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A B S T R A C T

Numerous studies have explored the challenge of optimizing maintenance grouping, aiming to efficiently man-
age maintenance resources and reduce costs associated with various maintenance opportunities. Maintenance
grouping is even more important when the systems to maintain are geographically distributed because it
significantly reduces travel costs. In this research, we tackle a novel problem that integrates condition-based
maintenance with the selection of maintenance operations and technician routing. The problem involves
the selection of machines requiring maintenance for each time period, determining the nature of required
operations (based on the uncertain degradation state of the machines), selecting suitable technicians based on
their skills and availability, and planning their routes. We formulate this problem as a mixed-integer program
and propose a heuristic approach for its solution. Our method constructs a solution by iteratively adding
maintenance operations to technician routes. To assess the method’s performance, we conduct experiments
that evaluate both running times and solution quality.
1. Introduction

The cost of maintaining an industrial system is a non-negligible
part of its total life-cycle costs. For example, in the offshore wind
power industry, maintenance can represent up to 25% of the life-cycle
costs of a turbine (Snyder and Kaiser, 2009), and poorly managed
maintenance operations (MOs) can drastically increase this figure. For
instance, Aoudia et al. (2008) studied the main industrial plants of a
major oil and gas group and concluded that the impact of ineffective
maintenance management costs the company around 566 million USD.
In the opposite vein, Al-Najjar (2007) used data from Swedish paper
mills to show how investing in the generation of smart maintenance
plans could lead to significant savings (up to ten times the investment).

However, optimizing maintenance planning is a daunting task. The
first difficulty is to make the MOs decision (which MOs and when
to perform them) given the system performance and an associated
failure/degradation forecast. A second challenge is to integrate into
these decisions the logistic support part (which operations to group on
the same day, which technician to send to perform these operations)
to minimize the costs. For example, if a production line needs to be
stopped for a full day whenever one of its machines is maintained,
it is clear that grouping on the same day the MOs that need to be
done on the machines of this production line avoids paying multiple
site-downtime costs. Recently, the scientific literature has started to
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study the problem of making MO decisions driven by both logistic
consideration and degradation forecast.

Failure/degradation-driven maintenance decision is the process of
selecting the MOs to be performed by forecasting the degradation state
of the machine (typically with a probability law) and forecasting the
impact of the MOs on the degradation state. An example is the use of
the rejuvenation parameter, which measures the efficiency of mainte-
nance activity on the machine state (Nguyen and Chou, 2019). This
parameter represents the percent reduction of the degradation after an
MO with the degradation of a machine modeled with, for example,
a Weibull distribution. Nguyen and Chou (2019) use a rejuvenation
parameter equal to one to indicate a replacement (as good as new),
zero to indicate no maintenance done (as bad as old), and values in the
interval (0, 1) to indicate an imperfect repair. The authors seek a method
to determine a maintenance schedule for offshore wind turbines that
minimizes the maintenance costs while guaranteeing system reliability
(i.e., a failure rate that does not exceed a given threshold), but they
ignore the logistic support which is particularly costly in this context.

In the literature on logistics problems related to MOs, decision-
making is typically influenced by resource management (e.g., techni-
cians, spare parts) and various logistic costs (such as inventory and
traveling expenses). A significant logistical concern frequently dis-
cussed in the literature pertains to the traveling costs associated with
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geographically dispersed systems. Due to market and client proximity
requirements, production systems often tend to be more decentral-
ized (Srai et al., 2016; Matt et al., 2015). However, in such decen-
tralized systems, maintenance management is often centralized, with
spare parts and technicians centralized at a single depot (Blakeley et al.,
2003).

In this context, one approach to cost reduction is the consolida-
tion of maintenance operations at a single site and optimizing the
technicians’ routes between different production sites. Notably, the
offshore wind power industry has been a particular focus of these
efforts (Dai et al., 2015; Irawan et al., 2017; Schrotenboer et al., 2018).
The primary objective in these cases is to optimize the routing of
maintenance for wind turbines, considering time windows defined by
weather conditions. However, the maintenance component in these
approaches is typically limited to classical periodic preventive main-
tenance. In other words, the maintenance models are only exploited to
establish the due dates for each maintenance operation (Schrotenboer
et al., 2018; Stålhane et al., 2016). More complex maintenance decision
processes exist in the offshore wind power industry, with preventive
and corrective MOs such as in Gonzalo et al. (2022), Irawan et al.
(2023). For instance, in Irawan et al. (2023), the authors consider
the computation of an MO plan over a 30 day time period (tactical
decisions). They build routes for preventive MOs with the possibility to
modify the maintenance plan at the beginning of each day (operational
decisions) to adapt to stochastic events and perform corrective MOs.

Another critical logistical aspect, addressed in numerous studies,
involves the skill levels of the technicians. For example, in the work
presented by Zhao et al. (2022a), skill levels are represented by various
domains of expertise, each associated with a proficiency level for each
technician. A technician’s skill level dictates the range of machines on
which that technician can perform maintenance operations. Building
upon this skill modeling, studies often focus on forming technician
teams dispatched collectively to production sites to maintain multiple
components, to minimize routing expenses. It is worth noting that
incorporating varying skill levels into the technician modeling may also
be useful to model additional factors, such as the levels of tools and
equipment utilized by maintenance operators during interventions. It is
important to emphasize that these studies on routing primarily address
logistical decisions and do not encompass the complexity of making
these decisions while considering degradation or failure forecasts, as
they typically assume that maintenance operations and their due dates
are given.

In recent literature, there has been a surge of papers addressing
the problem of geographically dispersed systems, where decisions are
driven by both degradation states and logistic costs, such as travel. It
is worth noting that most of these studies characterize the degradation
state using a virtual age, which, in turn, influences the failure prob-
ability. In these works, MOs are not given as instance parameters but
may be determined to optimize the overall system’s reliability. In many
cases, MO types are simplified, often reduced to either preventive or
corrective maintenance, as seen in López-Santana et al. (2016), Nguyen
et al. (2019), Rashidnejad et al. (2018), Si et al. (2021), Urbani et al.
(2023). The actual maintenance performed depends on the degradation
state when the technician arrives at the machine: a failure induces
corrective maintenance, while preventive maintenance is performed in
the absence of a failure.

These studies derive their MO decisions from the calculation of
an optimal maintenance cycle, representing the ideal interval between
maintenance activities. Shorter cycles lead to more frequent MOs, with
a higher likelihood of preventive maintenance, which is typically more
cost-effective than corrective maintenance. A mathematical formula,
linked to machines’ failure probabilities over time, is used to deter-
mine the optimal cycle and subsequently, the optimal dates for MOs.
Thereafter, the decision problem is often simplified by transforming it
into a routing problem with time windows centered around the optimal
2

dates, as seen in López-Santana et al. (2016, 2023) and Rashidnejad
et al. (2018), or into a routing problem with penalty costs, accounting
for the disparity between the actual MO dates and the optimal dates,
as demonstrated in Nguyen et al. (2019), Si et al. (2021), Urbani et al.
(2023).

However, it is important to note that these works primarily focus on
full replacements and do not consider imperfect maintenance, meaning
that a machine is consistently restored to a ‘good-as-new’ state after
maintenance. Si et al. (2022) consider two types of maintenance:
preventive and replacement. In this work, the authors account for the
influence of the actual age of the machine on the outcomes of preven-
tive maintenance. Notably, the effectiveness of successive preventive
maintenance diminishes.

There are relatively few studies that explore models involving more
than two types of MOs. An example of this can be found in Jia and
Zhang (2020), where the model encompasses four distinct maintenance
types: perfect, high-level imperfect, low-level imperfect, and minimal
repair. Consequently, the authors tackle a complex problem, requiring
not only addressing routing decisions and MO planning but also de-
termining the specific type of MO to be executed by the technician.
Failures are managed through minimal repairs, where local technicians
restore machines without altering their ages, resulting in a fixed penalty
cost for failures.

Similarly, O’Neil et al. (2023) consider multiple imperfect mainte-
nance levels as part of the decision process, with each level leading to
different virtual age reductions. However, it is important to mention
that in this work, minimal repair is not considered; instead, downtime
costs are taken into account.

On a different note, Jafar-Zanjani et al. (2022) addresses a related
concern by examining the challenge of selecting maintenance centers
and backup part suppliers within a geographically dispersed system.
While the logistical decisions in this context may vary (no routing),
the MO decisions remain a central focus.

Unlike our problem, in these previous studies, there is no consid-
eration for condition-based maintenance. Indeed, in these studies, the
degradation state of a machine is planned over time. Consequently, the
costs, duration, and impacts of the chosen MOs are precisely known,
as the virtual age before and after the MO is predetermined. With a
condition-based policy, the problem becomes more intricate, as these
elements are uncertain, and the MO performed by a technician on a ma-
chine actually depends on the degradation state of the machine when
the technician arrives. In other words, the degradation state (or virtual
age) remains stochastic after the technician’s visit. Studies involving
only preventive and corrective maintenance consider condition-based
maintenance, but they have an oversimplified view of MOs and relia-
bility, as they only account for ‘good-as-new’ MOs with two possible
conditions: failure or no failure.

In conclusion, the maintenance literature has historically addressed
separately the MOs decisions driven by a degradation model and MOs
decisions driven by logistic considerations. This distinction was par-
ticularly evident in cases involving geographically dispersed systems.
Nonetheless, recent literature is shifting its attention towards rectifying
this as there is a surge of work considering the joint optimization of
MOs and routing decisions. However, in most of these recent studies,
MOs are categorized as either preventive or corrective, with always
a resulting good-as-new state for the machine maintained. There is
limited literature that addresses the concurrent optimization of tech-
nician routing and the selection of more than two different MO types,
with imperfect maintenance each linked to varying levels of efficiency.
However, these works do not yet fully capture the intricacies of systems
where planned MOs depend on the uncertain condition of the machines.
This simplified perspective on maintenance issues falls short of incor-
porating present-day maintenance policies such as condition-based and
predictive maintenance which are more dynamic and efficient from an
economic and availability point of view.

Table 1 provides a summary of the key aspects covered in the
optimization papers referenced in this work. The column labeled Lo-

gistic decisions? refers to decision problems considering logistic aspects,
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Table 1
Summary of the key aspects covered in the literature.
Reference Logistic decisions? Maintenance

selection?
Reliability
modelization?

Imperfect
maintenances?

Condition based?

Dai et al. (2015) X
Flood (1956) X
Gonzalo et al. (2022) X X
Irawan et al. (2023) X X
Irawan et al. (2017) X X
Jafar-Zanjani et al.
(2022)

X X X

Jia and Zhang (2020) X X X X
López-Santana et al.
(2016)

X X X

López-Santana et al.
(2023)

X X X

Nguyen et al. (2019) X X
Nguyen and Chou
(2019)

X X

O’Neil et al. (2023) X X X X
Rashidnejad et al.
(2018)

X X

Schrotenboer et al.
(2018)

X X

Si et al. (2021) X X X X
Snyder and Kaiser
(2009)

X X

Stålhane et al. (2016) X
Urbani et al. (2023) X X
Zhang et al. (2022) X X X

Present work X X X X X
such as travel costs between machines and technician allocation. It is
important to note that our review focused solely on papers involving
these logistic decisions, as it aligns with the problem addressed in our
work. However, it is worth mentioning that most recent optimization
works on maintenance selection now incorporate logistic considera-
tions. The Maintenance selection? column denotes papers where the
selection of MOs is part of the decision process, and not predetermined,
e.g., the problem of adjusting the exact date of the MO. The Reliability
modelization? column refers to papers where machine degradation is
explicitly modeled, and decisions made in the optimization process
have a direct impact on this degradation state. For instance, it includes
the use of a virtual age, that is impacted by each MO performed. This
aspect is opposed to problems where reliability is represented solely by
a penalty cost based on the deviation from a given due date for the
MO. The Imperfect maintenances? column highlights papers that explore
more than two types of MOs, going beyond the conventional preventive
and corrective categories that are often simplified into the computation
of optimal cycles. It is noteworthy that there are no existing works that
simultaneously consider maintenance selection, routing decisions, and
condition-based maintenance. Condition-based maintenance introduces
an additional element of stochasticity, as the maintenance performed
depends on the machine’s state when the technician arrives on-site,
leading to a stochastic degradation state even after the visit of the
technician. Nevertheless, even though they do not encompass routing
decisions and maintenance selection, it is worth noting that Zhang et al.
(2022) explores condition-based maintenance policies alongside spare
parts inventory management, and Zhao et al. (2022b) investigates the
optimization of condition-based performance control and maintenance
policies. Both of these works exhibit similarities to the current study in
their approach to modeling degradation processes.

