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CHAPTER

1Quality Evaluation of Light
Fields

Ali Aka and Patrick Le Calleta

aNantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

ABSTRACT
The Light Field (LF) as an immersive imaging technology has received significant attention
from both academia and industry in the last decade. LF enables a wide variety of applications
in computer vision and computer graphics domain. Due to its novel representation it has unique
challenges in the imaging pipeline. These challenges renders the quality assessment of the LF
content a necessity. In this chapter, various aspects regarding the LF quality assessment is
discussed including LF related distortion characteristics, subjective user studies and objective
quality metrics. The chapter1 provide an overview of the current state in LF quality assessment.
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1.1 Introduction
In the last century, a 7D plenoptic function was introduced to define the modern LF
as introduced in Chapter 1. It is described as below:

𝐿7𝑑 = 𝑃(𝑥, 𝑦, 𝑧, \, 𝜙, 𝑡, _) (1.1)

which represents the light ray from any given point (𝑥, 𝑦, 𝑧) in 3D space, to any
direction (\, 𝜙) in 3D space for any given time 𝑡 and wavelength _. Although the 7D
plenoptic function has a comprehensive definition, it is not fully utilized in practical
applications due to the high dimensionality of the data. A practically more desirable
version, 4D plenoptic function, is introduced as a result. It represents each ray with 4
points defined on two parallel planes. The coordinates are denoted with (𝑥, 𝑦) for the
image plane and (𝑎, 𝑏) for the camera plane.

LF can be represented in a variety of ways such as sub-aperture views, epipolar
plane images (EPI), lenslet image, refocused image stack, pseudo-video sequence
(with sub-aperture views or refocused image stack). For more details regarding LF
representations can be found in Chapter 7. Figure 1.1 depicts the two most common

1This document is the authors copy of the Chapter 10 in the "Immersive Video Technologies" book.
https://doi.org/10.1016/B978-0-32-391755-1.00016-X
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FIGURE 1.1

Sub-aperture views and EPI representations of a sample LF from the WIN5-LID
dataset[1].

representations, sub-aperture views and EPIs. On the left, sub-aperture views are
displayed on a grid representing the angular domain of the LF with (𝑎, 𝑏) coordinates
whereas (𝑥, 𝑦) coordinates is used for the spatial dimension of the individual sub-
aperture views. EPI slices are drawn on the spatial dimension of each sub-aperture
view on horizontal or vertical axis of the angular dimension. In other words, by
stacking horizontal or vertical sub-aperture views on top of each other, a rectangular
slice can be used to generate a single EPI. By shifting the rectangular slice we can
generate all the EPIs for the corresponding axis. For a LF with resolution (𝑎, 𝑏, 𝑥, 𝑦, 3)
(where 3 represents the red, blue and green color channels), each sub-aperture view
has the resolution (𝑥, 𝑦, 3), each vertical EPI has the resolution (𝑎, 𝑥, 3), and each
vertical EPI has the resolution (𝑏, 𝑦, 3).

1.2 Characteristics of LF related distortions
Understanding the characteristics of distortions is essential for both objective and
subjective quality assessment. In this section, we investigate the impact of various
steps in LF imaging pipeline and the impairments occurring at each step.

1.2.1 Acquisition related distortions
Various methods can be used to capture the LF content which are introduced in
detail in Chapter 6. Depending on the use-case, certain capture method may be more
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advantageous than alternatives. We can categorize them as multiplexed, sequential
and multi-sensor acquisition methods [2]. Multiplexed acquisition relies on cameras
known as plenoptic cameras that utilizes a micro-lens array placed between the image
sensor and main lens. Sequential acquisition methods relies on a single image sensor
placed often on a robotic arm or any other moving system to capture multiple views of
the scene with a sequential manner. Time-sequential methodology can only be used
to capture static scenes. And finally, multi-sensor acquisition utilizes multiple image
sensors and captures the scene from multiple views at the same time. Therefore, it is
suitable for LF videos and moving scenes.

1.2.1.1 Multiplexed acquisition
Spatially multiplexed cameras are often referred as plenoptic or light-field cameras.
Currently, Raytrix [3] is the most commonly known example of such devices. Al-
though plenoptic cameras provides a compact device to capture a light field, they
have to have a constant trade-off between the spatial and angular resolution. In other
words, increasing the spatial resolution of individual micro-lenses provides a high
spatial resolution/low angular resolution LF. Conversely, increasing the number of
micro-lenses decreases the spatial resolution and increases the angular resolution of
captured LF. Due to the spatial/angular resolution trade-off additional processing steps
(e.g. spatial/angular super resolution) might be required that affect the quality of the
acquired LF.

LF acquired with plenoptic cameras often suffer from lack of information on the
corner sub-aperture views due to micro lens array arrangements. These distortions are
visible similar to a vignetting. To overcome such distortions, corner views are often
omitted from the acquired LF since filling this information is not straightforward.

When it comes to LF video acquisition, current plenoptic camera technology
suffers from the lower frame-rates (3-4 fps). Although plenoptic cameras can shoot
with higher fps than sequential acquisition methods, it has a lower fps than multi-
sensor acquisition methods. To overcome this limitation, temporal super resolution
methods can be used. These methods often introduce specific distortions on the
temporal dimension of the processed video.

1.2.1.2 Time-sequential acquisition
Time-sequential acquisition utilizes a predefined trajectory containing sub-aperture
views uniformly distributed on a planar or spherical grid. A robotic arm is often
utilized to move the image sensor on this predefined trajectory in order to capture
the LF. The advantage of this method mainly lies within the high spatial angular
resolution and the flexibility of the baseline distance. Main disadvantage is the
inability to capture LF videos and dynamic LF scenes (i.e. still LF image with
moving objects). In the presence of a moving object in the scene, LFs captured with
time-sequential method might contain ghosting artefacts due to location difference
between consequent captures.
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1.2.1.3 Multi-sensor acquisition
The multi-sensor capture requires a set of image sensors ordered on a planar or
spherical grid. Ordered image sensors captures an image simultaneously to generate
the LF. Each image sensor in this setup corresponds to a sub-aperture view. Main
disadvantage of this method is the cost due to high number of image sensors required
to capture. On the other hand, based on the number of image sensors, captured LFs
do not suffer from low spatial and angular resolutions. Consequently, multi-sensor
capture does not lead to any specific impairments. However, baseline of the captured
LF is limited by the physical size of the image sensors.

1.2.2 Processing related distortions
Capturing a high spatio-angular resolution light field with high frame rate is limited by
at least one of the dimensions in each capturing method. Research often relies on super
resolution techniques on various dimensions to mitigate the resolution limitations. For
more information, interested readers may refer to Chapter 8.

1.2.2.1 Spatial super resolution
Spatial resolution of a LF content have a similar impact on the QoE as the traditional
2D content. Although it is not a LF specific concern, the content acquired via plenop-
tic cameras has always a trade-off between the spatial and angular resolution. To
this end, spatial super resolution is an alternative solution to cope with this trade-off.
Typically, spatially super resolved images contain blur-like distortions and aliasing
problems. Learning-based super resolution algorithms may introduce novel distor-
tions depending on the approach. Moreover, super resolution methods developed for
2D images may introduce additional distortions due to inconsistencies on the angular
domain and inconsistency on the temporal domain in cases of LF videos.

1.2.2.2 Angular super resolution
Angular super resolution is commonly called view synthesis in the literature. