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A B S T R A C T   

Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant 
photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information 
from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT 
simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational 
constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART 
computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algo-
rithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: 
turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much 
better computational efficiency depending on the scene complexity, number of spectral bands and needed ac-
curacy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field 
at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3 × 3 km2 Ripperdan agricultural site 
that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large 
and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp. 
eu/).   

1. Introduction 

Solar-induced fluorescence (SIF) of vegetation is a spontaneous ra-
diation re-emission from 640 to 850 nm due to absorbed sunlight from 
400 to 750 nm. In competition with the photochemical and heat dissi-
pation processes, it allows an electron from a chlorophyll molecule 
excited by absorbing a quantum of light, to dispose of its excess energy. 
It provides valuable information on real-time plants photosynthetic ac-
tivity (Mohammed et al., 2019) which enables early stress detection 
(Song et al., 2018) and gross primary production (GPP) estimation 
(Zhang et al., 2020). 

The fluorescence quantum efficiency (FQE) of chlorophyll in vivo 
does not exceed 10%, with typical values under steady-state illumina-
tion of 0.5–3% (Porcar-Castell et al., 2014). Hence, the SIF remote 
sensing (RS) signal is a small fraction of sunlight scattered by a vege-
tation canopy. The resulting difficulty in interpreting SIF RS signal in 
terms of vegetation functioning traits is largely amplified by the 
dependence of the SIF signal on the vegetation 3D structure, combined 
with illumination and observation conditions (Hornero et al., 2021; 

Regaieg et al., 2021). This stresses the importance of physical models to 
link the within canopy SIF emission with RS signals. An ideal radiative 
model of SIF includes two major sub-models: (1) Leaf SIF emission 
model considering the incident spectral irradiance, leaf structure and 
biochemistry, and the probability of a photon absorbed by photosystems 
I (PSI) and II (PSII) to be re-emitted as SIF (i.e., FQE) derived from leaf 
physiological modelling. (2) Radiative transfer (RT) model of the radi-
ation propagation in the canopy to simulate the SIF radiance at the 
bottom and/or top of the atmosphere (i.e., RS signal). 

Here, we consider top of canopy SIF modelling including vegetation 
3D architecture. Canopy SIF models are generally canopy reflectance 
models with an imbedded leaf-level fluorescence model. For example, 
FLSAIL (Rosema et al., 1991), FluorSAIL (Miller, 2005) and SCOPE (van 
der Tol et al., 2009) models combine leaf SIF modelling with the SAIL 
canopy reflectance model (Verhoef, 1984). SAIL is one-dimensional 
(1D), as it represents vegetation as superimposed homogeneous layers 
filled by a turbid medium: infinite number of infinitely small plane el-
ements characterized by a statistical leaf angular distribution (LAD), a 
leaf area index (LAI), and optical properties. It simulates the radiative 
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transfer with: a source term for direct solar radiation, one stream for 
upward and one stream for downward fluxes, and the scattered radiance 
is integrated along the observation direction. SCOPE is a reference 
model for 1D SIF modelling (Damm et al., 2015; Verrelst et al., 2019). 
The 1D models’ major limitation is neglecting the vegetation horizontal 
heterogeneity. Accounting for vertical heterogeneity as in mSCOPE 
(Yang et al., 2017) only partly improves the situation. Indeed, the can-
opy horizontal heterogeneity has usually a much greater influence on RS 
signals than vertical heterogeneity (Regaieg et al., 2021). Some ap-
proaches aiming to simulate SIF at the global scale account for the in-
fluence of the canopy horizontal heterogeneity using clumping indices 
(Braghiere et al., 2021). However, they cannot fully capture the actual 
canopies 3D architecture including local topography, and the presence 
of woody elements, that impact remotely sensed SIF signals (Mal-
enovský et al., 2021; Regaieg et al., 2021). 

3D SIF RTMs adapted to realistic vegetation canopies descriptions 
represented as facets or 3D turbid medium are of great interest because 
of the 1D models limitation. For example, FLiES-SIF (Sakai et al., 2020) 
simulates SIF tree canopies having geometrically simple crowns (e.g., 
cone, cylinder, spheroid) whereas FluorFLIGHT (Hernández-Clemente 
et al., 2017), FluorWPS (Zhao et al., 2016), DART (Malenovský et al., 
2021) and FluCVRT (Kallel, 2020) simulate SIF for any canopy type. 
FluCVRT includes 3D leaf-level SIF modelling. These models use Monte 
Carlo ray tracing techniques, apart from DART that uses an adapted 
forward discrete ordinates method, called DART-FT (Flux Tracking). 
DART-FT simulates the canopy SIF radiance and reflectance images, the 
canopy 3D SIF radiative budget (RB) per photosystem, and therefore the 
canopy fluorescence escape factor (Guanter et al., 2014). DART-FT SIF 
modelling has been validated with model comparison (Malenovský 
et al., 2021), and successfully used in various SIF studies such as 
sensitivity analysis of the SIF signal in architecturally complex forest 
canopies (Liu et al., 2019a; Malenovský et al., 2021), scaling canopy- 
level SIF down to photosystems level (Liu et al., 2019b), and studying 
the far-red SIF escape probability from forest canopies (W. Liu et al., 
2020). 

Compared to 1D models, 3D models use more parameters, are more 
computationally demanding and therefore are not well adapted to 
regional or global scales. Indeed, forward models like DART-FT spend 
much time and memory tracking fluxes that contribute little to the 
simulated images. Based on the Bidirectional Path Tracing (BDPT) al-
gorithm (Veach, 1998), based on Monte Carlo modelling, the new DART 
mode called DART-Lux (Wang et al., 2022) highly reduces computer 
time and memory requirements to simulate images of large and complex 
landscapes. Therefore, we designed a novel SIF modelling method 
adapted to the BDPT algorithm for accurate and computationally effi-
cient simulations of SIF RS images of 3D vegetation canopies. To our 
knowledge, no similar SIF modelling method has ever been developed 
for BDPT algorithms. 