In this paper, we address a realistic joint maintenance and routing
problem, taking into consideration many different aspects studied in
the literature but independently. First of all, this problem fits into a
realistic framework seen in many previous publications (see, for exam-
ple, (Rashidnejad et al., 2018; Schrotenboer et al., 2018; Stålhane et al.,
2016)), with a set of geographically dispersed machines, a time horizon
divided into periods (days or weeks) and a probabilistic model of the
degradation state of the machines. Secondly, as a major novelty and
3

contrary to the maintenance-routing literature, we do condition-based
MO decisions, taking into account the stochastic degradation state of
a machine upon the technician’s arrival. Moreover, to further enhance
the realism of our model, we also consider that each technician has a
known level of expertise that restricts his/her interventions to machines
with a level of degradation below a certain threshold. Therefore, since
the level of degradation of a machine is probabilistic when a technician
arrives at a site, he or she may not be able to perform a planned MO on
a machine if the degradation is not within his or her level of expertise.
Thus, the degradation state of a machine is not known exactly after
a technician’s visit. To resume, the optimization problem considered
here aims to plan: (i) the machines maintained during each period, (ii)
the MOs performed on the machines maintained, (iii) the technicians
performing the MOs, and (iv) the technicians’ routes. In the present
work, we propose a tailored heuristic method. Results are satisfactory
both in terms of computation time and solution quality, compared to
the best solutions produced by CPLEX.

This paper is organized as follows: Section 2 presents the problem,
the notations, an illustrative example and the mathematical formula-
tion. Section 3 describes the algorithm and all its components, Section 4
gives the results of the experiments, and Section 6 concludes this work.

2. Problem definition

We consider that a machine has a virtual age affecting its perfor-
mance level. The performance level reflects how efficiently the machine
operates compared to a new one, such as the production rate (e.g., units
of a product produced per minute). A machine with a higher virtual
age operates less efficiently resulting in a lower performance level
and reduced production rate. Moreover, in the present study, we also
consider that a machine may fail. When a machine experiences a
failure, it halts production, requiring immediate action. We assume
that minimal repairs are carried out by on-site technicians who can
quickly restore the machine to a functional state. However, as observed
in previous studies, minimal repairs do not alter the machine’s virtual
age nor reduce the likelihood of another failure. To model both virtual
age and failures, we use degradation states, represented by a Markovian
model that allows for the modeling of stochastic degradation events.
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In other words, the machine is not constrained to having an exactly
known virtual age throughout the entire time horizon. Failure and
performance level are integrated into our model as expected penalty
costs associated with the machine’s degradation state. The expected
failure cost is calculated considering the minimal repair cost and the
failure probability, while the performance level cost accounts for the
losses in the performance of a machine compared to a new one. To
summarize, our machine reliability model, represented by the degra-
dation state, encompasses the machine’s performance level and failure
probability through associated penalty costs. Our model allows for
stochastic degradation events.

We consider a set  of geographically dispersed machines and a
depot 𝛿. ∀ (𝑖1, 𝑖2) ∈ ( ∪ {𝛿})2, 𝑑𝑖1𝑖2 is the known travel time between
machines 𝑖1 and 𝑖2 or between machines and the depot. The time
horizon is discretized into a set  = {1, 2,… , | |} of periods. The state
of a machine is represented by a given discrete-time Markovian model
over the horizon of time. The set  = {1, 2,… , ||} represents the
different degradation states of the machines, with State 1 being the
good-as-new state, State || being the worst state, and the other states
being intermediate states that represent different levels of degradation
such that, ∀ (𝑘1, 𝑘2) ∈ 2, if 𝑘1 < 𝑘2 then 𝑘1 is a less-degraded state
than 𝑘2. ∀ (𝑘1, 𝑘2) ∈ 2, 𝑝𝑘1𝑘2 is the probability that a machine in
state 𝑘1 will degrade to state 𝑘2 between two consecutive time periods.
i.e., a machine in state 𝑘1 at the end of a period 𝑡 ∈  ∣ 𝑡 < | |

transitions into state 𝑘2 at the beginning of period 𝑡 + 1. Note that, if
𝑘1 > 𝑘2, 𝑝𝑘1𝑘2 = 0 because a machine cannot reduce its degradation by
itself and ∀ 𝑘1 ∈ ,

∑

𝑘2∈
𝑝𝑘1𝑘2 = 1. For each machine 𝑖 ∈ , the initial

probability to be in a degradation state 𝑘 ∈  before the first period is
given by 𝑤𝑎𝑘𝑖0.

We denote as  the set of technicians available to perform the MOs.
Each technician 𝑗 ∈  has a skill level 𝑐𝑗 such that technician 𝑗 can
only operate on a machine if its degradation state 𝑘 ∈  is less than
or equal to the technician’s skill level, i.e., 𝑐𝑗 ≥ 𝑘. During each period,
each technician executes his or her route and all their assigned MOs.
The technicians are all based at the depot 𝛿 and each technician starts
and ends their route at the depot.

In our problem, the MOs have a target state, that is, the degradation
state that the given machine should have after the MO is completed.
Upon arrival at the machine location, technicians may face three differ-
ent situations: (i) the machine degradation state exceeds the technician
skill level, (ii) the machine degradation state is less than or equal to
the target state of the planned MO, or (iii) the machine degradation
state exceeds the target state but remains within the technician’s skill
level. In cases (i) and (ii), no MO is performed and the machine
remains in its current degradation state. In case (iii), the technician
executes the requisite MO to bring the machine to the target state.
Section 2.1 illustrates the three possible situations. The operating time
and operating cost of each MO depend on the current state of the
machine and the target state. We introduce 𝑟𝑘1𝑘2 and 𝑜𝑘1𝑘2 ∀ (𝑘1, 𝑘2) ∈
2 ∣ 𝑘1 > 𝑘2 to denote the costs and times needed to take a machine
from degradation state 𝑘1 to 𝑘2. ∀ (𝑘1, 𝑘2, 𝑘3) ∈ 3 ∣ 𝑘1 > 𝑘2 > 𝑘3,
𝑟𝑘1𝑘2 + 𝑟𝑘2𝑘3 = 𝑟𝑘1𝑘3 and 𝑜𝑘1𝑘2 + 𝑜𝑘2𝑘3 = 𝑜𝑘1𝑘3 . During each period, no
more than one MO can be performed on each machine.

For the sake of simplicity, we use the tuple (𝑘, 𝑖, 𝑗, 𝑡), 𝑘 ∈ , 𝑖 ∈
, 𝑗 ∈  , 𝑡 ∈  ∣ 𝑘 < 𝑐𝑗 to denote an MO planned on machine 𝑖 for
technician 𝑗 during period 𝑡 with a target state 𝑘.

The duration of the technicians’ routes is limited by time con-
straints. Each technician 𝑗 ∈  has an available working time 𝐸 for
each period 𝑡 ∈  . This is the time available for performing MOs and
traveling between machine locations. It is worth noting that 𝐸 can be
expressed in different time units (e.g., a day or a week). As it stands, for
a solution to our problem to be feasible, the duration of each technician
route for each period must be shorter than 𝐸. Therefore, when planning
an MO on a machine, we must always consider the worst-case MO time,
that is, the time needed to bring the machine from the degradation
4

state matching the technician’s highest skill level to the target level.
For example, if technician 𝑗 ∈  has a planned MO with a target state
𝑘 ∈  ∣ 𝑘 < 𝑐𝑗 , the solution has to consider the operating time 𝑜𝑐𝑗𝑘.

We denote by Ctr the cost per traveling time unit, and by 𝐶𝑘 the
penalty cost incurred if a machine finishes a period in state 𝑘 ∈ .
Typically, these costs increase with the degradation of the machine,
starting low (may be equal to 0) for state 1 and reaching a high and
prohibitive value for the worst state ||. More formally, ∀ (𝑘1, 𝑘2) ∈
2

|𝑘1 < 𝑘2, 𝐶𝑘1 ≤ 𝐶𝑘2 . As mentioned previously, these costs encompass
the failure costs and the performance level costs.

The problem is to generate a maintenance plan with minimal cost.
The maintenance plan is made of a selection of MOs and the routes to
execute those MOs. The objective function is to minimize the sum of
the expected costs of the MOs, the traveling costs, and the sum of the
expected penalty costs. In summary, the problem consists in selecting
the MOs to execute in each period (i.e., the machines and target states),
assigning each MO to a technician, and generating the routes for the
technicians.

Table 2 summarizes the notations. The following assumptions are
made:

• Minimal repairs are performed whenever a failure is detected by
a low-level local technician

• The exact degradation state of a machine is only known when a
technician arrives on the machine

• The degradation of a machine remains constant during the ex-
ecution of the maintenance plan, i.e., within a period, if no
maintenance is performed

• The skill levels are progressive such that the set of MOs that can
be performed by a lower-skilled technician is included in the set
of MOs that can be performed by a higher-skilled technician

• A technician arriving on a machine with a degradation state
outside his/her skill cannot perform an MO

2.1. Degradation states and transitions: An illustrative example

This section briefly presents three illustrations (Figs. 1, 2, and
3) representing the evolution of the state of a machine over several
periods. The example uses six degradation levels. Fig. 1 shows the tran-
sitions between the states of one machine over three periods without
maintenance. The machine degrades over time and, when a new period
begins, it either maintains its degradation state or degrades into a worse
state. In this example, the initial state of the machine is State 1.

Fig. 2 presents the evolution of the degradation state of a machine
ver three periods but includes planned MOs executed by a technician
ith a skill level 𝑐𝑗 = 4. In the figure, the terms ‘‘𝑡1 before mainte-

nance’’, ‘‘𝑡2 before maintenance’’, and ‘‘𝑡3 before maintenance’’ refer to
the beginning of periods 𝑡1, 𝑡2, and 𝑡3, and the terms ‘‘𝑡1’’, ‘‘𝑡2’’, and ‘‘𝑡3’’
efer to the end of these periods. All the states surpassing the technician
kill level are depicted in gray.

We consider a machine that is initially good as new in State 1 at
he beginning of the horizon (i.e., 𝑤𝑎1𝑖0 = 1 with 𝑖 being the machine).
he first MO is planned in period 𝑡1, having State 1 as the target state;

n other words, the goal is to return the machine to the good-as-new
tate. No MO is planned in 𝑡2 (the state of the machine is the same at
he beginning and the end of the period). Finally, an MO is planned in
3 having State 2 as the target state.

Fig. 2 shows the expected states and transitions for period 𝑡1. Before
the MO, the probabilities of all the states are computed by considering
the degradation over time from the initial state of the machine, thus
using the transition probabilities from State 1. During 𝑡1, the technician
will travel to the machine to execute an MO. However, if the machine
is in States 5 or 6, the technician does not have the required skill level
to intervene, so the degradation state remains the same until the end of

period 𝑡1. Similarly, if the machine is already in State 1, the technician
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Table 2
Summary of notation.

Sets

 Set of machines
 Set of technicians
 Set of periods
 Set of degradation states

Constants

𝑝𝑘1𝑘2 Transition probability from state 𝑘1 to 𝑘2
𝑑𝑖1 𝑖2 Travel time between 𝑖1 and 𝑖2
𝑜𝑘1𝑘2 Time needed to change the state of a machine from 𝑘1 to 𝑘2
𝑟𝑘1𝑘2 Cost of an operation to change the state of a machine from 𝑘1 to 𝑘2
𝑤𝑎𝑘𝑖0 Probability that machine 𝑖 is in state 𝑘 at the beginning of the time horizon
𝑐𝑗 Skills level of technician 𝑗
Ctr Traveling cost per unit time
𝐶𝑘 Penalty cost for state 𝑘
𝐸 Time available for each technician and for each period

Indexes

𝛿 Depot
𝑖 Machine index
𝑡 Period index
𝑘 State index
𝑗 Technician index
Fig. 1. Illustration of degradation states of a machine and their possible transitions.

does not need to intervene. Conversely, if the machine is in States 2,
3, or 4, the technician can and will maintain the machine, bringing it
to the target state (i.e., State 1). The probability of each state at the
end of period 𝑡1 is therefore computed by considering these transitions
and their probabilities, and we can see, for example, that states 2, 3,
and 4 are not possible and that the probability of State 1 at the end
of the period is the sum of the probabilities of states 1, 2, 3, and 4 at
the beginning of the period. The expected penalty cost to be paid for
period 𝑡1 is the sum, for all 𝑘 in , of the probability of state 𝑘 times
𝐶𝑘.

Next, no maintenance is planned in period 𝑡2 and the probability of
each state is the same at the beginning and at the end of the period.
It only depends on the probabilities at the end of period 𝑡1 and on the
known transition probabilities.

Finally, one MO is planned in period 𝑡3. States 5 and 6 have similar
ransitions as in 𝑡1 (i.e., if the machine is in such states at the beginning
f the period, the technician cannot intervene). The difference here is
hat the MO’s target state is State 2 and if the machine is in a better
tate at the beginning of period 𝑡2 (State 1), it remains in that state.

