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Abstract: This paper proposes to solve the dynamics of the Kirchhoff-Carrier nonlinear string
model using the finite elements method. In order to ensure the power balance of the resulting
finite dimensional model it is rewritten in the Port-Hamiltonian System (PHS) formalism.
Using a discrete gradient and a quadratization of the Hamiltonian, an explicit power-preserving
numerical scheme is proposed. Results of simulation are presented.
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1. INTRODUCTION

Sound synthesis based on physical modeling relies on the
resolution of dynamical problems to produce sound. In
order to improve the realism of simulations, nonlinear
phenomena should be included in physical models in order
to describe properly the dynamics of musical instruments.

These nonlinear phenomena can be classified into two
categories: (i) Interactions, that describe the transfer of
energy between the musician and the instrument (e.g.
bowing a string, striking a cymbal, the effect of lips or reeds
in wind instruments, etc.), or between different resonating
parts of the instrument (e.g. the transfer of energy between
a string and a plate through a bridge, etc.). (ii) Geometric
nonlinear terms that can be caused by large strains or
displacements in one or several resonators.

The aim of this paper is to propose a framework to
compute nonlinear dynamics in the latter case, i.e. for
geometric nonlinearities. In the context of sound synthesis,
stable and robust computations are expected in order
to ensure a result (in real time if possible), even for
geometries and physical parameters which may have very
different values that the ones met in reality. In order to
do this, the Port-Hamiltonian formalism (see Maschke
et al. (1992); van der Schaft and Maschke (2002)) will
be used. This formalism encodes the power balance of
the system, this ensures all the energy transfers (between
energy-storing components, with the outside of the system
at the boundaries, or due to damping) are correctly
modeled. The main advantage of this approach is that
using numerical schemes that preserve this power balance
(based for example on a discrete gradient (see Itoh and
Abe (1988))) in the discrete time domain, stability and
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robustness of simulations should be guaranteed, even in
the case of nonlinear dynamics (see Lopes et al. (2015)).

In the context of virtual instrument making the Finite
Elements Method (FEM) is often used for the spatial dis-
cretization. This paper will address the most simple exam-
ple of nonlinear resonator, namely the Kirchhoff-Carrier
string model (see Kirchhoff (1877); Carrier (1945)) in order
to present the formalism. This model has been extensively
studied (see Narasimha (1968), Anand (1969)) and lead to
three dimensional nonlinear models in e.g. Watzky (1992);
Valette and Cuesta (1993). Several approaches have been
proposed to get simulation results such as: finite differences
with energy conservation in Bilbao (2009), or a FEM
approach preserving a discrete energy in Chabassier and
Joly (2010); Chabassier (2012).

On the other hand, the spatial discretization of Port-
Hamiltonian systems has been a major research topic for
the past two decades as it can be seen in Rashad et al.
(2020). Regarding the discretization based on finite ele-
ments, a first approach has been presented in Golo et al.
(2004) using Mixed Elements Methods (see Boffi et al.
(2013)). More recently, a weak form of the Stokes-Dirac
structure has been introduced in exterior calculus in order
to be discretized (see Kotyczka et al. (2018)). In Cardoso-
Ribeiro et al. (2020) Partitioned Finite Elements Method
(PFEM) is presented and relies on a discretization of
the weak form of the infinite dimensional system, then
the integration by parts is done only on one of the two
conservation laws, leading to a specific choice of boundary
variables. Most of the works presented and mentioned
in those references are about linear systems, but several
recent results (such as Brugnoli and Matignon (2022)
and Thoma and Kotyczka (2022)) have been published
for nonlinear ones. All these works are based on the re-
quirement to preserve the Port-Hamiltonian structure and
properties (interconnection in the Stokes-Dirac structure



and constitutive laws based on the Hamiltonian) in the
finite dimensional model.

The present work relies on the finite elements formulation
of the nonlinear string model which is rewritten as a finite
dimensional Port-Hamiltonian System. Usually an implicit
numerical scheme based on an iterative solver is required.
However, in this paper an explicit numerical scheme based
on the discrete gradient will be proposed by applying a
quadratization procedure (see Lopes et al. (2015)) to this
non quadratic Hamiltonian.

