
HAL Id: hal-04631369
https://hal.science/hal-04631369

Submitted on 2 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Security Analysis of Widevine through the W3C
EME Standard

Stéphanie Delaune, Joseph Lallemand, Gwendal Patat, Florian Roudot,
Mohamed Sabt

To cite this version:
Stéphanie Delaune, Joseph Lallemand, Gwendal Patat, Florian Roudot, Mohamed Sabt. Formal
Security Analysis of Widevine through the W3C EME Standard. USENIX Security Symposium, Aug
2024, PHILADELPHIA, United States. �hal-04631369�

https://hal.science/hal-04631369
https://hal.archives-ouvertes.fr

Formal Security Analysis of Widevine through the W3C EME Standard

Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France

Joseph Lallemand
Univ Rennes, CNRS, IRISA, France

Gwendal Patat
Fraunhofer SIT | ATHENE, Germany

Florian Roudot
Univ Rennes, CNRS, IRISA, France

Mohamed Sabt
Univ Rennes, CNRS, IRISA, France

Abstract
Streaming services such as Netflix, Amazon Prime Video, or
Disney+ rely on the widespread EME standard to deliver their
content to end users on all major web browsers. While provid-
ing an abstraction layer to the underlying DRM protocols of
each device, the security of this API has never been formally
studied. In this paper, we provide the first formal analysis of
Widevine, the most deployed DRM instantiating EME.

We define security goals for EME, focusing on media pro-
tection and usage control. Then, relying on the TAMARIN
prover, we conduct a detailed security analysis of these goals
on some Widevine EME implementations, reverse-engineered
by us for this study. Our investigation highlights a vulnerabil-
ity that could allow for unlimited media consumption. Addi-
tionally, we present a patched protocol that is suitable for both
mobile and desktop platforms, and that we formally proved
secure using TAMARIN.

1 Introduction

The world of entertainment is evolving rapidly. Indeed, Over-
the-Top (OTT) platforms, such as Netflix, Amazon Prime
Video, and Disney+, have revolutionized the way we con-
sume content. OTT streaming services are websites that con-
sumers use to access their favorite movies. These services,
valued at $455 billion in 2022 [25], are accessible on almost
all Internet-enabled devices, including smart TVs, comput-
ers, laptops, smartphones and tablets. The large distribution
of media in user-controlled devices creates challenges for
OTT platforms. The main challenge remains piracy; a re-
cent study indicates that 80% of digital piracy is now due to
streaming [40]. This is due to the fact that digital video is a
set of binary information that represents video content. Bits
can be easily copied, transferred, or stored. Therefore, digital
video is intrinsically unprotected, i.e. digital video can easily
be viewed by anybody and be infinitely duplicated. Thus, in
some cases, it needs protection, namely access control, under
some defined conditions. For instance, many OTT platforms

enforce monthly subscription, meaning that customers pay
a regular fee to access a catalog of premium video contents
defined by the OTT.

Consequently, OTT platforms rely on DRM (Digital Rights
Management), which is a technology that aims to protect me-
dia from piracy. Modern DRMs ship content in an encrypted
form, and then control their decryption through authorized
modules on users’ devices. A prerequisite to decryption is to
process the corresponding license. A DRM license describes
the agreement between the OTT, or content providers, and
the consumer. A license contains the decryption key, the asso-
ciated usage rights and consumption policies that the DRM
module is authorized to perform with the key. Given their
sensitive nature, licenses are protected when delivered to the
client’s DRM module. The underlying protection mechanisms
are proprietary and unique for each DRM system, thereby re-
quiring Web OTT platforms to cumbersomely adapt their
websites for each DRM using plugins. For instance, until De-
cember 2014, users needed to install some Wine-wrapped
Microsoft Silverlight plugin to watch Netflix on Ubuntu [39].

Striving to make the Web an online environment to watch
movies, the World Wide Web Consortium (W3C) published
Encrypted Media Extensions (EME) as a W3C Recommen-
dation or Web standard [14]. EME is an Application Pro-
gramming Interface (API) that allows plugin-free playback
of encrypted content seamlessly in all major Web browsers.
Thus, Web developers no longer have to use proprietary tools
required by external plugins. Roughly, the EME protocol ab-
stracts the process of license acquisition and related actions,
allowing OTT platforms to develop their Web applications
once and to deploy them everywhere on the Web regardless of
which DRM system is used. EME adoption was decried [21];
the opponents articulated security and privacy concerns about
a “built-in DRM in the Web”. Several privacy issues were
pointed out by Patat et al. [34] that show how to leverage EME
to construct unique fingerprints. As for security, we merely
find some auto-congratulation messages of W3C members
claiming that EME “brings greater security to the Web” [43].
This is unfortunate, since, despite being optional, EME is

deployed on all major browsers [7]. Thus, any vulnerabil-
ity on a given DRM system can leverage the EME promise:
implement the exploit once (simply using Javascript) and
compromise everywhere. This makes EME a lucrative attack
target for piracy.
Problem Statement. Years after its wide integration, we
fill this gap by taking a closer look at the security of EME as
a protocol. In this paper, we present, to the best of our knowl-
edge, the first in-depth security analysis of the EME API stan-
dard covering a rigorous formal analysis of both its workflow
and security requirements. A significant challenge in con-
ducting such an analysis is that the EME standard involves
various opaque messages that depend on the underlying DRM
system. It is important to note that the EME specifications do
not introduce yet-another DRM system; rather, they abstract
browser interaction with pre-existing DRM modules. There-
fore, any complete analysis must be contingent on a particular
instantiation of EME. We base our analysis on Widevine [16],
which is a cross-platform (Windows, Android, Linux and
macOS) and cross-browser (Firefox, Edge, Chrome, and all
other Chromium-based browser) DRM owned by Google.
The scope of other proprietary systems, such as FairPlay [1]
and PlayReady [29], would have been more limited. More
importantly, each DRM system introduces a plethora of propri-
etary technical details. We prioritized lucidity in our presenta-
tion and longitudinal analysis over completeness, particularly
since our conclusions would have remained unaltered: the
security of EME is quite brittle and requires formalization to
accomplish the associated security goals.

In [22], Heilman introduces the concept of perfect DRM
using game theory. A perfect DRM system is one such that
content protected by it is not available for further copying; the
option of piracy is unavailable to consumers. Therefore, we
would like to formally prove the absence of piracy: i.e. that
EME, when instantiated with a specific DRM system, namely
Widevine, satisfies a desired security notion. At a method-
ological level, piracy can be hard to model because it involves
security notions beyond the straightforward confidentiality
and integrity of messages. In addition, it should scale well
enough to allow us to model the complex EME workflow.
Contributions Summary. We present in this work four
main contributions. First, we reverse engineer the EME mes-
sages as defined by Widevine. Second, examining the security
mechanisms of Widevine, we discover a vulnerability that
allows a malicious user to load arbitrary consumption policies
for any license, given a plausible behavior of the Widevine
client. We propose a mitigation to fix that flaw. Third, we
define clear security goals capturing the notion of piracy. Fi-
nally, supported by our EME insights and reverse engineering,
we formalize Widevine EME and its expected security goals,
and perform formal analysis to prove the absence of piracy
despite subtle behaviors of Widevine implementations. For
our model, we leverage the TAMARIN prover [28], a symbolic
protocol analysis tool, to analyze several non-trivial aspects

of Widevine EME. One of the challenges in developing our
model is that it requires finding middle ground between the
EME protocol with its opaque messages, and the proprietary
technical details of Widevine. Thus, we needed to identify
the core theoretical concerns of EME, and apply them to how
Widevine is implemented in practice. We notably identify
how updating licenses in EME constitutes a central part caus-
ing sophisticated security issues. In fact, the vulnerability we
identified was discovered through our formal analysis. We
also formally study the mitigation we propose, and prove that
it achieves our formalization of Heilman’s perfect DRM se-
curity. Overall, our work shows that the W3C claims about
“greater security” guaranteed by EME cannot be taken for
granted; formal analysis is needed to verify them.
Related work. DRM systems have never ceased to be
broken by attackers looking for pirated content. However,
as breaking DRM is illegal in many countries, few hack-
ers have ever published detailed technical descriptions of
their attacks. Some remarkable exceptions are the “Beale
Screamer” case [38], and more recently the L3-decryptor
against Widevine [19]. Since 2010, Widevine has seen exten-
sive adoption. Unfortunately, little literature was dedicated to
the study of its security mechanisms. Patat et al. delve into the
undocumented Widevine protocol, shedding light on its vari-
ous cryptographic components on Android in [33]. They also
explore the privacy implications of EME Widevine in [34].
Zhao [46] breaks the Trusted Execution Environment-based
Android Widevine. These studies offer profound insight into
the design of Widevine, yet the integration of Widevine with
the W3C EME standard remained until now unstudied. Our
work explores this area, examining how Widevine instantiates
EME messages. Unlike previous attacks with sophisticated
low-level exploits, ours could in principle be exploited by
JavaScript code executed in a simple web page.

Other work has formally studied the security of Web stan-
dards. Besides EME, the W3C develops Web standards for
various security applications, including notably the Web Au-
thentication API [23], the Web Cryptography API [45], and
the Web Payment API [24]. Formal methods are generally
not used during the standardization process (though it has
been suggested e.g. by [20]). They have however been ap-
plied to several already existing W3C standards [6, 13, 17].
These analyses all uncovered severe, previously unknown at-
tacks, illustrating the power of formal verification techniques.
Because of its opaque messages, EME remained without anal-
ysis, which our work addresses. Unlike other work, we do not
use specialized formal models designed for the Web, such as
WebSpi [3] (based on PROVERIF) or the Web Infrastructure
Model (WIM) [15]. Indeed, the threat model we consider is
ill-adapted to these models, since we suppose that the attacker
controls the browser.
Reproducibility and Responsible Disclosure. All our for-
mal models written in TAMARIN are available online [11],
for reproducibility purposes, and to assist future work on this

topic. Moreover, we have communicated our draft to the ed-
itors of the latest EME draft. On February 13th 2024, they
discussed our technical findings in the media WG meeting.
The meeting minutes can be found in [44], where our findings
were acknowledged. In further discussions, editors suggested
a Widevine contact, which we did reach on March 25th, but
we have not got any answer. This is unfortunate, since our re-
sults concern the particular instantiation of EME by Widevine,
even though EME editors mentioned that they would follow
on the suggested patch and modify the standard accordingly
whenever Widevine reply.

