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Abstract: This paper investigates power-balanced descriptions of the conservative vibrating
string. First, the hypotheses of continuum mechanics are recalled for the case of infinitesimal
transformations. The string is described by classical partial differential equations (PDEs) and
reformulated as a port Hamiltonian system (PHS). Second, the case of finite (possibly large)
transformations is considered, for which the time variation of the elastic energy appears to be no
longer the elastic power. To naturally solve this difficulty and ensure the invariance of the elastic
power with respect to the superposition of rigid body motion, the problem is here addressed in
the framework of a time-space formulation. Eulerian and Lagrangian conservative formulations
are proposed in the context of non relativistic velocities. This work also yields perspectives for
a time-space representation of a port-Hamiltonian vibrating string invariant to the change of
observer in a relativistic context.

Keywords: String vibrations, Finite-transformations, Conservation laws, Hamiltonian
dynamics, Geometric mechanics, Time-space formulation

1. INTRODUCTION

Consider a string defined as a 1D geometric object embed-
ded into (3D or) 2D space in the form of a line, exclusively
resistant to traction (see Figure 1). We are interested in
building intrinsic formulations of a conservative vibrat-
ing string under increasingly demanding hypotheses (from
small perturbations, to finite transformations, and time-
space covariant formulation). The string is equipped with
an inertial mass and elastic behaviour, and vibrates around
an equilibrium state imposed by a static pre-stress.

In classical mechanics, the kinematics is described by x =:
Φ(t,X) = X +W (t,X). In the case of the string model,
the exclusive resistance to traction can be formulated
by assuming that tangent application F of Φ may be
decomposed into a in plane rotation of angle θ (local
direction of the string) and a 1D-strain λ such that
F = R(θ)U(λ). Note that this approach with a similar
kinematics can be found in the work of Golo et al. (2003)
for a beam under infinitesimal deformation within the
port-Hamiltonian framework; see also Bideau et al. (2011)
for finite transformations.

In this paper, we propose a transformation such as its tan-
gent application can be identified with this decomposition.
This leads to an in-plane displacement that depends on
X1, X2.

⋆ We acknowledge the financial support of the CNRS (”accueil en
délégation” at STMS lab) and of the exploratory project MAG-
NETO4D of UTT.
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Fig. 1. The string kinematic hypothesis.

This paper investigates these hypotheses (geometry, iner-
tia, kinematics, material behaviour) and proposes a model
in three contexts: linear behaviour and infinitesimal trans-
formations in Section 2, nonlinear behaviour under finite
transformations in Section 3, time-space formulation in-
variant to change of observer (covariant formulation) in
Section 4. The paper ends with some perspectives.

NOTATIONS

The coordinates of a point M is denoted by the n-uplet
x = (x1, x2, . . . ) with:

Xi=1,2: spatial coordinates in the material 2D frame with
absolute time t,

xi=1,2: spatial coordinates in the current 2D frame with
absolute time t,

x̂ν=0,1,2,3: time-space coordinates for the proper observer,



xν=0,1,2,3: time-space coordinates for the current observer.
Vectors and tensors are denoted respectively: u = uiei
with ui: component and ei basis vector; T = T ijei ⊗ ej
with T ij : component and ⊗ the tensorial product.

2. CONSERVATIVE STRING UNDER
INFINITESIMAL TRANSFORMATIONS

2.1 Hypotheses and representation

In this section, the hypothesis of infinitesimal transforma-
tions is assumed. The string motion is represented by the
transverse displacement w (in [m]) in the current frame
(t, x1, x2). Its inertia and elastic behaviour is governed by
linear mechanical laws.

2.2 Continuum mechanics formulation (PDE)

Under these hypotheses, function w : (0,+∞) × (0, L) →
R is governed in the current frame (t, x1, x2) by (see
e.g. Chaigne and Kergomard (2016)), for all (t, x1) ∈
(0,+∞)× (0, L),

µ(x1)∂2tw(t, x
1)− ∂x1

(
T (x1)∂x1w(t, x1)

)
= f(t, x1), (1)

where µ = ρA [kg.m−1] is the lineic density (also called
linear density) of mass (for mass density ρ and cross-
section area A), T [N] is the tension 1 , and f [N/m] is the
external lineic force distributed along the string. Typical
Dirichlet boundary conditions (w = 0 on (0,+∞)×{0, L})
and zero initial conditions (w = 0 on {0} × (0, L)) are
considered.