This paper will present research done in Raibaud (2018);
Geoffroy (2019) where the finite elements formulation of
the Kirchhoff-Carrier string model is rewritten as a finite
dimensional Port-Hamiltonian system (section 2). Bound-
ary conditions will be applied using Lagrange multipliers
as proposed in van der Schaft (2013). Finally, numerical
scheme is introduced in section 3, and results of simulation
are presented and commented in section 4.

2. A PASSIVE-GUARANTEED FINITE ELEMENTS
STRING MODEL

2.1 The Kirchhoff-Carrier string model

The Kirchhoff-Carrier string model (see Carrier (1945))
is a nonlinear partial differential equation describing the
transverse displacement in a plane w : Ω×R+ → R (with
Ω = [0, L]) of a string of length L:

µ∂ttw(ξ, t) + α∂tw(ξ, t) =(
T0 +

EA

2L

∫ L

0

(∂ξw(ξ, t))
2
dξ

)
∂ξξw(ξ, t) + f(ξ, t), (1)

where µ is the linear density, α the fluid damping, T0 the
tension at rest, E the Young’s modulus and A the cross-
sectional area. Longitudinal waves and polarization in the
transverse plane of the string are neglected.

The nonlinear term is an approximation of the variation of
tension due to the large deformations and will be rewritten
as

T0

(
1 + ϵ

∫ L

0

(∂ξw(ξ, t))
2
dξ

)
∂ξξw(ξ, t) = T (t)∂ξξw(ξ, t),

with ϵ = EA
2LT0

.

Consider a state (see Wijnand et al. (2022)): x =[
q(ξ, t) = ∂ξw(ξ, t)
p(ξ, t) = µ∂tw(ξ, t)

]
, the pH formulation writes[

∂tq(ξ, t)
∂tp(ξ, t)

]
=
( [ 0 ∂ξ

∂ξ 0

]
−
[
0 0
0 α

] )
δxH(x) +

[
0
1

]
f(ξ, t)

y = [ 0 1 ] δxH(x)

with the Hamiltonian

H(x) =
1

2

∫ L

0

(
(p2(ξ, t))

µ
+ T0

(
1 +

ϵ

2

∫ L

0

q2(ζ, t)dζ

)
q2(ξ, t)

)
dξ,

and the variational derivative δxH(x) =

 T (t)q(ξ, t)
p(ξ, t)

µ

.

2.2 Weak formulation

Choosing the Dirichlet boundary conditions w(0, t) =
w(L, t) = 0,∀t ∈ R+, the weak formulation is obtained
by multiplying (1) by a test function v∗(ξ) ∈ H1

0 (Ω),
where H1

0 (Ω) is the Sobolev space H1
0 (Ω) = {v s.t. v ∈

H1(Ω), v|∂Ω = 0}. After integration by parts and using
the boundary conditions this yields∫ L

0

µ∂ttwv∗dξ +

∫ L

0

α∂twv∗dξ =

−
∫ L

0

T (t)∂ξw∂ξv
∗dξ +

∫ L

0

fv∗dξ. (2)

2.3 Discretization and interpolation

In this paper space discretization relies on P1 (linear)
Lagrange elements of length h = L

n using Galerkin method.
In one element, displacement at each point ξ ∈ [0, h] will
be approximated by

w(ξ, t) ≈ w1(t)ϕ1(ξ) + w2ϕ2(ξ),

where w1 and w2 are the respective displacements of the
two neighbour nodes and ϕi are the basis functions of
interpolation. Choosing linear basis functions ϕ1(ξ) =

h−ξ
h

and ϕ2(ξ) =
ξ
h , displacement can be written as

w(ξ, t) ≈ [ ϕ1(ξ) ϕ2(ξ) ]

[
w1(t)
w2(t)

]
= ΦT (ξ)We(t).