2 Background on DRM

DRM is a set of tools used to protect content from piracy. To-
day, most large streaming platforms use either Widevine [16]
or PlayReady [29] to ensure that only authorized viewers can
access protected content.

2.1 DRM Common Architecture
DRM systems are complex, and their design differs depend-
ing on the context in which they are used. Here, we only
consider DRMs protecting content delivered over the Internet
in unicast mode. In this family, all DRMs share at least five
common components [36]: (1) a content packager to encrypt
content, (2) a content server that delivers the protected media,
(3) a content provider that manages subscriptions, (4) a license
server that delivers licenses under the control of the content
provider, and (5) a client application that enables content con-
sumption. The first two elements are often mapped to a single
entity called Content Delivery Network (CDN), whereas the
content provider and the license server are mapped to an entity
called Over-the-Top (OTT) media service platform.

We now describe the transactional model of DRM, which
details what happens once a subscribed client selects some
content to consume. First, the associated CDN delivers the
protected content to the client’s device. To play back the
received content, the DRM client needs the corresponding
license. Thus, it requests a valid license from the license server
operated by the content provider. A license holds the content’s
symmetric encryption key, as well as the usage rights granted
to the client. Once the license server has verified that the
requester fulfills some mandatory conditions, it builds the
corresponding license, and cryptographically binds it to the
targeted DRM client. When receiving the license, the DRM
client is now ready to decrypt the protected content.

2.2 DRM Common Security Model
In [12], Diehl presents a layered security model for DRM
based on four main features: content protection, rights en-
forcement, rights management, and trust management. The
content protection layer securely seals the content (using e.g.

symmetric encryption), so that nobody may access it unless
explicitly authorized. On the client side, this layer decrypts
the content, for the client application, if it receives the asso-
ciated secret key from its upper neighbor, namely the rights
enforcement layer. That layer ensures that the content will
be used under the conditions indicated by the usage rights,
as they were defined by the rights management layer. This
third layer, on the client side, forwards its decision to its
lower counterpart to prevent any unauthorized use. On top,
the trust management layer ensures that only trustful princi-
pals interact, and behave as expected. Trust is enforced via
authentication and certificates.

We can map the different DRM elements to this four-layer
model. The content packager and content server, namely the
CDN, implement the content protection layer. The license
server implements the rights enforcement layer, whereas the
content provider implements the rights management layer.

2.3 W3C EME Standard

As mentioned in the introduction, in response to the frag-
mented landscape of DRM solutions, recent technical stan-
dards have been defined to solve the interoperability issue. Of
particular interest, we focus on the W3C EME standard. It
was established to offer a uniform API, allowing web pages
to seamlessly interact with browser-supported DRM systems.
The primary objective of EME is to enable content providers
to work consistently across various browsers, by abstracting
a common workflow for license acquisition and usage rights.
Although optional, EME has gained support from major web
browsers, including Edge, Firefox, Chrome, Safari, Opera, as
well as their mobile counterparts [7]. We present below the
different components involved in EME, and we detail its API.

EME Components. We list below the main entities as in-
troduced in the standard.

• CDM: The Content Decryption Module refers to the
DRM system specified in EME. It is responsible for
protecting licenses, and enforcing usage rules when de-
crypting media content on the user’s device.

• User-Agent: The user-agent, e.g. a browser, refers to the
entity implementing the EME workflow and API. The
EME API is invoked through JavaScript to communicate
with a specific CDM.

• License Server: License requests generated by the
CDM are transmitted to the corresponding license server
associated with the specific CDM. This server manages
licenses and usage rights for protected content.

The EME design splits the client application, as described
in Rosenblatt et al.’s architecture [36], into the user-agent
(mostly open-source) and the CDM (mostly proprietary).

License
Server

Browser
EME API

EME compatible CDMs

1a
Instantiate selected CDM
createMediaKeys()

Selected CDM
e.g., Widevine

2
Create a session
MediaKeys.createSession

3
Ask for License Request
MediaKeySession.generateRequest()

4
Opaque License Request
onMessage()

7
Opaque License Response
MediaKeySession.update()

9
Opaque Renewal Request
onMessage()

12
Opaque Renewal Response
MediaKeySession.update()

13
Close session
MediaKeySession.close()

5 POST request

6 POST response

POST request

POST response11

8
Decrypt Frame
HTMLMediaElement.onencrypted()

10

loop

optional loop

1b
Bind Server and CDM
setServerCertificate()

Figure 1: EME Workflow – License Acquisition and Renewal.

Protocol Workflow. EME establishes a standardized API
that revolves around acquiring licenses, as in the rights en-
forcement layer, while abstracting the specificities of the un-
derlying protection techniques. Consequently, the EME API
depends on various objects and events to facilitate the im-
plementation of proprietary DRM systems. Note that user
authentication by the content provider falls outside the scope
of EME. An overview of the protocol is given in Figure 1.
We assume that the EME user-agent has already obtained all
necessary details about the encrypted media from the CDN,
including supported codecs and which DRM system to use.

The execution of the EME workflow begins at
step 1a, after gaining access to a KeySystem using
requestMediaKeySystemAccess method with, as inputs,
the requested DRM and configurations for decrypting and
decoding the media, an instantiation of a CDM is performed
using createMediaKeys. At this particular stage, the CDM
is accessible and represented by a MediaKeys object; how-
ever, it is unable to receive any license. Optionally in 1b, the
setServerCertificate method can be invoked to bind the
MediaKeys object to a given license server certificate. Then,
in step 2 , a session is established within the CDM, repre-
sented by a MediaKeySession object, and is identified by a
unique sessionID. The EME standard mandates that sessions
be associated with separate key wallets and isolated crypto-
graphic environments. They are used to exchange data, mostly

licenses, between the license server and the CDM. When a ses-
sion is created, its key wallet is empty, and it cannot decrypt
any content.

Acquire Licenses. In order to obtain media decryption
keys and corresponding usage rights, also known as licenses,
media-specific Initialization Data is sent to the CDM in
step 3 . This data is used by the CDM’s generateRequest
method to generate a license request. The specific content
of the generated request is entirely dependent on the DRM
system being used, as indicated in step 4 . It is treated as an
opaque message within the EME framework. Upon receiving
the opaque license request, the user-agent forwards it to the
license server in step 5 . The server answers with an opaque
license response in step 6 . Using the EME API call update
in step 7 , the response is transmitted to the CDM session,
and subsequently handled by DRM-specific mechanisms. Ac-
cording to EME, a successful call to update implies that the
decryption key is now in the CDM memory, and may only
be used according to its usage rights. Now that the CDM
session possesses at least one license, it is ready to play the
encrypted media in the browser through the HTML5 video
element in step 8 . At this stage, the session can either be
closed in step 13, or undergo the renewal process.

Renew Licenses. Following their reception, licenses may
or may not be renewed, depending on their usage rights. If per-
mitted, the CDM fires an event to deliver a renewal request to
the user-agent. It does so using the MediaKeyMessageEvent
interface, with its type attribute set to license-renewal in
step 9 . Similar to the initial license acquisition process, this
request is forwarded to a license server in step 10. Once the
renewal response is received in step 11, the update method is
invoked in step 12, updating proprietary metadata as needed.

3 Widevine EME

Widevine is a closed-source proprietary DRM developed
by Google [16]. Over the years, Widevine has grown into
one of the most widely adopted DRM technologies, sup-
porting various formats such as MPEG-DASH, HLS, or
CMAF [26,27,31], and is now leveraged by leading OTT plat-
forms, such as Netflix, and Disney+. Widevine is supported
on a wide range of devices, including Android devices, smart
TVs, game consoles, and desktop browsers on all major oper-
ating systems, including Windows, Linux, and macOS. Since
its integration as EME CDM in the Chromium project [8] in
February 2013 (three months before the release of the EME
first public draft), Widevine has been steadily deployed in
various browsers. Note that most browsers provide support
for only one or two CDM systems, including Widevine in
most cases.

The Widevine cross-platform technology had to adapt its
CDM implementation, especially its callable API, with re-
spect to the host framework and the required security level.

This adaptation does not come without risk, since Patat et
al. [33] leverage the abstraction layer defined for Android
to break Widevine’s security. One might reasonably wonder
whether the EME abstraction can also be used somehow to
bypass Widevine protection. In other words, is the Widevine
instantiation of EME secure enough for streaming services?

To answer this question, we first dissect the different
opaque messages instantiated by Widevine during the EME
workflow. We also identify the different elements being
present in the CDM internal memory during an opened ses-
sion. Then, we present an attack given the target CDM not
enforcing some additional security verification.

3.1 Experimentation Settings

Operating Systems and Browsers. In order to have a broad
view of Widevine’s EME instantiation, we used Android mo-
bile devices, being the most used OS in the world [41], and
desktops implementation of the CDM. For Android, we used
Nexus 5/5X and Pixel 1, 3, 4, and 6 from Android versions
6 to 12. On desktop, we used Windows 10/11, macOS Big
Sur, and Ubuntu 22.04. Each time, we performed our analysis
on major up-to-date browsers with Firefox up to version 122,
Chrome version 121, and Edge version 120 [42].

Widevine Ecosystem. For each device and browser, we used
the up-to-date CDMs of Widevine, ranging from version 3.1.0
to 16.1.0 for Android, and the desktop version 4.10.2557.0.
As for the license server, we set up our environment to com-
municate with the integration test license server provided by
Widevine, to stay as close to the intended server behavior as
possible.1

Research Methodology. Our approach to analyzing the
Widevine EME protocol involves the observation of EME
messages and API calls, using reverse engineering techniques
and the monitoring of the Widevine CDM activity. To this end,
we leveraged various tools, including Frida [35], Ghidra [30],
Widevine-dedicated monitoring utilities such as WideXtrac-
tor [2], and custom scripts to inspect and manipulate EME
interactions. We performed static, dynamic and API reverse
engineering techniques to analyze Widevine on both Desktop
and Android platforms.

