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1. Introduction 1 

The potential for airborne and spaceborne monitoring of plant productivity has motivated 2 

optical remote sensing (RS) scientists since the launch of first Earth observing satellites (Ashley 3 

and Rea 1975; Blair and Baumgardner 1977). The faint signal of chlorophyll a fluorescence 4 

has been the target of vegetation RS for several decades (Rosema et al. 1991). Although recent 5 

technological advances in narrow-band imaging spectroscopy provide the first estimates of 6 

solar-induced chlorophyll fluorescence (SIF) from space (Frankenberg et al. 2011; Guanter et 7 

al. 2007; Joiner et al. 2011), the retrieval and use of the subtle SIF signal emitted in the red and 8 

near-infrared spectral regions to assess plant productivity is fraught with natural complexity of 9 

vegetated landscapes. Hence, RS applications of SIF, including physiological principles, 10 

instruments, measurement techniques and computer models (Mohammed et al. 2019), need a 11 

further development to improve our understanding and correct interpretation of the diurnal, 12 

seasonal, and interannual variabilities in the SIF signal observed with RS instruments at local, 13 

regional and global spatial scales. In particular, SIF variability originating from multiple 14 

scattering and reabsorption within structurally complex vegetation canopies is poorly 15 

understood, as are optical interactions in topographically rough and spatially heterogeneous 16 

natural and man-made landscapes (Zhang et al. 2020). 17 

Radiative transfer modelling is a well-established and inseparable part of modern optical 18 

RS methods (Myneni and Ross 2012). Computer simulated radiative transfer in vegetation 19 

(Widlowski et al. 2015) has been used for local and global sensitivity analyses of various RS 20 

phenomena (e.g., Malenovský et al. 2008; Verrelst and Rivera 2017; Verrelst et al. 2010), and 21 

also for retrieval and interpretation of quantitative vegetation descriptors from remotely sensed 22 

spectral observations obtained through various inversion procedures (e.g., Croft et al. 2020; 23 

Malenovský et al. 2013; Verrelst et al. 2019). One of the most frequently used and well-24 

established leaf-scale RTMs is PROSPECT (Féret et al. 2020; Féret et al. 2017; Jacquemoud 25 

and Baret 1990; Malenovský et al. 2006). Its first clone designed to simulate the chlorophyll-a 26 

fluorescence emission in plant leaves was FluorMODleaf (Pedrós et al. 2010), followed by 27 

computationally simpler Fluspect-B (Vilfan et al. 2016) and Fluspect-Cx (Vilfan et al. 2018). 28 

The Fluspect models reproduce leaf optical properties between 400 and 2500 nm together with 29 

3D matrices of forward- and backward-emitted SIF per wavelength of photosynthetically active 30 

radiation (PAR) incident on the adaxial side of a dark-adapted leaf. Besides these semi-31 

empirical models, physical 3D leaf fluorescence RTMs have been developed, e.g., the Monte 32 
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Carlo (MC) Photon Transport (Sušila and Nauš 2007) or the Fluorescence Leaf Canopy Vector 33 

Radiative Transfer model (Kallel 2020). The MC models are, however, computationally 34 

demanding and, therefore, less suitable for an operational use in routine applications. 35 

Models of SIF radiative transfer are developed hand-in-hand with the RS experimental 36 

work conducted at leaf as well as canopy scales (Aasen et al. 2019). Leaf RTMs are usually 37 

embedded in canopy-scale RTMs that can be classified according to the canopy representation 38 

as one-dimensional (1D) or three-dimensional (3D). Strengths and weaknesses of available 39 

canopy RTM types are reviewed in Malenovský et al. (2019). 1D models, such as SAIL 40 

(Verhoef 1984), were designed for a horizontally homogeneous canopy with structural, optical 41 

and biochemical variability only in the vertical dimension (e.g., mono-species crops). The most 42 

frequently used SIF model for 1D canopies is a SAIL’s successor called SCOPE (van der Tol 43 

et al. 2009; van der Tol et al. 2019; Yang et al. 2020a), recently extended for multi-layered 44 

canopies as mSCOPE (Yang et al. 2017). Both SCOPE models are not modelling just radiance 45 

and SIF transfer but also soil-vegetation-atmosphere temperature and energy balances, 46 

including photosynthetic processes. SCOPE is frequently used for its simplicity and robustness, 47 

but its 1D architecture is unsuitable for complex multi-species ecosystems with structurally 48 

heterogeneous canopy layers and rough topography (e.g., boreal forests or savannas; Liu et al. 49 

2019a). Therefore, several 3D RTMs have been equipped with the ability to scale SIF from 50 

leaves to canopies to better capture the influence of structural heterogeneity of vegetation 51 

canopies. FluorWPS is a 3D MC ray-tracing SIF model (Zhao et al. 2016) that was developed 52 

and tested on 3D agricultural crops (Tong et al. 2021). Flux tracking of SIF simulated in the 53 

Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al. 1996) was 54 

used to assess its multi-angular anisotropy in 3D maize canopies (Gastellu-Etchegorry et al. 55 

2017). The FluorFLIGHT 3D model, developed from FLIGHT (North 1996), supported 56 

assessment of Mediterranean oak forest water stress and Phytophthora infections from airborne 57 

SIF data (Hernández-Clemente et al. 2017). Finally, the FLiES MC model (Sakai et al. 2020) 58 

was used to interpret space-borne SIF of Amazonian forests (Köhler et al. 2018).  59 

Despite the fact that all RTMs rely on simplifications and assumptions, they are powerful 60 

tools to investigate the optical interactions of SIF, which is needed for scaling and interpretation 61 

of the SIF signals acquired by proximal, airborne and spaceborne instruments (Bendig et al. 62 

2020; Gamon et al. 2019; Wyber et al. 2017). The main goal of this paper is to demonstrate the 63 

ability of the DART model coupled with Fluspect-Cx to assess the influence of canopy 3D 64 
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architecture on the top-of-canopy SIF (SIFTOC) for cropland and forested environments that are 65 

difficult or even infeasible to investigate directly. DART simulations in this study address three 66 

primary research questions. First, in absence of a suitable 3D validation measurements and to 67 

verify their modelling consistency, do the DART, SCOPE and mSCOPE models provide 68 

comparable estimates of SIFTOC for structurally homogenous vegetation in form of a turbid 69 

medium? Second, what is the SIFTOC impact originating from biochemical leaf fluorescence 70 

efficiencies (fqe), varying for sun- and shade-adapted leaves, in comparison to increasing leaf 71 

density and clumping of maize (Zea mays L.) canopies? And third, what are the effects of woody 72 

trunks and branches on simulated SIFTOC, SIF fluxes and escape factors from 3D forest 73 

abstractions of dense and sparse Australian white peppermint (Eucalyptus pulchella) stands? 74 

2. Material and Methods 75 

2.1 Implementation of leaf chlorophyll fluorescence in DART 76 

We used the 3D DART model as the pilot RTM of this study. DART, being developed by 77 

researchers from the CESBIO Laboratory in Toulouse for more than 20 years (Gastellu-78 

Etchegorry et al. 1996), was successfully cross compared with other state-of-the-art RTMs 79 

within the RAMI exercise (Widlowski et al. 2015). It produces at-sensor top-of-atmosphere 80 

(TOA) and bottom-of-atmosphere (BOA) multi-angular RS images by tracking optical and 81 

thermal photon fluxes through any type of 3D landscape with atmosphere (Gastellu-Etchegorry 82 

et al. 2015). Additionally, it calculates the  quantitative 3D radiative budget, i.e., fluxes of 83 

intercepted, absorbed, reflected and emitted radiation, in the optical spectral domain (400-2500 84 

nm) (Gastellu-Etchegorry et al. 2004). The presence of woody material was implemented in 85 

DART in 2008 (Malenovský et al. 2008), and radiative transfer of Fluspect-Cx modelled SIF 86 

emissions in 2017 (Gastellu-Etchegorry et al. 2017). The Fluspect-Cx implementation followed 87 

the approach that was previously applied to couple DART with the PROSPECT-D model (Féret 88 

et al. 2017), taking advantage of both models’ computational similarities and commonalities in 89 

input/output handling. The DART version 5.7.3, used in this work, simulates SIF radiative 90 

transfer and budget for 3D vegetation canopies constructed from geometrically explicit 91 

triangular objects (facets). Based on user-defined input parameters (i.e., leaf chlorophyll a+b, 92 

total carotenoid and brown pigment contents, equivalent water thickness, dry leaf mass per area, 93 

leaf mesophyll structural parameter and specific fluorescence efficiencies), Fluspect generates 94 

four SIF matrices (Mxyij), where x is the photosystem PSI or PSII, y is the backward or forward 95 
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direction relative to radiation incident direction, i is the 1 nm excitation band in the 96 

photosynthetically active spectral region from 400 to 750 nm (i ϵ [1 I]), and j is the 1 nm emitted 97 

SIF band (j ϵ [1 J]) in the spectral region from 640 to 850 nm. Consequently, the Fluspect SIF 98 

leaf exitance (Fxyj) at band j (1 nm bandwidth) due to irradiance (Ei) in band i is:  99 

Fxyj = Mxyij.Ei.                                                                 (1) 100 

In contrast to Fluspect, DART works with any number of spectral bands that can have any 101 

bandwidth, for example with U excitation bands λu and V fluorescence bands λv. Hence, in 102 

DART, a leaf irradiance (Eu) leads to the leaf exitance:  103 

Fxyv = Mxyuv.Eu,                                                                (2) 104 

where Mxyuv is derived from the Fluspect matrices (Mxyij) using an interpolation on spectral 105 

bands (Δλu = Σαui.Δλi, Δλv = Σβuj.Δλj) and the two-step weighted arithmetic averaging: 106 

Mxy𝑢𝑣 = 
∑ 𝛽𝑢𝑗.∆𝜆𝑗.Mxy𝑢𝑗𝑗

∑ 𝛽𝑢𝑗.∆𝜆𝑗𝑗
 , where                                                 (3) 107 

Mxy𝑢𝑗 = 
∑ 𝛼𝑢𝑖.∆𝜆𝑖.Mxy𝑖𝑗𝑖

∑ 𝛼𝑢𝑖.∆𝜆𝑖𝑖
.                                                          (4) 108 

DART spectral leaf SIF exitance is accurate only if the u bands cover the entire SIF excitation 109 

spectral interval and if they do not overlap. Similarly, it simulates the whole SIF domain only 110 

if the v bands cover the whole SIF emission spectral interval. 111 

The Fluspect calibration optical parameters (i.e., specific absorption coefficients, refractive 112 

index of mesophyll cell walls and water, etc.) are stored in an external table called Optipar. We 113 

used the Optipar table released in 2015. Additionally to the standard PROSPECT leaf 114 

biochemical and structural inputs, Fluspect requires leaf fluorescence quantum efficiencies 115 