Similarly, defining v∗(ξ) ≈ ΦT (ξ)Ve and f(ξ, t) ≈
ΦT (ξ)Fe(t), weak formulation (2) can be rewritten on a
single element∫ h

0

µV T
e ΦΦT︸ ︷︷ ︸

Me

∂ttWedξ +

∫ h

0

αV T
e ΦΦT︸ ︷︷ ︸

Me

∂tWedξ =

−
∫ h

0

T (t)V T
e ∂ξΦ∂ξΦ

T︸ ︷︷ ︸
Ke

Wedξ +

∫ h

0

V T
e ΦΦT︸ ︷︷ ︸

Me

Fedξ,

with the global nonlinear coefficient

T (t) = T0

1 + ϵ

∫ L

0

W T ∂ξΦ∂ξΦ
T︸ ︷︷ ︸

K

Wdξ


where W and K are defined by the assembly step (cf.
section 2.4).

Factorizing by V T
e , equilibrium equation for one element

writes

µMe∂ttWe + αMe∂tWe + T (t)KeWe = MeFe,

with the elementary, mass matrix µMe, damping matrix
αMe, and stiffness matrix Ke.

2.4 Assembly: The Port-Hamiltonian System

Global matrices for the whole system are defined by
assembly, i.e. elementary matrices are concatenated and
components associated to a same node are summed,

M̃ =
1

6


2h h · · · 0 0
h 4h · · · 0 0
..
.

...
...

...
...

0 0 · · · 4h h
0 0 · · · h 2h

 , K̃ =
1

h


1 −1 · · · 0 0
−1 2 · · · 0 0
..
.

...
...

...
...

0 0 · · · 2 −1
0 0 · · · −1 1

 .



Defining M = µM̃ , C = αM̃ , K = K̃ and F = M̃F̃
(where F̃ is the vector of concatenated elementary forces
Fe) the finite elements formulation can be written

M∂ttW +C∂tW + T0

(
1 + ϵW TKW

)
KW = F .

This equilibrium equation can be rewritten in the Port-
Hamiltonian Systems framework (see Maschke et al.
(1992)).

The state vectorX =

(
W
P

)
is made of the nodes positions

W and momenta P = M∂tW . The discretized version of
the Hamiltonian writes

H(X) =
1

2

(
P TM−1P + T0

(
1 +

ϵ

2
W TKW

)
W TKW

)
(3)

leading to the following PHS

(
∂tW (t)
∂tP (t)

)
=

(
0N IN
−IN −C

)(
T (t)KW (t)
M−1P (t)

)
−
(

0N

−IN

)
F (t),

(4)

M−1P (t) = (0N IN )

(
T (t)KW (t)
M−1P (t)

)
. (5)

2.5 Boundary conditions: algebraic constraints

Homogeneous Dirichlet boundary conditions can be de-
fined by removing the associated degrees of freedom. How-
ever, in this work boundary conditions will be defined as
algebraic constrains (as proposed in van der Schaft (2013))
in order to preserve a general approach. The PHS defined
in (4) writes

∂tX = (J −R)∇H +Gu+Bλ,

y = GT∇H,

0C×1 = BT∇H,

where the third line defines the algebraic constraints and
the term Bλ the reaction to these constraints in the
dynamics.

These constraints can be resolved leading to a reduced-
order PHS using the change of variable Z = PX, and
splitting vector Z into two parts Z1 and Z2. This pro-
vides the system to be solved, more details can be found
in Cardoso Ribeiro (2016).

3. SIMULATION: PASSIVE-GUARANTEED
NUMERICAL METHODS

3.1 Discrete gradient

One major advantage of the PHS formalism is the ability
to preserve the passivity (encoded in the infinite dimen-
sional formulation) in the discrete time version required
for simulation.

The discrete gradient (see Itoh and Abe (1988), Quispel
and Turner (1996), and Gonzalez (2000)) is one way to
preserve the passivity during simulation in discrete time
steps. This approach is based on the chain rule to express
the time derivative of the energy E(t) = H ◦X(t):

dE(t)

dt
= ∇H(X)

dX(t)

dt
.