• Static Analysis: Using Ghidra, we decompiled Widevine
binaries to gain a structural understanding of the imple-
mentation and to identify key functions involved during
the protocol, such as license acquisition or renewal.

• Dynamic Analysis: We leveraged Frida for Android and
WideXtractor for EME monitoring on Desktops. These
tools enabled us to write hooks for the identified func-
tions and monitor the data processed during typical
CDM-Server communications.

1https://proxy.staging.widevine.com/proxy

• API analysis: We manipulated the arguments of identi-
fied function calls, by introducing errors, redundancies,
and forged parameters, to note all resulting behaviors.

This setup allowed us to intercept all messages between our
test devices and the Widevine integration test server, during
the decryption and playback of protected media content using
the CDM. We documented all message exchanges and API
invocations for subsequent analysis, enabling a comparative
study across different operating systems and CDM versions.
Through static analysis, we gained insights into the structure
of opaque messages within EME. This analysis allowed us to
better understand Widevine EME, including license acquisi-
tion, renewal processes, and cryptographic elements based on
prior works [33, 34], but also on our own reverse engineering
efforts for Widevine EME message format, security valida-
tion, temporal checks, and the management of data within the
CDM memory. We also study the CDM behavior when errors
occur during an open session.

3.2 CDM Internals
We present the different stages and operations of the Widevine
CDM, from the initial state setup to license acquisition and re-
newal process. A summary of message contents and memory
internals are presented in Table 2 and Table 3 of Appendix A.

3.2.1 Initial State

The Widevine CDM is provisioned with a pair of RSA keys,
called the Device RSA Key, either in a hardcoded form like
in desktop implementations, or on the fly through a provision-
ing mechanism [33]. With it, the CDM composes a Client
ID from the Device RSA Key public part combined with
device metadata [34]. Additionally, it possesses a service cer-
tificate public key obtained from the remote license server
(via setServerCertificate), which holds the correspond-
ing private key. Once the EME workflow has started and the
necessary information has been retrieved from the license
server, a session within the CDM can be initiated, setting the
stage for license acquisition.

3.2.2 Acquire Licenses

Client Request. Following a call to generateRequest, the
CDM creates a nonce in its memory to serve as an anti-replay
measure. Using the public key within the service certificate
from the license server, the CDM encrypts a freshly generated
privacy key, which is used to encrypt, for privacy purposes
(as shown in [34]), the Client ID containing the public Device
RSA Key. Alongside these elements, the request also includes
a randomly generated Request ID, the desired Key ID (KID
for short) extracted from the media metadata and used by
the license server to retrieve the corresponding key, and the
request time T1 which is stored in the CDM memory. The

https://proxy.staging.widevine.com/proxy

whole request is signed using the Device RSA private key of
the device and then sent to the license server. Three elements
are stored in a session memory of the CDM: the nonce, T1,
and the whole request. Our assumptions on server-side request
processing are discussed in Section 3.2.4.
License Format. The license consists of two main parts. The
first part contains the encryption by the Device RSA public
key of a fresh Session Key. Three keys are derived from that
Session Key: the Asset Key, the MAC Server Key and the
MAC Client Key. The derivation process, detailed in [33],
involves some constant values as well as the client request.
The derived keys are used to protect the second part of the
license, in which we find the previous Request ID, the request
time, KID and the license usage rights called policies. Among
others, the policies define the license duration ∆1. Also in-
cluded in this part are the decryption key, called Content Key,
and its KCB (Key Control Block). The KCB contains the
request nonce, and is encrypted by the Content Key, which is
encrypted by the Asset Key. The integrity of the second part
is protected with an HMAC using the MAC Server Key.
License Processing. Upon receiving the license response,
the CDM acts in two phases. In the first phase, it decrypts
the Session Key using its Device RSA private key, derives
the three keys from this Session Key, and stores them in its
memory. In the second phase, it verifies the HMAC of the
received license and checks the equality of the stored T1 and
the one received in the response. The CDM first retrieves the
Content Key, and then decrypts the KCB to extract the nonce.
It then checks the nonce, and removes it from its memory.
After successful verification, the CDM computes the license
expiration time T1 + ∆1. The CDM loads the Content Key in
its memory for use. During our tests, we observed that any
failed attempt of a future load does not invalidate the current
Content Key in memory; media decryption can still happen.

3.2.3 Renew Licenses

Client Request. If the loaded policies allow the CDM to
update its Content Key, an event of type license-renewal is
triggered by the CDM. On renewal request creation, a newly
generated privacy key is used to encrypt the Client ID as in
the original request. Alongside them, the initial Request ID
and request time T1 are used with a renewal request time
T2, a counter C set to 0, or to the current counter in memory
if it is not the first renewal request. The whole request is
protected by an HMAC using the MAC Client Key. The CDM
may generate multiple queries for the same renewal event
identified by the same counter, but with different time. Indeed,
EME events and renewal load might be asynchronous, and
therefore multiple renewal queries may have been emitted
before any successful load. Different queries may point to the
same event if they all include the same identifier, i.e. counter.
License Format. The renewal license includes the Request
ID, T1 and T2, an incremented counter C = C+ 1, and the

updated policies with the new duration time ∆2. The license
is protected with an HMAC using the MAC Server Key.

License Processing. The CDM can now update its Content
Key. If the HMAC validation is successful, the new counter
value replaces the existing one in memory, only if it is strictly
greater than the former value; otherwise, the key update is un-
successful. The expiration time of the Content Key is updated
to T2 + ∆2 + (T2’ - T2). Here, T2’ denotes the time indicated
in the license response. Since multiple renewal queries with
varying T2 values may have been sent, the received T2 might
not correspond to the most recent one stored in the CDM.

3.2.4 Other Considerations

Different CDM Instances. Widevine provides different
CDM implementations. Here, we highlight one in particular.
In Android, during renewal, the KCB of the loaded Content
Key is sent through the Client Request. Thus, a nonce is gen-
erated by the CDM, that checks its presence in the response
as in the original request.

Minimum Viable License Server. In our study, we did not
reverse engineer license servers, because we did not have any
direct access to them. Indeed, we only experimented with the
Widevine test license server to avoid legal issues. Here, we
describe what we expect from a license server regarding the
different EME stages, in conformance with what was observed
from the test server. We assume that all values expected to be
random are generated thusly. In addition, during license ac-
quisition, the license server verifies the signature of the client
request, and verifies that the Client ID was issued by some
trusted certification authority controlled by Widevine. It also
stores stateful information about the received license request:
Request ID and derived session keys. As for license renewal,
the license server verifies the HMAC of the client request,
constructs the response, and does not store any state about
it. For both cases, we suppose that the license server always
replies to a request with a valid format without considering
the semantics of the different fields. For instance, we assume
that the license server would reply to valid queries with a
valid license, even if the request contains times in the future,
or a series of renewal requests that do not start with counter
0. This allows us to expand the scope of our work by ana-
lyzing the Widevine CDM implementation regardless of any
additional non-standardized security mechanisms enforced
by proprietary license servers.

3.3 Potential Attack
During our formal analysis of the Widevine EME (see Sec-
tions 5 and 6), we found one critical vulnerability which we
describe in the following (see Figure 2), along with sugges-
tions on how to fix it.
Attack Requirement. The attack exploits an understated de-
tail while processing licenses of type license-request. Recall

License
Server

Browser EME API
(Attacker) Widevine CDM

1
Ask for License Request
MediaKeySession.generateRequest()

2
License Request
onMessage()

5
License Response
MediaKeySession.update()

7
Renewal Request
onMessage()

Forged Renewal Response
MediaKeySession.update()

3 POST request

4 POST response

6
Forged License Response
MediaKeySession.update()

8

Figure 2: Widevine EME Key Derivation Attack.

that the CDM acts in two phases to load the Content Key
and its associated policies. The attack requires that all modi-
fications to the CDM memory during the first phase persist
even if the second phase fails. For instance, if a license con-
tains an invalid HMAC tag, and a valid session key encrypted
with a valid Device RSA public key, then the derivation pro-
cess (first phase) succeeds and the newly derived keys are
stored in the memory. However, the second phase aborts as
the HMAC verification does not succeed. It is important to
note that Widevine CDM implementations may behave oth-
erwise. Our hypothesis is supported by the interface of the
Android CDM, where, according to [33], the load process
involves two different calls: DeriveKeysFromSessionKey,
followed by LoadKeys. However, we did not implement the
attack to avoid any legal issues.

Attack Description. The objective of this attack is to allow
the attacker, that is a subscribed user, to get more than what
they pay for from the content provider, which is the victim.
In technical terms, the attacker would like to load arbitrary
policies, and hence an indefinitely long expiration time, for
any Content Key that can be renewed at least once. To do this,
the attacker does not need more than intercepting and making
EME calls in the browser (via a plugin for example), on the
attacker’s device.

The attack scenario consists of three stages. The first stage
is to observe the EME inputs and outputs during a successful
license acquisition. Of particular interest, the attacker needs
the client request, the Request ID and the Device RSA public
key. This corresponds to steps 1 to 5 in Figure 2. In the
second stage, the attacker forges a new license that attempts
to load as a license of type license-request. This license con-
tains a valid encryption of an attacker-generated session key,
and some gibberish other values. As shown in step 6 , the
attacker calls the update API, and thus overwrites the Asset
and MAC keys of the opened session with other keys that they
control. The third stage is to wait for a renewal request that the

attacker stops in step 7 . Then, in step 8 , the attacker forges
a new license of type license-renewal leveraging the freshly
modified keys. The attacker can, for instance, include any
expiration time. The CDM would accept this license, since
the attacker knows the derived keys. A similar attack is found
even when renewal licenses contain encrypted KCBs.