Fig. 3 depicts an illustrative example of the routing and mainte-
ance decisions on an instance with 6 machines. This example considers
hree time periods and two technicians with varying skill levels. More
5

pecifically, Technician 1 is more skilled than Technician 2. To simulate
the degradation of machines, each machine is associated with a Marko-
vian model, akin to the representation in Fig. 2. However, for the sake
of clarity, and without loss of generality, we limit this example to three
degradation states: good-as-new (state 1), minor degradation (state 2),
and major degradation (state 3). The associated degradation probabil-
ities are: 20% from state 1 to state 2, 10% from state 1 to state 3, and
30% from state 2 to state 3. All the machines have the same initial
probabilities for the degradation states. Probabilities of each state at
the end of each period and for each machine are given in the figure.
In this scenario, Technician 1 can execute maintenance operations on
machines across all degradation states. On the other hand, Technician 2
faces limitations and is unable to address major degradation (i.e., state
3). The illustrated solution considers that Technician 1 performs MOs
transitioning the machine from major degradation to minor degrada-
tion and Technician 2 from minor degradation to good-as-new. In the
schedule table (bottom of the figure), (𝑚𝑖, 𝑘𝑗) indicates that a MO is
planned on machine 𝑖 ∈  with a goal degradation state of 𝑗 ∈ . 𝐷
indicates the depot where the technician starts. This figure allows us to
illustrate several aspects of the problem and its solutions:

1. Only Technician 1 is skilled enough to repair a major degrada-
tion. Consequently, his/her available time is crucial to decreas-
ing the high penalty costs of highly degraded states (i.e., major
degradation costs). This motivates the execution of short MOs
that shift machines from major degradation to minor degrada-
tion. Thereafter, Technician 2 consistently performs operations
on these machines during the following periods, restoring them
to a good-as-new state. For example, Technician 1’s MOs on
machines 3 and 4 during Period 2 result in a null probability of
major degradation, leaving them either in a minor degradation
or good-as-new condition. In Period 3, Technician 2 performs
MOs on machines 3 and 4, significantly increasing the likelihood
of them returning to a good-as-new state. It is important to note,
however, that there is still a possibility of major degradation, as
the machines may have deteriorated between periods 2 and 3.
In summary, two MOs are performed to fully restore a machine
from a major degradation state to good-as-new, this is due to
the limited availability of time for Technician 1, who focuses
on addressing the complex issues with the machines leaving the
simpler maintenance tasks to the Technician 2. It means that
there is an incentive to perform imperfect MOs, and not only
full-repair maintenance, i.e., the target state is not always the
good-as-new state.
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Fig. 2. Illustration of states and transitions with planned MOs.
2. In the first period, Technician 2 is engaged in numerous minor
MOs on the machines, shifting them, if possible, from a minor
degradation state to the good-as-new state. The good-as-new
state is less likely to transition to a major degradation state in
the next periods thus reducing the overall expected penalty and
maintenance costs. In summary, the technician performs various
types of preventive MOs and does not only intervene in the last
degradation state.

3. There is no incentive to visit all machines in every period consis-
tently. This can be seen in Period 2 where multiple machines are
not maintained. The reasons are that (i) Technician 1 does not
have enough available time to maintain more than two machines
and (ii) the probability of minor degradation is low, rendering
the intervention of Technician 2 not cost-efficient. It should
be noted that logistical costs might dissuade a technician from
moving from the depot, particularly when such costs outweigh
the expected costs of the degradation in the system.

2.2. A mixed integer programming model

This section introduces a mixed integer programming formulation
for the problem. The formulation is given by Model 1

This model uses the following decision variables:

• 𝑥𝑘𝑖𝑗𝑡, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑗 ∈  , ∀ 𝑡 ∈  , ∣ 𝑘 < 𝑐𝑗 equals 1 if the
MO (𝑘, 𝑖, 𝑗, 𝑡) is planned, 0 otherwise. In other words, 𝑥𝑘𝑖𝑗𝑡 equals 1
if machine 𝑖 has a maintenance planned in period 𝑡 for technician
𝑗 with a target state 𝑘.

• 𝑦𝑖1𝑖2𝑗𝑡 , ∀ (𝑖1, 𝑖2) ∈ ( ∪ {𝛿})2 ∣ 𝑖1 ≠ 𝑖2, ∀ 𝑗 ∈  , ∀ 𝑡 ∈  equals 1 if
technician 𝑗 moves from 𝑖1 to 𝑖2 at period 𝑡, zero otherwise.

• 𝑦𝛿𝛿𝑗𝑡 , ∀ 𝑗 ∈  , ∀ 𝑡 ∈  equals 1 if technician 𝑗 stays at the depot
during period 𝑡 (i.e., does not execute MOs), zero otherwise.

• 𝑧𝑖𝑡, ∀ 𝑖 ∈ , ∀ 𝑡 ∈  is the expected cost of the MO planned on
machine 𝑖 at period 𝑡. The variable takes the value of zero if no
MO is planned. The value is computed by using the probabilities
of the states of 𝑖.

• 𝑤𝑎𝑘𝑖𝑡, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  is the probability that machine 𝑖
is in state 𝑘 at the end of period 𝑡 (after an MO is performed).

• 𝑤𝑏𝑘𝑖𝑡, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  is the probability that machine
𝑖 is in state 𝑘 at the beginning of period 𝑡 (before an MO is
performed).

• 𝑢𝑖𝑗𝑡, ∀ 𝑖 ∈ , ∀ 𝑗 ∈  , ∀ 𝑡 ∈  is a dummy variable for the
sub-tour elimination constraints, as in Ref. Miller et al. (1960).
6

The constraints are the following:

• Constraint (1) is the objective function. The first part sums the
traveling times and multiplies them by the traveling cost Ctr.
The second part sums the expected MO costs and the expected
penalty costs. ∀ 𝑖 ∈ ,∀ 𝑡 ∈  ,∀ 𝑘 ∈ , 𝑤𝑎𝑘𝑖𝑡 is the probability that
machine 𝑖 is in state 𝑘 at the end of period 𝑡, thus the probability
of paying 𝐶𝑘 for 𝑖 at 𝑡.

• Constraints (2) fix the values of 𝑤𝑏𝑘𝑖𝑡, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈ 
(probabilities at the start of a period) by taking the transition
probabilities and the probabilities either at the end of the previous
period, or the initial probabilities (i.e., 𝑤𝑎𝑘𝑖0, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ ).

• Constraints (3)–(5) are used to fix the probabilities at the end
of a period (𝑤𝑎𝑘𝑖𝑡, ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  ). With Constraints
(3), the probability of a state at the end of a period equals the
probability at the beginning (𝑤𝑎𝑘𝑖𝑡 = 𝑤𝑏𝑘𝑖𝑡, 𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈  )
if no MO is planned (i.e., for 𝑘2 ∈ , 𝑗 ∈  , 𝑥𝑘2𝑖,𝑗,𝑡 = 0 ∀ 𝑐𝑗 ≥
𝑘 > 𝑘2). Constraints (4) are used for the other cases and fix
the probability of the target state of an MO to the sum of the
probabilities of the states on which the technician can intervene.
For example, in Fig. 1, at period 𝑡3, Constraints (3) are used for
the probabilities of State 1 (better than the maintenance planned)
and States 5 and 6 (outside the skills level of the technician). Still,
in Fig. 1, Constraints (4) fix the probability of State 2 at period
𝑡3 by summing the probabilities before maintenance of States 2,
3, and 4. The probabilities of states 3 and 4 are not restrained
by Constraints (3) and Constraints (4) and are fixed at zero by
Constraints (5).

• Constraints (6) compute the expected operation costs (𝑧𝑖𝑡, ∀ 𝑖 ∈
, ∀ 𝑡 ∈  ). The expected cost of an MO is simply the sum
of the probability of each state 𝑘 ∈  multiplied by the cost
of the MO needed to bring the state from 𝑘 to the target state.
No cost is incurred if no MO is performed. Constant 𝑀 is a
large positive value. In our implementation, it corresponds to
the smallest possible 𝑟

||𝑘1 , which leads to the highest possible
expected cost of maintenance (i.e., the machine is in the worst
degradation state).

• Constraints (7) ensure that there is at the most 1 planned MO
per machine per period.

• Constraints (8) restrain the working time of a technician during
a period. The first part sums the worst-case operating times of the
MOs and the second part sums the traveling times. Thereafter, it

is referred to as the duration constraint.
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• Constraints (9) and (10) force a maintained machine to be on
the route of its technician: the technician arrives and leaves the
machine once.

• Constraints (11) and (12) force a technician to leave and enter
the depot at most once during the period.

• Constraints (13) are the sub-tour elimination constraints, as in
Ref. Miller et al. (1960).

• Constraints (14)–(20) define the nature of the decision variables.

A quick inspection of the model shows that the complexity of the
roblem increases rapidly with the number of periods, technicians, and
achines. The number of constraints and variables are both 𝑂(|| ×

(|‖‖ | + |‖‖ |)).

3. A heuristic solution approach

In this section, we introduce a single-pass heuristic that combines
components that heavily rely on the specific structure of the problem
and components that are directly borrowed or adapted from solution
methods for related problems. The resulting method can be used as a
stand-alone procedure or be embedded into more sophisticated solution
schemes.

3.1. Overall algorithm

This section presents an overview of the algorithm introduced in
our work. The algorithm starts with an empty solution and adds a new
MO to the current solution at each iteration. The MO to be added is
selected according to the utilities. The algorithm stops when it is no
longer possible to incorporate MOs into a feasible solution. The current
solution is frequently improved by local search operators. Algorithm 1
presents the overall method and a more comprehensive illustration of
the utility mechanism is given in Appendix A. In this algorithm, the
variable 𝑡𝑜𝑢𝑟𝑠 is the set of tours (or routes) of all technicians for all
periods. It is initialized by the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑇 𝑜𝑢𝑟𝑠(𝑝𝑟𝑜𝑏𝑙𝑒𝑚) function that
returns for all of them an empty tour. 𝑎𝑙𝑙𝑀𝑂𝑠 is the set of all planned
7
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MOs, and 𝑣𝑎𝑟𝑀𝑂 is the MO selected to be added to the solution.
𝑎𝑙𝑙𝑀𝑂𝑠 is initialized by the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑀𝑂𝑠(𝑝𝑟𝑜𝑏𝑙𝑒𝑚) function, which
returns no MO on the time horizon. The utilities are computed by the
𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠) function, as explained in Section 3.2.
Function 𝑆𝑒𝑙𝑒𝑐𝑡_𝑀𝑂(𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠) returns an MO, selected as explained
in Section 3.3. Function 𝐿𝑜𝑐𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ_3_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝜈3, 𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂) re-
turns true if it is impossible to add any MO (i.e., there is not enough
time available) or if adding 𝑣𝑎𝑟𝑀𝑂 will be the 𝜈-th consecutive ad-
dition to the solution that degrades the objective function (i.e., that
increases the objective function). Functions 𝐴𝑑𝑑_𝑇 𝑜_𝑇 𝑜𝑢𝑟(𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂)
and 𝐴𝑑𝑑_𝑇 𝑜_𝑀𝑜𝑠(𝑎𝑙𝑙𝑀𝑂𝑠, 𝑣𝑎𝑟𝑀𝑂) simply add the MO 𝑣𝑎𝑟𝑀𝑂 to the
set of tours tours and the set of MOs 𝑎𝑙𝑙𝑀𝑂𝑠. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)
is the solution defined by 𝑡𝑜𝑢𝑟𝑠 (the routes of the technicians) and
𝑎𝑙𝑙𝑀𝑂𝑠 (the MOs performed). The solution is retained if its objective
function returns a value that is lower than that of the best solution
found so far. 𝐿𝑆1(𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂) is a function that uses the first LS
for the technician and the period corresponding to the last added MO
𝑣𝑎𝑟𝑀𝑂, and 𝐿𝑆1𝐴𝑙𝑙(𝑡𝑜𝑢𝑟𝑠) is the first LS executed for each technician
and each period.

3.2. Computing the utilities

First of all, the utility of an MO (𝑘, 𝑖, 𝑗, 𝑡) is only computed if there
is no MO planned for machine 𝑖 in period 𝑡. The utilities are always
computed considering the current solution (i.e., a set of feasible MOs
planned over the entire time horizon, and the routes of the technicians).

The utility of an MO is intended to reflect the traveling cost, the
impact on the state of the machine (for the current period and the
subsequent periods), and the expected operation cost. Let us denote as
𝑈𝑘𝑖𝑗𝑡, 𝑘 ∈ , 𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  ∣ 𝑘 < 𝑐𝑗 the utility of an MO
executed on machine 𝑖 by technician 𝑗 to bring the machine to state 𝑘
t period 𝑡.