In the discrete time domain the variation of energy over
time writes

δE(t, δt)

δt
= ∇dH(X, δX)

δX(t, δt)

δt
,

with δX(t,δt)
δt = X(t+δt)−X(t)

δt , and

[∇dH(X, δX)]i =


Hi(Xi + δXi)−Hi(Xi)

δXi
if δXi ̸= 0,

dHi(Xi)

dXi
else.

(6)

In the case where the Hamiltonian is quadratic (i.e.
H(X) = 1

2X
TQX) the discrete gradient defined in (6)

gives (see (Aoues, 2014, Apdx 1)):

∇dH(X, δX) = Q

(
X +

1

2
δX

)
.

3.2 Explicit numerical scheme based on quadratization

Linearized system In the linear case (ϵ = 0), the discrete
version of the Hamiltonian (3) is quadratic, leading to the
following numerical scheme

δX(t, δt)

δt
= (J −R)∇dH(X, δX) +Gu,

δX(t, δt) = δtA−1 ((J −R)QX +Gu) (7)

with A =
(
I − δt

2 (J −R)Q
)
. This scheme is explicit and

in this linear case, the discrete gradient is equivalent to
the midpoint method (see (Aoues, 2014, Chap.2, §2.5)).

Quadratization method This method relies on two
changes of variables in order to define a quadratic Hamil-
tonian. The first is the Cholesky decomposition and the
second will consist in a quadratization of the resulting
Hamiltonian as proposed in Lopes et al. (2015) for PHS
(see Hélie (2022) for more details). Such an approach can
be found for nonlinear string simulation in Ducceschi and
Bilbao (2022) and Bilbao et al. (2023) using a different
quadratization based on an auxiliary variable.

3.2.2.1. Cholesky decomposition In order to turn the
non-separable quadratic part of the Hamiltonian into a
separable one (in other words replacing Q by the identity
matrix), the Cholesky decomposition will provide a first

change of variables. Writing Q =

[
T0K 0N

0N M−1

]
as the

product LTL, new variables W̄ = LQW and P̄ = LPP

are defined (where L =

(
LQ 0N

0N LP

)
). The Hamiltonian

associated with the new PHS(
∂tW̄ (t)
∂tP̄ (t)

)
= L

(
0N IN
−IN −C

)
LT
(
T̄ (t)W̄

P̄

)
+

(
0N

IN

)
F (t),

X̄ =
(
J̄ − R̄

)
∇H̄ + ḠF .

becomes

H̄(X̄) =
1

2

(
P̄ T P̄ + W̄ TW̄

)
+ α

(
W̄ TW̄

)2
,

with T̄ (t) =
(
1 + 2αW̄ TW̄

)
and α = ϵ

4T0
.

3.2.2.2. Quadratization method The new state variables
are defined by



X̂i = sign(X̄i)
(
2H(0, . . . , 0, X̄i, X̄i+1, . . . , X̄N )

− 2H(0, . . . , 0, X̄i+1, X̄i+2, . . . , X̄N )
)1/2

, (8)

leading to

Ŵi = sign(W̄i)

√
2αW̄ 4

i +
(
1 + 4α

(
W̄ 2

i+1 + ...+ W̄ 2
N

))
W̄ 2

i

and P̂i = sign(P̄i)
√
P̄ 2

i .

Defining ∂tX̂ = J(X̂)∂tX̄, where J is the Jacobian of
the change of variable (more details can be found in
appendix A), the new PHS writes(
∂tŴ (t)

∂tP̂ (t)

)
= J(X̂)

(
J̄ − R̄

)
JT (X̂)

(
Ŵ

P̂

)
+ J(X̂)ḠF (t),

with the following Hamiltonian

Ĥ(X̂) =
1

2

(
P̂ T P̂ + Ŵ TŴ

)
.

