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Introduction

Biological data is both abundant and heteroge-
neous. Consequently, it benefits from non-Euclidean
structures like graphs for representation.

This study examines how Graph Neural Networks
(GNNs) perform in biological knowledge discovery
compared to traditional geometric models.

Knowledge Discovery

We use Oryza Sativa data, whose graph contains
a total of 2 068 651 edges and 264 291 nodes, of
which 149 799 are proteins, 54 954 are genes and
48 091 are GO terms.

Knowledge discovery can be represented as a link
prediction task between nodes in the graph. We fo-
cus on predicting new links between protein nodes
and GO terms.

Geometric Models

In geometric models, data is represented as vectors
in a latent space, with links as geometric transforma-
tions.

For instance, TransE[1] is trained to minimize the
distance between the starting node vector h plus the
relation vector r and the end node vector t (i.e., h +
r = t).

• Figure from [2]

Graph Neural Networks

GNNs iteratively update node states by aggregating
messages from neighbors through a learnable func-
tion, propagating information across the graph.

• Figure adapted from [3]

Evaluation Process

We rank the likelihood of true protein-GO term links
against 1000 random negative GO terms.

Better performance is indicated by higher ranks for

true links.

Results

LLMs as encoders

Proteins and genes can be embedded using large
language models trained on their sequences and
used as GNN node features.

Protein embeddings were derived by averaging amino-acid representa-
tions from esm2-650M[4].
Gene embeddings were obtained by averaging 6-mer representations
from agront-1B[5].

Conclusions & Perspectives

• Geometric models outperform GNNs, but require
more memory for training.

• LLMs biological sequence embeddings enhances
GNN performance.

• GNNs have potential for knowledge discovery in
biological data.

• Using edge features alongside node features
could improve GNN performance.
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