(fqe), in DART referred to as fluorescence yields, for PSI and PSII. The specification of fqe 116 

values in DART is flexible. They can be entered per individual foliage facet or specified as 117 

general parameters that represent all leaves or a group of leaves in a given canopy. Biologically 118 

meaningful foliage groups are, for instance, sunlit (i.e., leaves exposed to direct sun radiation) 119 

and shaded leaves (i.e., leaves in the shadow of other phytoelements), or sun-adapted (i.e., 120 

leaves exposed most of the time to a direct sun radiation and subsequently adapting their 121 

pigment pools for a high photoprotective capacity) and shade-adapted leaves (i.e., leaves 122 

growing most of their lifespan under a low-intensity diffuse light and consequently having no 123 

need for a high photoprotective capacity). It is important to keep in mind that a momentarily 124 
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shaded leaf can actually be sun-adapted and vice versa, depending on its instantaneous and total 125 

diurnal illumination. 126 

The implementation of DART chlorophyll fluorescence emission Fxyv (Eq. 2) does not 127 

account for the microclimatic conditions influencing the actual leaf photosynthetic activity. 128 

However, Fxyv can be in a vertical canopy profile additionally weighted by an eta parameter, 129 

which adjusts the leaf SIF exitance according to actual local temperature, humidity, wind 130 

aerodynamics and other microclimatic environmental conditions. Similar to fqe, the eta profile 131 

can be inserted either for a whole canopy, per a foliage group, or per pre-defined leaf groups. 132 

Since DART modelling does not contain soil-vegetation-atmosphere transfer (SVAT) of 133 

energy, the eta parameter must be precomputed out of DART with a SVAT model (e.g., 134 

SCOPE; van der Tol et al. 2009) that considers dynamic meteorological factors as active parts 135 

in computation of the energy balance. DART simulates the total and the per-photosystem 136 

SIFTOC radiance and TOC reflectance using the N-flux tracking transfer. Technical details about 137 

the SIF flux tracking in DART are available in the DART User’s Manual (Chapter III.2.2.d; 138 

DART 2020), while DART physical principles and mathematical descriptions are detailed in 139 

the DART Handbook (DART 2019). 140 

2.2 Comparison of DART and SCOPE/mSCOPE SIF radiative transfers 141 

In absence of a suitable empirical verification data, we compared the DART SIFTOC signal 142 

with comparable outcomes produced by the SCOPE model and its multi-layer extension, 143 

mSCOPE (both in version 1.62). SCOPE is a broadly accepted model that has been previously 144 

confronted and validated with SIFTOC measurements of agricultural crops (van der Tol et al. 145 

2016). It simulates vegetation canopy as a turbid medium of infinitely small leaves distributed 146 

in 60 horizontally homogeneous vertical layers (Yang et al. 2017), all of them with the same 147 

predefined leaf biochemical and canopy structural parameters. mSCOPE allows users to divide 148 

canopy into multiple horizontal layers and to assign to each one specific leaf optical properties 149 

and LAI. The methodology and graphical outputs of the DART and SCOPE/mSCOPE SIF 150 

radiative transfer comparison are, due to a large extent, provided in Appendix A. 151 

2.3 DART modelled influence of geometrically explicit plant canopy structures on SIF  152 

DART works with detailed and spatially explicit 3D representations of plant foliage and 153 

other canopy elements (e.g., trunks and branches), and can be, therefore, used to investigate 154 

how the structural components modulate the simulated SIFTOC signal through optical photon 155 
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interactions as well as via foliage shading and physiological adaptations to prevailing 156 

photosynthetic light intensity. For this purpose, we built two realistic but structurally different 157 

mono-species canopies: i) an agricultural field of 1 m tall maize plants with eight leaves, created 158 

with the open source graphical software Blender (Blender 2007) according to a template 159 

produced by the plant architecture modelling L-system OpenAlea (Pradal et al. 2008), and ii) a 160 

16 m tall forest stand of white peppermint trees, created from terrestrial laser scans of real trees 161 

(Janoutová et al. 2019) growing in southern Tasmania (Australia). 3D landscapes were built as 162 

juxtaposed scenes located at the same Latitude of 39.03°N and Longitude of 76.85°W 163 

(Maryland, USA) as previous simulations, with the solar angles for 10th July 2014 for the test 164 

of foliage sun and shade adaptation and for 26th August 2014 at 14.00 of local time (without the 165 

daylight saving) for tests of maize canopy clumping and eucalypt wood influence. All canopies 166 

were illuminated by the same DART-simulated BOA direct and diffuse solar irradiance, as 167 

described in the previous section 2.2. Ground of the 3D scenes was optically defined as the 168 

Lambertian loamy gravel brown dark soil with a linearly increasing reflectance ( ≈ 6% at 550 169 

nm,  ≈ 12% at 686 nm and  ≈ 15% at 740 nm). 170 

2.3.1 Distinction and influence of sun- and shade-adapted foliage in maize crops 171 

As explained by Nobel (1976) or Givnish (1988), leaves growing in a shaded environment 172 

are biochemically and anatomically different from those exposed for most of the day to direct 173 

solar irradiation. DART users can consider these differences and their influence on SIFTOC by 174 

classifying the facets of 3D vegetation leaves in several classes, for which leaf optical or 175 

biochemical properties (including fqe and eta parameters) can be defined separately. The final 176 

number of classes depends on the structural complexity of canopies and the availability of 177 

measurements to support the detailed foliar parameterization. A simple two-class classification 178 

would split leaf facets into just sun- and shade-adapted cohorts (DART 2020), considering a 179 

long-term cumulative leave irradiance as the main driving force. 180 

DART calculates intercepted, absorbed, reflected and emitted radiation, i.e. radiative 181 

budget, per 3D cell of the simulated scene and also for each surface facet in the scene (Gastellu-182 

Etchegorry 2008), which can be used to distinguish between the sun- and shade-adapted leaf 183 

cohorts. The intercepted radiation flux E(λ) [W.m-2] can be converted into photosynthetic 184 

photon flux density Q (PPFD) [mol.photons.m-2.s-1] by integrating the intercepted PAR 185 

(iPAR) per leaf facet as follows: 186 
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    Q = ∫ 𝐸(𝜆)⋅𝑑𝜆
 

Δ𝜆𝑖
⋅
∫ 𝐿𝐵(𝑇,𝜆)⋅

𝜆

ℎ⋅𝑐
⋅
106

𝑁𝑎
⋅𝑑𝜆

0.75µ𝑚
0.4µ𝑚

∫ 𝐿𝐵(𝑇,𝜆)⋅𝑑𝜆
0.75µ𝑚
0.4µ𝑚

,                                      (5) 187 

where 𝐿𝐵(𝑇, 𝜆) is Planck's law at temperature T (T = 5800 K) and wavelength 𝜆 [m], h is 188 

Planck’s constant [J.s], c is speed of light [m.s-1], Na is Avogadro's constant [mole-1], and ∫  
 

Δ𝜆𝑖
 189 

is the PAR spectral range from 400 to 750 nm. The Q value depends on the ratio of direct and 190 

diffuse irradiance spectrum, leaf optical properties and PAR multiple scattering. Influenced by 191 

literature findings about the potential of Q for differentiating sun- and shade-adapted leaves 192 

(Leuning et al. 1995; Niinemets et al. 2015), the following two classification algorithms were 193 

designed: i) a frequency double-threshold and ii) a probability distribution approach. Both 194 

methods are based on simulated leaf PAR irradiance values for T time steps during i days, with 195 

T being small enough to ensure an adequate angular sampling of leaf irradiance variation during 196 

the simulated days. 197 

The first double-threshold approach asks user to specify high QH and low QL classification 198 

thresholds. The facets are then categorized at each time step T into the three groups: i) H for 199 

Q > QH, ii) L for Q < QL, and iii) M for QH > Q > QL. The number of occasions when a leaf 200 

facet appeared in each of these groups during the simulated day i is counted, resulting in [N𝐻,𝑖, 201 

N𝑀,𝑖, N𝐿,𝑖] with N𝐻,𝑖 + N𝑀,𝑖 + N𝐿,𝑖 = 𝑇. Subsequently, a leaf facet is labelled as sun-adapted 202 

(i.e., 𝐶𝑓,𝑖 = 1, with 𝑓 ∈ [1, 𝐹] where 𝐹 is the total number of leaf facets) if: i) N𝐻,𝑖 >
𝑇

2
 (i.e., leaf 203 

facet is categorized as sunlit for the majority of the 𝑇 time steps), or ii) N𝑀,𝑖 >
𝑇

2
 and N𝐻,𝑖 >204 

N𝐿,𝑖 (i.e., leaf irradiance is, for the majority of 𝑇 time steps, between the two thresholds and a 205 

leaf facet is categorized as sunlit more frequently than shaded). Finally, a leaf facet is labelled 206 

as shade-adapted (i.e., 𝐶𝑓,𝑖 = 0) in all other cases, which cover the following three conditions: 207 

i) N𝐿,𝑖 >
𝑇

2
, ii) N𝑀,𝑖 >

𝑇

2
 and N𝐻,𝑖 < N𝐿,𝑖, and iii) none of the [N𝐻,𝑖, N𝑀,𝑖, N𝐿,𝑖] values dominates 208 

during the simulated times. This way, a day series (an array of i values) of sun-adapted (𝐶𝑓,𝑖 = 209 

1) and shade-adapted (𝐶𝑓,𝑖 = 0) states is generated per leaf facet 𝑓. The final class assignment 210 

is decided based on the median value of 𝐶𝑓 across the entire examined time period. 211 
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 212 

Figure 1. Incident photosynthetically active radiation expressed in photosynthetic photon flux density 213 
(PPFD) for three realistic 3D maize (Zea mays L.) canopies with LAI equal to 1, 2 and 4 (a). Distinction 214 
of sun- (green) and shade- (grey) adapted foliage based on double PPFD thresholds of 50 and 100 215 
μmol.photons.m-2.s-1 (b). To mimic realistic maize canopies, all three maize fields (1x1.5 m in size) were 216 
created with 1 m tall semi-randomly oriented plants, having eight fully developed bifacial leaves. 217 

 218 

The second method uses the probability distribution of the simulated diurnal Q time series. 219 

The range of Q values is divided into equally or unequally distributed 𝑋 intervals, and the Q 220 

values of leaf facets simulated at each time step T are categorized in a group x (𝑥 ∈ [1, 𝑋]). The 221 

probability distribution functions of 𝑖 ⋅ 𝑇 sampling points are then computed over x groups, 222 

resulting in the maximum occurrence (i.e., the highest probability density) in group 𝑥max and 223 

the median occurrence in group 𝑥median. A leaf facet is assigned as sun-adapted if 𝑥max >
𝑥

3
 224 

and 𝑥max ≤ 𝑥median, and shade-adapted in all other cases. Both methods are available in the 225 

DART toolbox directory as Python scripts, the decision which to use is solely of user discretion.  226 

To demonstrate changes in SIFTOC due to the distinction of sun- and shade-adapted leaves, 227 

we applied two double-threshold classifications on three maize fields (Figure 1). The first 228 

‘relaxed’ classification used relatively high and far-apart thresholds of 50 and 100 229 

μmol.photons.m-2.s-1, allowing for a larger portion of shade-adapted parts, whereas the second 230 

‘strict’ classification used low and close thresholds of 15 and 25 μmol.photons.m-2.s-1, resulting 231 

in a smaller amount of strictly shade-adapted leaves and stems. The regularly spaced 1 m tall 232 

a) PPFD (07/10/2014, noon, Lat . 39.03, Lon. -76.85)
[μmol photons m-2 s-1]

LAI = 1 LAI = 2 LAI = 4
0

5

25

110

475

2050

LAI = 1 LAI = 2 LAI = 4

b)                                                                                 Green = sun-adapted, Grey = shade adapted
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plants with fully developed bifacial leaves were placed in fields (1x1.5 m in size) with a random 233 

geographical orientation and distances resulting in LAI = 1, 2 and 4.  Specific leaf biochemical, 234 

structural and fluorescence properties were assigned to each leaf adaptation class as listed in 235 

Table 1 (note that foliage of scenarios without distinct light adaptations was assumed to have 236 

the properties of sun-adapted leaves and stems). Contrary to previous SIF simulations, PSII fqe 237 

values of medium magnitude were assigned to each leaf class, while PSI fqe values were kept 238 

constant under the assumption that PSI contributes to SIF signal of both leaf types equally (Liu 239 

et al. 2019a). In order to prevent its confounding effect, the energy balance (leaf photosynthesis) 240 

modelling was disregarded, i.e., the fluorescence efficiency weight eta was forced to one. The 241 

remaining inputs were arbitrarily defined within plausible dynamic ranges of published 242 

laboratory measurements (Hosgood et al. 1994; Jacquemoud and Baret 1990). 243 

Table 1. Input parameters of the Fluspect-Cx model to simulate optical properties of sun- and shade- 244 
adapted leaves, as well as foliage without light adaptations and stems: content of chlorophyll a+b (Cab), 245 
total content of carotenoids (Car), equivalent water thickness (EWT), leaf mass per area (LMA), 246 
mesophyll optical thickness number (N) and fluorescence quantum efficiencies (fqe) for PSI and PSII.  247 

Fluspect inputs Cab 
[g.cm-2] 

Car 
[g.cm-2] 

EWT 

[cm] 

LMA 

[g.cm-2] 

N PSI  

fqe 

PSII  

fqe 

Sun-adapted and without 

adaptation leaves and stems 
50 15 0.009 0.0021 1.5 0.002 0.016 

Shade-adapted leaves  

and stems 
75 20 0.012 0.0028 2.0 0.002 0.022 
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 248 

Figure 2. DART simulated images of top-of-canopy SIF at 740 nm for maize fields of three leaf area 249 
indices (LAI) and two canopy closures, 100% regular (top) and 50% clumped (bottom), given by the 250 
number of plants (LAI = 1 ~ 12 plants, LAI = 1 ~ 24 plants and LAI = 4 ~ 50 plants) associated with 251 
different plant distances. The graph (bottom-right) displays the corresponding modelled canopy SIF 252 
spectra between 650 and 850 nm and provides the fAPARgreen values per scenario. 253 

2.3.2 Canopy SIF changes due to leaf density and clumping of maize plants 254 

Potential variability in SIFTOC due to leaf density and plant clumping (i.e., canopy closure 255 

– CC) changes were simulated for virtual maize canopies of three plant densities (LAI = 1, 2 256 
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and 4) in a regular spatial distribution (CC ≈ 100%) and in two clumped formations (LAI = 1 257 

and 2, CC ≈ 50%) (Figure 2). Compared to the previous exercise (Figure 1), distances between 258 

6 (LAI = 1) or 12 (LAI = 2) of neighbouring regularly spaced plants in a row were shortened 259 

by half to create regular foliage clumps and canopy gaps of the same size. To keep consistency, 260 

the leaf and stem optical properties were those used for the turbid-like canopies (Table A1) and 261 

the sun- and shade-adaptations were not distinguished, i.e., all leaves were considered as equal. 262 

 263 

Figure 3. Nadir view of 3D representation of the dense white peppermint (Eucalyptus pulchella) test 264 
canopy derived from terrestrial laser scans of trees growing east of Hobart (Tasmania, Australia) (a). 265 
The virtual scene (LAI = 2) was used to simulate a near-infrared, red and green RGB false colour 266 
composite images in DART of top-of-canopy reflectance (top) as well as PSII SIF at 740 nm (bottom) 267 
of the canopy formed by: b) only foliage and c) foliage and woody material covered with bark. The 268 
white arrow points at the example of SIF reflection from an exposed tree branch surface. 269 

2.3.3 Influence of leaf clumping, trunks and branches on SIF of white peppermint canopies 270 

DART simulations of eucalyptus forest canopies were used to investigate potential impacts 271 

of leaf clumping and woody material, i.e., trunks and branches covered by bark, on SIFTOC 272 

modelled at 686 and 740 nm. 3D representations of the eucalyptus trees were constructed based 273 

on 3D point clouds acquired with the terrestrial laser scanner (TLS) Trimble TX8 (Trimble Inc., 274 

USA). Three native white peppermint eucalypts of different age, height and general habitus 275 

PSII SIFTOC at 740 nm 
[W.m-2.um-1.sr-1] 2.4 3.01.81.20.60

10 m

fAPARgreen = 0.47                    fAPARgreen = 0.4

a) 3D forest stand representation b) Canopy of only foliage c) Canopy with wood
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were scanned from several geolocations in dry sclerophyll forest located southeast of Hobart 276 

(Tasmania, Australia) to acquire their TLS point clouds with a point spacing of 11.3 mm at 277 

distance of 30 m. The TLS points of each tree were, after a mandatory pre-processing, semi-278 

automatically separated in two groups: i) points of trunks and branches and ii) points 279 

representing foliage. Points classified as wood were used as attractors in an automatic procedure 280 

(Sloup 2013) to extract the external surfaces of trunks and main branches, as described in 281 

Verroust and Lazarus (1999). The foliage points were subsequently spatially collocated with 282 

the reconstructed wooden skeleton. 3D representation of leaves was created in Blender (Blender 283 

2007) based on an average shape and size of actual leaves and then distributed automatically at 284 

the locations of foliage points according to the Erectophile LAD (Danson 1998), targeting two 285 

crown LAI values of 2 and 5. A complete description of this TLS-based 3D construction of 286 

trees, developed specifically for RTM purposes, is available in Janoutová et al. (2019). Two 287 

DART canopies (scenes), were constructed with the 3D tree representations: i) a dense canopy 288 

was created by placing three trees with the individual crown LAI = 2 within a scene of 81 m2, 289 

while keeping CC ≈ 80% (Figure 3a), and ii) a sparse canopy was built by redistributing the 290 

same trees but with the crown LAI = 5 within a scene of 196 m2 to achieve CC ≈ 40%. 291 

Combinations of the tree crown LAI and scene sizes ensured that both scenes had, for the 292 

purpose of comparability, the same canopy LAI = 2.5. Additionally, an identical bark 293 

directional-hemispherical reflectance ( ≈ 20% at 550 nm,  ≈ 40% at 686 nm and  ≈ 50% at 294 

740 nm), measured on actual bark samples collected in field, was applied in both canopies. 295 

Besides standard forest canopies (e.g., Figure 3c), the virtual environment of the DART 296 

model also allows for simulating canopies composed of only foliage without woody 297 

components (Figure 3b). By comparing results from simulations with and without woody 298 

material, we quantified the magnitudes of shading and direct obstructing effects of woody 299 

material. Removing woody components increases the within-canopy iPAR (Q) due to the 300 

reduction in wood shadowing, which in turn increases SIF emitted by all previously shaded 301 

leaves. The obstruction impact of woody material is caused by its optical interactions with SIF 302 

photons. First, it diminishes (blocks) the within-canopy SIF at both 686 and 740 nm via bark 303 

scattering and absorption. Second, it affects, to some extent, SIF emission through reflection of 304 

SIF at 686 nm that can be reabsorbed and later reemitted by chlorophyll pigments.  305 

2.4 Computation of canopy fAPARgreen, SIF balance, escape factors and differences   306 
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The main driver of green foliage SIF emissions (including stems of the maize plants) in 307 

DART simulations that do not contain a modulation of PSI and PSII fqe values by eta 308 

coefficients is the fraction of absorbed photosynthetically active radiation (fAPARgreen). 309 

Therefore, a change of fAPARgreen in these simulations indicates a change in the ratio of sunlit 310 

and shaded photosynthetically active plant parts, which results in an equal relative change in 311 

SIF leaf emission of both photosystems. To be able to investigate the impact of different 3D 312 

canopy architectures on their fAPARgreen, we calculated fAPARgreen for all SIFTOC simulating 313 

scenarios from the DART radiative budget of a single broad PAR band (λ = [400 750] nm) as: 314 

fAPAR(λ)
green

= 
APAR(λ)green

PAR(λ)TOC
,                                               (6) 315 

where APAR()green is PAR absorbed by all green plant constituents of a given DART scene 316 

and PAR()TOC is the solar incoming PAR simulated at the top of canopy. The relative 317 

difference [%] in fAPARgreen of clumped (C) compared to regularly spaced (R) maize canopies 318 

was calculated as: 319 

εfAPAR(λ) =  100.
fAPAR(λ)green_C − fAPAR(λ)green_R

fAPAR(λ)green_R
.                                  (7) 320 

Similarly, the shading effect of woody components on eucalyptus SIF emissions was assessed 321 

through the relative difference [%] of canopy fAPARgreen obtained for simulations containing 322 

just foliage (F) and foliage with wood (FW) as follows: 323 

εfAPAR(λ) =  100.
fAPAR(λ)green_F − fAPAR(λ)green_FW

fAPAR(λ)green_FW
.                                  (8) 324 

DART-simulated 3D radiative budget of SIF allows for locating origins of remotely sensed 325 