The integral over (0, L) of the force balance (1) multiplied
by the velocity ∂tw yields the power balance. After in-
tegration by part, it leads to (omitting the independent
variables t and x1 for conciseness)

∂t

∫ L

0

(µ(∂tw)2
2

+
T (∂x1w)2

2

)
dx1 =

∫ L

0

f ∂tw dx1. (2)

This equation involves lineic densities of energy (µ(∂tw)2

2

for inertia and
T (∂x1w)2

2 for elasticity) and of the external
power received by the string (f ∂tw).

This conservative problem naturally admits a PHS formu-
lation as recalled in the following section.

2.3 Port-Hamiltonian Systems formulation (PHS)

This problem admits a port-Hamiltonian formulation
(see van der Schaft and Maschke (2002))(

∂tα
y

)
︸ ︷︷ ︸
flow f

= J
(
δH(α)
u

)
.︸ ︷︷ ︸

effort e

(3)

where the quantities (effort e, flow f) and the equations
stemming from operator J are naturally interpretable (as
detailed below) for the following physically relevant choice
of α, input u and output y.

1 The tension is usually considered to be homogeneous and due to
pre-stressing. But a spatial dependency can be due for a vertical
string subjected to gravity (Chaigne and Kergomard, 2016, § 3.4.1).

State α (or configuration, or energy variable)

α :=

[
π := µ∂tw
ε := ∂x1w

]
[kg/s] lineic momentum
[adim] (infinitesimal) strain

(4a)

with x1 7→ π(x1, t) ∈ H1
0 (due to Dirichlet boundary

conditions) and x1 7→ ε(x1, t) ∈ H1 for strong solutions
under Dirichlet boundary conditions 2 .

Hamiltonian H (or energy functional) For all spa-
tial function α : x1 7→ [π(x1), ε(x1)]⊺ in L2

(
(0, L),R2

)
,

H(α) :=

∫ L

0

1

2
α(x1)TW (x1)α(x1) dx1, [J] energy

(4b)
with W = diag( 1/µ , T ).

Flows, efforts and their relation with w or f
State αi Flow Units Effort Units
α1 = π ∂tπ = µ∂2tw [N/m] π/µ = ∂tw [m/s]

lineic inertial force material point velocity
α2 = ε ∂tε = ∂t∂x1w [s−1] T∂x1w [N]

strain rate lineic elastic force

Port y := ∂tw [m/s] u := −f [N/m]
contact point velocity lineic force applied

to the actuator

Operator J : H1
0 ×H1 × L2 → (L2)3

J =

[
0 ∂x1 −1
∂x1 0 0
1 0 0

]
, (4c)

is skew-symmetric (J = −J ∗), that is, ⟨a | J b⟩ +
⟨J a | b⟩ = 0 on the appropriate space, defining ⟨e | f⟩ :=∫ L
0
e(x1)⊺f(x1) dx1.

Note that reformulating (3) with respect to w reads

momentum balance: ∂t(µ∂tw) = ∂x1(T∂x1w)+f, (5a)

kinematic concordance:∂t(∂x1w) = ∂x1(∂tw), (5b)

idem: ∂tw = ∂tw, (5c)

and ⟨e | f⟩ = 0 (⟨e | J e⟩ = 0 due to the skew-symmetry of
J ) can be reformulated as (2), the power balance.

3. CONSERVATIVE STRING UNDER FINITE
TRANSFORMATIONS

This section develops a model of a string in finite trans-
formations following classical definitions (§ 3.1) and for-
mulation (§ 3.2) of 3D-continuum mechanics, in order to
review a number of issues (§ 3.3), that appear in both
Euler and Lagrange representations or with classical port-
Hamiltonian formulations.

3.1 Hypotheses (Hi) and definitions (Di)

(H1) String kinematics
The string kinematics can be seen as deformation
U(λ) in the string longitudinal direction followed
by a rotation R(θ), this leads to the tangent linear
application F (θ, λ) = R(θ)U(λ) on the string:

F ij (θ, λ) =

(
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)(
λ 0 0
0 1 0
0 0 1

)
(6)

2 H1 is a short notation for the Sobolev space H1
(
(0, L),R

)
:={

f ∈ L2
(
(0, L),R

)
s.t. f ′ ∈ L2

(
(0, L),R

)}
and H1

0 := {f ∈
H1 s.t. f(x1 = 0) = f(x1 = L) = 0}.



where λ is the axial elongation and θ the angle of the
rotation of the axis of the string (see Figure 1).