Attack Mitigation. There are several ways to address this
vulnerability, e.g. one could force all CDM implementations
to commit their memory only when all the license acquisition
process succeeds. This solution might not be straightforward
to implement, especially when this may involve several API
calls for modularity reasons. More broadly, we did not opt for
any solution that requires subtle modifications in the behavior
of Widevine CDMs. Instead, we suggest the following fix
including two modifications. The first one concerns the EME
specifications; we propose that an opened session is bound
to a read-only server certificate that cannot be changed. Any
subsequent call to setServerCertificate only impacts fu-
ture sessions. The second modification concerns the format
of license of type license-request. We propose that the license
be signed by the private key of the server certificate. Thus, the
CDM solely accepts licenses from the same entity for which
it has generated the license request. Note that our mitigation
suggests making use of the same RSA key pair for both sign-
ing and decryption in order to reduce storage requirements
and costs for key certification. This practice does not come
without risk, and can be a source of insecurity depending on
the used signature/encryption schemes [10]. The Widevine
CDM uses OAEP for encryption and PSS for signature, as
found by Patat et al. [33]. Haber and Pinkas have shown that
these two schemes are jointly secure; in other words, they can
be securely combined using the same key without compro-
mising their security [18].

4 EME Security Requirements

Despite not affecting all implementations of the Widevine
CDM, our vulnerability demonstrates how brittle the security
of a popular EME instantiation can be. This may be partly
explained by the fact that the security objectives of EME are
not well understood, or even clearly stated. The EME stan-
dard [43] is actually rather brief when it comes to security. It
shortly introduces three potential attack vectors: input valida-
tion, CDM update frequency, and network. Further security
specifications are omitted on the ground that requirements for
security cannot be met without the knowledge of the security
and privacy properties of the Key System and its implemen-
tation(s) [43]. In other words, the EME standard suggests
that there is no, or very little, common security guarantees
for EME to refer to without considering specific CDM imple-
mentations. This point of view is unfortunate, for two reasons:
(1) the essence of EME is to ensure content security, and a
common model might help future DRM systems; (2) a major

part of EME concerns the rights enforcement layer, whose
security has already been discussed, in [12, 37].

In what follows, we propose some core security properties
for EME, when considered as an enforcement layer. Then, we
present a high-level description of seven security goals we
define, covering all aspects of the EME workflow. We will use
these goals later on to perform a complete computer-aided
formal verification of the Widevine EME protocol.

As already mentioned in the introduction, the main goal
of EME is the interoperability between DRMs. Thus, EME
contains unspecified message formats whose instantiations are
DRM specific. Even if the exact content of these messages is
necessary to perform a complete security analysis, the security
goals presented in this section are generic and reusable to
continue analyzing other DRMs, e.g. PlayReady or FairPlay.

4.1 EME as an Enforcement Layer
EME defines an enforcement layer that works as follows.
The license server encapsulates the secret decryption key
(obtained from the CDN), also called the Content Key in the
Widevine jargon, with the associated usage rights, or policies
(from the content provider), into a license. This license is
forwarded to the CDM that first checks the usage rights before
loading the key into its memory for content decryption.

According to [37], the rights enforcement layer has two
main roles. First, it protects the usage rights associated with
content against tampering: an attacker should not be able
to modify the usage rights. Second, it guarantees that usage
rights cannot be bypassed: an attacker should not be able to
use the content in a way not authorized by the usage rights.
The actual enforcement of licenses is proprietary, and rarely
studied in literature. Instead, we suggest four main properties:

1. Confidentiality of the decryption key, so that an attacker
cannot obtain a digital copy of the content outside the
CDM.

2. Integrity of the usage rights, so that an attacker cannot
alter the usage rights delivered by the content provider.
For instance, an attacker could not extend their rights by
altering the license expiration time.

3. Authenticity of the usage rights, so that the CDM en-
forces the rights strictly as they only were defined by the
party related to the owner of the decryption key.

4. Freshness of the license, so that the CDM can only use
it once, regardless of its type: license-request or license-
renewal.

In the next subsection, we express and expand the above
properties as 7 precise security goals. Loosely, property 1
maps to goal 1, properties 2 and 3 map to the two goals 2 and
5, and property 4 maps to goals 3 and 6. As for goals 4 and
7, they are defined to ensure that content will be used only

under the conditions defined by the usage rights, notably the
expiration time. Strictly speaking, this aspect is part of the
rights management layer, but we still decided to consider it,
since the EME standard defines an abstraction of the session
expiration time.

4.2 EME Security Goals

Recall that the essence of DRM systems is to allow con-
tent providers to protect their media from piracy. A naive
definition for protection from piracy would be: preventing
any media from being illegally distributed outside the DRM
ecosystem. Here, we go further this vague definition, and pro-
pose several security goals depicting EME as an enforcement
layer. These goals, although stated in natural language, have
a clear meaning and will be formalized in the next sections.

The EME protocol does not deal with trust issues between
the content provider, the license server and the CDN. There-
fore, our security goals assume all three are trustworthy enti-
ties communicating securely. Henceforth, we use the generic
term “Over-the-Top” (OTT) platform to refer to them. De-
cryption keys are not shared between different OTTs. We also
assume a trusted authority issuing certificates to trusted OTTs
and trusted CDM modules. Thus, our security goals are stated
against an attacker who does not carry any valid certificate,
whether acting as an OTT or a CDM. We also assume that the
attacker cannot tamper with the CPU clock used by the CDM.

Goal 1. Confidentiality of the decryption key.

The decryption key remains secret.

Only trusted CDMs can acquire the decryption key of me-
dia content. Thus, assuming the encryption algorithm used is
secure, media contents cannot be obtained by an attacker.

Goal 2. Integrity and authenticity of initial licenses.

The CDM must load licenses of type license-request as
they were generated by the issuing entity.

This goal implies integrity of both the decryption key and
the associated usage rights. It also implies that the CDM
accepts licenses only if the included usage rights come from
the same entity that owns the decryption key.

Goal 3. Freshness of initial licenses.
A given license of type license-request can be loaded at
most once, and only by the CDM generating the corre-
sponding request.

In the EME API, an OTT issues a license of type license-
request to reply to a query of type generateRequest. This
goal mandates that the generated license can only be loaded
by the trusted CDM creating the generateRequest. It also
mandates that a load can only happen once for a given license.

Otherwise, an obvious attack would be to replay licenses to
the CDM in an offline mode without validation from the OTT.

Goal 4. Enforcing expiration time of initial licenses.

Before any renewal, the CDM is able to use the decryption
key at a given time T only if the expiration time specified
by the OTT in the initial license is greater than T.

The EME standard expects that all licenses are associated
with an expiration time. In section 2 of [14], the standard
states that “a key is not usable for decryption if its license has
expired”.

Goal 5. Integrity and authenticity of renewal licenses.

The CDM must load licenses of type license-renewal as
they were generated by the issuing entity.

This goal implies integrity of the included usage rights. It
also implies that the CDM accepts license-renewals only if
they come from the same entity that issued the associated
license of type license-request. In other words, only the OTT
owning the decryption key loaded by a CDM can update its
usage rights.

Goal 6. Freshness of renewal licenses.
A given license of type license-renewal can only be loaded
once after a renewal event, and only by the CDM generating
the corresponding request. This must hold even if multiple
renewal licenses corresponding to the same renewal event
have been emitted.

Similar to Goal 3, this goal mandates that the generated
license can only be loaded by the trusted CDM triggering
the event for license-renewal. Recall that a renewal event
may generate multiple queries all containing the same unique
identifier; a counter in the case of Widevine.

Goal 7. Enforcing expiration time of renewal licenses.

After a renewal, the CDM is able to use the decryption key
at a given time T only if the expiration time specified by
the OTT in a renewal license is greater than T.

This goal is the counterpart of Goal 4. Note that loading a
renewal license on a CDM does not always extend expiration
times; it may instead shorten them. The OTT, however, cannot
force the CDM to actually load a (potentially shortening)
renewal licence, and only knows it has been sent.

4.3 Threat Model
It should be noted that the threat model for DRM is quite
different from the traditional threat model for Alice-Bob pro-
tocols. The traditional model often assumes that Alice and
Bob trust each other. For DRM systems, the threat model
cannot assume this symmetry of trust. In most cases, Alice,

the content provider, cannot trust Bob, the content user. In
fact, Alice cannot distinguish an honest user from a dishonest
one. Even if Bob is honest, it does not mean that his computer
has not been tampered with. This asymmetry explains why
content providers, or license servers, only trust Bob’s CDM,
and not his browser, i.e. his EME user-agent.

Thus, our threat model involves an attacker that can inject
calls to the EME API into any page. In addition, calls to
the EME API from any page can be intercepted, thereby
modifying or injecting arbitrary data in the parameters of
method calls. This corresponds to the network attacks as
defined in section 10.3 in [14]. We exclude all software-based
attacks, based on input sanitization and CDM vulnerabilities.
This is due to the fact that all DRM systems can be trivially
broken, provided a CDM with software vulnerabilities. Our
paper focuses on finding weaknesses on the EME protocol
itself, assuming a secure CDM implementation. For instance,
the attacker can be a user with valid subscription that installs
a malicious browser plugin controlling all calls to EME to
extend their rights, even after the end of their subscription.

5 Formal Verification using TAMARIN

We analyzed the Widevine protocol using the protocol verifi-
cation tool TAMARIN, to determine whether the security goals
detailed in Section 4 are satisfied. In this section, after a brief
introduction to TAMARIN, we explain our TAMARIN models
as well as the difficulties we have encountered in providing a
faithful representation of some parts of the API under study.

5.1 TAMARIN in a Nutshell
The TAMARIN prover [28] is a security protocol verification
tool that supports both falsification and unbounded verifica-
tion in the symbolic model. As usual in this setting, messages
are represented by terms, and the cryptography is assumed to
be perfect, e.g. nonces are unguessable, and recovering the
content of a ciphertext is only possible when knowing the key.
Security protocols are specified as multiset rewriting systems,
which makes the tool particularly suitable to model stateful
protocols such as APIs for which some contents (e.g. key
material, counter values) are stored over a long period. This
aspect is well-known to be difficult to handle, and despite
some recent advances made in PROVERIF [4,5], another well-
known symbolic protocol verifier, TAMARIN seemed to be
better suited to our case study. In particular, a recent extension
introduces subterm-based proof techniques [9], which helps
dealing with counters, making it particularly attractive.