SIF using the SIF balance (SIF()bal) [W.m-2.m-1], computed by subtracting the absorbed SIF 326 

flux from the total emitted SIF flux (i.e., SIF()PSI plus SIF()PSII) of a given wavelength () 327 

per a vertical canopy layer. A positive SIF()bal means that the canopy layer acts as a SIF source, 328 

while a negative SIF()bal indicates canopy parts acting as SIF sinks. Subsequently, relative 329 

difference [%] of SIF()bal between clumped (C) and regularly spaced (R) maize canopies, 330 

computed as: 331 

εSIF(λ)bal =  100.
SIF(λ)bal_C − SIF(λ)bal_R

SIF(λ)bal_R
,                                      (9) 332 

reveals if the maize foliage clumping causes a further reduction (SIF()bal < 0) or an 333 

enhancement (SIF()bal > 0) or no change (SIF()bal = 0) of SIF balance per a canopy layer. 334 
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The proportion of SIF photons that exit the top of canopy is described by the SIFTOC escape 335 

probability factor (SIFesc). In practice, this is the ratio of SIF photons escaping from the top of 336 

canopy in any direction to all SIF photons emitted from all canopy leaves in forward or 337 

backward directions (Guanter et al. 2014). SIFesc is required for scaling of SIFTOC measurements 338 

down at the spatial level of individual leaves (van der Tol et al. 2019), and subsequently 339 

essential for correct estimation of vegetation gross primary production (GPP) from airborne and 340 

spaceborne SIF observations (e.g., He et al. 2017; Zhang et al. 2020). Since most of RS 341 

observations capture SIFTOC from nadir, we computed the relative canopy SIF escape 342 

probability factor of a given wavelength () in the nadir direction (SIFnadir()esc) from SIF 343 

radiative budgets of the eucalyptus scenarios. First, we converted SIF emissions of PSI and PSII 344 

per m2 of abaxial and adaxial leaf facets into SIF emissions per m2 of the scene (F()PSI and 345 

F()PSII) [W.m-2.m-1] and then calculated SIFnadir()esc as: 346 

SIFnadir(λ)
esc

= 
𝜋⋅(Lnadir(λ)PSI  + Lnadir(λ)PSII)

F(λ)PSI+ F(λ)PSII
,                               (10) 347 

where Lnadir()PSI and Lnadir()PSII [W.m-2.m-1.sr-1] are DART modelled PSI and PSII SIF 348 

radiances at the wavelength (), respectively, escaping from the simulated scene in the nadir 349 

viewing direction. The 𝜋 multiplication in Eq. 10 is removing the angular dependency [sr-1], 350 

resulting in relative values of SIFnadir()esc between 0 and 1. Since the escape probability factor 351 

is predominantly dependent on direct optical interactions with canopy elements that attenuate 352 

an emitted SIF signal, we quantified the obstruction (blocking) effect of eucalyptus woody 353 

components on canopy SIF in the nadir viewing direction through the relative difference [%] 354 

of SIFnadir()esc, computed from the foliage only (F) and the foliage with wood (FW) 355 

simulations as follows: 356 

𝜀SIF(λ)esc = 100.
SIFnadir(λ)esc_F − SIFnadir(λ)esc_FW

SIFnadir(λ)esc_FW
.                           (11) 357 

Finally, to analyse differences in SIF fluxes escaping from individual simulated canopy layers 358 

in all directions (i.e., towards layers of the upper and lower hemispheres), we computed from 359 

DART 3D radiative budget their relative omnidirectional escape factor (SIFomni()esc) as: 360 

SIFomni(λ)
esc

= 
(F(λ)PSI+ F(λ)PSII)−(A(λ)PSI+ A(λ)PSII)

F(λ)PSI+ F(λ)PSII
,                       (12) 361 

where A()PSI and A()PSII [W.m-2.m-1] are DART modelled absorptances of PSI and PSII SIF, 362 

respectively, expressed for the wavelength () per m2 of the scene. If SIFomni()esc ≤ 0, then 363 



2.1 VEGETATION SIMULATED AS FACETS 

 45 

the canopy layer does not contribute to the SIFTOC signal, i.e., its SIF()bal is either neutral or 364 

negative. 365 

2.5 DART settings common to all SIF canopy simulations 366 

DART simulations were carried out with the flux-tracking algorithm using the following 367 

settings: no elimination of low energy rays, relative accuracy on scene albedo equal to 10-6, 25 368 

duplications of the initially simulated scene, the scene illumination mesh size equal to 5.10-4 m 369 

(with a semi-random spatial distribution of illumination rays), and cell sub-sampling with 83 370 

sub-cells per cell and 1 sub face per cell face. An optimal number of 20 flux-tracking iterations, 371 

which were required to obtain a 10-2 relative accuracy of the scene reflectance, was determined 372 

through a simplified accuracy sensitivity study. Intermediate results of the last few iterations 373 

were used to extrapolate the final values of simulated radiative budget, bidirectional reflectance 374 

function and SIF products. TOC reflectance and SIF were simulated in 212 viewing directions 375 

(Yin et al. 2013), distributed systematically throughout the upward hemisphere, with an 376 

oversampling of the upward hot-spot region (25 directions in a solid angle of 0.01 sr around the 377 

hotspot direction) and 34 virtual viewing directions in the solar principle plane. Leaf facets 378 

were simulated as double-faces without the solar penumbra effect, all optical properties were 379 

assumed to be Lambertian, and the scene ground surface was horizontal. 380 

2.6 Comparative statistical indicators 381 

Comparative statistical indicators, specifically a root mean square error (RMSE) and an 382 

index of agreement (d), were computed to assess these similarities as well as anticipated 383 

statistical dissimilarities between different DART scenarios (i.e., turbid-like vs. maize and 384 

eucalypt canopies). As explained in Willmott (1981), the dimensionless index of agreement 385 

complements the RMSE by indicating the degree of correspondence between two tested 386 

datasets in magnitude and direction, where d = 1 means full agreement and d = 0 means total 387 

disagreement. Also, the similarity of DART and SCOPE multi-angular SIFTOC was assessed 388 

through fitting a linear regression model, where the regression coefficient of determination (R2) 389 

indicated how much of the variability in a reference RT model (i.e., SCOPE) results can be 390 

explained by corresponding regressed values simulated in DART. 391 

3. Results 392 
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3.1 Comparison of nadir DART and SCOPE/mSCOPE canopy SIF simulations 393 

The SCOPE and DART nadir SIFTOC signatures of turbid medium vegetation canopies 394 

were nearly identical (Figure A2). Results between 641 and 850 nm were comparable for all 395 

simulated input combinations (i.e., three LAI, three LAD and three soil types). High SIFTOC, 396 

observed for canopies of Planophile LAD, is caused by their high PAR interception efficiency.  397 

The highest RMSE = 0.162 W.m-2.m-1.sr-1 and the lowest d = 0.9965 were found for the 398 

Erectophile canopy of LAI = 1, covering soil with  = 50%. Despite being the worst case, the 399 

values indicate only minor differences between DART and SCOPE results. Statistical analyses 400 

revealed that the total SIFTOC RMSE originates mainly from RMSE for PSII, which was twice 401 

the RMSE for PSI simulations for all three LADs (results not shown). Despite a significantly 402 

higher variability in RMSE than other two LADs, the Planophile LAD showed the highest index 403 

of agreement and R2 computed between the two models.  404 

mSCOPE allowed us to introduce a biochemical/optical heterogeneity in the vertical 405 

dimension of simulated canopies. Additionally, we tested DART SIF simulation performance 406 

when using the energy balance eta coefficients produced by mSCOPE. Comparison of total 407 

nadir SIFTOC radiances produced by both models revealed almost the same results (Figure A3). 408 

The indices of agreement were in all cases larger than 0.99, regardless exclusion or inclusion of 409 

the mSCOPE eta coefficients in conducted simulations. The highest RMSE of just 0.221 W.m-410 

2.m-1.sr-1 and the lowest d = 0.9985 was found for simulation of 2-layered canopy with LAI = 411 

2 and with the leaf energy balance included (Figure A3b). 412 

3.2 Multi-angular comparison of DART and SCOPE canopy SIF simulations 413 

The similarity of DART and SCOPE SIFTOC simulations at 686 and 740 nm was also 414 

investigated for viewing directions other than the nadir view. We compared values simulated 415 

in the solar principal plane, with particular attention to the hotspot region, and computed 416 

absolute differences between 27 DART and SCOPE turbid medium scenarios in all 212 viewing 417 

directions. The smallest differences and the best agreement were found for SIFTOC at 686 nm, 418 

Erectophile LAD and LAI = 1 (Figure A4), while the worse agreement and largest differences 419 

were obtained for SIFTOC at 740 nm, Spherical LAD and LAI = 4 (Figure A5). Here, SCOPE 420 

simulated slightly smaller SIFTOC values, except for VZA > 75°, where SIFTOC dropped 421 

unexpectedly steeply down. Also, SCOPE values around the hotspot angles were about 1 W.m-422 
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2.m-1.sr-1 lower than the corresponding DART values. This is caused by differences in the 423 

vegetation hotspot algorithms. SCOPE uses a Kuusk’s analytical approximation, which does 424 

not account for a bi-directional gap-fraction correlation with the canopy depth and consequently 425 

underestimates the hotspot effect (Kallel and Nilson 2013), whereas hotspot in DART 426 

simulations is physically modelled. 427 

Analysis of multi-angular SIF differences among the three LADs stressed smaller 428 

dissimilarities at 686 nm, having the best fit for the Spherical LAD, followed by the Erectophile 429 

LAD, and then by the Planophile LAD. At 740 nm, the closest match occurred for the 430 

Planophile LAD, while the Spherical and the Erectophile LADs showed equal discrepancies 431 

(Figure A6). Nonetheless, the maximal absolute SIFTOC difference between DART and SCOPE 432 

oblique viewing directions of all scenarios was found to be < 0.8 W.m-2.m-1.sr-1. 433 

 434 
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Figure 4. Differences in DART top-of-canopy SIF radiance due to distinction of sun- and shade-adapted 435 
leaves of regular maize canopies with LAI = 1, 2 and 4. Graphs illustrate two simulated scenarios of 436 
photosynthetic photon flux density (PPFD or Q) classification thresholds: a) a ‘relaxed’ scenario with 437 
high PPFD thresholds of 50 and 100 mol.photons.m-2.s-1, and b) a ‘strict’ scenario with low PPFD 438 
thresholds of 10 and 25 mol.photons.m-2.s-1. For details about the double-threshold leaf light adaptation 439 
classification see section 2.3.1. 440 

3.3 Effect of sun- and shade-adapted maize foliage classification 441 

Two double-threshold classifications were used to assess the impact of sun- and shade-442 

adapted foliage differentiation on nadir PSI and PSII SIFTOC between 650-850 nm. The first 443 

one, called ‘relaxed’, used the far-apart high Q thresholds (50 and 100 mol.photons.m-2.s-1), 444 

resulting in the sun-to-shade adapted foliage ratio ranging from 80:20% (LAI = 1) to 55:45% 445 

(LAI = 4). Figure 4a shows that differences between SIFTOC signatures for simulations with and 446 

without the differentiation of sun-/shade-adapted leaves were all positive for PSII, with the 447 

highest value  0.1 W.m-2.m-1.sr-1 around 740 nm for LAI = 4 (fAPARgreen = 0.87). Surprisingly, 448 

the same differences for PSI between 700 and 725 nm were negative, demonstrating a greater 449 

PSI SIF absorption by shade-adapted leaves having a higher chlorophyll a+b content of 75 450 

g.cm-2. Contrary to PSII SIFTOC, where fqe was increased from 0.016 to 0.022 for shade-451 

adapted leaves (Table 2), the constant PSI fqe of 0.002 could not compensate this increased 452 

chlorophyll absorption. The second classification, called ‘strict’, used the closer and lower Q 453 

thresholds (15 and 25 mol.photons.m-2.s-1), resulting in canopies with a dominant portion of 454 

sun-adapted leaves. The sun-to-shade adapted foliage ratio ranged from 98:2% (LAI = 1) to 455 

73:27% (LAI = 4). Consequently, the SIFTOC differences were proportionally smaller (Figure 456 

4b), with the largest value of 0.035 W.m-2.m-1.sr-1 for PSII SIFTOC at 740 nm (LAI = 4). PSI 457 

SIFTOC differences were also reduced and remained negative between 700 and 725 nm. 458 

3.4 Influence of foliage density and clumping in maize canopies  459 

Figure 2 illustrates the impact of a leaf density increase (i.e., doubled LAI) and the 460 

clumping of maize plants for LAI of 1 and 2. Nadir images of maize canopy SIFTOC at 740 nm 461 

show the spatial dependence of SIFTOC radiance on the absorption of iPAR and on the 462 

distribution of plant shadows. A linear increase of LAI triggered a non-linear and wavelength-463 

specific increase of SIFTOC. A bit more than 2-fold increase in far-red wavelengths from LAI = 464 

1 to LAI = 4 corresponds to a similar increase in canopy fAPARgreen, which is not the case for 465 

the red SIFTOC nadir signal (Figure 2). The canopy clumping causes a decrease of SIFTOC at all 466 
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wavelengths. The 50% decrease in CC caused SIFTOC reduction at 740 nm of about 0.4 for LAI 467 

= 1 and 1.0 W.m-2.m-1.sr-1 for LAI = 2, whereas reduction of LAI from 2 to 1 resulted in larger 468 

SIFTOC declines of about 0.75 for CC = 50% and 1.6 W.m-2.m-1.sr-1 for CC = 100%. 469 

 470 

Figure 5. Multi-angular differences in SIF radiance at 686 nm between a) regular, b) clumped DART 471 
3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy 472 
soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the 473 
regular (RMSE = 0.27 and d = 0.9) and the clumped (RMSE = 0.36 and d = 0.81) maize canopies are 474 
illustrated in c) and d), respectively. Notations: the white star shows the solar position and black dots 475 
indicate the simulated viewing directions; LAD ~ leaf angle distribution; LAI ~ leaf area index; WL ~ 476 
wavelength; SZA ~ solar zenith angle; SAA ~ solar azimuth angle; R2 ~ coefficient of determination; 477 
RMSE ~ root mean square error [W.m-2.m-1.sr-1]; d ~ index of agreement: 0 = no agreement, 1 = full 478 
agreement. 479 
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 480 

Figure 6. Multi-angular differences in SIF radiance at 740 nm between a) regular, b) clumped DART 481 
3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy 482 
soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the 483 
regular (RMSE = 0.42 and d = 0.92) and the clumped (RMSE = 1.22 and d = 0.62) maize canopies are 484 
illustrated in c) and d), respectively (for abbreviations and symbols see Figure 5). 485 

The interpretation of canopy architectural effects can be taken further by investigating the 486 

multi-angular differences for SIFTOC at 686 (Figure 5) and 740 nm (Figure 6), computed 487 

between the turbid-like vegetation canopy, i.e., a random distribution of many small leaf facets 488 

with the Spherical LAD, and the maize regular and clumped canopies of much larger leaves, 489 

both with LAI = 2. DART simulated multi-angular SIFTOC values of the turbid-like and regular 490 

maize canopies at 686 nm are very close (RMSE = 0.27 W.m-2.m-1.sr-1, d = 0.9) (see Figure 491 
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5ac), indicating rather similar SIF absorptions within canopies and by soil. The maximum 492 

difference of just about -0.4 W.m-2.m-1.sr-1 appeared in very oblique viewing directions, in 493 

which maize plants scattered less SIF. Despite its slightly lower fAPARgreen (0.68 vs. 0.72), the 494 

maize canopy scattered a bit more SIF in viewing directions around nadir and hotspot, 495 

producing a positive difference. This is caused by the maize geometrically explicit non-random 496 

LAD and large-sized leaf facets, redirecting the scattered SIF prevailingly in these directions. 497 

Larger size of maize leaves is decreasing scattering of photons, and consequently the diffuse 498 

fluxes, and causing a broader base of the SIFTOC hotspot peak, observed when comparing the 499 

hotspots regions of maize and the turbid-like medium simulations. Although the multi-angular 500 

pattern for the clumped maize canopy looks also very similar (RMSE = 0.36 W.m-2.m-1.sr-1, d 501 

= 0.81), the differences are all negative and significantly larger, with the maximum of about -502 

0.75 W.m-2.m-1.sr-1 (Figure 5bd). It means that the 50% foliage clumping increased scattering 503 

and the subsequent within-canopy absorption of SIF at 686 nm, because SIF absorption by the 504 

loamy soil beneath the clumped canopy was 7% lower than in the regular canopy, i.e., unable 505 

to cause the SIFTOC reduction. The angular distributions of the same differences at 740 nm look 506 

different (Figure 6), as they are ruled mainly by scattering related to the canopy architecture. 507 

The decrease in intensity of maize far-red SIFTOC is driven by the species-specific foliage 508 

distribution and geometry, significantly larger maize leaf size combined with a high leaf single 509 

scattering albedo at 740 nm and the soil absorption. SIFTOC differences in Figure 6 are negative 510 

for both regular (RMSE = 0.42 W.m-2.m-1.sr-1, d = 0.92) and clumped canopy of LAI = 2, but 511 

larger for the latter one (RMSE = 1.22 W.m-2.m-1.sr-1, d = 0.62). Results of DART radiative 512 

budget revealed that the introduction of clumping did not increase but lowered (by 12%) the 513 

amount of soil intercepted and absorbed SIF. Hence, it is not soil but clumping-induced within 514 

canopy SIF optical interactions that are responsible for this extra reduction of SIFTOC. 515 

The relative contribution from different canopy parts (horizontal layers) to SIFTOC and its 516 

modulation by fAPARgreen or by SIF scattering and absorption can be investigated by plotting 517 

vertical canopy height profiles of fAPARgreen together with corresponding SIF balances of both 518 

fluorescence wavelengths. Figure 7a shows that SIF balances are positive at all heights, i.e., 519 

every layer act as a SIF source, and they follow, in general, changes in fAPARgreen. The foliage 520 

clumping decreased significantly fAPARgreen, SIF()bal and also SIFomni()esc (not shown) in 521 

the upper half of the canopy with LAI = 2, causing the overall reduction of SIFTOC, but it 522 
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increased all of them in canopy parts below. It means that the lower leaves of the clumped 523 

canopy contributed to the simulated SIFTOC more than the same leaves of the regular canopy. 524 

 525 

Figure 7. Vertical profiles of a) fAPARgreen, SIF balances (for maize canopies of LAI = 2) and b) 526 
their relative differences at 686 and 740 nm computed between regularly spaced and clumped 527 
canopies of the same LAI (for LAI = 1 and 2). Each 2.5 cm thick canopy layer is presented as a 528 
point of the relative canopy height [0-1]. For details about computations of fAPARgreen, SIF 529 
balance (SIF()bal) and their relative differences (fAPAR() and SIF()bal) see section 2.4. 530 

Figure 7b, depicting the fAPARgreen and SIF()bal relative differences between the regular 531 

and clumped canopies, provides a further insight in this behaviour and dependencies between 532 

SIF and fAPARgreen radiative budgets. It illustrates a clumping-induced steady reduction of 533 

fAPARgreen and SIF balance differences in upper 40% of the canopy with LAI = 1, whereas the 534 

differences in lower 60% fluctuate between positive and negative values. SIF()bal for  535 

LAI = 1 follows quite closely  fAPAR(), suggesting that variability of SIF fluxes at 740 nm is 536 

ruled mainly by clumping-induced changes in distribution of shadows and sun flecks, while 537 

SIF(6)bal shows a bit more negative or positive deviations from fAPAR(), caused by a local 538 

increase or decrease in chlorophyll absorption of SIF at 686 nm. SIFTOC for LAI = 2 is formed 539 

by steady but greater negative differences in the canopy top half that are partially balanced out 540 

by nearly 2-fold larger positive differences between 30 and 50% of the canopy relative height. 541 

Comparable differences for both LAI cases between the bottom and 30% of the canopy height 542 

indicate very similar fAPARgreen and SIF radiative budgets, driven by mostly diffused low-543 

intensity PAR. The negative fAPAR() and SIF()bal values in the upper half of the canopy are 544 
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caused by combination of higher (doubled) LAI with foliage clumping that increased internal 545 

shadowing and consequently reduced fAPARgreen. It also enhanced a number of SIF photons 546 

interacting with leaf facets, resulting in a higher fluorescence absorption, especially at 686 nm. 547 

Scientifically interesting is the opposite behaviour between 30 and 50% of the canopy height, 548 

where it boosted fAPARgreen and consequently SIF emissions, but simultaneously diminished 549 