The traveling cost for an MO is approximated by the best insertion
ost of the machine into the current technician route. Let 𝑅𝑗𝑡 represent
he route of technician 𝑗 at period 𝑡 in the current solution; in other
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Minimize
⎛

⎜

⎜

⎝

∑

∀ 𝑡∈

∑

∀ 𝑗∈

∑

∀ (𝑖1 ,𝑖2)∈(∪{𝛿})2 ,𝑖1≠𝑖2

𝑦𝑖1𝑖2𝑗𝑡 𝑑𝑖1𝑖2Ctr
⎞

⎟

⎟

⎠

+

(

∑

∀ 𝑡∈

∑

∀ 𝑖∈

(

𝑧𝑖𝑡 +
∑

∀ 𝑘∈
𝑤𝑎𝑘𝑖𝑡𝐶𝑘

))

(1)

𝑤𝑏𝑘1𝑖𝑡 =
∑

∀ 𝑘2∈,𝑘2≤𝑘1

𝑤𝑎𝑘2𝑖𝑡−1𝑝𝑘2𝑘1 ∀ 𝑘1 ∈ , ∀ 𝑡 ∈  , ∀ 𝑖 ∈  (2)

𝑤𝑎𝑘1𝑖𝑡 ≥ −(
∑

∀ 𝑗∈ ∣𝑘1≤𝑐𝑗

∑

∀ 𝑘2∈∣𝑘2<𝑘1

𝑥𝑘2𝑖𝑗𝑡) +𝑤𝑏𝑘1𝑖𝑡 ∀ 𝑘1 ∈ , ∀ 𝑡 ∈  , ∀ 𝑖 ∈  (3)

𝑤𝑎𝑘1𝑖𝑡 ≥ −(1 − 𝑥𝑘1𝑖𝑗𝑡) +
∑

∀ 𝑘2∈∣𝑘1≤𝑘2≤𝑐𝑗

𝑤𝑏𝑘2𝑖𝑡 ∀ 𝑡 ∈  , ∀ 𝑖 ∈ , 𝑗 ∈  , ∀ 𝑘1 ∈  ∣ 𝑘1 < 𝑐𝑗 (4)

∑

𝑘∈
𝑤𝑎𝑘𝑖𝑡 = 1 ∀ 𝑡 ∈  , ∀ 𝑖 ∈  (5)

𝑧𝑖𝑡 ≥ −𝑀(1 − 𝑥𝑘1𝑖𝑗𝑡) +
∑

∀ 𝑘2∈∣𝑘1≤𝑘2≤𝑐𝑗

𝑤𝑏𝑘2𝑖𝑡 𝑟𝑘2𝑘1 ∀ 𝑡 ∈  , ∀ 𝑖 ∈ ,∀ 𝑗 ∈  , ∀ 𝑘1 ∈  ∣ 𝑘1 < 𝑐𝑗 (6)

∑

∀ 𝑗∈

∑

∀ 𝑘∈∣𝑘<𝑐𝑗

𝑥𝑘𝑖𝑗𝑡 ≤ 1 ∀ 𝑡 ∈  , ∀ 𝑖 ∈  (7)

⎛

⎜

⎜

⎝

∑

∀ 𝑖∈

∑

∀ 𝑘∈∣𝑘<𝑐𝑗

𝑥𝑘𝑖𝑗𝑡𝑜𝑐𝑗𝑘
⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

∑

∀ (𝑖1 ,𝑖2)∈(∪{𝛿})2 ,𝑖1≠𝑖2

𝑦𝑖1𝑖2𝑗𝑡 𝑑𝑖1𝑖2

⎞

⎟

⎟

⎠

≤ 𝐸 ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (8)

∑

∀ 𝑖2∈∪{𝛿}∣𝑖1≠𝑖2

𝑦𝑖1𝑖2𝑗𝑡 =
∑

∀ 𝑘∈∣𝑘<𝑐𝑗

𝑥𝑘𝑖1𝑗𝑡 ∀ 𝑖1 ∈ , ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (9)

∑

∀ 𝑖2∈∪{𝛿}∣𝑖1≠𝑖2

𝑦𝑖2𝑖1𝑗𝑡 =
∑

∀ 𝑘∈∣𝑘<𝑐𝑗

𝑥𝑘𝑖1𝑗𝑡 ∀ 𝑖1 ∈ , ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (10)

∑

∀ 𝑖∈∪{𝛿}
𝑦𝑖𝛿𝑗𝑡 = 1 ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (11)

∑

∀ 𝑖∈∪{𝛿}
𝑦𝛿𝑖𝑗𝑡 = 1 ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (12)

𝑢𝑖1𝑗𝑡 − 𝑢𝑖2𝑗𝑡 + (|| + 1)𝑦𝑖1𝑖2𝑗𝑡 ≤ || ∀ 𝑗 ∈  , ∀ 𝑡 ∈  ,∀ (𝑖1, 𝑖2) ∈ ()2, 𝑖1 ≠ 𝑖2 (13)

𝑥𝑘𝑖𝑗𝑡 ∈ {0, 1} ∀ 𝑗 ∈  , ∀ 𝑘 ∈  ∣ 𝑘 < 𝑐𝑗 ,∀ 𝑖 ∈ , ∀ 𝑡 ∈  (14)

𝑦𝑖2𝑖1𝑗𝑡 ∈ {0, 1} ∀ (𝑖1, 𝑖2) ∈ ( ∪ {𝛿})2 ∣ 𝑖1 ≠ 𝑖2, ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (15)

𝑦𝛿𝛿𝑗𝑡 ∈ {0, 1} ∀ 𝑗 ∈  , ∀ 𝑡 ∈  (16)

𝑧𝑖𝑡 ∈ R+ ∀ 𝑖 ∈ , ∀ 𝑡 ∈  (17)

𝑤𝑎𝑘𝑖𝑡 ∈ [0, 1] ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  (18)

𝑤𝑏𝑘𝑖𝑡 ∈ [0, 1] ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  (19)

𝑢𝑖𝑗𝑡 ∈ [1, ||] ∀ 𝑗 ∈  , ∀ 𝑖 ∈ , ∀ 𝑡 ∈  (20)

Model 1. Mathematical formulation of the problem.
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words, 𝑅𝑗𝑡 is a set of pairs (𝑎, 𝑏) ∈ ( ∪ {𝛿})2, 𝑎 ≠ 𝑏 such that, in the
urrent solution, 𝑗 has an MO planned on 𝑎 immediately followed by
n MO planned on 𝑏, and 𝑗 is expected to travel from 𝑎 to 𝑏 between
he two MOs. The impact on the traveling costs of the insertion of an
O (𝑘, 𝑖, 𝑗, 𝑡) is therefore computed by using

1𝑘𝑖𝑗𝑡 = min
(𝑎,𝑏)∈𝑅𝑗𝑡

(𝑑𝑎𝑖 + 𝑑𝑖𝑏 − 𝑑𝑎𝑏)Ctr. (21)

Estimating the impact of an MO on the state of the machine requires
omputing the probability of transitioning to each degradation state 𝑖 of

the machine for each period 𝑡′ ∈  ∣ 𝑡′ ≥ 𝑡 if the MO is added. The cost
aved corresponds to the diminishing penalty costs and the diminishing
xpected operational costs of the MOs already planned.

The computation of 𝑈2𝑘𝑖𝑗𝑡 is explained in detail in Algorithm 2.
he function names are self-explanatory, describing their purposes:
enaltyCost(𝑆, 𝑖, 𝑡) calculates the expected penalty cost of machine 𝑖 at
eriod 𝑡 in solution 𝑆, maintenanceCost(𝑆, 𝑖, 𝑗, 𝑡) calculates the expected
8

maintenance cost on machine 𝑖 by technician 𝑗 at period 𝑡 in solution I
𝑆 and addMO(𝑆, 𝑘, 𝑖, 𝑗, 𝑡) calculates the solution obtained by adding the
MO (𝑘, 𝑖, 𝑗, 𝑡) to the solution 𝑆.

Thereafter, the savings generated by adding MO (𝑘, 𝑖, 𝑗, 𝑡) into the
urrent solution are estimated by

𝑘𝑖𝑗𝑡 = 𝑈2𝑘𝑖𝑗𝑡 − 𝑈1𝑘𝑖𝑗𝑡. (22)

n other words, the savings correspond to the changes in the expected
enalty costs and the expected operations costs minus the travel costs.
f this value is greater than zero, then adding the corresponding MO
o the current solution, with the best insertion of the machine in the
oute, is guaranteed to generate savings and thereby contribute to the
inimization of the objective. The utilities are updated every time the

urrent solution changes (i.e., every time an MO is selected and added
o a route).

Note that, when technician 𝑗 has insufficient time available in
eriod 𝑡, it is possible that a given MO cannot be added to the solution.

f we consider a best-insertion in the route of the technician, the
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Algorithm 1: Metaheuristic
𝑡𝑜𝑢𝑟𝑠 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑇 𝑜𝑢𝑟𝑠(𝑝𝑟𝑜𝑏𝑙𝑒𝑚)
𝑙𝑙𝑀𝑂𝑠 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑀𝑂𝑠(𝑝𝑟𝑜𝑏𝑙𝑒𝑚)

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)
𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)
𝑣𝑎𝑟𝑀𝑂 ← 𝑆𝑒𝑙𝑒𝑐𝑡_𝑀𝑂(𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
if 𝐿𝑜𝑐𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ_3_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝜈3, 𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂) then

(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠) ← 𝐿𝑆3(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)
𝑣𝑎𝑟𝑀𝑂 ← 𝑆𝑒𝑙𝑒𝑐𝑡_𝑀𝑂(𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)

while 𝐼𝑠_𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂) do
𝑡𝑜𝑢𝑟𝑠 ← 𝐴𝑑𝑑_𝑇 𝑜_𝑇 𝑜𝑢𝑟(𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂)
𝑎𝑙𝑙𝑀𝑂𝑠 ← 𝐴𝑑𝑑_𝑇 𝑜_𝑀𝑂𝑠(𝑎𝑙𝑙𝑀𝑂𝑠, 𝑣𝑎𝑟𝑀𝑂)
𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)
𝑣𝑎𝑟𝑀𝑂 ← 𝑆𝑒𝑙𝑒𝑐𝑡_𝑀𝑂(𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
if 𝐿𝑜𝑐𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ_2_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝜈2, 𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠) then

𝑡𝑜𝑢𝑟𝑠 ← 𝐿𝑆2(𝑣𝑎𝑟𝑀𝑂)
if 𝐿𝑜𝑐𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ_1_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝜈1, 𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠) then

𝑡𝑜𝑢𝑟𝑠 ← 𝐿𝑆1(𝑡𝑜𝑢𝑟𝑠, 𝑣𝑎𝑟𝑀𝑂)
if 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠) < 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 then

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑜𝑢𝑟𝑠, 𝑎𝑙𝑙𝑀𝑂𝑠)

if 𝜈1 > 0 then
for 𝑗 ∈  , 𝑡 ∈  do

𝑡𝑜𝑢𝑟𝑠 ← 𝐿𝑆1𝐴𝑙𝑙(𝑡𝑜𝑢𝑟𝑠)

Algorithm 2: Computation of 𝑈2𝑘𝑖𝑗𝑡 for given (𝑘, 𝑖, 𝑗, 𝑡) and a current
solution 𝑆
𝑈2𝑘𝑖𝑗𝑡 ← 0
urrentPenaltyCost ← 0
urrentMaintenaceCost ← 0
or 𝑡′ ∈  do

currentPenaltyCost ← currentPenaltyCost + penaltyCost(𝑆, 𝑖, 𝑡)
currentMaintenanceCost ←
currentMaintenanceCost + maintenanceCost(𝑆, 𝑖, 𝑗, 𝑡)

𝑆′ ← addMO(𝑆, 𝑘, 𝑖, 𝑗, 𝑡)
ewPenaltyCost ← 0
ewMaintenaceCost ← 0
or 𝑡′ ∈  do

newPenaltyCost ← newPenaltyCost + penaltyCost(𝑆′, 𝑖, 𝑡)
newMaintenanceCost ←
newMaintenanceCost + maintenanceCost(𝑆′, 𝑖, 𝑗, 𝑡)

𝑈2𝑘𝑖𝑗𝑡 ← (currentMaintenanceCost + currentPenaltyCost) −
(newMaintenanceCost + newPenaltyCost)

infeasibility can be detected by

𝑈3𝑘𝑖𝑗𝑡 = min
(𝑎,𝑏)∈𝑅𝑗𝑡

(𝑑𝑎𝑖 + 𝑑𝑖𝑏 − 𝑑𝑎𝑏) + 𝑜𝑐𝑗𝑘. (23)

If this value is greater than the remaining available time in period 𝑡 for
echnician 𝑗 in the current solution, the MO cannot be added with the
est-insertion method. In this case, we forbid the method to select such
n MO.

.3. Selection of a maintenance operation

This subsection discusses how the proposed method iteratively se-
ects the MO to be added to the current solution. First of all, as
entioned earlier, we forbid the addition of an unfeasible MO. The MO

𝑘, 𝑖, 𝑗, 𝑡), 𝑘 ∈ , 𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  ∣ 𝑘 < 𝑐𝑗 selected is randomly
icked between all the feasible MOs with the greatest utility. Two or
ore MOs may have the same utility, which is often the case when

everal machines are on a single production site and start their time
orizon in the same initial state. In such a case, our heuristic randomly
elects an MO from those with the maximum utility.
9

Once selected, the MO is inserted into the route of technician 𝑗 at
eriod 𝑡 and at the position obtained with the best-insertion method.

.4. Local search operators

.4.1. Local search operator 1: Traveling salesman problem solved heuris-
ically

The first local search (LS) operator (LS1) aims to find shorter
outes for the technicians in the different periods, without changing
he machines visited or their planned MOs. Given that finding the
hortest route for each technician in each period corresponds to solving
traveling salesman problem (TSP) (Flood, 1956), we based this LS

perator on the Concorde TSP solver (Applegate et al., 2006), which
irst uses heuristics (as a Lin–Kernighan heuristic (Lin and Kernighan,
973)) to compute bounds on the objective function and then uses a
ranch and bound algorithm. Our method stops before the branch and
ound algorithm and returns the best solution found by the heuristics.

For technician 𝑗 ∈  and period 𝑡 ∈  , this LS operator is called
very 𝜈1 MO additions to the route of 𝑗 at 𝑡. For instance, if 𝜈1 = 10, the
S operator is called every time 10 MOs have been added to the route
f technician 𝑗 ∈  at period 𝑡 ∈  . The method calls this operator on
very route making up the final solution at the end of its execution.

.4.2. Local search operator 2: Swap and transfer
In this second LS operator (LS2), we use the two methods Swap and

ransfer, both of which aim to reassign MOs to different technicians
e.g., for MO (𝑘, 𝑖, 𝑗, 𝑡), 𝑘 ∈ , 𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  ∣ 𝑘 < 𝑐𝑗 in the

solution, 𝑗 changes to 𝑗′ ∈  , 𝑗 ≠ 𝑗′] either by swapping two MOs
in the routes of two technicians or by transferring one MO from the
route of one technician to the route of another technician. In these
moves, we do not seek to change the probabilities of the different
degradation states of the machines, so we restrict both components
(Swap and Transfer) to only apply to pairs of technicians with the same
skill levels.

The LS operator is called each time 𝜈2 MOs have been added to the
urrent solution, where 𝜈2 is a parameter (e.g., 𝜈2 = 1 means that the
S is called after each MO selection and insertion).

The LS operator falls in the variable neighborhood descent (Mladen-
vić and Hansen, 1997) category with the Swap neighborhood scheme
irst applied in each period. Next, the Transfer scheme is also applied
n each period. Both schemes are restricted to swaps or transfers
nvolving the technician 𝑗 given as a parameter and corresponding to
he last MO added to the solution before the call of the LS. This is

first improvement method however, within these two approaches,
eighborhoods that yield no successful outcomes (i.e., technicians with
o beneficial swap identified) are not revisited at a later time, even if
he current solution undergoes modifications.

.4.2.1. Swap. For the first neighborhood, Swap takes as parameters
echnician 𝑗1 ∈  and period 𝑡 ∈  . As the name suggests, this
eighborhood swaps two MOs from the routes of different technicians.
s mentioned before, it impacts the traveling costs but does not change

he probabilities of the degradation states of the machines.
Our implementation works as follows: For each technician 𝑗2 ∈ 

uch that 𝑐𝑗1 = 𝑐𝑗2 , we test all possible swaps. ∀ (𝑎1, 𝑏1, 𝑐1) ∈ ( ∩
𝛿})3 with (𝑎1, 𝑏1), (𝑏1, 𝑐1) ∈ 𝑅𝑗1𝑡 (𝑅𝑗1𝑡 being the route of 𝑗1 at 𝑡, see

Section 3.2) and ∀ (𝑎2, 𝑏2, 𝑐2) ∈ ( ∩ {𝛿})3 with (𝑎2, 𝑏2), (𝑏2, 𝑐2) ∈ 𝑅𝑗2𝑡.
If 𝑑𝑎1𝑏1 + 𝑑𝑏1𝑐1 + 𝑑𝑎2𝑏2 + 𝑑𝑏2𝑐2 ≥ 𝑑𝑎1𝑏2 + 𝑑𝑏2𝑐1 + 𝑑𝑎2𝑏1 + 𝑑𝑏1𝑐2 , then we swap
𝑏1 and 𝑏2: (𝑎1, 𝑏1) and (𝑏1, 𝑐1) are removed from 𝑅𝑗1𝑡 and replaced by
(𝑎1, 𝑏2) and (𝑏2, 𝑐1). Therefore, the MO on 𝑏1 will now be performed by
𝑗2 and the MO on 𝑏2 by 𝑗1. Similarly, in 𝑗2’s route, (𝑎2, 𝑏2) and (𝑏2, 𝑐2)
are replaced by (𝑎2, 𝑏1) and (𝑏1, 𝑐2). Note that this swap is done if and
only if the swap leads to a route that satisfies the duration constraint

[Constraints (8)].
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3.4.2.2. Transfer. This neighborhood takes as parameters a technician
1 ∈  and a period 𝑡 ∈  . Similar to the Swap neighborhood, Transfer

impacts the traveling costs but does not change the probabilities of
the degradation states of the machines. For each machine maintained,
it transfers the corresponding MO to another technician if doing so
produces a saving. The MO is removed from the route of technician
𝑗1 (without changing the visiting order of the remaining MOs) and in-
serted into the best possible position in the route of a second technician
𝑗2 ∈  .

The neighborhood works as follows: For each 𝑗2 ∈  such that
𝑗1 = 𝑐𝑗2 and 𝑗1 ≠ 𝑗2, we test all possible transfers; namely, ∀ (𝑎1, 𝑏1, 𝑐1) ∈
 ∩ {𝛿})3 with (𝑎1, 𝑏1), (𝑏1, 𝑐1) ∈ 𝑅𝑗1𝑡 and ∀ (𝑎2, 𝑐2) ∈ ( ∩ {𝛿})2 with
(𝑎2, 𝑐2) ∈ 𝑅𝑗2𝑡. If 𝑑𝑎1𝑏1 + 𝑑𝑏1𝑐1 + 𝑑𝑎2𝑐2 ≥ 𝑑𝑎1𝑐1 + 𝑑𝑎2𝑏1 + 𝑑𝑏1𝑐2 then the
MO on 𝑏1 is transferred to technician 𝑗2 [i.e., (𝑎1, 𝑏1) and (𝑏1, 𝑐1) are
removed from 𝑅𝑗1𝑡 and replaced by (𝑎1, 𝑐1), and (𝑎2, 𝑏2) is removed from
𝑅𝑗1𝑡 and replaced by (𝑎2, 𝑏1) and (𝑏1, 𝑏2)]. The neighborhood is explored
following a first-improvement strategy.

3.4.3. Local search operator 3: Slot opener
The idea behind this LS operator (LS3) is to compress the duration of

the routes making up the current solution to make room to accommo-
date more MOs. This goal is achieved by lowering the target level of one
or more MOs included in the current solution. Note that compressing
the route does not necessarily improve the solution but most often
degrades it. The travel cost of the route does not change after the route
is compressed but the two other costs do change. On the one hand, the
operating costs decrease because at least one MO will have a higher
target level. On the other hand, the expected penalty costs increase
because a machine will have an overall higher degradation since the
MO is reducing less the degradation. Since the penalty costs usually are
significantly larger than the operating costs, the overall solution tends
to degrade after a route compression. However, route compression is
called only when an enhancing MO cannot be added to the solution
and its changes will free sufficient time for a single enhancing MO.

For each period 𝑡 ∈  , we try to modify the current solution
to make room for one enhancing MO. This approach constitutes a
first-improvement method for each period and stops at the first modifi-
cation. The method considers all MOs (𝑘, 𝑖, 𝑗, 𝑡) ∀ 𝑘 ∈ , ∀ 𝑖 ∈ , ∀ 𝑗 ∈
 ∣ 𝑘 < 𝑐𝑗 that could not be included in the route 𝑅𝑗𝑡 (insufficient
time), and that have positive utilities (𝑈𝑘𝑖𝑗𝑡 > 0).

Let (𝑘, 𝑖, 𝑗, 𝑡), 𝑘 ∈ , 𝑖 ∈ , 𝑗 ∈  ∣ 𝑘 < 𝑐𝑗 be such an MO, and let
𝑀𝑗𝑡 be the set of pairs (𝑖′, 𝑘′) ∈  × ∣ 𝑘′ < 𝑐𝑗 such that 𝑗 has an MO
planned on machine 𝑖′ in the current solution at 𝑡 ∈  with target state
𝑘′. We try to modify the target state 𝑘′ of each (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡 to insert
MO (𝑘, 𝑖, 𝑗, 𝑡).

Let 𝛩 be the time needed to insert MO (𝑘, 𝑖, 𝑗, 𝑡) in the route of
technician 𝑗 at period 𝑡. It is computed by using the formula

𝛩 = 𝐸 −
⎛

⎜

⎜

⎝

∑

∀ (𝑖′ ,𝑘′)∈𝑀𝑗𝑡

𝑜𝑐𝑗𝑘′ +
∑

(𝑎,𝑏)∈𝑅𝑗𝑡

𝑑𝑎𝑏
⎞

⎟

⎟

⎠

− 𝑈3𝑘𝑖𝑗𝑡. (24)

Let 𝛹𝑘′′𝑖′𝑡 ∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡 ∀ 𝑘′′ ∈  ∣ 𝑐𝑗 > 𝑘′′ ≥ 𝑘′ be the time saved if
MO (𝑘′, 𝑖′, 𝑗, 𝑡) is dropped and replaced by MO (𝑘′′, 𝑖′, 𝑗, 𝑡):

𝛹𝑘′′𝑖′𝑡 = 𝑜𝑐𝑗𝑘′ − 𝑜𝑐𝑗𝑘′′ . (25)

Finally, let 𝜇𝑘′′𝑖′𝑡 ∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡, ∀ 𝑘′′ ∈  ∣ 𝑐𝑗 > 𝑘′′ ≥ 𝑘′ be the increase
in the cost if (𝑘′, 𝑖′, 𝑗, 𝑡) is dropped and replaced by MO (𝑘′′, 𝑖′, 𝑗, 𝑡). It is
computed similarly to 𝑈2 (see Section 3.2).

The sub-problem here is then to find new target states such that this
minimizes the total cost increase and frees enough time to accommo-
date the MO (𝑘, 𝑖, 𝑗, 𝑡). The model of this sub-problem is presented in
Model 2

∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡, ∀ 𝑘′′ ∈  ∣ 𝑐𝑗 > 𝑘′′ ≥ 𝑘′, 𝑣𝑘′′𝑖′𝑡 is a decision
variable equal to 1 if, in the solution returned, the target state for the
maintenance on machine 𝑖′ is 𝑘′′ or zero otherwise. Constraint (27)
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ensures that a feasible solution frees sufficient time to accommodate
the MO. Constraints (28) impose that a new target state is found for
each machine in the route (note that this target state can equal the
previous one). If no feasible solution is found, it is not possible to add
MO (𝑘, 𝑖, 𝑗, 𝑡) to the route by only changing the target states. If the value
of the objective function of the returned solution is less than the utility
of (𝑘, 𝑖, 𝑗, 𝑡), changing the target states and inserting the MO improves
the current solution.

Since the model above is solved several times during the execution
of our heuristic, solving it exactly becomes a daunting task. Alterna-
tively, we solve it approximatively by using a heuristic method. The
idea is simply to change the target states of the MO one by one until suf-
ficient space is freed to accommodate the MO being inserted. ∀ (𝑖′, 𝑘′) ∈
𝑀𝑗𝑡, we compute the maximal ratio 𝑈4𝑖′𝑘′ = max

∀ 𝑘′′∈∣𝑐𝑗≤𝑘′′>𝑘′
𝛹𝑘′′ 𝑖′ 𝑡
𝜇𝑘′′ 𝑖′ 𝑡

be-

tween freed time and cost increase for the different possible changes
in the target states. Afterward, the new target states of the machines
are changed one by one, in decreasing order of 𝑈4𝑖′𝑘′ , ∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡.
The new target state for (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡, if changed, is argmax

∀ 𝑘′′∈,𝑐𝑗>𝑘′′>𝑘′

𝛹𝑘′′ 𝑖′ 𝑡
𝜇𝑘′′ 𝑖′ 𝑡

.

We iteratively change the MO one by one in decreasing order of utility
until sufficient time is freed for the MO (𝑘, 𝑖, 𝑗, 𝑡). Once again, if the cost
ncrease exceeds the gains of the MO tested, no change is made and this
O is discarded.

Algorithm 3 summarizes the operation of this LS procedure.
𝑜𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑖, 𝑡) is a function returning true if
𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 has no MO planned on 𝑖 at period 𝑡, otherwise it returns
alse. The function 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐹 𝑖𝑡 with parameters (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑖, 𝑗, 𝑡)
eturns true if the best-insertion method cannot add an MO (𝑘, 𝑖, 𝑗, 𝑡)
𝑘 ∈  ∣ 𝑘 < 𝑐𝑗 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. The function 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙2 with the
arameters (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑘, 𝑖, 𝑗, 𝑡) solves Model 2 for the MO (𝑘, 𝑖, 𝑗, 𝑡)
sing the heuristic presented above. It returns the solution obtained
new target states) and the objective value (total cost increase).

Algorithm 3: Slot opener
𝑛𝑜𝑡𝐹 𝑜𝑢𝑛𝑑 ← 𝑡𝑟𝑢𝑒
for 𝑡 ∈  and notFound do

for 𝑗 ∈  and notFound do
for 𝑖 ∈  and notFound do

if 𝑁𝑜𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑖, 𝑡) and
𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐹 𝑖𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑖, 𝑗, 𝑡) then

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
for 𝑘 ∈ |𝑘 ≤ 𝑐𝑗 do

(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑉 𝑎𝑙𝑢𝑒) ←
𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙2(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑘, 𝑖, 𝑗, 𝑡)

if 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) and 𝑜𝑏𝑗𝑉 𝑎𝑙𝑢𝑒 < 𝑈𝑘𝑖𝑗𝑡 then
𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑛𝑜𝑡𝐹 𝑜𝑢𝑛𝑑 ← 𝑓𝑎𝑙𝑠𝑒

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

This LS operator is called in two steps of the heuristic. The first
is whenever it is impossible to insert an additional MO into a route
making up the current solution. The second is when the heuristic has no
utility greater than zero in the past 𝜈3 consecutive MO additions to the
solution (𝜈3 is a parameter). This means that the heuristic method does
not improve the current solution in 𝜈3 consecutive steps (MO additions).

4. Experimentation

We designed and undertook experiments to test the quality and
scalability of the proposed heuristic. We analyze the solutions returned
to draw insights from the modeling choices made. Several research
questions guide our experimentation:

• RQ1: How should the method be parametrized to obtain a trade-
off between running time and solution quality?

• RQ2: How good are the solutions produced?
• RQ3: How does the method scale with respect to problem size
(more machines, technicians, or periods)?
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Minimize
∑

(𝑖′ ,𝑘′)∈𝑀𝑗𝑡

∑

𝑘′′∈∣𝑐𝑗>𝑘′′≥𝑘′
𝜇𝑘′′𝑖′𝑡𝑣𝑘′′𝑖′𝑡 (26)

∑

(𝑖′ ,𝑘′)∈𝑀𝑗𝑡

∑

𝑘′′∈∣𝑐𝑗>𝑘′′≥𝑘′
𝛹𝑘′′𝑖′𝑡𝑣𝑘′′𝑖′𝑡 ≥ 𝛩 (27)

∑

𝑘′′∈∣𝑐𝑗>𝑘′′≥𝑘′
𝑣𝑘′′𝑖′𝑡 = 1 ∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡 (28)

𝑣𝑘′′𝑖′𝑡 ∈ {0, 1} ∀ (𝑖′, 𝑘′) ∈ 𝑀𝑗𝑡, ∀ 𝑘′′ ∈  ∣ 𝑐𝑗 > 𝑘′′ ≥ 𝑘′ (29)

Model 2. New targets with minimal losses.
(

T
t
r
t

a
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• RQ4: How is the distribution of expected costs (between expected
penalty cost, expected MO cost, and traveling cost) impacted by
machines grouped into production sites?

• RQ5: How valuable is a look-ahead approach (i.e., that considers
many time periods instead of just the current period)?

• RQ6: What are the managerial implications, i.e., how valuable
are technicians and their skill levels?

• RQ7: How valuable is the possibility to perform different types
of MO?

To answer each question, we run the proposed method on a dedi-
cated set of instances generated by using the generator presented in the
next section.

All the experiments reported in this section were run on the Béluga
supercomputer from Calcul Québec.

4.1. Instance generation

This section describes the method used to generate the instances.
The following are the main input parameters of the methods:

• 𝑇 is the number of periods;
• 𝑚 is the number of machines;
• 𝐿 and 𝑙 are the length and width of the two-dimensional (2D)

rectangle area considered, respectively, and the coordinates of
each machine 𝑖 ∈ 𝑀 are randomly selected from a uniform
distribution inside this zone;

• 𝑛 is the number of technicians;
• 𝐶𝑘,∀ 𝑘 ∈  are the penalty costs at the end of a period;
• Ctr is the cost of traveling per time/distance unit;
• 𝐸 is the available time per technician per period.

In all our instances we use six degradation states ({1, 2, 3, 4, 5, 6},
State 6 being the worst state and State 1 the good-as-new state). The
skill of a technician is represented by the highest degradation state 𝑐𝑗
on which he or she can intervene. This state is randomly picked from
the set {2, 3, 4, 5, 6} (no need to consider a technician who can only
intervene on State 1), except for one technician with a skill level fixed
at |𝐾| (to be sure that at least one technician can intervene on all the
degradation states).

The transition matrix  is produced as follows. The idea is to respect
two principles: 𝑝𝑘1𝑘3 < 𝑝𝑘2𝑘3 and 𝑝𝑘1𝑘2 > 𝑝𝑘1𝑘3 ∀ 𝑘1 < 𝑘2 < 𝑘3,
(𝑘1, 𝑘2, 𝑘3) ∈ 3. This is done by using Algorithm 4.

Initialization() serves to initialize the values of 𝑝0𝑘 ∀ 𝑘 ∈  to 0
and 𝑝00 to 1, and the function 𝑟𝑎𝑛𝑑(𝑥) returns a random value in the
range [0, 𝑥). This algorithm produces random but realistic probabilities.
It generates higher probabilities for a machine to remain in the same
degradation state or to slightly degrade (e.g., from State 1 to State 2)
than for a machine to undergo greater degradation (e.g., from State 1
to State 6). The initial state of each machine is considered to be the
good-as-new state (State 1), which means that for the first period, the
probability of each state 𝑘 ∈  for each machine is 𝑝 .
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1𝑘
Algorithm 4: Computation of the probabilities
 ← Initialization()
for 𝑘1 ∈  do

ℎ ← 𝑝(𝑘1−1)(𝑘1−1)
for 𝑘2 ∈  ∣ 𝑘2 ≥ 𝑘1, 𝑘2 < || do

𝑟 ← ℎ∕2 + 𝑟𝑎𝑛𝑑(ℎ∕4)
𝑝𝑘1𝑘2 ← 𝑝(𝑘1−1)𝑘2 + 𝑟
ℎ ← ℎ − 𝑟

𝑝𝑘1||

← 𝑝(𝑘1−1)||

+ ℎ

The costs of the MOs and their operating times are computed by
using the same principles. The operating times ∀ 𝑘1 > 𝑘2 > 𝑘3,
𝑘1, 𝑘2, 𝑘3) ∈ 3 must satisfy the following two conditions: (i) 𝑜𝑘1𝑘2 <
𝑜𝑘1𝑘3 (i.e., an more complex operation takes more time) and (ii) 𝑜𝑘1𝑘2 +
𝑜𝑘2𝑘3 = 𝑜𝑘1𝑘3 . The same principles are considered for the costs. The
generator uses randomness and takes two parameters as input, obase
and rbase, controlling the possible values generated and thus their
impact on the instance. For example, a higher value of rbase implies
that the generator will produce higher maintenance costs overall. This
approach is described in Algorithm 5.
Algorithm 5: Computation of costs and operation times
ℎ𝑜 ← 0 ℎ𝑟 ← 0
for 𝑘 ∈  do

𝑜𝑘1 ← ℎ𝑜 + obase × 𝑟𝑎𝑛𝑑(𝑘)
𝑟𝑘1 ← ℎ𝑟 + rbase × 𝑟𝑎𝑛𝑑(𝑘)
ℎ𝑜 ← 𝑜𝑘1
ℎ𝑟 ← 𝑟𝑘1

for 𝑘1 ∈ {2, 3, 4, 5, 6} do
for 𝑘2 ∈ , 𝑘2 > 𝑘1 do

𝑜𝑘2𝑘1 ← 𝑜𝑘21 − 𝑜𝑘11
𝑟𝑘2𝑘1 ← 𝑟𝑘21 − 𝑟𝑘11

In the first loop, the algorithm computes the costs and operation
times to return a machine to the good-as-new state from all other degra-
dation states. The computation should reflect the fact that increasing
the degradation between two periods increases both costs and operation
time (i.e., we guarantee that 𝑜𝑘11 ≤ 𝑜𝑘21 ∀ (𝑘1, 𝑘2) ∈ 2, 𝑘2 > 𝑘1).

he second loop simply computes the remaining costs and operation
imes for each pair of degradation states different from State 1. No
andomness appears in this second loop because it has to respect the
wo principles (i) and (ii) mentioned above.

The cost of traveling, the penalty costs, and the maximum time
vailable per period are all input parameters. Although to remain
eneral, the model proposed in our work considers a penalty cost 𝐶𝑘

for each degradation state 𝑘 ∈ , in the present experimentation we
consider a non-zero cost only for the worst state. With such a cost, we
chose to model the most practical examples where the penalty cost of a
functioning state (inducted by the performance level cost and minimal
repair expected cost) is negligible compared to the cost of a failure that
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Table 3
Parameters to generate an instance.
Parameter Notation Default value

Number of technicians 𝑛 10
Number of machines 𝑚 150
Number of periods 𝑇 20
Size of area 𝑙 × 𝐿 300 × 300
Penalty cost of the failure state during a period 𝐶

|𝐾|

10 000
Penalty cost of a state 𝑘 ∈  | 𝑘 < |𝐾| 𝐶𝑘 0
Cost of traveling Ctr 1
Available time per period per technician 𝐸 1500
Parameter 1 used to compute operating times obase 20
Parameter 2 used to compute operating costs rbase 20
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Table 4
Results without local search.
Average value of objective function 1 791 102
Average CPU time (s) 45.25

cannot be addressed by minimal repair, i.e., no possibility to repair it
by a local technician. Such failures are modeled with state ||, now
eferred to as the failure state. With 𝐶𝑘 = 0,∀𝑘 ∈  − {||}, we
an model such problems with a high incentive to avoid such failures.
ote that results for generic instances are discussed in Section 4.3 and

t demonstrates that results for this specific case can be generalized.
able 3 summarizes the parameters used to generate an instance and
heir default values. In other words, in the experiments discussed
elow, the parameters used to generate the instances are fixed to their
efault values unless otherwise specified. We consider these values to
roduce both realistic and challenging instances.

.2. RQ1: How should the method be parametrized?

A higher LS call frequency is likely to improve the solution returned,
lthough it is more than likely to add extra running time. This ex-
eriment analyzes how to determine the proper default values for the
requency parameters to achieve a good trade-off between running time
nd quality.

A set of fifty instances was generated with the default parameters.
ach instance was solved thirteen times by our method (once for each
arameter tested), each time with different LS-frequency parameters.
ecall that three types of LS operators exist and their frequencies
re controlled by the parameters {𝜈1, 𝜈2, 𝜈3}, which correspond to the
umbers of MOs added (in a route for LS1, in the solution for LS2,
nd the solution without improvement for LS3) between two calls of
n LS operator. For each of these parameters, we tested the values
1, 10, 20, 50}. However, when testing one parameter, the other LS
perators are not executed (except for the third LS, see Section 3.4.3,
hich is called even when MOs can no longer be added to the solution).
or instance, when testing the impact of 𝜈3, the TSP (LS1) and Swap-
ransfer LS (LS2) operators are never executed. Tables 5–7 present the
esults for 𝜈1, 𝜈2, and 𝜈3, respectively. Each table gives the average
alue of the objective function of the returned solutions and the average
PU times in seconds. Table 4 gives the average value of the objective

unction and the average running time when all LS operators are
nactive (note, however, that the third LS operator is called even when
he solution being built can no longer accept an MO). This last version
s labeled as the default version in the remainder of this section. We
lso report in the row labeled ‘‘Average gap’’ the average gap in the
bjective function compared with the results of the default version. In
ther words, the average value of 1− 𝑓

𝑓d
with 𝑓d being the value of the

objective function found by the default version and 𝑓 being the one
found with the corresponding LS operator.

As expected, the method produces better solutions when at least one
active LS procedure exists. When the LS procedures are called often
(lower values for 𝜈 , 𝜈 , or 𝜈 ), the average quality of the solution
12

1 2 3 r
increases. The average running time has the opposite behavior: it
always increases with more frequent calls of the LS procedure. The
only exception to these patterns is the second LS procedure (Swap +
Transfer) between 𝜈2 = 20 and 𝜈2 = 50.

In almost the entire experiment, the running time does not increase
bove twice the running time of the default version, except for the
hird LS operator (slot opener, see Section 3.4.3) and 𝜈3 = 1, where
he average running time is almost tenfold greater than the average
efault running time. Thus, we recommend running the heuristic with
ntermediate values of 𝑣3 (e.g., 10) if CPU time is a concern. The results
lso suggest that the call frequency of the Swap + Transfer LS operator
as the least impact on the results.

To conclude with these first experiments, each LS procedure helps
he method deliver better solutions in exchange for a moderate increase
n running time. Based on the results of this study, the values recom-
ended for the LS frequency parameters are 𝜈1 = 1, 𝜈2 = 1, and 𝜈3 = 10.
onsequently, these are considered as the fixed default values in the
emainder of the experiments.

We now study the impact of simultaneously activating the three LS
rocedures. To this end, we ran an additional experiment re-using the
ame set of instances. In this experiment, we ran the proposed method
our additional times, with different combinations of our LS operators.
s mentioned earlier, the parameters 𝜈1, 𝜈2, and 𝜈3 now have default
alues and do not change. The first run uses only TSP (LS1) and Swap
Transfer (LS2). The second run uses TSP (LS1) and Slot opener (LS3).

he third run uses Swap + Transfer (LS2) and Slot opener (LS3). Finally,
he last run uses all LS procedures. Table 8 presents the results.

These results show that running the heuristic with virtually any
ombination of LS operators leads to better solutions than running it
ith the best single-operator configuration, except for the LS3 which
utperformed LS1 combined with LS2 by a small margin. The results
lso show that the CPU times increase when using combinations of
S procedures rather than only a single LS procedure. Based on these
bservations, we set our heuristic default configuration to that of
xploiting the three LS operators with a frequency of 𝑣1 = 1, 𝑣2 = 1,
nd 𝑣3 = 10.