2. DART-Lux 

DART is an accurate and comprehensive 3D RT model developed at 
CESBIO since 1992 and patented in 2003. It simulates RS images of VIS / 
NIR / TIR spectro-radiometers, LiDAR observations, and 3D RB of nat-
ural and urban landscapes (Wang et al., 2020). Its standard mode, 
DART-FT, represents landscapes by 3D arrays of voxels filled with facets 
(e.g., vegetation, buildings), turbid medium and fluids. It iteratively 
tracks radiation in a user-defined number of discrete directions. DART- 
Lux, DART’s latest mode (Wang et al., 2022), uses the BDPT algorithm 
with Monte Carlo integration techniques. It can largely decrease time 
and memory requirements for DART images simulation of large and 
complex landscapes. It uses the geometry instance, “depth-first” ap-
proaches (Cormen et al., 2009) and the BDPT algorithm (Pharr et al., 
2016) that preferentially tracks fluxes that contribute most to observa-
tions by constructing paths that start both from the sensor and light 
sources. It is adapted to any configuration with any light sources and 

landscape elements with any Bidirectional Scattering Distribution 
Function (BSDF). The radiance measurement L(j) of pixel j of the simu-
lated image is: 

L(j) =

∫

D
C(j)(p)dA(p)

where p is a light transport path, 
D is the set of all light transport paths. D =

⋃∞
k=1D k, with D k the 

set of all paths pk = (p0,⋯,pk) of length k (i.e., k segments, k + 1 vertices 
pi; i∈[0, k], p0 on the sensor, pk on the light source), dA(p) is the area 
product for path p; e.g., dA(pk) = dA(p0)⋯dA(pk) with area dA(pi) at 
vertex i and C(j)(p) is the contribution function of path p to the mea-
surement L(j) of pixel j. 

L(j) is computed as: 

L(j) =

∫∫

A0Ω0

W(j)
e (p0,Ω)⋅L(p1→p0)⋅|cosθp0

i |⋅dΩdA(p0) (1)  

where A0 is lens area, 

Ω0 is the solid angle that encloses all incident directions from the 
optical system to the sensor plane, 
We

(j)(p0,Ω) is the importance function (Nicodemus, 1978), 
θp0

i is the angle between the incident direction and the sensor prin-
cipal optical axis and L(p1→p0) =

∑∞
k=1L(pk) is the radiance at sen-

sor’s vertex p0 from a surface’s vertex p1 with L(pk) the radiance 
incident on p0 due to all paths pk of length k; e.g., pk = (pk,⋯,p1,p0). 

The radiance incident at vertex pi of a path pk is the radiance from the 
vertex pi+1 that illuminates the vertex pi. A path results of the connection 
of a vertex of the sensor sub-path created with t vertices from the sensor 
and a vertex of the source sub-path created with s vertices from the light 
source. Fig. 1 shows a case with four vertices (p0, p1, p2, p3), with p0 on 
the sensor and p3 on the source. In DART-Lux, the maximum scattering 
order (i.e., number of ray bounces on the scene surfaces) is a user- 
defined parameter. It defines the maximum length of the light trans-
port paths. In this figure, this maximum length is three (k = 3 : 4 vertices 
and 3 segments) and the scattering order is 2. 

In DART-Lux, the BDPT algorithm estimates L(j) at sensor p0 from the 
contributions of sampled paths constructed by incremental path tracing 
from both the light source and the sensor. For example, if a path pk starts 
from the sensor, a point p0 is randomly sampled on the senor and a ray is 
traced from p0 and in the direction defined by the sensor properties, 
until intersecting a surface at a point p1. Then, the path is iteratively 
constructed using the two steps:  

(1) At each vertex pi, starting from i = 1, sample a new direction 
according to the BSDF, knowing the incident direction. Stop if i =

k.  
(2) Find the next vertex pi+1 by tracing a ray from pi along the 

sampled direction. 

A Monte Carlo integration technique estimates the pixel radiance 
measurement with an importance sampling technique (Kalos & Whit-
lock, 1986). Paths that most impact the radiance reaching the sensor 
have a higher probability to be sampled. Multiple Importance Sampling 
(MIS) (Veach & Guibas, 1995) is used to combine the different ways to 
sample the same path (e.g., Fig. 1b shows the five ways to sample the 
path in Fig. 1a) using weighting functions that give the weight wi(x) per 
sample x drawn from the sampling way i. The Russian Roulette (Veach & 
Guibas, 1995) is used to randomly stop the calculation at a certain path 
length to save computer time. A probability q is set to stop a ray and not 
to evaluate the integrand for the particular sample, and a probability 
(1-q) to evaluate the integrand and to weight it by 1

1− q, to account for all 
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the samples that are not evaluated. The theory of DART-Lux was pre-
sented in more details by Wang et al. (2022). 

The DART-Lux image (5 m resolution, 100 bands in [400–850 nm]) 
of the 3 × 3 km2 Ripperdan agricultural site with vines and more than 
600.000 trees (Fig. 12b) shows its potential. It needed 16.9 GB of 
memory and 13 min 4 s of simulation time with an Intel Xeon W-2295 
CPU @ 3.00 GHz (18 cores, 36 threads). DART-FT was not run because it 
needed about 50 TB of memory and 1600 h of simulation time. 

3. DART-Lux canopy SIF modelling 

Despite its interest in accurate and fast radiance simulations of large 
landscapes, to our knowledge, the BDPT algorithm has never been 
applied to canopy SIF modelling. Its adaptation to SIF modelling in 
DART-Lux is presented here. It relies on the surface form of the Light 
Transport Equation (LTE) to compute as an integral over all scene sur-
faces A the radiance reaching a vertex p from a vertex p′ (Fig. 2): 

L(p′→p) = Le(p
′→p)+

∫

A
f (p′′→p′ →p)⋅L(p′′→p′

)⋅G(p′′ ↔ p′

)⋅dA(p′′) (2)  

where Le(p
′ →p) is the radiance emitted from p′ to p, if p′ belongs to a 

light source, Le(p
′ →p) = 0 otherwise, 

G(p′′ ↔ p′) = V(p′′ ↔ p′

)⋅|cosθ′′0|⋅|cosθ′i |
||p′ − p′′ ||2 with index o for outgoing and 

index i for incident, 
f(p′′→p′ →p) is the BSDF of surface Σ, 
L(p′′→p′

) is the radiance reaching p′ from p′′, 
V is the binary visibility function: V(p′′ ↔ p′

) = 1 if p′ and p′′ are 
mutually visible, and 0 otherwise, 

cosθ′′0 = n′′
̅→

⋅ p′′p′
̅̅→

||p′ − p′′ || and cosθ′

i =
p′p′′
̅̅→

||p′ − p′′ ||⋅n
′

→

n′
→

and n′′̅→are the normal vectors to the surface Σ at p′ and to the 
surface A at p′′, respectively. 