TAMARIN relies on multiset rewriting, a formalism that
is commonly used to model concurrent systems, since it
naturally supports independent transitions. The state of the
system, i.e. the contents of each agent’s memory, the net-
work, and the attacker’s knowledge, is globally modeled by
a multiset of facts. Each fact is a name and a sequence of

terms representing data. For instance, in our models, a fact
!MovieGen($title, ~movie) stores the information that
a ~movie has been generated, with its $title – in TAMARIN,
values prefixed with $ represent publicly known values, and
values prefixed with ~ are fresh values, that are a priori secret.

A rewrite rule in TAMARIN has a name, e.g. GenMovie,
and three components, each of which is a multiset of facts: the
rule’s left- and right-hand sides, and its labels. Executing this
rule consumes (from the global fact multiset) the facts on the
left, produces the facts on the right, and adds the label to the
execution trace. Facts prefixed with ! are persistent, i.e. they
are not consumed, and can thus never be deleted or changed.
For instance, the following rule GenMovie generates new
!MovieGen facts with different movies, obtained using a
built-in Fr fact that produces fresh values.

rule GenMovie: [Fr(~movie)]
−[LMovieGen($title, ~movie)]→
[!MovieGen($title, ~movie)]

TAMARIN analyzes protocols in the so-called Dolev-Yao
model, where the attacker is able to receive, intercept, modify,
and forge messages. A built-in fact K(m) records that the at-
tacker knows message m. TAMARIN has built-in rules for the
attacker, that let them perform computations on messages they
know, such as encrypting when they know both the plaintext
and the key. Two built-in facts, In(m) and Out(m), let proto-
col rules input and output messages from and to the network,
which is supposed controlled by the attacker.

Once the protocol is modeled, we express security prop-
erties using lemmas. These are first-order formulas, written
using the facts that label the rewriting rules. They can express
properties of the protocol’s traces. Execution steps in a trace
are identified by indices #i, prefixed with #. For instance,
the lemma below states that for all traces where a movie
has been generated at step #i (label LMovieGen, from rule
GenMovie), at no point #j in the trace does the attacker
know movie. In other words, this expresses that movies are
never known by the attacker.

lemma movieSecrecy: "∀ #i title movie.
LMovieGen(title, movie)@#i ⇒ ¬ (∃ #j. K(movie)@#j)"

Restrictions are another useful feature of TAMARIN. They
are formulas similar to lemmas, except that instead of proof
obligations, they are assumptions, i.e. they tell TAMARIN to
restrict its analysis to traces where they hold. As an example,
we may use a restriction to model the fact that the OTT, when
renewing a license, may attach a policy to it, marking it as
further renewable or not. Assuming that the corresponding
rule modeling the OTT features a fact License, where the
policy field is left unspecified, we can write a restriction to
enforce that only traces where the policy is instantiated by
’renewable’ or ’stop’ will be considered in the analysis.

restriction LicenseRenewOrStop:
"∀ #i l. License(l)@#i ⇒(l = ’renewable’ | l = ’stop’)"

When provided with a lemma, TAMARIN attempts to prove
it, or to find a trace that contradicts it. This trace contains
the sequence of rules that are applied and the actions the
attacker took to violate the property. As the proof search
is undecidable, TAMARIN may also not terminate. In that
case, it is possible to use an interactive mode and to prove
the property manually by guiding TAMARIN regarding the
states to explore. Once the proof is done, or an attack is found
manually, it is possible to store it, or to write an oracle that
guides TAMARIN during its exploration. The idea is that, even
if the security analysis requires some manual guidance at first,
it is then possible to reproduce the result automatically.

5.2 Our TAMARIN Models
As explained in the previous section, one difficulty was to
write the models themselves. In the absence of a clear, detailed
specification, the reverse engineering stage gradually made it
possible to clarify various points and obtain a representation
as faithful as possible of the protocol to be studied.

We model four variants of Widevine: we analyze both the
Android version, where the KCB is part of the renewal re-
quest, and the desktop version, where it is not. For each ver-
sion, we consider both the actual protocol and the patched
version, which includes the mitigation we propose. These
four TAMARIN studies are rather similar regarding the proto-
col models, as they share a common basis, with only minor
changes to account for the presence of the KCB and patch.

Our model of the Widevine protocol is composed of 18
multiset rewriting rules in total, divided in three sets: 6 rules
for the initialization of pre-existing data (movies, content
keys, public key infrastructure, etc.), 8 rules for the role of
the CDM, and 4 rules for the role of the OTT. These rules
model an unbounded number of instances of CDMs and OTTs
running the protocol in parallel.

As an example, the following rule
CDMGenerateRequest (simplified for legibility)
models the generation of a license request by a CDM.

rule CDMGenerateRequest:
let request = <~rID, ~keyID, %t,

enc(clientID, ~kPrivacy),
aenc(~kPrivacy, pk(~kOTT)), ~n>

signReq = sign(request, kDevice)
in
[In(%t), In(~keyID), Fr(~rID), Fr(~n), Fr(~kPrivacy),
!OTTKey(~kOTT), !CDMSession(~sID, kDevice, clientID)]

−[GTime(%t), LCDMGenR(~requestID, ~sID, %t)]→
[Out(<request, signReq>), CDMNonce(~n, ~sID),
!CDMState(~rID, ~sID, ~kOTT, request, %t),
CDMKeys(~rID, ~sID, /0),
CDMContentKey(~rID, ~sID, /0, %1)]

In this rule, a CDM session, with a session state
!CDMSession(~sID, kDevice, clientID) containing
a session identifier, a device key, and a client ID, gener-
ates a random request ID ~rID, a nonce ~n and a privacy

key ~kPrivacy. It uses these values to compute the license
request, and signs it with its device key. It outputs the re-
sulting message <request, signReq>, and stores all rel-
evant data in facts CDMNonce, !CDMState, CDMKeys,
CDMContentKeys. The role of these facts is further
discussed in Section 5.4. The rule is labeled with fact
LCDMGenR, recording the request generation. Note that the
request contains a value %t, representing the current date,
also included in an input and in label GTime: these are used
as part of our model of time, which we discuss in Section 5.5.

5.3 Main Assumptions and Limitations
It is worth discussing the faithfulness of our models and
analysis. We have attempted to construct a formal model of
EME/Widevine that is as close to the real protocol as possible.
However, a gap can occur between our model and reality.

Indeed, this mainly comes from the gap between our de-
scription of the CDM and its actual implementation. The
EME specification, combined with the reverse engineering
we performed, gives us a description of the behavior of the
CDM. This description is fairly precise – going back and
forth between the reverse engineering and formal modeling
allowed us to extensively test the CDM to refine it, as de-
scribed in Section 3.1. Still, we cannot be certain that we
perfectly described the CDM: ultimately, we only know about
the behaviors we could observe, and there could in principle
exist some behaviors of the CDM that are possible but that
we were unable to trigger.

Below, we discuss two particular modeling assumptions
we made in our Tamarin analysis.

First, when loading a license response, the counter kept
by the CDM is in a normal execution still at its initial value
(zero). Indeed, in a normal, honest execution of the protocol,
only one load is performed in any given CDM session. It
is however unclear how that counter would be handled if an
attacker was somehow able to cause a second “load” to be
successfully executed in a session. We have not been able to
test which behavior is implemented in practice, which would
have required us to simulate an OTT sending several license
responses. We therefore felt that the reasonable way to pro-
ceed in our analysis was not to make an arbitrary choice,
but rather to discard executions where two loads are success-
fully performed in the same CDM session. We express this
assumption in TAMARIN as a restriction.

It is of note that this restriction is actually in line with the
most recent draft of the EME standard [32], which imposes
that only one license request is sent by the CDM per session.
We were in fact able to prove that, for the desktop version
of the CDM, the unicity of the license request implies the
unicity of the nonce, and in turn of the license load, per CDM
session, i.e. to lift that assumption. In the Android version,
however, the same argument cannot be made. Since a nonce is
also generated for any license renewal request by the CDM to

populate the KCB, the unicity of the nonce per session, from
which that of the load follows, does not hold. Thus, we kept
the unique load assumption for that version of the protocol.

Second, in some implementations, when receiving a license
response, a single CDM API function call performs both the
derivation of Asset and MAC keys, and then the loading of the
license. Providing this function with badly constructed param-
eters may result in the CDM deriving and storing the keys, and
then failing to load the license. That behavior was observed
while reverse engineering some CDM implementations. To
account for this scenario, we chose in our model to split the
handling of a license response into two rules, one for deriving
the keys, and the second for loading the license. We however
do not require the loading to be performed immediately after
the derivation – such restrictions are not easily dealt with in
TAMARIN. This gives the attacker slightly more power than
is actually possible. That is not an issue: the attack we found
does not use this additional power, and we still could prove
secure the patched versions of the protocol.

Regarding the OTT, as already mentioned in Section 3,
we did not reverse engineer its behavior, and therefore we
modeled a “minimal” OTT. Note that the attack we discovered
in our analysis does not depend on internal or unspecified
behaviors of the OTT: it can be performed with any OTT that
replies to normal protocol messages as expected.

5.4 A Stateful API Manipulating Counters
Although EME prescribes the flow of messages between the
CDM and OTT in a normal execution of the protocol, the
related API provides the browser with methods that can in
fact be called in any order. To accurately represent this be-
havior, we do not impose a sequential order for the rules in
our TAMARIN models: any CDM rule can be executed at any
point, and updates the CDM’s internal state accordingly. This
state is modeled using facts that store the relevant information
– persistent facts, for data that is set once and never updated,
and non-persistent facts for data that can be updated later on.
For instance, in rule CDMGenerateRequest described ear-
lier, a persistent fact !CDMState is created to store (among
other data) the ~rID and the initial license request, which are
stored until the end of a session and never updated. On the
other hand, CDMNonce and CDMContentKey are linear
facts. They are used to store resp. the nonce sent in a license
request, which can later be deleted when loading the matching
response, and the memory cell used to store the content key
and license policy, which are initially ’null’and can later
be updated when loading (renewal) responses. This is rather
standard practice when modeling stateful protocols and APIs.
It does however complicate reasoning, compared to stateless
protocols, as it required us to show invariants on the states, to
help TAMARIN in its backwards search.

A notable feature of the CDM state is the presence of a
counter identifying an event of license renewal. This counter

is incremented each time a renewal response is successfully
loaded. We rely on a recent extension of TAMARIN [9], that
is specifically designed to reason about increasing counters.