(H2) Planar transformation
Consider a general space transformation defined by,
for all (t,X1, X2, X3) ∈ R+ × R3,

x1 = X1 +W 1(t,X1, X2), (7a)

x2 = X2 +W 2(t,X1, X2), (7b)

x3 = X3, (7c)

where W 1,2 accounts for the longitudinal and trans-
verse displacement. The tangent linear application
TΦ is noted F ij = ∂Xjxi with

F ij =

 1 + ∂X1W 1 ∂X2W 1 0
∂X1W 2 1 + ∂X2W 2 0

0 0 1

 . (8)

(H3) Matching the space transformation with the kinemat-
ics restricted by the string domain
The tangent linear application described by (8) has
to coincide with the string kinematics (6), meaning
that:

for all (X1, X2) ∈ (0, L)× {0}, 1 + ∂X1W 1 ∂X2W 1 0
∂X1W 2 1 + ∂X2W 2 0

0 0 1

 =

(
λ cos θ − sin θ 0
λ sin θ cos θ 0

0 0 1

)
,

(9)

leading to the following constraints:

1 + ∂X1W 1(t,X1, 0) = λ cos θ, (10a)

1 + ∂X2W 2(t,X1, 0) = cos θ, (10b)

∂X2W 1(t,X1, 0) = − sin θ, (10c)

∂X1W 2(t,X1, 0) = λ sin θ. (10d)

(D4) Strain tensor E
The strain is described by the second order covariant
tensor E defined by

E =
1

2

(
F TF − I

)
(11a)

Eij =
1

2

(1 + ∂X1W 1
)2

+
(
∂X1W 2

)2 − 1 0 0
0 0 0
0 0 0


(11b)

=
1

2

λ2 − 1 0 0
0 0 0
0 0 0

 (11c)

or by the pull-back E = F TeF . The transformation
7a-7c has been chosen to allow identification of the
the tangent linear application 8 with 6 (combination
of a deformation in the axial axis of the string and a
rotation ).This transformation of the 3D space is built
to support the kinematic model of the string obtained
for X2 = 0. This allows us to verify that only E11 is
non zero as required by our hypothesis.
The push-forward e of E is defined by

e =
1

2

(
I − (F−1)TF−1

)
= (F−1)TEF−1 (12)

(H5) Elastic energy (volume) density ψ.

ψ =
1

2
E : CE, (13)

where the fourth order tensor C characterises the
behaviour of the string, i.e. tension associated to

stiffness (Young’s modulus E) along its longitudinal
axis:

Cijkl:


E 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (14)

with Voigt notation. This yields

ψ =
E

8

[((
1 + ∂X1W 1

)2
+
(
∂X1W 2

)2 − 1
)2]

(15)

=
E

8

[(
λ2 − 1

)2]
(16)

The Piola-Kirchhoff 2 stress tensor Σ = dψ
dE = CE is

equal to the derivative of the proposed energy ψ:

Σij =
dψ

dEij
=
E

2

λ2 − 1 0 0
0 0 0
0 0 0

 (17)

(D6) The Cauchy stress tensor σ is the push forward of the
PK2 stress tensor Σ

σ = J−1FΣF T (18)

where J is the determinant of F .

Hypothesis (H5) allows to define the Lagrangian stress
tensor Σ, whereas definition (D6) is the Cauchy (Eulerian)
stress tensor σ.

3.2 Continuum mechanics formulation

Consider the velocity v defined by vi = dxi

dt . In the current
inertial frame the principle of linear momentum (see for
example Eringen (1962) p. 104) is:

div(σ) + f = ρ
dv

dt
(19)

where ρ is the mass density and div is the divergence
operator in an orthonormal coordinate system. Note that
this formulation is Eulerian; the unknown is the velocity
field at observation point defined by spatial variables and
time.

The integral of (19) over the volume Ω, multiplied by the
velocity v yields the power balance. After integration by
part, this leads to∫

Ω

(
ρ
d(v

2

2 )

dt
+ σ : d

)
dΩ =

∫
Ω

f .vdΩ. (20)

where d is the rate of deformation (symmetric part of
the velocity gradient). This balance equation involves the

power density ρ
d( v2

2 )

dt for inertia, the mechanical power
density (σ : d) and the external power received by the
string (f .v). Note that (20) is the counterpart of (2) for
finite transformations.

