1E

{ (
tb
i,j−tb

i,j−1

)2

ΔWi,j

||||||
Zi = zi, 𝝃

(h)

}

−
∑m

i=1tb
i,ni

nt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
b

(A11)

for the values 𝜃(b) and ã(b) of 𝜃 and a that (jointly) maximize QG
H
(

a, b, 𝜃|𝝃(h)
)

when the parameter b is set to the
value reported in the parentheses. By exploiting these results, b(h+1) can be obtained by numerically maximizing
the 1-parameter function that is obtained by setting 𝜃 and a in (A7) to 𝜃(b) and ã(b) (we do not report here the
resulting function because it is rather bulky). Then, 𝜃(h+1) and a(h+1) can be obtained by evaluating (A10) and (A11)
at b = b(h+1).

Therefore, when the error term is modeled according to the option (1), the M-step results in maximizing (numerically)
two 2-parameter functions in the case of the GP, and one 2-parameter function and one 1-parameter function in the case of
the IGP. Whereas, when the error term is modeled by using the option (2), the M-step results in maximizing (numerically)
one 2-parameter function and one 1-parameter function in the case of the GP, and two 1-parameter functions in the case
of the IGP.

It is clear that maximizing these functions is far easier than directly maximizing (numerically) the 5-parameter
likelihood function L(𝝃; z) in (24).

The convergence condition is satisfied when the absolute difference:

|||ln
(

L
(
𝝃(h); z

))
∕ ln

(
L
(
𝝃(h+1); z

))
− 1|||

drops below a predetermined value. In case the convergence condition is met at the hth iteration, 𝝃(h+1) is assumed to be
the ML estimate of the parameter vector 𝝃. Otherwise, the procedure continues. The iterative algorithm is initialized by
assigning at the first iteration a tentative estimate, say 𝝃(0).
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APPENDIX B. THE PARTICLE FILTER.

In this paper, we use a particle filter algorithm (see, e.g., Doucet and Johansen29) to generate random samples from
the (joint) conditional distribution of W given Z = z. The data generated by using this procedure are then used to com-
pute (empirically) the likelihood function, the distribution of the RUL, and the conditional expectations requested in the
M-step of the EM algorithm described in Appendix A.

The procedure described below allows to obtain N pseudorandom realizations of Wi given Zi = zi. Thus, to generate
pseudorandom realizations of W given Z = z it is necessary to replicate its use for any i = 1, … ,m.

The method consists in iterating ni times the 2-step sequence described below. To apply the procedure it is necessary
to assign a value to the parameter vector 𝝃. The conditional pdf ofΔW

(
ti,j−1, ti,j

)
mentioned in the prediction step is either

the pdf in (2) or the one in (3), depending on the hidden process model (i.e., gamma or inverse Gaussian, respectively).
Analogously, the conditional pdf of Zi,j||Wi,j mentioned in the update step is either the pdf in (9) (i.e., inverse gamma) or
the one in (15) (i.e., Gaussian), according to the option adopted to model the error term.

• Step 1 (prediction step), jth iteration:
for any k = 1, … ,N, compute the term j−1

kwi,j =kΔwi,j + j−1
kwi,j−1 , where j−1

kwi,j−1 is the kth pseudorandom realiza-
tion of W

(
ti,j−1

)
given Zi,j−1 = zi,j−1 generated at the (j − 1)th iteration and kΔwi,j is a pseudorandom realization of

ΔW
(

ti,j−1, ti,j
)
. Then, append it to the particle vector j−1

kwi,1, … ,
j−1

kwi,j−1 defined at the (j − 1)th iteration. The output
of this prediction step is a set of N vectors:

j−1
1wi,1, … ,

j−1
1wi,j−1 ,

j−1
1wi,j

⋮
j−1

N wi,1, … ,
j−1

N wi,j−1 ,
j−1

N wi,j

that we will refer to as particles.
• Step 2 (update step), jth iteration:

for any k = 1, … ,N, compute the importance weight of the kth particle as:

kqi,j =
fZi,j|Wi,j

(
zi,j
|||

j−1
kwi,j

)