5.5 The Crucial Role of Time
A major feature of our TAMARIN analysis is the modeling
of time. Widevine messages for license and renewal requests
include timestamps indicating the date at which requests are
generated, and responses contain a time-to-live indicating the
duration of the license’s validity. TAMARIN has no built-in
notion of time – only an ordering of events in an execution
trace, which protocol messages do not have access to.

The indices available in TAMARIN are useful to reason
about the order of actions, but they cannot express durations,
they cannot be used to compute values (e.g. the sum of two in-
dices is meaningless), and they cannot be used as timestamps
in messages (an agent sending the index of its action makes
no sense). It is sometimes possible to abstract time away, and
to write properties at the level of indices. This is usually done
for instance when modelling authentication properties stating
that when an agent performs an action at #i, then another one
has performed a specific action at # j with # j < #i.

For that reason, timestamps are usually abstracted away
(or simply not modelled at all) when analyzing protocols
in TAMARIN. However, in our case some security goals rely
heavily on time, and we did not see a way to abstract it. Indeed,
timestamps are essential to the security of the system, as
they are required to state Goals 4 and 7 (cf. Section 4). For
that reason, we propose an explicit model of time, accessible
to protocol agents, which is to our knowledge the first in
TAMARIN.

We model time as a global clock, i.e. an integer counter
%t, representing the current date. Each protocol rule receives,
by an input In(%t), the current time from the attacker. That
value %t can then be used and referred to when writing se-
curity lemmas. We let the attacker pick the clock value each
rule receives, modeling the fact that they can decide to wait
as long as they want before triggering the execution of a rule.
We force them however to choose these values in a consistent
way: time only goes forward. To do so, we label each rule
with an event fact GTime(%t), recording the time at which
it is executed, and we consider the following restriction:

restriction TimeIncreasing: "∀ #i #j %t1 %t2.
GTime(%t1)@#i & GTime(%t2)@#j & #i<#j ⇒ %t1<<%t2"

We can then use this global time to specify for instance that
the CDM only uses a content key (using a rule not depicted
here, labeled with fact LCDMUseKey) at time %t if the ex-
piration date %t0 %+ %delta for the license, stored in its
state (fact LCDMContentKey), has not passed yet. This is
expressed by the following restriction (simplified, for clarity):

restriction UseKeyLegal:
"∀ #i requestID sID k %t %t0 %delta.

LCDMUseKey(rID, sID, k)@#i

& LCDMContentKey(rID, sID, k, %t0, %delta)@#i
& GTime(%t)@#i

⇒ %t << %t0 %+ %delta"

The reasoning on time is again facilitated by the recent
TAMARIN extension for counters [9]. In order to obtain better
performance from TAMARIN, we actually only add the timer
input and label to the protocol rules that effectively use the
current time. Doing so produces the same executions, but
greatly reduces the number of GTime(%t) facts TAMARIN
has to consider, only keeping those that are really useful.

6 Results of the Formal Analysis

We describe here how we proceed to analyze the models
presented in Section 5.2. We first explain our methodology in
Section 6.1 before summarizing our findings in Section 6.2.
In Section 6.3, we give an overview of how TAMARIN reasons
by providing some details about the proofs of Goal 2.

6.1 Our Methodology
Initially, we focused on obtaining a faithful model of the
protocol in its desktop version. In a second stage, we con-
sidered the model for the Android version (i.e. with a KCB
in the license renewal requests). This only causes some mi-
nor changes in our security analysis. We summarize some
hands-on details about our TAMARIN model and how to exe-
cute it in Appendix B. For each model, we started with some
sanity checks to ascertain that models were correct. This is
the purpose of the “executability lemma” available in each
model. These TAMARIN lemmas express the fact that the nor-
mal intended protocol flow can be executed in our models.
These lemmas can be found in each of our Tamarin files and
are systematically checked before performing the security
analysis. While this reduces the risk that modelling mistakes
were made, it does not guarantee that our models exactly
correspond to the implementation. Though unfortunate, this
situation is common when formally verifying protocols.

Then, the security analysis is carried out in 3 stages:
Some basic secrecy properties (including Goal 1). We first
state some lemmas to establish secrecy of various keys used
in the protocol, in particular the content keys used to protect
movies, and the session keys generated by OTTs. These ba-
sic properties were easy to prove for TAMARIN, and their
proofs were obtained automatically. All these lemmas are
marked with flag [reuse], to let TAMARIN know they can
and should be used when proving the other security goals.
Analysis of the initial part (i.e. Goals 2, 3, and 4). This part
requires the writing of some specific intermediate lemmas,
especially to reason about the content of some memory cells,
e.g. those used to store the Asset and the MAC keys.
Analysis of the renewal part (i.e. Goals 5, 6, and 7). This part
is by far the most involved. When trying to prove Goal 5,

TAMARIN led us to the derive attack we presented in Sec-
tion 3.3. Then, once this issue was resolved by applying the
proposed patch, we applied the same methodology as the one
for analyzing the initial part.

License policies. When performing a security analysis of a
DRM system, it makes sense to check that license policies
are respected, i.e. that the CDM can load a renewal license
only if this is authorized by the policy. This goal cannot be
stated at the EME level, as policies are not part of the EME
specification. However, we can express it when analyzing
Widevine EME, and we therefore decided to consider this
extra goal, which we call Goal 8, in our security analysis.

6.2 Summary of our Results
Our findings are summarized in Table 1. While most of the
basic secrecy properties were obtained automatically using
the autoprove mode of TAMARIN, the proofs of Goals 2 to 8
required some intermediate lemmas. These proofs have thus
been obtained at first using the interactive mode of TAMARIN.
For reproducibility purposes, we then automated them, relying
on the oracle mechanism available in TAMARIN.

without fix with fix

KCB with without with without

Goal 1 3 3 3 3

Goal 2 3 3 3 3

Goal 3 3 3 3 3

Goal 4 3 3 3 3

Goal 5 7 7 3 3

Goal 6 3 3 3 3

Goal 7 7 7 3 3

Goal 8 7 7 3 3

Table 1: Summary of our results. 3 indicates that the goal is
proved automatically by TAMARIN, whereas 7 means that the
goal is false (variants of the derive attack).

All our experiments were performed on a laptop with a
2.30GHz Intel Core i7-1068NG7 CPU and 16GB of RAM.
We use version 1.8.0 of TAMARIN. Our models are available
for reproducibility purposes [11]. The verification time varies
depending on the model, and the goals we are trying to estab-
lish. The easiest lemmas are proved in a few seconds, whereas
the most difficult ones, i.e. Goals 5-8 of the patched Android
version, require around 4 minutes.

6.3 Proving the Security Goals
Even if the proofs are done in fine in an automatic way, some
expertise and manual effort were necessary to obtain them.
As an illustration, we present the proof of Goals 2 and 5.

lemma Goal2:
"∀ #i1 #i2 rID sID k kAsset kMacS kMacC resp

title movie ottID keyID.
Load(rID, sID, k, kAsset, kMacS, kMacC, resp)@#i1
& Movie(title, movie, ottID, keyID, k)@#i2

⇒ (∃ #j. #j < #i1
& OTTLR(rID, ottID, k, kAsset, kMacS, kMacC, resp)@#j)"

This lemma states that when the CDM loads a license resp
for a movie with content key k, this license has been generated
by an OTT before, i.e. at some step #j occurring before #i1.

The proof of Goal2 relies on two secrecy lemmas. One
establishes the secrecy of the session keys generated by an
honest OTT, and the other is actually Goal1: secrecy of
content keys. We also need an additional lemma, stating that
when a command uses the Asset or MAC keys, then these keys
have been initialized earlier by a call to the derive command,
unless there are still ’null’.

lemma CDMKeysInit[reuse, use_induction]:
"∀ #i rID sID kAsset kMacS kMacC.

Keys(rID, sID, kAsset, kMacS, kMacC)@#i
⇒ ((∃ #j. (#j < #i)

& Derive(rID, sID, kAsset, kMacS, kMacC)@#j)
| (kAsset =’null’ & kMacS = ’null’ & kMacC = ’null’))"

This lemma, although not surprising, is not obvious to
TAMARIN, and requires a proof by induction, as indicated by
the flag [use_induction]. The induction step holds, as
the memory cells storing those keys are either left unchanged,
in most rules, or indeed initialized, in the derive rule.

Using these three lemmas, we are then able to conduct the
proof of Goal2 with TAMARIN. When a load command is
successfully executed, the MAC received by the CDM:

• (i) either comes from the protocol;
• (ii) or has been forged by the attacker.

In the former case, due to the format of the received MAC, it
has necessarily been emitted by a license-response command,
and thus the claim holds. Indeed, in this case, the agreement on
the different keys is clear, as the content key appears in the ex-
changed message. In the second case (ii), the CDMKeysInit
lemma tells us that the Asset and the MAC keys are:

• (ii.a) either ’null’;
• (ii.b) or have been initialized by a derive command.

In case (ii.a), as the load command also needs a message
of the form senc(k, kAsset) in input, the branch can be
closed: if kAsset was equal to ’null’, then the secrecy of
the content key k would be violated.

In case (ii.b), the derive rule tells us that the MAC key is
KDF(..., kSession). As no rule produces such a term at an
extractable/deducible position, the attacker must have built it
using their own kSession. In that case, the message senc(k,
kAsset) with kAsset=KDF(...,kSession), needed in in-
put of the Load rule, can either be produced by the OTT, or

constructed by the attacker. The former case contradicts the
fact that the kSession keys generated by the OTT are secret
(the aforementioned secrecy lemma). The latter case implies
that the attacker knows the content key k, leading again to a
contradiction.

Implementing this proof strategy in an oracle, we obtain the
following result, indicating that TAMARIN succeeds in prov-
ing all the lemmas. It also gives us the number of reasoning
steps done by TAMARIN for each proof.