Expanding Eq (2) by iteratively replacing L(p′′→p′

) by its right-hand 
term gives L(pk) for k ≥ 2: 

L(pk) =

∫∫

AA

∫

A
Le(pk→pk− 1)⋅

(
∏k− 1

i=1
f (pi+1→pi→pi− 1)⋅G(pi+1 ↔ pi)

)

⋅dA(p2)…dA(pk)

(3) 

We denote P(pk) (Eq (5)) the integrand in Eq (3), and T(pk), the “light 
path throughput”, the term between brackets in P(pk): 

T(pk) =
∏k− 1

i=1
f (pi+1→pi→pi− 1)⋅G(pi+1 ↔ pi) (4)  

P(pk) = Le(pk→pk− 1)⋅T(pk) (5) 

If pi belongs to a bi-Lambertian surface, with normal vector n→i, 
reflectance ρi and transmittance τi: 

f (pi+1→pi→pi− 1) =

⎧
⎨

⎩

ρi

π , if (pipi+1
̅̅̅→⋅ni

→)⋅(pipi− 1
̅̅̅→⋅ni

→) ≥ 0

τi

π , otherwise
(6) 

As for DART-FT (Malenovský et al., 2021), the Fluspect model (Vil-
fan et al., 2018) is used to simulate leaf-level SIF. It uses the leaf 
biochemical properties and FQEs input parameters to compute four leaf 
Excitation-Emission Fluorescence Matrices (EEFMs) Mx,y,ij for the N user 
defined spectral bands (i ∈ {1..N} for excitation and j ∈ {1..N} for 
emission), for the photosystem x (PSI or PSII) and direction y (forward or 
backward). The reflectance ρ and EEFM backward matrices (Mx,backward,ij)

play equivalent roles for scattering and SIF emission respectively, and so 
do the surface transmittance τ and EEFM forward matrices (Mx,forward,ij).

In the Fluspect model, the leaves are bi-Lambertian and SIF emitted 
radiance is isotropic. Therefore, the direction sampling method for SIF is 
the same as for scattering by bi-Lambertian surfaces with the PDF p(Ω) =
cosθ

π where θ is the angle between the surface normal and the sampled 
direction Ω, for any incident direction. 

To estimate the pixel radiance measurement, the contribution of 
each sampled path is evaluated by multiplying the integrand P(pk) of Eq 
(3) by the importance function and the cosine term in Eq (1). 

For N simulated spectral bands, the light source spectral radiance Le, 
the bi-Lambertian surface spectral reflectance and transmittance, and 
also the sub- and full-path throughputs are vectors of N elements. A path 
throughput is computed by successive element wise vector multiplica-
tions of the multi-spectral reflectance or transmittance value at each 
vertex by a geometric term G, divided by π(Eq (4), (6)). This product is 
associative and can be computed starting from the light source or 
starting from the sensor. A full path being the connection of a light sub- 
path and a sensor sub-path, its throughput is the element wise product of 
the light and sensor sub-path throughputs. Its multiplication by the light 
source radiance Le(pk→pk− 1) gives the integrand P(pk). 

For the simplicity of the equations below, we avoid writing the scalar 

Fig. 1. (a) Path p3 with four vertices pi (i ∈ {0..k} with k = 3). (b) The five ways to construct p3, with s and t vertices (s + t = k + 1 = 4) for the sources and sensor 
sub-paths, respectively. 

Fig. 2. LTE geometry: the vertex p′ scatters the ray coming from the vertex p′′
towards the vertex p. 

O. Regaieg et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observation and Geoinformation 118 (2023) 103254

4

multiplicative terms G and 1π. The ∝ symbol is used to denote the equality 
up to a scalar multiplier. If the SIF emission is considered, three com-
ponents of the radiance need to be computed: 1) the total radiance 
including the scattered radiation plus SIF radiation, 2) the PSI SIF 
radiance component, 3) the PSII SIF radiance component. For N simu-
lated spectral bands, a fluorescent surface Sl is characterized by four N ×

N EEFMs, in addition to its non-fluorescent BSDF. For photosystem x and 
for direction y, the EEFM is: 

Ml
xy∝

⎛

⎜
⎜
⎝

f l
xy1,1 ⋯ f l

xy1,N

⋮ ⋱ ⋮
f l

xyN,1 ⋯ f l
xyN,N

⎞

⎟
⎟
⎠

where f l
xyi,j is the EEFM element for an excitation spectral band (central 

wavelength: λi, bandwidth: Δλi) and an emission band (λj,Δλj), 
For a path with two segments, the integrand of SIF radiance 

component of photosystem x and direction y is the matrix product of the 
light source spectral radiance Le and the EEFM Mxy: 

Px(p2)∝Le × Ml
xy = (e1, e2,⋯, eN) ×

⎛

⎜
⎜
⎝

f l
xy1,1 ⋯ f l

xy1,N

⋮ ⋱ ⋮
f l

xyN,1 ⋯ f l
xyN,N

⎞

⎟
⎟
⎠

=

(
∑N

i=1
ei.f l

xyi,1,⋯,
∑N

i=1
ei.f l

xyi,N

)

Therefore, for a path pk with k + 1 vertices pl, l ∈ {0..k}, the inte-
grand for the total radiance (i.e., sum of scattered radiance, PSI and PSII 
SIF radiance) is: 

Ptotal(pk)∝Le × Ttot(pk) (7)  

where Ttot(pk)∝T1
tot × ⋯ × Tk− 1

tot is the total throughput, 

Tl
tot∝Rl +Ml

PSIy+Ml
PSIy =

⎛

⎜
⎜
⎝

rl
1 + f l

PSIy1,1 + f l
PSIIy1,1 ⋯ f l

PSIy1,N + f l
PSIIy1,N

⋮ ⋮ ⋮
f l

PSIyN,1 + f l
PSIIyN,1 ⋯ rl

N + f l
PSIyN,N + f l

PSIIyN,N

⎞

⎟
⎟
⎠

rl
i is the reflectance or transmittance of the surface Sl at the band 

(
λi,

Δλi), Rl∝

⎛

⎜
⎜
⎝

rl
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ rl

N

⎞

⎟
⎟
⎠, and f l

PSIyi,j and f l
PSIIyi,j the EEFM elements for an 

excitation band (λi,Δλi) and an emission band (λj,Δλj) for PSI and PSII 
respectively, for direction y. 