SIF absorption, which is evidenced by SIF()bal and SIF()bal > fAPAR(). The total energy 550 

released from these positive SIF()bal differences was, nevertheless, unable to fully compensate 551 

the negative SIF()bal differences induced by clumping in the upper canopy parts (Figure 7a). 552 

3.5 Impacts of foliage clumping and wood of white peppermint trees 553 

 554 
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Figure 8. Multi-angular differences in SIF radiance at 686 nm between a) a dense eucalyptus canopy 555 
created only by foliage, b) the same canopy containing also woody components and a DART simulated 556 
turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the 557 
solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 0.82 and d = 558 
0.55) and the foliage with wood (RMSE = 1.0 and d = 0.47) eucalypt canopies are illustrated in c) and 559 
d), respectively (for abbreviations and symbols see Figure 5). 560 

DART 3D modelling allowed us to investigate previously unquantified impacts of foliage 561 

structure and woody material on fAPARgreen and on optical interactions of SIF photons inside 562 

white peppermint canopies. Figure 3 shows nadir PSII SIFTOC images at 740 nm for dense 563 

eucalyptus forest canopies without and with presence of the woody parts. A simple visual 564 

comparison of the two images reveals a lower SIFTOC in the lower right corner of the image 565 

caused by a deeper shadowing after inclusion of trunks and branches. One can also detect 566 

several large non-fluorescing branches in the SIFTOC image, visible due to a strong reflection 567 

of far-red SIF photons by peppermint bark (740 nm ≈ 50%). 568 
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 569 

Figure 9. Multi-angular differences in SIF radiance at 740 nm between a) a dense eucalyptus canopy 570 
created only by foliage, b) the same canopy containing also woody components and a DART simulated 571 
turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the 572 
solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 1.93 and d = 573 
0.47) and the foliage with wood (RMSE = 2.68 and d = 0.35) eucalypt canopies are illustrated in c) and 574 
d), respectively (for abbreviations and symbols see Figure 5). 575 

In comparison with the multi-directional SIF radiance of the turbid-like canopy, the dense 576 

eucalyptus stand without wood showed statistically significant decreases in SIFTOC at 686 nm 577 

(RMSE = 0.82 W.m-2.m-1.sr-1, d = 0.55) (Figure 8ac) and even greater at 740 nm (RMSE = 578 

1.93 W.m-2.m-1.sr-1, d = 0.47) (Figure 9ac). This drop, reaching up to -1.2 W.m-2.m-1.sr-1 and 579 

almost -2.5 W.m-2.m-1.sr-1, respectively, can be explained by the Erectophile LAD of the 580 

small-sized narrow white peppermint leaves, and by their strong and spatially irregular 581 
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clumping at the branch level. Presence of woody structures did not change considerably the 582 

angular patterns of the SIFTOC differences, but caused its further suppression at 686 nm (RMSE 583 

= 1.0 W.m-2. m-1.sr-1, d = 0.47) (Figure 8bd) and even larger differences at 740 nm (RMSE = 584 

2.68 W.m-2. m-1.sr-1, d = 0.35) (Figure 9bd). Interestingly, it deepened the shape the solar 585 

principal plane SIFTOC curve in back-scattering oblique viewing directions behind the hotspot 586 

region, producing the maximum difference of almost -1.4 W.m-2. m-1.sr-1 at 686 nm and 587 

around -3.7 W.m-2. m-1.sr-1 at 740 nm. 588 

The DART ability to simulate forest stands with and without woody elements opened an 589 

opportunity for quantification of their potential impacts on SIF emitted, observed and escaped 590 

in the nadir direction from white peppermint dense and sparse canopies (Table 2). We 591 

quantified the wood shading effect, causing changes in canopy fAPARgreen due to the scattering 592 

and absorption of iPAR, and the obstruction (blocking) effect of eucalyptus wood, caused by 593 

scattering and absorption of SIF photons by bark. As expected, wood shadowing lowered SIF 594 

emitted at both investigated wavelengths by the percentage equal to the fAPARgreen reduction, 595 

i.e., by 17.0% for the dense and 9.7% for the sparse canopy. Comparison of the foliage only 596 

SIFTOC with the foliage and wood SIFTOC revealed lesser impacts at 686 nm than at 740 nm. 597 

SIF escape probability factors of the simulated eucalyptus canopies were generally low: 598 

SIFnadir(686)esc ≤ 0.15 and SIFnadir(740)esc ≤ 0.27. Overall, the wood obstruction effect was 599 

greater on far-red than red SIF escape factors, causing a consistent decrease of 4-6% in 600 

SIFnadir(740)esc, but almost no change in SIFnadir(686)esc for the sparse and less than 2% 601 

increase for the dense canopy (Table 2). 602 

 603 

Table 2. DART simulated impacts of woody material and bark on fAPARgreen of leaves, SIF leaf 604 
emissions, nadir top-of-canopy SIFTOC and nadir SIF escape probability factor at 686 and 740 nm of two 605 
white peppermint (Eucalyptus pulchella) stands with dense and sparse canopy covers (CC) and LAI = 606 
2.5. The relative impact on canopy SIF emitted by leaves (Bold fonts), is caused either by shadows 607 
casted on photosynthetically active foliage (shading effect; Eq. 8) or by absorption and scattering of SIF 608 
photons by bark-covered wood in combination with green foliage (obstruction effect; Eq. 11); (↓) 609 
indicates a decreasing and (↑) an increasing effect. 610 

DART scenario Dense canopy (CC ≈ 80%)  Sparse canopy (CC ≈ 40%) 

 

 

DART outcome 

Foliage 

only 

Foliage 

& Wood 

Relative 

impact 

[%] 

Foliage 

only 

Foliage  

& Wood 

Relative 

impact 

[%] 

fAPARgreen of leaves   0.466  0.399    0.306  0.279     
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Shading effect (𝜀fAPAR(400−750))    17.0 (↓)      9.7 (↓) 

Red SIF (686 nm)        

Emitted by leaves [W.m-2.m-1] 11.626  9.939   7.618  6.945  

Nadir SIFTOC [W.m-2.m-1.sr-1]   0.554  0.481   0.303  0.275  

SIFnadir(686)esc [rel.]   0.150  0.152  0.125  0.124  

Obstruction effect (𝜀SIF(686)esc)     -1.5 (↑)      0.6 (↓) 

Far-red SIF (740 nm)       

Emitted by leaves [W.m-2.m-1] 24.461 20.914  16.029 14.613  

Nadir SIFTOC [W.m-2.m-1.sr-1]   2.093   1.693    1.260   1.108  

SIFnadir(740)esc [rel.]  0.269   0.254    0.247   0.238  

Obstruction effect (𝜀SIF(740)esc)    5.7 (↓)    3.6 (↓) 

 611 

More detailed understanding of the wood-induced effects inside the dense white 612 

peppermint canopy can be obtained from analysing its DART-simulated vertical profiles of SIF 613 

balances and omnidirectional SIF escape factors. Plots of SIF()bal in Figure 10a and 614 

SIFomni()esc in Figure 10b, shown across the relative stand height, revealed two significant 615 

findings. First, every leaf-containing part of the canopy comprised of only foliage is acting as 616 

a SIF source (SIFomni()esc > 0), but the presence of woody components turned the parts 617 

emitting only a little fluorescence into SIF sinks (SIFomni()esc = 0). Second, a majority of the 618 

SIFTOC signal originates from leaves occupying top 25% percent of the eucalyptus canopy 619 

height. Although the close-up of the 0-30% canopy height section in Figure 10a shows a strong 620 

SIF absorption by trunks and lower branches that results in SIF()bal < 0 (especially at 740 nm), 621 

different SIF energy budget results were obtained for top 25% (i.e., 75-100%) of the canopy. 622 

The wood presence in this highly emitting canopy part increased the SIF(686)bal values only 623 

negligibly, as the bark and photosynthesizing leaves were capable of absorbing nearly all extra 624 

SIF photons reflected at 686 nm by woody structures. This result is in line with a very slight 625 

increase of SIFnadir(686)esc listed in Table 2. Wood presence, however, decreased absorptance 626 

and increased more than 2-fold reflectance of SIF at 740 nm, which significantly enhanced 627 

(almost doubled) the SIF(740)bal values in this upper canopy part. Despite this limited local 628 

boost, wood obstructions suppressed values of both SIF(740)bal and SIFomni()esc in the rest 629 
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of the canopy profile, leading to an overall 5.7% reduction in canopy SIFnadir(740)esc  630 

(Table 2) and, consequently, in a decrease of multi-angular SIFTOC (Figure 9ab).  631 

 632 

Figure 10. Vertical profiles of a) SIF balances (SIF()bal) and b) relative omnidirectional SIF 633 
escape factors (SIFomni()esc) at 686 and 740 nm for a dense white peppermint (Eucalyptus 634 
pulchella) canopy (CC ≈ 80% and LAI = 2) created only by foliage (dashed lines) and the same 635 
canopy containing also woody components (solid lines). Each 10 cm thick canopy layer is 636 
presented as a point of the relative canopy height [0-1]. For details about computations of SIF()bal 637 
and SIFomni()esc see section 2.4. 638 

 639 

4. Discussion 640 

4.1 Comparison of DART and SCOPE/mSCOPE models 641 

DART outputs were nearly in a perfect agreement with the corresponding results obtained 642 

for simple, turbid medium vegetation scenes with SCOPE and mSCOPE. Better agreements 643 

were obtained for the SIFTOC local maximum at 686 nm, where the signal is attenuated by the 644 

SIF chlorophyll absorption. Since the SIFTOC values at 740 nm are controlled dominantly by 645 

canopy structural traits, the smallest discrepancies were obtained for the geometrically more 646 

uniform Planophile LAD. Here, the SIFTOC signal is dominated by the first order scattering of 647 

prevailingly horizontally oriented leaves, lowering the occurrence of fluorescence absorption. 648 

The largest multi-angular SIFTOC differences in all tested LAD and LAI scenarios occurred in 649 

very oblique viewing angles, in which the modelled radiance is impacted by uncertainties in 650 

angular discretization of the upper hemisphere.  651 
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Despite of a generally high agreement with SCOPE/mSCOPE simulations, this model cross 652 

comparison is not a fully sufficient replacement of an independent validation of the DART 653 

model, which is expected to be performed with real canopy SIFTOC measurements in a near 654 

future. Nonetheless, this comparison provides the evidence that current integration of the 655 