===
SecrecykSession (all-traces): verified (25 steps)
Goal1 (all-traces): verified (4 steps)
CDMKeysInit (all-traces): verified (43 steps)
Goal2 (all-traces): verified (10 steps)
===

Goal 5. The statement for Goal5 is similar to Goal2, ex-
cept that it concerns the renewal part.

lemma Goal5:
"∀ #i1 #i2 rID sID k kAsset kMacS kMacC

resp title movie ottID keyID.
LoadRenew(rID,sID,k,kAsset,kMacS,kMacC,resp)@#i1
& Movie(title, movie, ottID, keyID, k)@#i2
⇒ (∃ #j. #j < #i1
& OTTRR(rID, ottID, k, kAsset, kMacS, kMacC, resp)@#j)"

Regarding its proof, things are a bit different. Actually,
we have already seen that Goal5 does not hold, because of
the derive attack (cf. Section 3.3). We would like to pinpoint
exactly where the previous reasoning fails. Basically, the issue
comes from the fact that the content key k is not part of the
response processed by the CDM, and thus to ensure agreement
on it, more work is needed even in case (i). The case (ii.a)
and (ii.b) are also more complex for the same reason. We
can not reason on the message senc(k, kAsset), which is
not present in a renewal response. Case (ii.a) can be handled
by showing that kAsset = ’null’ implies that the memory
cell was not initialized, which is actually not possible (this
requires some extra intermediate lemmas). Case (ii.b) is more
problematic and leads to the derive attack. A way to prove
this case would be to ensure that the kSession key as seen by
the CDM is secret, and thus the attacker is not able to build
KDF(..., kSession). This secrecy property (of kSession
from the CDM’s point of view) does not hold in the unpatched
protocol, but is fixed by the proposed patch.

7 Conclusion

In this paper, we performed the first in-depth and formal anal-
ysis of the W3C EME as implemented by Widevine. To the
best of our knowledge, our work is the first to provide such
analysis of any DRM system for video playback. To enable
the analysis, we reverse-engineered various Widevine propri-
etary details, and we formulated precise security properties

that reflect the notion of piracy. Our study indicates that our
methodology is effective in automatically finding potential
weaknesses. Building on a systematized workflow for the
EME API allowed us to consider sophisticated combinations
that can be achieved by the attacker in our threat model.

In the future, we aim at keeping our models up to date
with upcoming work revealing novel insights about Widevine
internals or about other DRM systems. We chose Widevine
because of its dominance, but other DRM systems, such as
PlayReady and FairPlay, are of course worth analyzing. This
requires us to extend our work in two ways. First, we need
to reverse-engineer these systems (as we do in Section 3 for
Widevine), and also to provide a formal model of them (as we
do in Sections 5 and 6 for Widevine). However, the security
goals set out in Section 4 will remain unchanged, and we can
even imagine that some parts of the formal model (e.g. the
way we model time) could be reused.

In addition, there are multiple ways to improve our work,
notably by considering a new threat model where valid OTT
platforms can be dishonest. Namely, an attacker can success-
fully perform the setServerCertificate method to inter-
act with the CDM through successfully initialized sessions.
Lastly, we believe that it would be insightful to analyze EME
through specialized models designed for the Web. Indeed,
EME inherently uses many features of the Web, including
scripts, origins (and hence, the notion of domains), the win-
dows and document structure of browsers, and HTTPS. There-
fore, basing future analysis of EME on a model that supports
these features is crucial in order to be able to model EME as
implemented by browsers (and not CDMs). Unlike our work,
the related threat model is malicious web pages attempting
to break privacy, or even to hijack opened sessions by a valid
OTT.

Acknowledgments

This work received funding from the French National Re-
search Agency (ANR) under the project DRAMA (grant
agreement No. ANR-22-CE39-0005), and the France 2030
program managed by the ANR under the project SVP (grant
agreement No. ANR-22-PECY-0006). This work benefited
also from the support of the German Federal Ministry of Ed-
ucation and Research and the Hessian Ministry of Higher
Education, Research, Science and the Arts within their joint
support of the National Research Center for Applied Cyber-
security ATHENE.

References

[1] Apple. Apple FairPlay. https://developer.apple.
com/streaming/fps/, 2023.

[2] Avalonswanderer. WideXtractor. https://github.c
om/Avalonswanderer/wideXtractor, 2022.

https://developer.apple.com/streaming/fps/
https://developer.apple.com/streaming/fps/
https://github.com/Avalonswanderer/wideXtractor
https://github.com/Avalonswanderer/wideXtractor

[3] Chetan Bansal, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, and Sergio Maffeis. Discovering
concrete attacks on website authorization by formal
analysis. Journal of Computer Security, 22(4):601–657,
2014.

[4] Bruno Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW’01),
pages 82–96. IEEE Computer Society Press, 2001.

[5] Bruno Blanchet, Vincent Cheval, and Véronique Cortier.
Proverif with Lemmas, Induction, Fast Subsumption,
and Much More. In Proc. 42nd IEEE Symposium on
Security and Privacy (S&P’22). IEEE Computer Society
Press, 2022.

[6] Kelsey Cairns, Harry Halpin, and Graham Steel. Secu-
rity Analysis of the W3C Web Cryptography API. In
Proc. 3rd International Conference on Security Stan-
dardisation Research (SSR’16), volume 10074 of LNCS,
pages 112–140. Springer, 2016.

[7] Can I Use. Encrypted Media Extensions. https://ca
niuse.com/eme, 2023.

[8] Chromium Blog. Chrome 26 Beta: Template Element
& Unprefixed CSS Transitions . https://blog.chrom
ium.org/2013/02/chrome-26-beta-template-el
ement.html, 2013.

[9] Cas Cremers, Charlie Jacomme, and Philip Lukert.
Subterm-based proof techniques for improving the au-
tomation and scope of security protocol analysis. In
Proc. 36th IEEE Computer Security Foundations Sym-
posium (CSF’23). IEEE Computer Society Press, 2023.

[10] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Pater-
son, Nigel P. Smart, and Mario Strefler. On the joint se-
curity of encryption and signature in EMV. In CT-RSA,
volume 7178 of Lecture Notes in Computer Science,
pages 116–135. Springer, 2012.

[11] Stéphanie Delaune, Joseph Lallemand, Gwendal Patat,
Florian Roudot, and Mohamed Sabt. EME Widevine
Tamarin Models. https://github.com/Avalonswa
nderer/eme_widevine_formal_verification/.

[12] Eric Diehl. A four-layer model for security of digital
rights management. In Proc. 8th ACM Workshop on
Digital Rights Management, pages 19–28. ACM, 2008.

[13] Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, Nils Wenzler, and Tim Würtele. A Formal Se-
curity Analysis of the W3C Web Payment APIs: Attacks
and Verification. In Proc. 43rd IEEE Symposium on
Security and Privacy (S&P’22), pages 215–234. IEEE
Computer Society, 2022.

[14] David Dorwin, Jerry Smith, Mark Watson, and Adrian
Bateman. Encrypted Media Extensions. https://www.
w3.org/TR/encrypted-media/, 2019.

[15] Daniel Fett, Ralf Küsters, and Guido Schmitz. An ex-
pressive model for the web infrastructure: Definition
and application to the browser ID SSO system. In IEEE
Symposium on Security and Privacy, pages 673–688.
IEEE Computer Society, 2014.

[16] Google Widevine. Widevine. https://widevine.c
om/, 2023.

[17] Iness Ben Guirat and Harry Halpin. Formal verification
of the W3C web authentication protocol. In Proc. 5th
Annual Symposium and Bootcamp on Hot Topics in the
Science of Security, (HoTSoS’18), pages 6:1–6:10. ACM,
2018.

[18] Stuart Haber and Benny Pinkas. Securely combining
public-key cryptosystems. In CCS, pages 215–224.
ACM, 2001.

[19] Tomer Hadad. Reversing the old Widevine Content
Decryption Module. https://github.com/tomer80
07/widevine-l3-decryptor/wiki/Reversing-th
e-old-Widevine-Content-Decryption-Module,
2021.

[20] Harry Halpin. The W3C web cryptography API: mo-
tivation and overview. In Proc. 23rd International
World Wide Web Conference, (WWW’14), pages 959–
964. ACM, 2014.

[21] Harry Halpin. The Crisis of Standardizing DRM: The
Case of W3C Encrypted Media Extensions. In Proc. 7th
International Conference on Security, Privacy, and Ap-
plied Cryptography Engineering, (SPACE’17), volume
10662 of LNCS, pages 10–29. Springer, 2017.

[22] Gregory L. Heileman, Pramod A. Jamkhedkar, Joud S.
Khoury, and Curtis J. Hrncir. The drm game. In
Proc. tth ACM Workshop on Digital Rights Manage-
ment, (DRM’07), pages 54–62. ACM, 2007.

[23] Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay Ku-
mar, and Emil Lundberg. Web Authentication: An
API for accessing Public Key Credentials. https:
//www.w3.org/TR/webauthn-2/, 2021.

[24] Adrian Hope-Bailie, Ian Jacobs, Rouslan Solomakhin,
and Jinho Bang. Payment Handler API. https://www.
w3.org/TR/payment-handler/, 2023.

[25] Fortune Business Insights. Market Research Report.
https://www.fortunebusinessinsights.com/vi
deo-streaming-market-103057, 2023.

https://caniuse.com/eme
https://caniuse.com/eme
https://blog.chromium.org/2013/02/chrome-26-beta-template-element.html
https://blog.chromium.org/2013/02/chrome-26-beta-template-element.html
https://blog.chromium.org/2013/02/chrome-26-beta-template-element.html
https://github.com/Avalonswanderer/eme_widevine_formal_verification/
https://github.com/Avalonswanderer/eme_widevine_formal_verification/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
https://widevine.com/
https://widevine.com/
https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-old-Widevine-Content-Decryption-Module
https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-old-Widevine-Content-Decryption-Module
https://github.com/tomer8007/widevine-l3-decryptor/wiki/Reversing-the-old-Widevine-Content-Decryption-Module
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/payment-handler/
https://www.w3.org/TR/payment-handler/
https://www.fortunebusinessinsights.com/video-streaming-market-103057
https://www.fortunebusinessinsights.com/video-streaming-market-103057

[26] ISO Central Secretary. Information technology — Mul-
timedia application format (MPEG-A) — Part 19: Com-
mon media application format (CMAF) for segmented
media. Standard ISO/IEC 23000-19:2020, International
Organization for Standardization, 2020.