As the matrix product is associative, the product in Eq (7) can be cut 
into a light sub-path sub-product (i.e., N-element vector resulting from 
successive vector–matrix products), and a sensor sub-path sub-product 
(i.e., N × N matrix resulting from successive matrix–matrix products). 
However, Eq (7) provides only the total radiance (N-element vector). To 
have the PSI and PSII radiance separately as well, two additional 
N-element vectors need to be computed. For the path pk, in addition to 
Ptotal(pk), the PPSI(pk) and PPSII(pk) need to be computed. For a light path 
p3 with 3 segments (two fluorescent surfaces) (Fig. 1), PPSI(p3) and 
PPSII(p3) are: 

PPSI(p3)∝Le ×
[
T1

tot × M2
PSIy + M1

PSIy × R2

]
(8)  

PPSII(p3)∝Le ×
[
T1

tot × M2
PSIIy + M1

PSIIy × R2

]
(9) 

The bracketed terms in Eq (8) and (9) represent the interactions 
between the two surfaces that generate the two SIF radiance 

components. Eq (8) and (9) cannot be written as an associative product 
of terms each of which depends on the properties of a single vertex. 
Thus, they cannot be computed starting both from the light source and 
from the sensor. Therefore, the block matrix Ml

B is introduced: 

Ml
B∝

⎛

⎜
⎜
⎝

Tl
tot Ml

PSIy Ml
PSIIy

0 Rl 0
0 0 Rl

⎞

⎟
⎟
⎠

The light source radiance vector is also written as a block matrix: 
Le,B = (Le,total; Le,PSI ; Le,PSII), where Le,total, Le,PSI and Le,PSII are N-element 
vectors. Since light sources do not emit SIF, Le,PSI and Le,PSII are null 
vectors. If Mk− 1

B is the block matrix of the first surface hit by the light 
source, the incident radiance vector LB,k-2∝Le,B × Mk− 1

B at vertex k-2 is: 

LB,k-2∝
(
Le,total; 0; 0

)
×

⎛

⎜
⎜
⎝

Rk− 1 + Mk− 1
PSIy + Mk− 1

PSIIy Mk− 1
PSIy Mk− 1

PSIIy

0 Rk− 1 0
0 0 Rk− 1

⎞

⎟
⎟
⎠

=
(

Le,total ×
(

Rk-1 + Mk− 1
PSIy + Mk− 1

PSIIy

)
;Le,total × Mk− 1

PSIy; Le,total × Mk− 1
PSIIy

)

= (Ltotal,k-2; LPSI,k-2; LPSII,k-2)

Similarly, at vertex k-3, the incident radiance vector LB,k-3∝LB,k-2 ×

Mk− 2
B is: 

LB,k-3∝
(
Ltotal,k-2; LPSI,k-2; LPSII,k-2

)

×

⎛

⎜
⎜
⎝

Rk-2 + Mk− 2
PSIy + Mk− 2

PSIIy Mk− 2
PSIy Mk− 2

PSIIy

0 Rk-2 0
0 0 Rk-2

⎞

⎟
⎟
⎠

= (Ltotal,k-2 × (Rk-2 + Mk− 2
PSIy + Mk− 2

PSIIy); Ltotal,k-2 × Mk− 2
PSIy +LPSI,k-2

× Rk-2; Ltotal,k-2 × Mk− 2
PSIIy + LPSII,k-2 × Rk-2)

= (Ltotal,k-3; LPSI,k-3; LPSII,k-3)

And so on, for each vertex pl of the light sub path until reaching the 
sensor, the exiting radiance block matrix is: 

LB,l × MB,l∝
(
Ltotal,l;LPSI,l;LPSII,l

)
×

⎛

⎜
⎜
⎝

Rl + Ml
PSIy + Ml

PSIIy Ml
PSIy Ml

PSIIy

0 Rl 0
0 0 Rl

⎞

⎟
⎟
⎠

=
(

Ltotal,l ×
(

Rl + Ml
PSIy + Ml

PSIIy

)
;Ltotal,l×Ml

PSIy + LPSI,l × Rl;Ltotal,l × Ml
PSII

+ LPSII × Rl

)

All components of the total, PSI and PSII spectral radiance terms of pl 

are considered:  

– Total radiance Ltotal,l ×
(

Rl + Ml
PSIy + Ml

PSIIy

)
of surface pl hit by a ray 

of incident radiance.Ltotal,l  

– PSI radiance: sum of the emitted PSI radiance Ltotal,l×Ml
PSIy at pl due to 

Ltotal,l, and PSI radiance LPSI,l × Rl coming from the previous vertex 
and scattered at pl.  

– PSII radiance: sum of the emitted PSII radiance Ltotal,l×Ml
PSII at pl due 

to Ltotal,l, and PSII radiance LPSII,l × Rl coming from the previous 
vertex and scattered at pl. 

These equations can be used starting from the light source and 
starting from the sensor because they include associative products of 
matrices and each matrix depends on the properties of a single vertex. 
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For a light path with L+2 vertices (i.e., L hit surfaces of matrices Ml
B with 

l ∈ {1..L}), the integrand PB(pL+2) including the total, PSI and PSII sig-
nals from this path is: 

PB(pL+2)∝Le,B × MB,1 × MB,2 × ⋯ × MB,L 

If the light path pL+2 has S vertices in the light sub-path and T vertices 
in the sensor sub-path, excluding the light source and sensor vertices 
(L + 2 = S + T), the throughput of the light sub-path is Mlight

B ∝MB,1 ×

MB,2 × ⋯ × MB,S and of the sensor sub path Msensor
B ∝MB,S+1 × MB,S+2 × ⋯×

MB,S+T. After connecting the two sub-paths, the integrand is: 

PB(pL+2)∝Le,B × Mlight
B × Msensor

B (10) 

The light sub-path starts from the light source, then hits the surfaces 
from 1 to S. It gives the block matrix EB × Mlight