.3. RQ2: How good are the solutions produced?

In this experiment, we focus on the quality of the solutions. In
articular, we propose to compare the best solutions returned by the
roposed method with those returned by CPLEX running on the model
ntroduced in Section 2. The latter are either optimal or the best
nteger solution found within a given time limit. We also include in
he comparison the best lower bounds delivered by the solver for every
nstance. To find the best possible benchmarks for our experiment,
e ran CPLEX in two modes, stand-alone and warm-start, with the
est solution found by our heuristic. A warm start usually (but not
lways) accelerates the solution process, allowing the solver to find
etter solutions within the same time limits. The two solutions (stand-
lone and warm-start) are reported for CPLEX in our tables. Note that
he warm-start solution is, by definition, at least as good as the solution
eported by our heuristic.
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Table 5
Results with different values of 𝜈1.
𝜈1 1 10 20 50

Average value of objective function 1 766 696 1 776 939 1 783 119 1 786 969
Average CPU time (s) 86.64 61.04 59.40 58.11
Average gap 1.36% 0.79% 0.45% 0.23%
Table 6
Results with different values of 𝜈2.
𝜈2 1 10 20 50

Average value of objective function 1 766 343 1 780 237 1 784 969 1 787 722
Average CPU time (s) 48.73 47.16 46.64 46.71
Average gap 1.38% 0.61% 0.34% 0.19%
Table 7
Results with different values of 𝜈3.
𝜈3 1 10 20 50

Average value of objective function 1 741 687 1 749 107 1 754 348 1 764 942
Average CPU time (s) 381.80 83.37 67.02 56.99
Average gap 2.76% 2.34% 2.05% 1.46%
Table 8
Results with different combinations of LS procedures.
Local searches LS1 & LS2 LS1 & LS3 LS2 & LS3 LS1 & LS2 & LS3

Average value of objective function 1 742 380 1 719 633 1 722 626 1 695 080
Average CPU time (s) 86.29 103.64 85.18 116.97
Average gap 2.72% 3.99% 3.82% 5.36%
t
C

m
t
m
i
w

c
l
t
d
i
p
N

Table 9
Instance parameters tested for the RQ2 experiment.
Parameter Set 1 Set 2 Set 3

Number of technicians 1 2 3
Number of machines 50 50 50
Number of periods 3 2 1
Degradation state 6 6 6

In preliminary experiments, we ran CPLEX with medium-size in-
tances (150 machines, 10 technicians, and 20 periods). However,
PLEX had difficulty finding a first feasible solution and then a lower
bjective value (numerous iterations without improvement). Addition-
lly, it quickly ran out of allowed memory and the process was killed
ithout producing a good solution (i.e., the objective value of the best

easible solution was an order of magnitude greater than the objective
alue of our heuristic). We used our preliminary experiment to find
he size of the instances for this experiment such that CPLEX does not
un out of allowed memory within the budgeted time and produces
ood solutions. We used three sets of instances generated by using the
arameters reported in Table 9, with each set containing fifty instances.
or each instance, we ran CPLEX in the two modes (i.e., stand-alone and
arm-start) with a time limit of three hours.

The results are presented in Table 10. The values represent the
verage gap between the objective function 𝑜1 returned by the proposed
ethod and (i) the best objective value 𝑜2 returned by CPLEX in the

tand-alone mode, (ii) the best objective value 𝑜3 returned by CPLEX in
he warm-start mode, and (iii) the best lower bound 𝑜4 found by CPLEX
n the two modes (stand-alone and warm-start). In other words, the first
alue in a given column is the average value of 1− 𝑜2

𝑜1
, the second is the

average value of 1− 𝑜3
𝑜1

, and the third is the average value of 1− 𝑜4
𝑜1

. Note
that, for all these instances, the average running time of the proposed
method is around 0.4 s.

In these results, with a budgeted time of three hours and two differ-
ent runs, the improvement on the objective value returned by CPLEX in
the warm-start mode is around 3.83% of our solution. This is a small
improvement, especially considering the running-time difference and
13

this approach is only possible for small instances because CPLEX does s
Table 10
Results for different sets of RQ2 experiment.

Gap Set 1 Gap Set 2 Gap Set 3

CPLEX stand-alone −10.88% −4.15% 1.21%
CPLEX warm-start 5.22% 3.31% 2.96%
CPLEX best lower bound 27.20% 23.66% 15.46%

not scale well for our problem. Conversely, the lower bound returned
by CPLEX at the end of the budgeted time is, on average, approximately
22.1% better than our solution. Note that CPLEX returns the confirmed
optimal solutions in only two instances, with the proposed method
being 1.38% and 2.90% from the optimal solutions.

These results show that CPLEX in stand-alone mode produces, on
average, an objective value 4.61% worse than our solution. With the
first set, which has more periods, the difference is even greater, with
the gap being around 10%. Surprisingly, CPLEX in stand-alone mode
works better on average with the third set of instances because this set
has only one period and is similar to the vehicle routing problem. Given
only one period, there is no consideration for the degradation state
(except for the penalty cost of the failure state, ||, for period zero) and
hus no selection between different target states. The pre-processing of
PLEX removed many constraints and decision variables.

In these experiments, the solutions returned by CPLEX stand-alone
ode are worse than those returned by the proposed method. In addi-

ion, an average gap of 8.44% appears between CPLEX in stand-alone
ode and CPLEX in warm-start mode. The gap is an average of 16.1%,

n particular on the first set with more periods, which shows that CPLEX
arm-started by our solution produces much better solutions.

As mentioned in Section 4.1, the instances generated are special
ases of our problem as we do consider only penalty costs for the
ast degradation state. Additional experiments were run to check if
he conclusion drawn from this experiment could be generalized, with
ifferent penalty costs considered for each state. We generated fifty
nstances for the different sets of parameters from Table 9, with the
enalty costs: 𝑐1 = 0, 𝑐2 = 250, 𝑐3 = 500, 𝑐4 = 1000, 𝑐=2000, 𝑐6 = 4000.
ote that CPLEX ran out of memory in a few instances of parameter

et 1 and parameter set 2, and we decided to discard these instances
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Table 11
Results for different sets of RQ2 experiment, with penalty costs
for each state.

Gap Set 1 Gap Set 2

CPLEX stand-alone −1.24% −1.05%
CPLEX warm-start 0.10% 0.10%
CPLEX best lower bound 11.15% 17.81%

and replace them with new instances until each one of these sets of
parameters has fifty instances with results from CPLEX. Unfortunately,
set 3 has too many out-of-memory instances (44 out of 50 instances)
and we decided not to report their results. Similarly to Table 10, we
obtain Table 11.

In these results, we observe similar results than in Table 10, that
is CPLEX in stand-alone does not manage to match our results and
CPLEX warm-start does only improve the results by a small margin.
Although the gaps are narrowing, demonstrating that the penalty costs
have an impact on the problem and its complexity, it is still allowing us
to draw the same conclusion, i.e., our method is performing well and
provides efficient solutions. Note that the computation times are on the
same scale as the previous experiment, with less than a second for our
method and 3 h of computation time for CPLEX.

4.4. RQ3: How does the method scale with increasing parameters?

To answer to this question, we ran our heuristic on 18 sets of
instances generated with a wide range of parameters and analyzed the
computational performance. The experiment was divided into three
sub-experiments, each one testing a different parameter: number of
technicians, number of machines, and number of periods.

4.4.1. Number of technicians
In this sub-experiment, we report the running time of the proposed

method on different instances generated with the default parameters
but with a varying number of technicians. In particular, we tested
our method on instances with {5, 10, 15, 20, 30, 50} technicians. For each
alue, a set of fifty instances was generated. The average running times,
n seconds, are reported in Table 12.

As expected, these results show that the number of technicians
orrelates directly and positively with the running time of the method.
owever, the increase seems to scale well and even increases less
pon a higher number of technicians. The running time per technician
lways decreases as the number of technicians grows. These results
ere expected because the number of technicians linearly affects the
umber of potential MOs and thus affects the computational effort
ade during the utility updates. Swap + Transfer is the only compo-
ent of the method that does not scale linearly with the number of
echnicians. However, as discussed in Section 4.2, this component does
ot significantly affect the overall execution time of the method. One
inal observation is that, with more technicians, the heuristic executes
ore iterations. Because more total working time is available, more
Os can be inserted into the solution. Nonetheless, the data collected

n this experiment suggest that the increase in the number of iterations
oes not necessarily translate into exorbitant CPU times.

.4.2. Number of machines
In this sub-experiment, we report the running time of the proposed

ethod on different instances generated with the default parameters
ut with a varying number of machines. In particular, we tested our
ethod on instances with {50, 100, 150, 200, 300, 400} machines. For

ach value, a set of fifty instances was generated. The average running
imes, in seconds, are reported in Table 13.

The results suggest that the running time of the proposed method
epends strongly on the number of machines, and a greater number
f machines in an instance translates into longer routes (in terms of
14
the number of planned MOs). Because the geographical area remains
unchanged, machines tend to be closer together in instances with a
large number of machines, thereby allowing technicians to accom-
modate more visits per period. The increase in route lengths implies
more iterations of our algorithm, more complex utilities to compute
(i.e., more complex best-insertions), and a concomitant increase in the
running time of the LS procedures. Additionally, more utilities are
computed in each iteration. As a result of all this overhead, the CPU
time increases sharply with the number of machines. However, the
results show that, even in large instances with 400 machines, the CPU
times remain reasonable for industrial applications (e.g., 926.53 s, or
about 15 min).

4.4.3. Number of periods
In this last sub-experiment, we report the average running time

of our method on instances generated with all the default parameters
except for the number of periods, which varies between the values
in the set {5, 10, 15, 20, 30, 50}. For each value, we generated a set of
fifty instances. The average running times, in seconds, are reported in
Table 14. As with the two previous experiments, we report here the
execution time per period (i.e., the CPU time divided by the number of
periods).

Not surprisingly, increasing the number of periods increases the
running time of the method, with the increment being nonlinear in the
number of periods. This result is expected because more utilities (with
higher computational complexity) are computed in each iteration of our
algorithm, and the algorithm goes through more iterations. However,
the worst average running time remains acceptable and the method
scales well with the number of periods.

To conclude, the number of periods, technicians, and machines
directly affect the running time of the proposed method. The number of
technicians has a positive, linear relationship with CPU time, making it
the parameter with the least significant impact. Conversely, the other
two parameters (the number of periods and the number of machines)
have a positive, nonlinear relationship with the execution time, making
their impact more pronounced. However, the heuristic remains quite
fast and scales very well with the size of the problem.

4.5. RQ4: What is the impact of machines grouped into production sites?

In this experiment, we study how machine clustering affects the
quality and structure of the solutions. Toward this goal, we assume
that the set  is divided into disjoint subsets of machines such that
each subset is a production site. All pairs of machines where both
machines belong to the same site have a negligible travel time that can
be ignored. To generate the instances for this experiment, we slightly
modify our generator, with the new version taking as a parameter the
number of production sites. The generator then randomly generates the
coordinates of each of the sites in the 2D area (𝑙 ×𝐿) and assigns each
machine to one of the production sites, ensuring that every site ends up
with the same number of machines. For example, for an instance with
150 machines and 10 sites, each site would have 15 assigned machines.
The rest of the generation process remains untouched. Note that the
depot 𝛿 remains randomly located, thus, even when considering a single
site, a travel cost must still be paid (for travel between the depot and
the unique production site). In all instances generated, we keep the
default parameters and thus always consider 150 machines but with
different numbers of production sites. We generated instances with
{1, 10, 30, 50, 150} sites and, for each number of sites, generated a set
of fifty instances. Note that instances with 150 sites (with 1 machine
per site) correspond to instances where machines are not clustered. We
report in Table 15 the average objective value, average traveling cost,
expected operation cost, expected penalty cost, average CPU time (in
seconds), and average number of MOs planned in a solution.

The results show that the geographical dispersion of the machines
strongly affects the average objective value, the costs, and the shape of
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Table 12
Results for different numbers of technicians for RQ3 experiment.
Number of technicians 5 10 15 20 30 50

CPU time (s) 61.42 116.80 148.65 193.08 279.44 402.27
Time per technician 12.2840 11.6800 9.910 9.6540 9.3147 8.0454
Table 13
Results for different numbers of machines for RQ3 experiment.