Using the time approximation ∂tX̂ ≈ δX̂
δt and the space

approximation ∇X̂Ĥ ≈ ∇dĤ = X̂ + δX̂
2 , the explicit

numerical scheme (7) can be used for the variable X̂.
Finally the result is given by recovering the initial variables
δX = L−1J−1(X̂)δX̂.

4. NUMERICAL RESULTS

Numerical simulations are performed for a string with
homogeneous Dirichlet boundary conditions. The string is

submitted to an excitation force f(ξ, t) = fmax
cos(π(ξ−ξ0))

ℓ
t
T

for 0 < t ≤ T = 0.01 s and for ξ0 − ℓ
2 < ξ < ξ0 +

ℓ
2 with

ℓ = 0.04 m. The sampling frequency is fs =
1
ts

= 44100 Hz.

Table 1. Physical parameters used for the sim-
ulation of the string model (1)

Length L = 1.8 m
Cross-section area A = πr2 ≈ 7.1× 10−6 m2

Linear mass µ = ρA = 0.0551 kg·m−1

Viscous damping α = 0.3 s−1

First eigenfrequency f0 = 55 Hz
Tension T0 = 4L2f2

0µ ≈ 2162 N
Young’s modulus E = 2× 1011 Pa

4.1 Eigenfrequencies and pitch gliding

Simulation have been performed with fmax = 1500 N·m−1

which is a value large enough to hear nonlinear phenom-
ena. In this case, the “pitch glide” that can be seen in
Fig. 1 is an increase of the harmonic’s frequencies due
to the stiffening effect present in the Hamiltonian. When
there is damping, the loss of energy reduces the amplitude
of vibration and therefore the values of those frequencies
which tend towards the linear system eigenfrequencies
(here 55 Hz and its multiples).

4.2 Energy balance

The energy balance of the simulation can be checked
using Figs. 2 and 3. Fig. 2a present the three components
of the power balance in the discrete time domain (the
energy variation, the instantaneous dissipated power and
the power exchanged with the outside of system). The
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Fig. 1. Spectrum and spectrogram of the velocity signal at
observation point xobs = 0.57L.

fourth plot labeled “Sum” is the sum of these three power
components, and should theoretically be equal to zero to
verify the power balance. This sum is also displayed on
its own in Fig. 2b as ”Power Balance”. The same plots in
Fig. 3 are zoomed in on the time scale, to focus on the early
stage of the simulation, and to clearly show the applied
external force (t ≤ 0.01 s) and the energy exchanges.

For t > 0.01 s, the system is no longer driven and oscillates
freely, no power is exchanged with the outside, and the
energy variation is due only to power dissipation.

The numerical error in the power balance of the system,
shown in Fig. 3b, is quite low in comparison with the
amplitude of the powers involved, however it is far from
machine accuracy and it is unclear whether it can be solely
attributed to floating-point error propagation. Additional
error may be caused by the discretization of the external
forces, the choice of the FEM method (instead of mixed
finite elements) or the quadratization, which should be
further investigated.

Disregarding the discretization of external forces and
damping, it can be noticed in Fig. 4a that the energy
variation in the case of a simulation without damping, and
for t > 0.01 s (after the external force has been applied)
is much lower (around 10−10), it is associated to a relative
error on the energy close to the machine accuracy as it can
be seen in Fig. 4b.
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Fig. 2. Power balance of the numerical simulation.

4.3 Computation time

Regarding the computation time the use of quadratisation
still involves more calculations than the linear problem.
Indeed the matrix A varies with time (the Jacobian (A.1)
has to be computed at each time step), therefore its inverse
in (7) has to be computed at each time step. On a recent
laptop using Matlab, the computation of 3 seconds of
sound with 30 nodes requires approximately 30 seconds
without any specific optimisation in the code.
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Fig. 3. Power balance of the numerical simulation (zoom
on the beginning of the signal when the excitation
force is applied (t ≤ 0.01 s).
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Fig. 4. Power balance and relative error on the energy of
the numerical simulation without damping after input
force has vanished (t > 0.01s).