B of three N-element 
vectors. The sensor sub-path hits the surfaces S + T to S + 1. The matrix 
product being not commutative, EB × Mlight

B and Msensor
B are computed in 

opposite directions. 
Eq (10) is computationally expensive. For N spectral bands, a sensor 

sub-path throughput is a 3N × 3N matrix. For optimization, diagonal 
matrices are considered whenever possible when multiplying matrices, 

and only Rl + Ml
PSIy + Ml

PSII, Ml
PSI, Ml

PSII and Rl are stored instead of Ml
B∝ 

⎛

⎜
⎜
⎝

Rl + Ml
PSIy + Ml

PSII Ml
PSI Ml

PSII

0 R 0
0 0 R

⎞

⎟
⎟
⎠ because the product of matrices of 

this form has the same form (cf. Appendix 1). 
As DART-FT (Malenovský et al., 2021), DART-Lux can import SCOPE 

η factors vertical profiles for sunlit and shaded leaves to account for the 
influence of local bioclimatology on leaf-level SIF emission. With the 
assumption that only PSII emission is affected, we have: 

MB,η∝

⎛

⎝
R + MPSI + η.MPSII MPSI η.MPSII

0 R 0
0 0 R

⎞

⎠

Increasing the number of Monte Carlo samples/pixel Nsamples in the 
simulated images improves accuracy and increases simulation time. The 
optimal average Nsamples depends on the scene properties, pixel size, 
expected precision and simulation time. 

PSI and PSII radiance images (Fig. 12) of the 3 × 3 km2 Ripperdan 
zone illustrate the potential of DART-Lux SIF modelling for large land-
scapes. It needed 42.9 GB of memory and 2 h 44 min in simulation time 
with an Intel Xeon W-2295 CPU @ 3.00 GHz (18 cores, 36 threads). 
DART-FT was not run due to huge computational demands: more than 
100 TB of memory and 15000 h of simulation time. 

4. Assessment of DART-Lux SIF modelling 

Malenovský et al. (2021) validated DART-FT SIF modelling against 
the SCOPE/mSCOPE model for homogeneous canopies. Here, the ac-
curacy and computer efficiency of DART-Lux SIF modelling are assessed 
for three canopies, using DART-FT SIF as a reference. DART-Lux is also 
compared to SCOPE for homogeneous scenes. These model cross- 
comparisons between models M1 and M2 for N spectral bands and a 
given physical quantity q, are done with the Mean Absolute Relative 
Difference (MARD): 

MARDM1/M2 =
1

∑N
i=1Δλi

∑N

i=1

|qM1,i − qM2,i|

qM2,i
Δλi (11)  

4.1. Study cases 

Three vegetation canopies (Fig. 3) are studied. 1) Homogeneous 

turbid scene: 1 m high, LAI = 1, spherical LAD, nadir observation and 
solar direction (θs = 30◦

,ϕs = 225◦). 2) Maize crop field: 7.5 m × 5 m 
scene, 600 maize plants, 0◦-180◦ oriented rows and 40 cm spaced, 15 cm 
within row plant distance, LAI = 1.9, three viewing directions (nadir; 
θv = 30◦

,ϕv = 0◦

; θv = 60◦

,ϕv = 0◦

), and three solar directions (θs = 42.
78◦

,ϕs = 82.98◦

; θs = 31.46◦

,ϕs = 69.88◦

; θs = 21.41◦

,ϕs = 48.32◦

). 3) 
Tree plot: 10 m × 10 m scene, 10 randomly distributed trees with branch 
and trunk reflectance from the DART spectral database (“populus_-
tremuloides_bran”), LAI = 1.9, nadir viewing direction and (θs = 30◦

,

ϕs = 225◦). Simulations are over [400–850 nm] with 451 bands (Δλ =

1 nm) for the homogeneous site and maize field, and 45 bands (Δλ =

10 nm) for the tree plot. Atmosphere (gas model: USSTD76, aerosol 
model: RURALV23), leaf biochemistry and structure (Table 1), and 
ground reflectance “loam_gravelly_brown_dark” from the DART database. 
Spatial resolution is 0.1 m for the tree plot and the homogenous site. It is 
0.5 m and 0.01 m for the maize field, with 0.01 m selected to mimick the 
simulation of images of large scenes. It implied using fewer spectral 
bands in order to maintain reasonable computational needs for DART- 
FT: 35 excitation bands over [400–750 nm] and one emission band 
(λc = 765 nm,Δλ = 1 nm). 

4.2. Homogeneous turbid canopy 

SCOPE is a reference model for simulating the SIF radiance of ho-
mogeneous vegetation. Here, DART-FT and DART-Lux SIF simulate the 
homogeneous turbid scene of SCOPE as a homogeneous quasi turbid 
medium for two cases depending if SCOPE simulates or not the energy 
balance (EB):  

– No EB: the η factors are set to one in DART-FT and DART-Lux.  
– EB: DART-FT and DART-Lux use the SCOPE η factors for the default 

meteorological parameters. 

Fig. 4 shows DART-Lux, DART-FT and SCOPE PSI and PSII nadir 
radiance. DART-Lux closely matches DART-FT and, to a lesser extent, 
SCOPE. Without EB, MARDDART-Lux/DART-FT is 0.70% for PSI and 0.53% 
for PSII, and MARDDART-Lux/SCOPE is 5.24% for PSI and 4.93% for PSII. 
Without neglect of EB, MARDDART-Lux/DART-FT is 0.08% for PSI and 
0.19% for PSII, and MARDDART-Lux/SCOPE is 5.57% for PSI and 5.15% for 
PSII. 

4.3. Maize field 

The canopy nadir reflectance (Fig. 5) and SIF PSI and PSII radiance 
(Fig. 6, Table 2) simulated by DART-FT, DART-Lux and SCOPE for the 
three viewing directions and three sun directions show that:  

– DART-Lux and DART-FT match: MARDreflectance < 1.3% and 
MARDSIF radiance < 1%.  

– DART-Lux and DART-FT poorly match SCOPE: MARD reflectance up to 
16% and MARDSIF radiance from 3% to 19%, depending on the solar 
and viewing angles, with larger MARD for larger viewing angles. 