3.3 Issues

This model of a string in finite transformations based on
classical 3D-continuum mechanics suffers several issues.
First, note that the principle of linear momentum is stated
in the Eulerian configuration and in an inertial frame.
Moreover:



Euler representation (see Besson et al. (2010) pp. 295-
299): The Cauchy stress tensor in (18) appears to depend
on the rigid motion via the transport of the anisotropic
elastic tensor C. This property breaks material symme-
tries and is considered unsuitable with the objectivity
principle.
On the contrary the elastic energy ψ (13) does not depend
on rigid body motion and its expression is also valid in
an Eulerian configuration, i.e. ψ = 1

2e : σ. This seems
to be a good basis to derive a port-Hamiltonian objective
formulation but this will reveal another issue about the
mechanical power.
About the strain rate in PHS: The power balance given by
(20) reveals that the stress power density (σ : d) is not
derived with the differentiation of the mechanical energy
with respect to time because ė ̸= d. Note that Ė = D
is valid only in the Lagrange configuration (D being the
material rate of deformation). These issues prevent to
write a proper PHS formulation involving the standard
time derivative whether in the Lagrangian or the Eulerian
point of view. Every other nonlinear model considered in
the literature (Kirchhoff-Carrier, Timoschenko beam, etc.)
should encounter the same difficulties.

4. TIME-SPACE COVARIANT FORMULATION

4.1 Definitions and notations for a time-space formulation

The principle of covariance due to Einstein (1921) states
that the formulation of the laws of physics should be
invariant to changes of observers, in other word, should
be covariant. We here call such a formulation an intrinsic
formulation to avoid the confusion with the covariant vs
contravariant status of a tensor. In the theory of relativity,
an energy-momentum tensor T is defined, the generaliza-
tion of the stress tensor. Its conservation encompasses the
conservation of energy and the balance of momentum for
any observer. The formulation of continuum mechanics
within a time-space context should thus bring new in-
sights in particular for the treatment of problems involving
systems undergoing finite transformations as proposed in
Rouhaud et al. (2013); Panicaud and Rouhaud (2014);
Panicaud et al. (2016); Al Nahas et al. (2021): the invari-
ance with respect to changes of observers and passivity
is by construction insured with such a formulation. For
these reasons, this formulation should be of interest even
in the case of non-relativistic velocities, such as in musical
acoustics, in order to address the issues mentioned in
section 3.3.

Consider thus a space-time domain modeled with a four-
dimensional Riemannian manifold M. A point M in M
is called an event. The manifold M is endowed with a
pseudo-metric tensor field ggg, a symmetric bilinear form of
signature (1,−1,−1,−1).

We define an observer as a 4D coordinate system chosen
on M. On practical bases, this definition is to be related
to the point of view of a physicist, that is an observer, who
has made a specific convenient choice for a 4D coordinate
system, corresponding to a choice of coordinates for space
and clock for time. Some geometric definitions are first
proposed to precise these notions (see for example Kolev
(2020)). First define a map of M as a set (Uα, ϕα), where

Uα is an open set of M, homeomorphic to an open set
of R4 via the homeomorphism noted ϕα. Define then the
local coordinates of an event M as the set of four real
numbers (xµ)µ∈{0,1,2,3} ∈ Sα associated to M via the
map (Uα, ϕα). Consider two maps (Uα, ϕα) and (Uβ , ϕβ);
when their intersection is not empty, it is possible to define
diffeomorphism associated to a change of coordinates such
that

φ : x̃ν ∈ Sα 7→ xµ = φµ(x̃ν) ∈ Sβ . (21)

Then, in a neighborhood of M endowed with the coordi-
nate system xµ, a vector v in TMM, the tangent space of
M at M , may be projected locally as 3 :

v =

3∑
µ=0

vµ
∂

∂xµ
= vµeµeµeµ, (22)

because the differentiations
{

∂
∂xµ

}
at M define a local

basis eµeµeµ of TMM; the quantities (vµ)µ∈{0,1,2,3} are the
components of v in the coordinate system xµ. Under
a local change of coordinates, the basis transforms as
eµeµeµ →

(
∂xκ

∂x̃µ

)
∂
∂xκ = ẽµ̃eµ̃eµ where the non-singular matrix

(
∂xκ

∂x̃µ

)
is the Jacobian matrix of φ, defined in (21), and belongs
to the group GL(4,R).