∑N
k=1fZi,j|Wi,j

(
zi,k
|||

j−1
kwi,j

)

hence, resample the set of particles:

j−1
1wi,1, … ,

j−1
1wi,j−1 ,

j−1
1wi,j

⋮
j−1

N wi,1, … ,
j−1

N wi,j−1 ,
j−1

N wi,j

according to their importance weights and rename the new particles (i.e., the vectors) as:

j
1wi,1, … ,

j
1wi,j−1 ,

j
1wi,j

⋮
j

N wi,1, … ,
j

N wi,j−1 ,
j

N wi,j .

For j = 1, in the first prediction step, to initialize the algorithm, draw a pseudorandom sample of size N from W
(

ti,1
)
,

denote its elements as 1wi,1 , … , N wi,1 , and define the particles as:

0
1wi,1 = 1wi,1

⋮
0
N wi,1 = N wi,1 .
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The particle j−1
kwi,1, … ,

j−1
kwi,j−1 ,

j−1
kwi,j should be intended as a pseudorandom realization of Wi,j given Zi,j−1 =

zi,j−1, and j
kwi,1, … ,

j
kwi,j−1 ,

j
kwi,j should be intended as a pseudorandom realization of Wi,j given Zi,j = zi,j, where Wi,j ={

W
(

ti,1
)
, … ,W

(
ti,j
)}

, Zi,j =
{

Z
(

ti,1
)
, … ,Z

(
ti,j
)}

, and zi,j =
{

z
(

ti,1
)
, … , z

(
ti,j
)}

is the realization of Zi,j.
The conditional pdfs that are needed to compute the likelihood function (24) can be approximated as:

fZi,j∣Zi,j−1

(
zi,j||zi,j−1

)
≅

∑N
k=1fZi,j∣Wi,j

(
zi,j
|||

j−1
kwi,j

)

N
,

where j−1
kwi,j is the last component of the particle vector j−1

kwi,1, … ,
j−1

kwi,j−1 ,
j−1

kwi,j generated at jth prediction step.
Likewise, for example, the conditional mean of a function g(Wi) of Wi, given Zi = zi and 𝝃, can be computed as:

E{g(Wi)|Zi = zi, 𝝃} ≅
∑N

k=1g
(ni

kwi
)

N
,

where ni
kwi is the particle ni

kwi,1, … ,
ni
kwi,ni−1 ,

ni
kwi,ni generated at the nith update step, under a perturbed model whose

parameter vector is set to 𝝃. Obviously, the quality of these approximations improves with N.
This particle filter algorithm is also used to compute the ML estimate of the complementary cdf of RUL(t)FRUL(t)(𝜏|z(t))

(22) and the ML estimate of the MRUL(t) (23). In fact, more specifically, by using the notations introduced in Section 4,
if tl ≤ t < tl+1, so that the set z(t) =

{
Z
(

tj
)
; j ≥ 1, tj ≤ t

}
contains l perturbed measurements of the degradation level of a

certain (selected) unit, given a pseudorandom sample of size N from W(tl)|Z(t) = z(t), say l
1wl , … , l

N wl , the ML estimate
of the cdf FRUL(t)(𝜏|z(t)) (22) can be computed as follows:

FRUL(t)(𝜏|z(t)) ≅ 1 −

∑N
k=1FW(t+𝜏)∣W(tl)

(
wM

|||
l
kwl

)

N
,

where both the parameters of the perturbed model used to generate the particles and the parameters of the conditional
cdf FW(t+𝜏)∣W(tl)(⋅|⋅) are set to their ML estimates. Similarly, the ML estimate of the MRUL(t) (23) is computed as follows:

MRUL(t) ≅

∑N
k=1∫

∞
0 FW(t+𝜏)∣W(tl)

(
wM

|||
l
kwl

)
⋅ d𝜏

N
=
∫

∞

0

∑N
k=1FW(t+𝜏)∣W(tl)

(
wM

|||
l
kwl

)

N
⋅ d𝜏,

where the integral is calculated numerically.
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