Table 3 shows the computer time and RAM needs of DART-Lux and 
DART-FT at 0.5 m and 0.01 m resolutions, and also the main input pa-
rameters that influence their computational needs. Compared to DART- 
FT (200 discrete directions, 8 iterations, illumination step = 10− 3m), 
DART-Lux (72 scene repetitions, maximum scattering order = 15, 
Russian Roulette starts at order 12 with cut-off probability = 0.5) de-
creases the memory by a factor of ≈34 and computer time by ≈1.4 at 0.5 
m resolution. It decreases the memory by ≈48 and computer time by 
≈50 at 0.01 m resolution. Fig. 7 shows nadir radiance images at 0.01 m 
resolution: DART-Lux RGB color composite, and also DART-Lux and 
DART-FT PSI and PSII nadir radiance images. 

DART-FT and DART-Lux were also run using the η factors calculated 
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by SCOPE with its default meteorological input parameters. Although 
these η factors should depend on the canopy 3D architecture, we made 
this approximation (i.e., application of 1D information in a 3D model) 
because of the unavailability of 3D energy balance model. DART-Lux 
and DART-FT match as for the case “No energy balance”: the MARD 
for canopy SIF radiance and for canopy reflectance (not shown here) 
keep the same order of magnitude. The differences with SCOPE are also 
similar. 

4.4. Trees plot simulation 

The reflectance and SIF radiance simulated for a solar direction (θs =

30◦

, ϕs = 225◦) of DART-Lux (172 scene repetitions, maximum scat-
tering order = 15, Russian Roulette starts at order 12 with cut-off 
probability = 0.5, 200 samples per pixel) are in agreement with 
DART-FT (100 discrete directions, 8 iterations, illumination step = 10− 3 

m) (Fig. 8): MARD is 0.27% for reflectance and<0.15% for SIF radiance, 

with memory need reduced by ~ 13 and computer time by more than 5 
times (Table 4). Fig. 9 shows the root mean square deviation (RMSD) of 
DART-Lux and DART-FT PSI and PSII radiance with the number of 
samples/pixel (i.e., simulation time). 

Fig. 10 shows the pixel-wise comparison of DART-FT and DART-Lux 
PSII images at 765 nm, for 200 samples/pixel and for 1000 samples/ 
pixel. The pixel-wise MARD is computed by replacing the average on 
spectral bands by the average on the image pixels. The pixel-wise MARD 
for 200 samples/pixel (16.89%) is larger than for 1000 samples/pixel 
(13.88%). Inversely, the R2 slightly increases from 200 samples/pixel to 
1000 samples/pixel. The MARDs are much higher than the spectrally 
averaged MARD for the total scene (0.15%, Fig. 8) in particular because 
the images have many pixels. The MARDs and R2 for PSI (not shown 
here) are nearly the same as for PSII. 

Fig. 11 shows DART-Lux images of the tree plot with 1000 samples/ 
pixel. The SIF signal from the bare ground comes from the SIF radiation 
emitted by the vegetation that is scattered by the ground. 

5. Discussion 

DART-FT and DART-Lux have different radiative transfer modelling 
strategies. DART-FT is determinist. It tracks radiation fluxes in N 
discrete directions that sub-divide the 4π space with an iterative 
approach that scatters at iteration i+1 radiation intercepted in iteration 
i (Gastellu-Etchegorry et al., 1996). DART-Lux is probabilistic. Indeed, it 
uses Monte-Carlo integration techniques to solve the LTE by sampling 
the possible light paths, evaluating their contributions, and giving 
higher importance weights to most likely paths (Wang et al., 2022). 

For small scenes, DART-Lux and DART-FT SIF closely match, with 
relative difference always smaller than 2%. This difference is small 
enough to be explained by the parameters that drive the precision of 
DART-Lux (e.g., number of samples/pixel) and DART-FT (e.g., dimension 
of voxels, numbers of discrete directions, etc.). For these scenes, 
compared to DART-FT, DART-Lux efficiency is not as pronounced as for 

Fig. 3. The simulated 3D mock-ups. a) Homogeneous medium b) Maize field. c) Tree plot.  

Table 1 
Leaf biochemistry and structure for the three study sites.  

Parameter Symbol Unit Homogeneous 
canopy 

Maize 
field 

Tree 
plot 

Leaf structure 
parameter 

N – 1.8 1.5 1.8 

Chlorophyll a +
b content 

Cab μg⋅cm− 2 45 50 30 

Carotenoid 
content 

Cca μg⋅cm− 2 15 15 10 

Water content Cw cm 0.009 0.009 0.012 
Dry matter 

content 
Cdm g⋅cm− 2 0.0020 0.0021 0.0100 

FQE for 
photosystem I 

ϕPSI – 0.002 0.002 0.002 

FQE for 
photosystem II 

ϕPSII – 0.01 0.01 0.01  

Fig. 4. Homogeneous site: DART-FT, DART-Lux and SCOPE PSI and PSII nadir radiance, without (left) and with (right) computation of the canopy energy balance.  
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larger sites as Ripperdan (Fig. 12). 

5.1. Homogeneous vegetation 

DART-Lux closely matches DART-FT and also SCOPE to a lesser 
extent. Its relative differences are<1% with DART-FT, and ≈5% for 
SCOPE. Four major factors can explain that differences are higher for 
SCOPE. 1) SCOPE simulates radiative transfer with four fluxes and as-
sumes the isotropy of downward and upward scattered radiation, which 
is not exact (except for the special case of exactly horizontal leaves). On 
the other hand, DART-FT uses many (here: 200) discrete directions, 
which allows an accurate representation of the anisotropy of the 
downward and upward scattered radiation. DART-Lux simulates this 
anisotropy even more accurately than DART-FT because it can track 
photons in any direction. 2) SCOPE discretizes the LAD with 13 leaf 
zenith angles, whereas DART-FT and DART-Lux randomly sample the 
LAD with a number of samples equal to the number of facets used to 
simulate the quasi-turbid medium. DART and SCOPE more closely 
match (results not shown here) by introducing into the code of SCOPE a 
more accurate LAD with 90 leaf zenith angles. 3) The quasi-turbid me-
dium is not exactly the turbid medium of SCOPE because its facets 
cannot be infinitely small and infinitely numerous. 4) The application of 
the SCOPE η factors in SCOPE, on the one hand, and in DART-FT and 
DART-Lux, on the other hand, differs. Indeed, SCOPE applies vertical 
profiles of η factors to homogeneous layers and DART to facets with 
interpolations on the η. For this simulation, the η factors (i.e., impact of 
local climatology) do not impact PSI SIF radiance and increase PSII 
radiance by ≈25%. 