Tensors fields defined onM are thus used to describe phys-
ical entities because tensors are by construction invariant
to changes of observers, in other words are intrinsic. As
an example of this invariance, consider a vector V and
a second rank covariant tensor A: they are said to be
invariant to changes of observers because, by definition:

V = V µ eµ = Ṽ µ ẽµ,

A=Aµν eµ ⊗ eν = Ãµν ẽµ ⊗ ẽν , (23)

where V µ, Ṽ µ, Aµν and Ãµν , are the respective compo-
nents of V and A in the coordinate systems xµ and x̃µ

and eµ and ẽµ are the basis vectors associated to the
coordinate system xµ and x̃µ respectively. Then, through
this change of coordinates, the components transform as:

Ṽ µ =
∂x̃µ

∂xλ
V λ, (24)

Ãµν =
∂xλ

∂x̃µ
∂xκ

∂x̃ν
Aλκ. (25)

Such transformation rules may be established for tensor
fields of other ranks and variances.

Define a world-line as a curve in M described by γ :
R → M, s 7→ γ(s); in a chart of local coordinates γ(s)
is described by {x0(s), x1(s), x2(s), x3(s)}. The parameter
s is related to the proper time τ by the relation s = cτ
converted in length (time multiplied by the speed of light
c). The four-velocity, vector tangent to the world-line at a
point P = γ(sP ), has the components

uµ =
dxµ

ds
with ds2 = gµν dx

µdxν and uµu
µ = 1. (26)

The four-velocity u is a time-like future oriented unit
vector.

3 We use an intrinsic notation and switch to indices notation along
with Einstein’s convention for summation on repeated indices when
useful to clarify the operations and the covariant/contravariant
status of the quantities.



A proper observer, or proper coordinate system, R̂ is
defined as a coordinate system such that the components
of the four-velocity are:

ûµ = (1, 0, 0, 0) (27)

for all events. In the following, all quantities (coordinates
and components) observed in a proper coordinate system
are marked by a hat symbol. An inertial observer, or
inertial coordinate system, R is defined as a coordinate
system such that the components of the metric tensor
are the components of Minkowski’s metric. In an inertial
coordinate system, the first coordinate is such that x0 = ct
where t is the absolute time. Now define a specific change
of observer, from the proper observer R̂ to the current
inertial observer R:

Φ : x̂ν ∈ Ŝ 7→ xµ = Φµ(x̂ν) ∈ S. (28)

The Jacobian matrix of this change of observer and its
inverse are respectively noted ∂xµ

∂x̂ν and ∂x̂µ

∂xν .

Projectors enable to identify the time-like or space-like
contributions of a given tensor (see for example Landau
and Lifshitz (1975)). The time projector is defined as a
projection on the four-velocity u. The spatial projector g

is defined such that:

g = g − u⊗ u. (29)

The time-space deformation b is next defined. It is de-
scribed by a second order covariant tensor b

b = ηµν ê
µ ⊗ êν with ηµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (30)

Note that b is an intrinsic quantity. Its components in R̂
and R are detailed in the following table:

R̂ R

b̂µν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 bµν = ∂x̂λ

∂xµ
∂x̂κ

∂xν ηλκ

The time-space strain is described by the second order
tensor e defined by

e =
1

2
(g − b) . (31)

Its components in R̂ and R are detailed in the following
table:
R̂ R
êµν = 1

2

(
∂xα

∂x̂µ
∂xβ

∂x̂ν ηαβ − b̂µν

)
eµν = 1

2

(
ηµν − ∂x̂α

∂xµ
∂x̂β

∂xν b̂αβ

)
The energy momentum tensor T related to matter is
defined by:

Tµν = 2
∂LM

∂gµν
(32)

where LM describes the matter field for the Hilbert action
(see Hilbert (1915); Misner et al. (1973)). This tensor
represents the flux of energy through a 3D volume, a
surface of the 4D hyper-volume. The decomposition of T
on time and space leads to the definition of three tensors
(see Landau and Lifshitz (1975)):

• a scalar quantity U , the projection of T twice on time:

U = Tκλu
κuλ, (33)

• a vector noted T , its projection on time and space,

Tµ = Tκλg
µκuλ, (34)

• a second order contravariant tensor noted T , its
projection twice on space:

Tµν = Tκλg
κµgλν . (35)

which leads to:

Tµν = UuµuνTµuν + T νuµ + Tµν . (36)

As proposed for example by Grot and Eringen (1966),
on the bases of physical considerations in the proper
coordinate system, it is possible to identify each of these
terms with

• the energy density for the scalar U = Tκλu
κuλ,

• the energy density (heat) flux for the vector T ,
• a stress tensor for the tensor T .