[27] ISO Central Secretary. Information technology — Dy-
namic adaptive streaming over HTTP (DASH) — Part
1: Media presentation description and segment formats.
Standard ISO/IEC 23009-1:2022, International Organi-
zation for Standardization, 2022.

[28] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN Prover for the Sym-
bolic Analysis of Security Protocols. In Natasha Shary-
gina and Helmut Veith, editors, Proc. 25th International
Conference on Computer Aided Verification, (CAV’13),
volume 8044 of LNCS, pages 696–701. Springer, 2013.

[29] Microsoft. Microsoft PlayReady. https://www.micr
osoft.com/playready/, 2023.

[30] NSA. Ghidra Reverse Engineering Framework. https:
//github.com/NationalSecurityAgency/ghidra,
2019.

[31] R. Pantos and W. May. HTTP Live Streaming. RFC
8216, RFC Editor, August 2017.

[32] Joey Parrish and Greg Freedman. Encrypted Media
Extensions. https://w3c.github.io/encrypted-
media, 2023.

[33] Gwendal Patat, Mohamed Sabt, and Pierre-Alain
Fouque. Exploring Widevine for Fun and Profit. In Proc.
43rd IEEE Security and Privacy Workshops (WOOT’22),
pages 277–288. IEEE Computer Society, 2022.

[34] Gwendal Patat, Mohamed Sabt, and Pierre-Alain
Fouque. Your DRM Can Watch You Too: Exploring the
Privacy Implications of Browsers (mis)Implementations
of Widevine EME. Proc. 23rd International Confer-
ence on Privacy Enhancing Technologies (PETS’23),
2023(4):306–321, 2023.

[35] Ole André Vadla Ravnås. Frida. https://github.c
om/frida/frida, 2013.

[36] B. Rosenblatt, W. Trippe, and S. Mooney. Digital Rights
Management: Business and Technology. M&T Books.
Wiley, 2002.

[37] Niels Rump. Definition, Aspects, and Overview. In Dig-
ital Rights Management - Technological, Economic, Le-
gal and Political Aspects, volume 2770 of LNCS, pages
3–15, 2003.

[38] Beale Screamer. Microsoft’s Digital Rights Manage-
ment Scheme - Technical Details. https://cryptome
.org/beale-sci-crypt.htm, 2001.

[39] Joey Sneddon. How To Watch Netflix on Ubuntu The
Easy Way. https://www.omgubuntu.co.uk/2014/0
8/netflix-linux-html5-support-plugins, 2014.

[40] U.S. Chamber Staff. Quick Take: Your Primer on Digital
Piracy and Its Impact on the U.S. Economy, 2019. ht
tps://www.uschamber.com/intellectual-prope
rty/quick-take-your-primer-digital-piracy-
and-its-impact-the-us-economy.

[41] Stat Counter. Mobile Tablet Android Version Market
Share Worldwide. https://gs.statcounter.com/a
ndroid-version-market-share/mobile-tablet/
worldwide, 2023.

[42] Stat Counter. Web Browser Market Share Worldwide.
https://gs.statcounter.com/browser-market-
share/all/worldwide/2023, 2024.

[43] W3C. W3C Publishes Encrypted Media Extensions
(EME) as a W3C Recommendation. https://www.w3
.org/2017/09/pressrelease-eme-recommendati
on.html.en, 2017.

[44] W3C. Media WG meeting. https://www.w3.org/2
024/02/13-mediawg-minutes.html#t04, 2024.

[45] Mark Watson. Web Cryptography API. https://www.
w3.org/TR/WebCryptoAPI/, 2017.

[46] Qi Zhao. Wideshears: Investigating and breaking
Widevine on QTEE. BlackHat Asia, 2021.

https://www.microsoft.com/playready/
https://www.microsoft.com/playready/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://w3c.github.io/encrypted-media
https://w3c.github.io/encrypted-media
https://github.com/frida/frida
https://github.com/frida/frida
https://cryptome.org/beale-sci-crypt.htm
https://cryptome.org/beale-sci-crypt.htm
https://www.omgubuntu.co.uk/2014/08/netflix-linux-html5-support-plugins
https://www.omgubuntu.co.uk/2014/08/netflix-linux-html5-support-plugins
https://www.uschamber.com/intellectual-property/quick-take-your-primer-digital-piracy-and-its-impact-the-us-economy
https://www.uschamber.com/intellectual-property/quick-take-your-primer-digital-piracy-and-its-impact-the-us-economy
https://www.uschamber.com/intellectual-property/quick-take-your-primer-digital-piracy-and-its-impact-the-us-economy
https://www.uschamber.com/intellectual-property/quick-take-your-primer-digital-piracy-and-its-impact-the-us-economy
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/browser-market-share/all/worldwide/2023
https://gs.statcounter.com/browser-market-share/all/worldwide/2023
https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://www.w3.org/2017/09/pressrelease-eme-recommendation.html.en
https://www.w3.org/2024/02/13-mediawg-minutes.html#t04
https://www.w3.org/2024/02/13-mediawg-minutes.html#t04
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/

A Widevine EME Internals

A summary of Widevine EME message content and Widevine
internals are given in Table 2 and Table 3.

B Formal Security Analysis

Size of our TAMARIN models. We summarize some infor-
mation regarding the size of our models in Table 4. We do not
take into account the part of the files concerning the sanity
check (executability lemma).

without fix with fix

#LoC protocols 510 510
#LoC properties 200 450
#lemmas (secrecy properties) 9 11
#lemmas (initial part) 5 5
#lemmas (renewal part) _ 15

Table 4: Summary regarding the size of our models. #LoC in-
cludes the comments, and #lemmas includes the intermediate
lemmas stated and proved to establish our 7 main goals.

Command line to run experiment. Each model found in
’widevine.spthy’ can be launched via the following command:

tamarin-prover --prove --derivcheck-timeout=0
--heuristic=O --oraclename=’widevine.oracle’
widevine.spthy -DSecrecy -DGoalInitialPart

We explain below the different elements:

• --prove means that the tool is launched using its auto-
matic mode (no user interaction);

• --derivcheck-timeout=0 is there to turn off some
sanity checks that are useless once the model is writ-
ten;

• --heuristic=O --oraclename=’widevine.oracle’
means that the oracle written in the file ’widevine.oracle’
will be used to guide the proof search;

• -DSecrecy -DGoalInitialPart indicates that only
the main part of the file as well as those defined in
the macros DSecrecy and DGoalInitialPart will be
taken into account.

Some insights regarding Goal 6 and its proof. Regarding
freshness of the license during a load (Goal 3), the situation is
rather simple. This property is ensured by the nonce generated
by the CDM and consume when the response (which contains
also the nonce) is loaded by the CDM. The TAMARIN proof
is very easy and done in very few steps. Establishing Goal 6
(freshness of the license during a renewal load) is more in-
volved. The difficulty comes from the fact that the renewal
part does not rely on the use of a nonce to ensure freshness of
the response that is loaded. The freshness is ensured through
the use of a counter that is increased by the CDM each time a
renewal response is loaded. We thus have to state and prove
some lemmas (by induction) that roughly state that the counter
is always increasing, and even strictly increases each time a
renewal load is performed. Then, Goal 6 easily follows.

===
CounterIncrease (all-traces): verified (259 steps)
CounterIncreaseStrictly (all-traces): verified (3941

steps)
Goal6 (all-traces): verified (18 steps)
===

EME Message EME Method Widevine EME Message Content

License Request generateRequest
body = {Request ID, nonce, {ClientID}privacyKey, {privacyKey}serviceCertificatepub

, KID, T1},

signature = sign(body, DeviceRSAKeypriv)

License Response update
body = {{SessionKey}DeviceRSAKeypub

, response = Request ID, T1, KID, {ContentKey}AssetKey, {KCB}ContentKey, Policies},

hmac = HMAC(response, MAC Server Key)

Renewal Request onMessage
body = {Request ID, {ClientID}privacyKey, {privacyKey}serviceCertificatepub

, T1, T2, counter, nonce†},

hmac = HMAC(body, MAC Client Key)

Renewal Response update
body = {Request ID, T1, T2, Updated counter, Updated Policies, Updated KCB†},
hmac = HMAC(body, MAC Server Key)

† only on Android.

Table 2: Widevine EME Message Content.

Steps EME Protocol EME Method Widevine Method Widevine Internal Memory
1 Initial State createSession OpenSession InitialKeys = {DeviceRSAKeypub/priv, serviceCertificatepub}, Session ID
2 License Request generateRequest PrepareKeyRequest InitialKeys, IDs = {Session ID, Request ID}, nonce, T1, request

3.a DeriveKeysFromSessionKey InitialKeys, IDs, nonce, T1, request, DerivedKeys = {MAC Client Key, MAC Server Key, Asset Key}
3 License Processing update

3.b LoadKeys InitialKeys, IDs, T1, request, DerivedKeys, Content Key, KCB, Policies
4 Renewal Request onMessage PrepareKeyUpdateRequest InitialKeys, IDs, T1, request, DerivedKeys, Content Key, KCB, Policies, T2, counter, nonce†

5 Renewal Processing update RefreshKeys InitialKeys, IDs, T1, request, DerivedKeys, Content Key, T2, Updated counter, Updated KCB†, Updated Policies
† only on Android using KCB in the renewal response.

Table 3: Widevine CDM Internals during EME workflow.

	Introduction
	Background on DRM
	DRM Common Architecture
	DRM Common Security Model
	W3C EME Standard

	Widevine EME
	Experimentation Settings
	CDM Internals
	Initial State
	Acquire Licenses
	Renew Licenses
	Other Considerations

	Potential Attack

	EME Security Requirements
	EME as an Enforcement Layer
	EME Security Goals
	Threat Model

	Formal Verification using Tamarin
	Tamarin in a Nutshell
	Our Tamarin Models
	Main Assumptions and Limitations
	A Stateful API Manipulating Counters
	The Crucial Role of Time

	Results of the Formal Analysis
	Our Methodology
	Summary of our Results
	Proving the Security Goals

	Conclusion
	Widevine EME Internals
	Formal Security Analysis