Maize field: the DART-FT and DART-Lux total and SIF radiance 
closely match and tend to be smaller than for SCOPE, especially for 

oblique viewing directions, with relative difference possibly larger than 
25% for PSII in the NIR. This difference is explained by the canopy 3D 
architecture (3D maize plants, rows) with the clumping of the maize 
plants in DART, whereas for SCOPE, the vegetation is homogeneous 
which is more effective for intercepting radiation and therefore for SIF 
emission, and also for allowing the emitted SIF radiation to escape the 
canopy. The MARDDART− SCOPE exceeds 10% in most configurations and 
increases to reaches 18% for the oblique viewing angle θv = 60◦ . Indeed, 
in SCOPE simulations, radiation interception and therefore SIF emission 
occur mostly at the top layers of the canopy. When θv increases, the SIF 
seen by the sensor increases because the contribution of the top layers to 
the signal increases. Similarly, for the 3D maize scene, the SIF seen by 
the sensor from the plants tends to increase when θv increases. However, 
in these simulations, this increase is less important than for 1D because 
the viewing direction is parallel to the maize rows and therefore the soil, 
that does not emit SIF, keeps to be seen by the sensor when θv increases. 
As with the homogeneous canopy, local bioclimatology (i.e., η factors) 
greatly influences SIF emission, and therefore the canopy SIF radiance. 
Also, at 0.01 m resolution, DART-Lux deduces by ≈50 the memory usage 
and simulation time of DART-FT. 

5.2. Tree plot 

The pixel-wise RMSD (Fig. 10) of the DART-Lux and DART-FT SIF 
radiance images decreases with the number of samples/pixel in DART- 
Lux. This is explained by the decrease of the Monte Carlo noise in 
DART-Lux. For example, the pixel-wise MARD decreases from 16.89% 
for 200 samples/pixel down to 13.88% with 1000 samples/pixel. Here, 
convergence occurs for ≈ 1000 samples/pixel. The optimal number of 

Fig. 5. Maize field: DART-FT, DART-Lux and SCOPE reflectance for 3 solar directions and 3 viewing directions with no account of bioclimatology on SIF emission.  
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samples/pixel depends on several factors including the expected accu-
racy on scene radiance, and the spatial extent and complexity of the 
studied landscape. The accuracy of the representation of the 3D land-
scape should also be considered. 

Because Monte Carlo-based radiative transfer models are expected to 
be more accurate than discrete ordinate models, and because the BDPT 

algorithm is unbiased (Wang et al., 2022), the convergence of 
RMSDDART-FT-DART-Lux is probably an indication of the accuracy of DART- 
FT, with DART-Lux giving the exact value. 

Results stress that the reduction of simulation time CTFT/Lux =

DART-FT computer time
DART-Lux computer time of DART-Lux relative to DART-FT can be very 
important, especially for large and complex scenes. CTFT/Lux≈5800 for 

Fig. 6. Maize field: DART-FT, DART-Lux and SCOPE SIF PSII and PSII radiance, for 3 solar directions and 3 viewing directions with no account of bioclimatology on 
SIF emission. 

Table 2 
Maize field: MARD of DART-Lux canopy SIF PSI and PSII radiance compared to 
DART-FT and SCOPE for 3 viewing directions and 3 sun directions.   

Nadir θv = 30◦

, ϕv =

0◦

θv = 60◦

, ϕv =

0◦

θs = 42.78◦ ϕs = 82.
98◦

MARDDART− Lux/DART− FT (PSI, PSII) :
(0.46%, 0.44% 
)

(0.56%, 0.42%) (0.67%, 0.58%)

MARDDART− Lux/SCOPE (PSI, PSII) :
(3.19%, 4.24% 
)

(9.61%, 7.81%) (18.84%, 14.51% 
)

θs = 31.46◦ ϕs = 69.
88◦

MARDDART− Lux/DART− FT (PSI, PSII) :
(0.53%, 0.43% 
)

(0.76%, 0.61%) (0.71%, 0.40%)

MARDDART− Lux/SCOPE (PSI, PSII) :
(4.04%, 4.30% 
)

(10.04%, 8.03%) (16.78%, 12.87% 
)

θs = 21.41◦ ϕs = 48.
32◦

MARDDART− Lux/DART− FT (PSI, PSII) :
(0.88%, 0.63% 
)

(0.92%, 0.67%) (0.29%, 0.27%)

MARDDART− Lux/DART− FT (PSI, PSII) :
(3.20%, 4.06% 
)

(9.05%, 7.77%) (15.54%, 11.67% 
)

Table 3 
Maize field: input parameters and computational needs of DART-FT and DART- 
Lux.    

DART-FT DART-Lux 

5 m spatial 
resolution, 
451 spectral 
bands 

Viewing 
direction 

All upward 
discrete 
directions 

Nadir θv = 30◦

,

ϕv = 0◦

θv = 60◦

,

ϕv = 0◦

Computer 
time 

1 h 31 min 1 h 7 
min 

1 h 9 min 1 h 2 min 

Samples 
per pixel 

– 100 120 180 

Memory 
(GB) 

51 1.5 

0.01 m spatial 
resolution, 
36 spectral 
bands 

Viewing 
direction 

All upward 
discrete 
directions 

Nadir 

Computer 
time 

8 h 13 min 10 min 10 s 

Samples 
per pixel 

– 20 

Memory 
(GB) 

105.8 8.2  
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the Ripperdan site. Indeed, the simulation time of DART-FT greatly in-
creases with the number of facets, conversely to DART-Lux if the number 
of samples/pixel remains constant. Also, CTFT/Lux decreases with the 
number of simulated spectral bands. Indeed, the DART-FT forward flux 
tracking simulates SIF with vector-to-matrix products which gives a 
number of multiplication operations proportional to N2, with N the 
number of spectral bands. On the other hand, because DART-Lux path 
tracing is bi-directional, for rays traced in the backward direction, the 
SIF emission is modelled by a matrix-to-matrix product which gives a 
number of multiplication operations proportional to N3. In the absence 
of SIF simulation, CTFT/Lux is relatively independent of the number of 

spectral bands. 
Because it usually needs much less RAM than DART-FT for complex 

scenes especially if it uses the cloning approach (Wang et al., 2022), 

Fig. 7. Maize field: nadir radiance images at 1 cm resolution (W⋅m− 2⋅μm− 1⋅sr− 1). a) DART-Lux RGB color composite. b) DART-FT and DART-Lux SIF (PSI and PSII). 
λc = 765 nm, Δλ = 1 nm.