5. CONCLUSION

This paper has introduced a Port-Hamiltonian formulation
of a nonlinear string model discretized using the Finite
Elements Method. This approach allows to use a power
preserving numerical scheme in the time domain using a
discrete gradient. Additionally, in the case of nonlinear sys-
tems using quadratization of the Hamiltonian turned the
numerical scheme into an explicit one. The results of power
balance are very satisfying for energy conservation in the
case without damping and after an input force has been
applied. In the general case, the power balance involves
external and dissipated power and is not approximated
with the same quality (power balance oscillations have an
amplitude of 10−1 instead of 10−10), this requires further
work, which could be based on Mixed Elements Method
(see Kotyczka et al. (2018)), or PFEM (see Cardoso-
Ribeiro et al. (2020)) that have been already used when
dealing with discretization and simulation of PHS.

In the context of sound synthesis the objectives of this
work are to be able to simulate nonlinear system for
different geometries (plates, shells, 3D structures) with a
guaranteed power balance. Two major points have to be
developed: (i) Extension to higher dimensional geometries
has to be performed. Several results exist for plates (see
e.g. Brugnoli et al. (2019a,b); Brugnoli and Matignon
(2022)) using the discretization of the infinite dimensional
Port-Hamiltonian system (Stokes-Dirac structure). This
approach may be required to work with more general
geometries. (ii) On the other hand, interactions between

resonators (such as bowing, see e.g. Bilbao (2009); Chaigne
and Kergomard (2016)), or striking, see Chabassier et al.
(2013)) have to be defined in this PH formalism in order to
connect resonators in a power preserving formalism with
modularity (interconnection of PHS is a PHS).

ACKNOWLEDGEMENTS

The authors would like to thank, Thomas Hélie and An-
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Cardoso-Ribeiro, F.L., Matignon, D., and Lefèvre, L.
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barquée. Master’s thesis, Sorbonne Université, Paris,
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Appendix A. QUADRATIZATION METHOD FOR
THE NONLINEAR STRING MODEL

The Jacobian of the change of variable (8) is given by

J =

(
JQ 0N

0N JP

)
, (A.1)

with the components of JQ defined by

Jii =
4αW̄ 3

i +
(
1 + 4α

(
W̄ 2

i+1 + ...+ W̄ 2
N

))
W̄i

Ŵi

Jij(j>i)
=

4αW̄ 2
i W̄j

Ŵi

Jij(j<i)
= 0

JiN =
4αW̄ 2

i W̄N

Ŵi

JNN =
4αW̄ 3

N + W̄N

ŴN

and JP = IN .

In order to write the new PHS, this Jacobian must be
expressed as a function of Ŵi which involves inverting
the change of variable (8). This is done by solving the
polynomial

2αW̄ 4
i +

(
1 + 4α

(
W̄ 2

i+1 + ...+ W̄ 2
N

))
W̄ 2

i − Ŵ 2
i = 0,

which yields

W̄ 2
i =

−
(
1 + 4α

(
W̄ 2

i+1 + W̄ 2
i+2 + ...+ W̄ 2

N

))
+

√
∆i

4α
,

where ∆i =
(
1 + 4α

(
W̄ 2

i+1 + W̄ 2
i+2 + ...+ W̄ 2

N

))2
+

8αŴ 2
i .

Starting from i = N−1 it can be shown that ∆i = ∆i+1+

8αŴ 2
i with ∆N = 1 + 8αŴ 2

N , and therefore

W̄ 2
i =

−
√
∆i+1 +

√
∆i

4α
,

where ∆i is a function of Ŵ for all i.

Finally, the components of the Jacobian writes

Jii =

√
∆i

Ŵi

√√
∆i −

√
∆i+1

4α
,

Jijj>i
=

√
∆i −

√
∆i+1

Ŵi

√√
∆j −

√
∆j+1

4α
,

JiN =

√
∆i −

√
∆i+1

Ŵi

√√
∆N − 1

4α
,

JNN =

√
∆N

ŴN

√√
∆N − 1

4α
.