Fluspect model and implementation of the 3D flux-tracking radiative transfer of SIF emitted 656 

from geometrically explicit leaves are as plausible as already validated 1D radiative transfer 657 

modelling approaches of SCOPE and mSCOPE models (Migliavacca et al. 2017; Pacheco-658 

Labrador et al. 2019; van der Tol et al. 2016; Vilfan et al. 2019). This conclusion provides us 659 

with a high level of confidence that the radiative transfer modelling of SIF in DART can be 660 

used to investigate the major canopy structural controls of SIFTOC in geometrically explicit 3D 661 

canopies, which structural complexity cannot be represented and tested in SCOPE or mSCOPE. 662 

4.2 SIF changes due to classification of sun-/shade-adapted leaves and canopy structure 663 

Distinct parametrization of sun- and shade-adapted leaves did not result in major 664 

differences in SIFTOC, but other canopy structural parameters were found to be more important. 665 

The specific distinction of leaf fqe for sun- and shade-adapted foliage appeared to have a smaller 666 

impact on DART simulated nadir SIFTOC than increasing LAI and foliage clumping reducing 667 

CC from 100% to 50% (c.f., Figure 1 and Figure 3). Yet, the impact of the leaf-light adaptation 668 

effect might increase, if a DART user applies Q double-threshold values that favour strongly 669 

the shade- over the sun-adapted class and simultaneously increases the PSI and PSII fqe inputs. 670 

Secondly, the influence of the shade-adapted class would be more significant when tested for 671 

naturally more clumped and taller (e.g., forest) canopies. Therefore, identification of correct Q 672 

thresholds and sun/shade fqe values are, together with measurements of canopy gaps and foliage 673 

clumping, essential for further investigation of the photosynthetic light adaptations and their 674 

impacts on SIFTOC.  675 

When evaluating impacts of maize canopy structural traits, our nadir SIFTOC results 676 

indicated a general superior role of LAI over the foliage clumping. However, doubling the 677 

foliage clumping of maize crop with LAI = 2 caused such a strong increase in absorption of red 678 

SIF photons by chlorophylls that diminished and fully equalled the previous increase in SIFTOC 679 

between 650 and 725 nm caused by doubling the number of regularly spaced plants, i.e., twice 680 

higher LAI (Figure 2). Interpretation of DART 3D radiative budget computed for the two SIF 681 

local maximums informed us that this strong red SIF reduction took place in the upper half of 682 
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the canopy (specifically between 50 and 90% of the canopy height; Figure 7), because the 683 

clumping caused a slight enhancement of SIF energy fluxes in most of the lower half canopy 684 

parts and the absorption of SIF by soil background was after the clumping introduction lowered. 685 

The fact that relative differences of red SIF balances in upper halves of the clumped and 686 

unclumped canopies are 2-fold more negative than the same differences of fAPARgreen (Figure 687 

7b) indicates that the increase in foliage shadowing is responsible only for a half of this 688 

clumping-induced SIF reduction. The second half is caused by a more frequent recollision and 689 

consequent greater absorption of red SIF photons by leaf photosynthetic pigments. Clumping 690 

driven results for LAI = 1 showed less consistent and milder effects, which means that canopy 691 

must have a certain minimal leaf density to produce these interactions. 692 

Clumping impacts caused by decreasing CC can be also demonstrated on the example of 693 

white peppermint stands without woody material. According to results listed in Table 2, 694 

decrease of CC from 80% to 40% triggered a reduction in fAPARgreen and, consequently, in 695 

emitted SIF by 34%, and simultaneously lowered the SIFTOC by 45% at 686 nm and by 40% at 696 

740 nm. Thereby, if one accepts an assumption that scattering rates of red and far-red SIF 697 

photons by the canopy structures (including structures of a leaf interior without foliar pigments) 698 

are equal, then doubling the leaf density while keeping a constant canopy LAI = 2 induced an 699 

additional 5% decrease in red SIFTOC attributed to a higher red SIF absorption by chlorophylls. 700 

It is important to mention that different quantitative impacts of LAI and foliage clumping on 701 

SIFTOC might be revealed if the classification of sun-/shade-adapted leaves is included and 702 

different (i.e., light adaptation specific) PSI and PSII fqe values are specified by a DART user. 703 

Since the natural variability in fqe and leaf biochemistry was not accounted for in this study, a 704 

direct comparison (validation) of these results with SIF observations of real croplands or forests 705 

(e.g., Guan et al. 2015; He et al. 2020; Peng et al. 2020; Wang et al. 2020) would be misleading.  706 

Multi-angular DART simulations of SIFTOC demonstrate that the influence of leaf size, 707 

foliage angularity and its clumping (CC) is equally or even more crucial for modulating SIFTOC 708 

in oblique viewing directions. The polar plots of SIFTOC at 686 nm for maize (Figure 5b) and 709 

eucalyptus (Figure 8a) canopies with LAI = 2 revealed the largest influence in very oblique 710 

backward directions behind the hotspot and the smallest impact in forward directions opposite 711 

to the hotspot. The patterns of angular anisotropy for SIFTOC at 740 nm are rather different. A 712 

significant impact of maize canopy structure was found around the Northern and the Southern 713 
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viewing angles (Figure 6b), whereas only the Southern viewing directions were impacted by 714 

the eucalyptus canopy architecture (Figure 9a). Thus, far-red SIFTOC of each architecturally 715 

distinct plant formation (i.e., plant functional type) must be approached individually and the 716 

canopy specific structural confounding effects must be removed or at least reduced before any 717 

application of remotely sensed SIFTOC. This recommendation is in line with a number of recent 718 

works developing far-red SIFTOC normalization approaches to mitigate the canopy structural 719 

effects (Liu et al. 2019b; Yang and van der Tol 2018; Yang et al. 2020b; Zeng et al. 2019).  720 

4.3 Impacts of wood structures on eucalyptus SIFTOC signal and SIF escape factors 721 

Accounting for presence of bark-covered wood structures in our eucalyptus simulations 722 

decreased nadir 740 nm SIFTOC by about 23% for the dense canopy and by 13% for the sparse 723 

canopy (Table 2). Results suggest that approximately one quarter of the total SIF reduction is 724 

caused by direct optical interactions (obstruction) of far-red SIF photons with bark surfaces in 725 

combination with green leaves under the natural geometrical distributions, whereas three 726 

quarters of the reduction resulted from the reduction in APARgreen due to wood shadowing. 727 

Having the bark reflectance and absorptance at 740 nm both equal to 50%, the wood structures 728 

of white peppermint trees acted, on one hand, as strong reflectors and boosted the far-red SIF 729 

emission produced in top 25% of the dense canopy (Figure 10a). On the other hand, they acted 730 

as a far-red SIF sink in the rest of the canopy, i.e., in lower 75% of the canopy relative height. 731 

Although it is expected that tree species with a lower bark near infrared reflectance will 732 

demonstrate radiative budgets with a higher far-red SIF obstruction (absorptance), the 733 

consistently decreasing nadir obstruction effects of both modelled eucalyptus stand indicate that 734 

the wood obstruction is a regular confounding factor that must be treated as a systematic error 735 

source. Therefore, it should be accounted for, or if feasible even corrected, when interpreting 736 

far-red SIFTOC data sensed remotely over forests.  737 

The effect of woody material on nadir SIFTOC at 686 nm was smaller, because the total pool 738 

of canopy red SIF photons originating just from PSII is naturally small and additionally reduced 739 

by absorption of photosynthetic pigments. Interestingly, the bark absorptance of 60% and 740 

reflectance of 40% at 686 nm, in combination with the specific geometry of eucalypt tree 741 

crowns (i.e., a strong branch foliage clumping with Erectophile LAD), decreased the red SIF 742 

nadir escape factor of the sparse canopy by 0.6%, whereas the same SIF escape factor in the 743 

dense canopy was increased by 1.5%. If we accept these simulations as generally applicable, 744 
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we may conclude that the presence of wood affects the red SIF forest canopy balance in both 745 

negative and positive ways. However, the impact is generally small, predominantly influencing 746 

the less emitting lower 75% of the canopy height rather than larger emissions originating from 747 

top 25% of the canopy. Since we modelled and analysed only two mono-species eucalyptus 748 

stands, additional simulations for other tree species, including natural variability in species-749 

specific optical, biochemical and structural properties, will be essential to draw more 750 

comprehensive and generic conclusions regarding the wood obstruction effects. 751 

DART estimates of the relative eucalyptus canopy SIF escape factor in the nadir direction, 752 

which can be used to compute the apparent SIF efficiency (a gross primary production proxy 753 

less impacted by canopy structures; Wang et al. 2020), were quite low, smaller than 0.15 for 754 

red and 0.27 for far-red SIF. Nonetheless, the omnidirectional escape factors of individual 755 

canopy layers were higher, reaching up to 0.65 for red and 0.9 for far-red SIF in the highly 756 

emissive top 25% of the canopy height (Figure 10b). These numbers and results in Figures 9 757 

and 10 suggest that oblique multi-directional observations of forest canopies (e.g., with tower-758 

based instruments) should capture more SIF photons than a single nadir measurement, and, 759 

thus, provide a stronger SIFTOC signal.  Once again, more simulations covering different forest 760 

types and their natural variability are required to conclude if these interpretations have a general 761 

applicability or if the white peppermint canopies represent a unique and possibly extreme case.. 762 

Despite a limited size of this study, we demonstrate that the entire 3D structural complexity, 763 

including woody material, must be taken into account when assessing quantity of SIF photons 764 

scattered and absorbed by canopy components and those escaping from a forest canopy. 765 

4.4 Development of DART SIF modelling for large canopies and landscapes 766 

DART SIF simulations for geometrically explicit representations of terrestrial vegetation 767 

have computational limitations regarding a simulated scene size and a number of objects (i.e., 768 

triangular facets) creating 3D mock-ups of plant canopies. Theoretically, one can create an 769 

extensive landscape occupied with an unlimited population of plants and other 3D objects (e.g., 770 

open-water bodies, roads, buildings, etc.), but the SIF simulation, and mainly radiative budget, 771 

of such a scene might be practically unfeasible as the computer memory and processor 772 

capabilities are not unlimited. Therefore, another two approaches, allowing more efficient 773 

simulations of large canopies and extensive landscapes, are being implemented and tested in 774 

DART: i) SIF modelling for vegetation canopies represented by 3D turbid voxels (i.e., voxels 775 
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filled with a vegetation turbid medium), and ii) a direct and reverse MC modelling called 776 