The conservation of energy and momentum is written (see
Einstein (1921):

∀M ∈ M,∇νT
µν = 0 (37)

where ∇ denotes the covariant derivative. Note that this
conservation may also be written for any non inertial
observer. Using the projectors, this conservation may be
projected on time:

uµ∇νT
µν = 0 (38)

and space:

∇νT
µν − uµ (uα∇νT

αν) = 0. (39)

With some derivation (see for example Grot and Eringen
(1966)), it may be demonstrated that the projection on
time (38) of the conservation of the energy-momentum
(37) is the equivalent of the 3D equation of conservation of
energy; its projection on space (39) is the equivalent of the
3D balance of momentum. The fact that the conservation
of energy-momentum (37) is valid for any observer, added
to the fact that this equation combines the conservation
of energy and of momentum constitutes the reason why it
seems interesting to investigate the use of a 4D formalism
for non relativistic motions (that is motions for which the
speed of any points of the system is small compared to the
velocity of light) like for example the dynamics of non-
linear systems like beams and shells. We take here the
example of the vibrations of an elastic string undergoing
finite transformations.

4.2 String model

We focus here on a time-space formulation of the same
vibrating string as the one described in section 3, i.e.
a string whose speed is small (compared to the speed
of light) and no gravitation involved. To propose such
a model for a vibrating string, we make the following
hypotheses:

(H1) The manifold is flat, in other words, there is no grav-
itation. Then the inertial coordinate system exists
and the components of the metric tensor for this
coordinate system are gµν = ηµν .

(H2) The manifold is occupied by a material continuum
composed of elastic matter and the motion is due to
phenomena that are limited to mechanical effects; we
hence do not consider any effects due to electromag-
netism, exchange of molecules by diffusion, thermal



effects, chemical or nuclear reactions and we focus on
motions with no dissipation.

To model such a case, it is imposed that:
· Thermodynamics effects are not considered in the
model, then the flux of energy vector defined in
(34) vanishes:

T = 0 (40)

· the material contribution LM corresponds to the
energy density U defined in (33).

(H3) To model a hyper-elastic behaviour, U depends only
on the rest mass density ρ̃c, the metric tensor g, the
deformation tensor b and a tensor C containing the
characteristics of material, then

U(g, ρ̃c,C, b) = ρ̃cc
2 +

√
gW (g,C, b) (41)

where g is the opposite of the determinant of the
metric tensor. The elastic energy density W is given
by:

W =
1

2
Cαβκλeαβeκλ (42)

where e = 1
2

(
g − b

)
is the strain projected twice

on space. The components of the fourth order tensor
C are measured in the proper coordinate system, in
Voigt notation, to give :

Ĉαβκλ :



0 0 0 0 0 0 0
0 E 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (43)

where E is a constant scalar. This choice has been
made to obtain a behaviour similar to the one pro-
posed with (14) in section 3.1.

4.3 String formulation

The choice for LM given by (H2), implies that, with the
definition of the energy-momentum tensor given in (32):

Tµν = 2
∂LM

∂gµν
= 2

√
g
∂W

∂gµν
+ (ρ̃cc

2 +
√
gW )gµν . (44)

The formulation above is generic for any purely mechanical
system with an hyper-elastic behaviour, and the string
hypothesis lies in the description of the energy (42) with
the elasticity tensor (43). Note that, when the string is at
rest, and for the proper observer, gµν = bµν = ηµν , and
the energy momentum tensor takes the specific form:

Tµν = ρ̃cc
2ηµν , (45)

which is the mass energy density.

Then, the conservation of energy-momentum (37) may be
written, for example in the proper coordinate system to
solve the problem. Numerical methods such as FEM have
been used in Al Nahas et al. (2021) in the static case and
will be further extended to dynamics.

5. PERSPECTIVES

Following the approach introduced in van der Schaft and
Maschke (2002), future work will be devoted to formu-
lating a time-space representation of a port-Hamiltonian
model for a conservative vibrating string that is invariant

to the change of observer in a relativistic context. The
next objective will be to propose numerical schemes that
benefit from such an invariance.
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