Number of machines 50 100 150 200 300 400

CPU time (s) 10.73 47.89 125.07 224.92 543.91 926.53
Time per machine 0.2146 0.4749 0.8338 1.1246 1.8130 2.3163
Table 14
Results for different numbers of periods for RQ3 experiment.
Number of periods 5 10 15 20 30 50

CPU time (s) 19.76 45.69 77.74 119.48 225.18 528.55
Time per period 3.9520 4.5690 5.1827 5.9700 7.5060 10.5710
Table 15
Results with machines grouped.
Number of Objective value Traveling cost Operation cost Penalty cost CPU time (s) No. of MOs
sites

1 1 356 644 51 446 25 396 1 279 802 527.07 2839
10 1 453 386 71 755 25 344 1 356 287 381.10 2808
30 1 536 519 83 860 25 374 1 427 286 217.19 2754
50 1 570 872 89 586 25 383 1 455 903 129.00 2689
150 1 675 907 103 278 25 541 1 547 088 120.04 2567
t
(
f
v

the solutions. The traveling time increases when the machines are dis-
persed into different sites. A direct consequence of the increase in travel
time is a reduction in the number of MOs that can be accommodated
in the planning. However, a less intuitive observation concerns the
operating costs: because fewer MOs are planned, one would expect this
cost to go down, whereas the results show that it remains fairly stable.
One plausible explanation is that the algorithm tries to compensate for
the higher travel costs with lower expected penalty costs by selecting
MOs with lower target levels. Therefore, although the solution has
fewer MOs, each MO is (on average) more expensive, leading to a
similar overall operating cost. Finally, the running time of the proposed
method decreases substantially when the number of production sites
increases. This behavior is explained by the number of MOs: because
the solutions to instances with a larger number of sites typically include
fewer MOs, the heuristic requires fewer iterations. However, even
instances with only one site require little CPU time and fit perfectly
to industrial applications.

4.6. RQ5: How valuable is a look-ahead approach

For this research question, we investigate the benefits of a look-
ahead approach: how many savings are we making with an MO decision
process that considers the many upcoming periods instead of just the
current period? For example, a company is using each Monday morning
an algorithm that plan the MOs performed for the remaining days of the
week. If the algorithm is a myopic approach, it is only considering the
current week during the decision process. Whereas, if the algorithm
is a look-ahead process, it is considering all the upcoming weeks
(e.g., the next four months) to plan the MOs. It is expected that a look-
ahead approach is better than a myopic approach, but the objective
of our research question is to quantify how much by proposing an
alternative solving algorithm for our problem, more intuitive but based
on a myopic behavior. In this experiment, we investigate a myopic
approach called the Period-Per-Period Process (referred to as 4P in
the rest of this section) which, as its name indicates, solves iteratively
the problem for each period 𝑡 ∈  (from period 1 to period | |).
When solving period 𝑡, it does not consider future periods (∀ 𝑡′ > 𝑡)

′′
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nd the MOs computed for the previous periods (∀ 𝑡 < 𝑡) are fixed.
Each period is solved using CPLEX. However, it is clear that, since
4P is not considering future periods, only minimal MOs are decided
(i.e., MOs with goal state || − 1,) that put the machines at the limit
of the failure state to avoid its prohibitive penalty costs while having
limited maintenance costs. It is not efficient since it leads to a need
to maintain very regularly the machines, almost at each period. We
try to overcome this aspect by investigating an additional strategy for
the 4P: only MOs aiming for the as-good-as-new state (State 1) are
considered. At each period, an intervention on a degraded or failed
machine consists of a complete replacement. We call this variant the
4P variant, as opposed to the 4P classic which was presented earlier.
The 4P classic builds solutions with minimal MOs and the 4P variant
with full replacements. In Table 16, we briefly report this preliminary
experiment with a comparison between our method, 4P classic, and
4P variant. For this experiment, we generate a set of fifty instances
with a limited size (50 machines, 6 degradation states, 3 technicians,
and 10 periods) to avoid a long or impossible computation during the
CPLEX calls for the 4P and 4P variants. Because of its myopic behavior,
the initial states of the machines are an important factor for 4P as
it tends to not plan any MO for the first periods of an initially well-
maintained system (all machines start as good as new). Indeed, for the
first periods, the traveling costs and maintenance costs are far greater
than the possible penalty costs since it only considers the failure in
the current period and not its impact on the next periods. Therefore,
on the opposite of Section 4, we investigate || = 6 sets of instances.
Each set 𝑘 ∈  corresponds to all the machines being in State 𝑘 at
he beginning of the time horizon. A budget time is given for each 4P
classic or variant) to solve an instance, with 15 min allotted per period
or the CPLEX solving. For each set of instances, we report the average
alue in percent of the solution from our method. i.e.,

𝑓4P
𝑓𝑆

with 𝑓4P
the objective function value of the solution from 4P (either classic or
variant) and 𝑓𝑆 the objective function value of our solution

These results quantify the important savings made by a look-ahead
approach over a myopic approach. In our instances, the myopic ap-
proaches (both 4Ps) are between 2.76 and 6.85 times worse than the
look-ahead approach. It means that, in the worst case of our instances,
a look-ahead method still saves 2

3 of the costs. These results justify any
investment made in look-ahead mechanics. Furthermore, this highlights
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Table 16
Preliminary experiments result.
Initial State of all the machines 1 2 3 4 5 6

4P classic 685% 748% 737% 608% 450% 428%
4P variant 287% 356% 344% 361% 276% 301%
Table 17
Average objective value for different technicians with high level of skill ratio.
Percent of technicians with high level of skill 0 10 20 30 40 50

Average gap from best solution 5 997 101 3 542 556 2 050 993 1 240 227 807 251 538 395
Average gap from best solution (in %) 2373% 1317% 719% 424% 275% 186%

Percent of technicians with high level of skill 50 60 70 80 90 100

Average gap from best solution 538 395 358 175 234 997 144 438 68 447 0
Average gap from best solution (in %) 186% 126% 84% 54% 26% 0%
1
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the benefits of considering multiple levels of repair, rather than only
minimal repairs or full replacements as in the 4P methods.

4.7. RQ6: What are the managerial implications, i.e., how valuable are
technicians and their skill levels?

This research question explores the managerial recommendations
that can be extracted from the solutions returned from our problem. In
our model, we treat the number of technicians and their skills as fixed
parameters and not as part of the decision-making process. However,
an analysis of the overall cost of the system in our solutions can assist
decision-makers in making skill level-related decisions. It should be
noted that skill levels play a crucial role in our problem, particularly be-
cause we are considering condition-based maintenance. In this context,
the MOs performed depends on both the current state of the machine,
revealed by the technician when he/she arrives on the machine and the
skill level of the technician. For instance, a technician with lower skills
may frequently arrive at machines without the capability to perform
necessary maintenance operations. Thereafter, lower skill levels may
have a high negative impact on costs.

In this section, we conduct experiments as follows: we adjust the
instance generator such that several scenarios are considered for each
instance created. Each scenario has a certain percentage, denoted as 𝑝,
of the technicians with a high level of skill, allowing them to perform
maintenance regardless of the machine’s degradation state, i.e., 𝑗 ∈ 
has a high-level skill if 𝑐𝑗 = ||. Other technicians have randomly
ssigned skill levels within the range of [2, − 1]. We test various

values of 𝑝 ∈ {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}.
The objective is to study how impacting is the pool of technicians on
our costs.

We report in Table 17, for each value of 𝑝, the average deviation
between the objective value found for 𝑝 and the best objective value
ound. Note that, as expected, the best objective value is always found
or 𝑝 = 100%.

The findings from our analysis reveal a significant cost decrease
rom having a team composed of technicians with a high level of skill.
eported results highlight the impact of adding more technicians with
high level of skill depending on the current pool of technicians.

or example, we observe a substantial objective value gap between
cenarios with low percentages of technicians with high levels of skill
nd those with higher percentages. This gap narrows as the proportion
f technicians with a high level of skill increases, although it remains
elatively significant even at a high level, such as 𝑝 = 90%. The observed
osses for instances that involve less-skilled technicians should be con-
idered in the context of the managerial expected costs (e.g., training
ost) which are not modeled in the present work, however, it is evident
hat there is a continual incentive to maintain a technician team with
16

verall high skill levels. i
4.8. RQ7: How valuable is the possibility to perform different types of MO

In this research, we incorporate the possibility of performing im-
perfect MOs. This means that we allow for situations where a machine
remains in a degraded state after an MO is performed, as opposed to
always achieving a full repair, leading to the good-as-new state. In this
section, our focus is on highlighting the potential cost savings that can
be achieved by considering imperfect repairs, especially when dealing
with geographically dispersed machines. Indeed, while it might seem
intuitive to always opt for heavy MOs that restore a machine to a good-
as-new state to avoid additional routing costs for revisits, our study
reveals that this may still not be the most efficient approach. This is
due to factors like limited time per maintenance period and variations
in technician skills. For instance, we discuss a scenario in Section 2.1
where high-skilled technicians handle the major maintenance tasks to
bring a machine from a highly degraded state to a moderate one,
and then low-skilled technicians complete the process, bringing the
machine to a good-as-new state (e.g., the first technicians take the
machine from state 6 to state 3, and the second technician takes it
from state 3 to state 1). To emphasize the cost savings achieved by
our model, we conduct a comparative analysis. We run our solving
method twice on a set of fifty instances. The first run, labeled 𝑅1,
represents our traditional approach with no modifications. The second
run, labeled 𝑅2, incorporates a slight alteration in the solving method,
which restricts the selection of MOs to those aiming for a good-as-new
degradation state. It is important to note that, even with this restriction,
different types of MOs are considered, as we do conditional-based MOs.
For example, even if a good-as-new state is always planned, the MO
carried depends on the state of the machine: there is a different MO
performed to transition from state 3 to state 1 than from state 6 to state
.

The results have shown an average decrease of 8.95% in the ob-
ective function from 𝑅1 to 𝑅2. This indicates that relying solely on
ood-as-new maintenance, although initially intuitive, does not yield
ptimal solutions and falls significantly short of achieving optimal-
ty. Including the concept of imperfect maintenance, operations result
n considerable cost savings, confirming the decisions made in our
odeling approach.

. Overall conclusion on the experimentation

In our experiments, we aimed to address several research questions
hat focused on two key aspects:

(i) Method Performance: We assessed the performance of our
ethod in terms of solution quality and computation time. The results

ndicated that our method’s computation times are suitable for the
ntended applications, with an average runtime of just a few minutes.
urthermore, it demonstrated excellent scalability across all instances,
ven with a high number of technicians, periods, and machines. Addi-
ionally, we evaluated the efficiency of our solutions through compar-

sons with CPLEX. CPLEX encounters scalability issues, running out of
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memory when dealing with instances of non-small sizes. Consequently,
we were restricted to comparison with these smaller instances. These
comparisons revealed that CPLEX could only marginally improve the
objective value, and this improvement was noticeable only when start-
ing from our solutions, after several hours of computation, and on small
instances.

(ii) Insights from Solution: Our results were designed to draw
insights into the maintenance strategies required for a production
system with geographically dispersed machines. First of all, short-term
and myopic, it was found to be detrimental to the system, whereas
a look-ahead approach brings major savings to the system. Second,
having a range of MO options beyond full replacement and minimal
repair, specifically with imperfect repairs, proved to be cost-effective.
Finally, when considering imperfect maintenance, it becomes evident
that there is a significant impact on the skill levels of the technicians.
There is a strong incentive to minimize the presence of low-skilled
technicians who primarily handle only small imperfect maintenance or
minor full repairs, in favor of having a greater number of highly skilled
technicians.

6. Conclusion

This work proposes a problem that couples maintenance selection
with technician routing. In this problem, the technicians are based at
a depot and displace themselves to execute MOs on machines. The
intrinsic difficulty of the problem is that the MOs are defined by their
target degradation levels. Thus, an MO that leaves the machine in a
less degraded state is more costly and consumes more technician time
but reduces the penalty costs associated with the virtual age of the
machine in future periods. The problem also considers the constraints
of technician skill level and route duration. We model the problem as a
mixed-integer program and solve it by using an LS-based heuristic. The
method builds a solution by sequentially adding MOs to the solution,
with the selection of the MOs guided by a carefully crafted utility
formula. The method relies on three LS operators to improve the partial
(and final) solution. Through a set of experiments, we study the effi-
ciency of the proposed method and conclude that (i) the running time
scales well with the instance size, and (ii) the results are competitive.

This work constitutes the first contribution to the maintenance
routing problem with selective MOs. Many extensions are possible
in terms of modeling the degradation (e.g., continuous degradation
or degradation states representing different types of fault, such as
electrical or mechanical fault), restoring the machines, and optimizing
the routing. Furthermore, in this study, we model the overall reliability
of the system as a cost that we are aiming to minimize, alongside the
logistical costs. Nevertheless, there are applications where it may not
be feasible or could be viewed as an oversimplification to assign a
cost to the degradation state of a machine. An alternative approach
to tackle the reliability issue is to address it as an objective to be
optimized (e.g., minimizing the worst virtual age of any machine). In
such scenarios, we are dealing with a multiobjective problem: the min-
imization of logistical costs and the optimization of system reliability.
Also worth investigating is the dynamic aspect of the problem, whereby
random data are dynamically revealed and a real-time adaptation of
technician routes may bring additional savings. In the present work, the
technicians do not perform any MO when they arrive on machines that
are in better degradation states than the goal state of the MOs planned.
In a more realistic application, we may consider that the operation time
of the MO canceled could be reused to perform a different MO (on
this or another machine). This last point makes it possible to combine
the current concerns for using monitoring data to optimize preventive
17

maintenance: the so-called predictive maintenance.
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