DART-Lux (Gastellu-Etchegorry et al. 2020). The latter one is especially highly promising for 777 

simulating extensive SIFTOC images. It uses only the landscape elements contributing to the 778 

formation of a simulated image, which decreases the computer time and memory by a factor as 779 

large as 100. Once fully tested and solidified, both approaches will provide DART users with 780 

potential satellite SIF observations adapted to common ground sampling distances of hundreds 781 

of meters. Such simulations could test multiple SIF confounding optical effects, for instance, 782 

those originating from photosynthetically inactive Earth surfaces of rough terrain 783 

configurations resulting in dynamic spatiotemporal irradiation changes and shadow patterns. 784 

5. Conclusions 785 

Physical and technical implementation of discrete anisotropic radiative transfer modelling 786 

for solar-induced chlorophyll fluorescence in geometrically explicit 3D plant canopies was 787 

described and compared with complementary cases simulated in 1D models SCOPE and 788 

mSCOPE. The cross-comparison revealed that DART simulations of SIFTOC for geometrically 789 

simple and spatially homogenous canopies produced nearly the same results as both 1D models. 790 

The largest SIFTOC differences occurred in very oblique viewing angles that are impacted by 791 

higher modelling uncertainties than the directions closer to nadir. 792 

Further exploitation of DART ability to simulate SIF images and radiative budgets of 793 

virtual 3D maize crops showed that the distinction and adjustment of fluorescence efficiencies 794 

for sun- and shade-adapted leaves had a smaller impact on DART simulated SIFTOC than an 795 

increase in leaf density (LAI) and local foliage clumping. When analysing nadir SIFTOC impacts 796 

by foliar density traits, we found a superior role of LAI over the foliage clumping. Nonetheless, 797 

the foliage clumping was shown to be an important controlling factor of maize and eucalyptus 798 

SIFTOC simulated at 686 and 740 nm in oblique viewing directions, and also a crucial driver of 799 

the red SIF balance, i.e., SIF emission and absorption, in vertical profile of irregularly spaced 800 

maize crop with LAI = 2. These study outcomes must be, however, reproduced for other plant 801 

functional types to confirm and investigate further the influences of leaf light intensity 802 

adaptations and density traits on SIF variability inside and at the top of different canopies.  803 

DART simulations of two white peppermint eucalyptus stands suggested that woody 804 

material has a significant impact on SIFTOC. Trunks and branches cast shadows on 805 

photosynthesizing leaves, decreasing their SIF emissions by about 15% in dense and 8% in 806 
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sparse canopy simulations. Although the absorbance and reflectance of eucalyptus bark (both 807 

about 50% at 740 nm), in combination with a multiple scattering and absorption by leaves, 808 

nearly doubled the pool of far-red SIF photons in the top 25% part of dense canopy, they 809 

reduced the overall canopy escape of far-red SIF in the nadir viewing direction by 6% and 4% 810 

in the sparse stand. Interestingly, the nadir escape factors of red SIF from dense and sparse 811 

canopies were almost unimpacted by presence of woody material, despite a relatively high 40% 812 

reflectance of bark at 686 nm. These unique results demonstrate that further development of 813 

SIF 3D radiative transfer modelling has a potential to reveal new insights in SIF observations 814 

of spectrally, spatially and topographically heterogeneous vegetated landscapes, acquired at 815 

different spatial scales by proximal, airborne and space-borne optical sensors.   816 
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Appendix A: Comparison of DART and SCOPE/mSCOPE SIF radiative transfers 832 

Since SCOPE and mSCOPE are turbid medium models, we prepared DART 3D scenes 833 

mimicking their 1D canopies as closely as possible. SCOPE, mSCOPE and DART were 834 

adjusted to use the same bottom-of-atmosphere (BOA) solar direct and diffuse irradiance, 835 

simulated with DART atmosphere radiative transfer module using the United States standard 836 

atmosphere gas model (NOAA et al. 1976) and the rural area aerosol model with a visibility of 837 

23 km. The scene was a 1 m height vegetation canopy above a bare soil with three Lambertian 838 

reflectance () properties: i) black soil ( = 0), ii) half-reflective soil ( = 0.5), and iii) loamy 839 

gravel brown dark soil with  linearly increasing with wavelength ( ≈ 6% at 550 nm,  ≈ 12% 840 

at 686 nm and  ≈ 15% at 740 nm). Every leaf facet had the same specific Lambertian 841 

reflectance and transmittance, i.e., there was no division of leaf optical properties on sunlit or 842 

sun-adapted and shaded or shade-adapted leaves. For the DART-SCOPE comparison, the eta 843 

fluorescence weight parameters were forced to one. For the DART-mSCOPE comparison, we 844 

split turbid scenes into two and three almost equally high layers (see Figure A1ab). Leaves of 845 

2- and 3-layer simulations were divided into sunlit and shaded (see % of sunlit leaves in each 846 

layer in Figure A1cd) and the eta parameters simulated per layer for both leaf cohorts in 847 

mSCOPE were entered in the corresponding DART simulations. Leaf optical properties were 848 

simulated with the same Fluspect version, using the input parameters listed in Table A1. In 849 

attempt to simulate strong SIFTOC signals, the fqe values for PSI and PSII were selected close 850 

to their potential maximums. Simulations considered three leaf densities, specified by the leaf 851 

area index (LAI) equal to 1, 2 and 4. In SCOPE simulations, we tested three leaf angle 852 

distributions (LAD):  Spherical, Erectophile and Planophile (Danson 1998), whereas we applied 853 

only the Spherical function, the most frequent naturally occurring LAD, in mSCOPE 854 

simulations. All leaves were homogenously distributed throughout the canopies, i.e. the foliage 855 

clumping index (Chen and Black 1992) was equal to 1. The DART leaf facets were equilateral 856 

triangles with the surface area of 0.08 cm2. Such small leaf area ensured independency of DART 857 

simulated TOC reflectance and SIF from the solar azimuth angle. The leaf width required for 858 

SCOPE/mSCOPE computations in the hot-spot direction was set to the height of DART facets, 859 

i.e., 0.37 cm. The solar azimuth angle (SAA) was fixed to 311.89° (anticlockwise from South) 860 

and the solar zenith angle (SZA) to 37.94° (i.e., solar elevation angle of 52.06°) as for 861 

Washington D.C. (USA) area (the Beltsville Agricultural Research Center; Lat. 39.03°N, Long. 862 

76.85°W) on 26th August 2014 at 14.00 local time (i.e., at 13.50 solar time). Nadir SIFTOC 863 
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radiance [W.m-2.m-1.sr-1] between 640 and 850 nm (1 nm bandwidth) was simulated for all 864 

combinations of the input parameters with the three RTMs. The obtained PSI, PSII and total 865 

SIFTOC values were compared statistically (as described in Section 2.6). 866 

867 
Figure A1. DART representations of a) 2- and b) 3-layered turbid-like canopies designed for comparison 868 
with the mSCOPE model (numbers indicate the height of each layer). Illustration of sunlit (under direct 869 
illumination; green) and shaded (under diffuse illumination, violet) triangular leaves for both c) 2- and 870 
d) 3-layered canopies (numbers indicate % of sunlit leaves per layer for each simulated LAI). 871 
 872 

Table A1: Input parameters of the Fluspect model used to simulate optical properties of 873 
SCOPE/mSCOPE turbid medium leaves and corresponding DART leaves (for explanations of input 874 
abbreviations see caption of Table 1). 875 

Fluspect inputs 
 

(m)SCOPE layers 

Cab 
[g.cm-2] 

Car 
[g.cm-2] 

EWT 
[cm] 

LMA 

[g.cm-2] 

N PSI 

fqe 

PSII 

fqe 

mSCOPE first layer (from top) 40 10 0.006 0.0014 1.0 0.006 0.03 

SCOPE & mSCOPE second layer 60 15 0.009 0.0021 1.5 0.006 0.03 

mSCOPE third layer (from top) 80 20 0.012 0.0028 2 0.006 0.03 

 876 

0.48 m

0.52 m

0.32 m

0.33 m

0.35 m

LAI 1~86.3%

LAI 2~75.0%
LAI 3~57.9%

LAI 1~63.1%

LAI 2~40.1%
LAI 3~16.7%

LAI 1~90.7%

LAI 2~85.5%
LAI 3~68.9%

LAI 1~74.0%
LAI 2~54.9%
LAI 3~30.6%

LAI 1~59.7%

LAI 2~35.8%
LAI 3~13.0%

a) b)

c) d)
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 877 

Figure A2. DART and SCOPE total nadir SIF of vegetation canopies with LAI=1, 2 and 4, three soils ( 878 
= 0%,   = 50%,  = loamy dark gravel soil), and with a) Spherical, b) Erectophile, and c) Planophile 879 
LAD (RMSE ~ root mean square error; d ~ index of agreement: 0 = no agreement, 1 = full agreement). 880 
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Figure A3. DART and mSCOPE nadir SIF of vegetation canopies simulated with the Spherical LAD, 882 
three soils ( = 0%,   = 50%,  = loamy dark gravel soil) in two layers a) without and b) with energy 883 
balance, and in three layers c) without and d) with energy balance (for abbreviations see Figure A2). 884 

 885 

Figure A4. Best agreement when comparing a) DART and b) SCOPE multi-angular SIF of a turbid 886 
medium canopy was found for the Erectophile LAD and a null soil reflectance. SIF radiance in the solar 887 
principal plane and linear regression of turbid-like DART and turbid SCOPE simulations (R2 = 0.99, 888 
RMSE = 0.03, d = 1.0 for all simulated viewing directions, i.e., VZA<90°, and RMSE = 0.02 for 889 
VZA<75°) are shown in c) and d) graphs, respectively (for abbreviations and symbols see Figure 5). 890 
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 891 

Figure A5. Worst agreement when comparing a) DART and b) SCOPE multi-angular SIF of turbid 892 
medium canopy with the Spherical LAD and a 50% reflective soil. SIF radiance in the solar principal 893 
plane and linear regression of turbid-like DART and turbid SCOPE simulations (R2 = 0.94, RMSE = 894 
0.21, d = 1.0 for VZA < 90° and R2 = 0.99, RMSE = 0.07 for VZA < 75°) are shown in c) and d) graphs, 895 
respectively (for abbreviations and symbols see Figure 5). 896 
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 897 

Figure A6. DART–SCOPE differences in multi-angular SIF radiance at 686 and 740 nm for a canopy 898 
with LAI = 4, having Spherical, Erectophile and Planophile LADs (the white star shows the solar 899 
position and black dots indicate the simulated viewing directions; for abbreviations see Figure 5). 900 
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