Fig. 8. Tree plot: DART-Lux and DART-FT total (a) and PSI and PSII (b) nadir spectral radiance.  

Table 4 
Computational needs of DART-FT and DART-Lux for the tree plot simulation 
(spatial resolution: 0.1 m, 45 spectral bands).   

DART-FT DART-Lux 

Computer time (min) 22 4 
Memory (GB) 9.2 0.715  

Fig. 9. RMSD of the DART-Lux and DART-FT PSI and PSII radiance images at 
765 nm as a function of the number of samples/pixel in DART-Lux. 
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Fig. 10. Pixel-wise comparison of DART-FT and DART-Lux PSII radiance images with samples/pixel = 200 (a) and 1000 (b). θs = 30◦

, φs = 225◦ λc = 765 nm,Δλ =

10 nm.

Fig. 11. Tree plot: DART-Lux PSI and PSII SIF nadir radiance images (W.m− 2.μm− 1.sr− 1), with normal (top) and stretched (bottom) color scales.λc = 765 nm,Δλ =

10 nm.
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DART-Lux is well adapted to large and complex landscapes for which 
DART-FT can be inoperative due to hardware constraints. Cloning can 
be used for elements of the simulated landscape are identical except for a 
geometric transformation: only a single 3D object and a specific geo-
metric transformation (i.e., spatial shift and scaling-rotation matrix) for 
each clone are stored in memory. Then, the memory needed in DART- 
Lux increases very little with the number of scene elements, 
conversely to DART-FT because a geometric transformation matrix 
usually needs much less memory than a 3D object. Moreover, for DART- 
Lux, the computation time does not increase a lot when the scene 
complexity (i.e., total number of scene facets) increases since the algo-
rithmic complexity of Monte Carlo methods depend only on the number 
of samples, conversely to DART-FT where the total number of tracked 
rays highly increases with the scene complexity. This makes DART-Lux 
more computational efficiency for large landscapes, which may be 
impossible for DART-FT due to hardware limitations. This is illustrated 
by the 3 × 3km2 SIF radiance image of Ripperdan (Fig. 12). Indeed, its 

simulation only needed 42.9 GB of computer memory and 2 h 44 min of 
computation time for DART-Lux and was impossible for DART-FT. 

6. Conclusions 

We designed a new SIF radiative transfer modelling that adapts the 
equations governing the SIF emission to the Bidirectional Path Tracing 
(BDPT) algorithm, used in DART-Lux, that constructs light paths from 
the light source and from the sensor. This is a novel SIF modelling 
approach. Indeed, apart from DART-Lux, to our knowledge, all Monte 
Carlo RT models that simulate SIF (e.g., FLiES-SIF, FluorFLIGHT, Flu-
orWPS, FluCVRT) use forward tracing, although the BDPT algorithm is 
more powerful for simulating SIF images. Adapting the BDPT algorithm 
to SIF modelling greatly improves the efficiency of DART for SIF images 
simulation, due to the efficiency of backward tracing, especially for 
sensors with narrow fields of view (Disney et al., 2000). 

For that, we adapted the equations that allow to compute the SIF 

Fig. 12. Ripperdan 3 × 3 km2 agricultural site (vineyards and trees), USA (36◦ 55′ N, 119◦ 58′ W). a) Google image used to create the DART-Lux’s 3D scene. b) 
DART-Lux RGB color composite. DART-Lux PSI (c) and PSII (d) radiance images (W.m− 2.μm− 1.sr− 1) at 760 nm simulated with 100 bands in [400 nm − 750 nm]). SIF 
radiance is null for the road (top right), bare earth fields (top left) and built areas (bottom center). DART-Lux images are at 5 m spatial resolution. 
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emission for the BDPT algorithms. The new equations allow to compute 
the radiance starting both from the light source and from the sensor, and 
to obtain the total signal (scattered + SIF radiance) in addition to the SIF 
radiance components per photosystem separately. Simulations con-
ducted with simple 3D canopies illustrated that DART-Lux and DART-FT 
SIF images have a good agreement. In addition, DART-Lux and 1D 
SCOPE gave similar total and SIF radiance values when using a very 
similar scene representation (i.e., homogeneous turbid medium and 
quasi-turbid medium). They tend to greatly differ if the 3D architecture 
of the studied landscape is considered. To account for the effect of local 
climatological conditions (e.g., leaf temperature) on leaf-level SIF 
emission, DART-Lux can be coupled with the 1D energy balance module 
of SCOPE by importing vertical profiles of η factors, similarly to DART- 
FT. 

Compared to DART-FT, DART-Lux SIF modelling greatly decreases 
computational needs (i.e., RAM and computer time). This decrease was 
by ≈50 times for the maize field with a spatial resolution equal to 0.01 
m, and was larger than 103 for the 3 × 3 km2 Ripperdan agricultural site. 
This makes DART a powerful model to simulate SIF images of large and 
complex landscapes, with many spectral bands. It opens new horizons 
for RS studies of vegetation. The novel SIF simulation in DART-Lux is 
already in the released DART versions (v1152 onwards) (https://dart. 
omp.eu). 
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Appendix 1. . Block matrices product 

The product of the block matrices M1 =

⎛

⎝
A1 B1 C1
0 D1 0
0 0 D1

⎞

⎠ and M2 =

⎛

⎝
A2 B2 C2
0 D2 0
0 0 D2

⎞

⎠, with D1 and D2 diagonal matrices, is a block matrix with 

same form as M1 and M2: 

M1 × M2 =

⎛

⎝
A1 B1 C1
0 D1 0
0 0 D1

⎞

⎠×

⎛

⎝
A2 B2 C2
0 D2 0
0 0 D2

⎞

⎠

=

⎛

⎝
A1 × A2 A1 × B2 + B1 × D2 A1 × C2 + C1 × D2

0 D1 × D2 0
0 0 D1 × D2

⎞

⎠

where D1 × D2 is a diagonal matrix. 
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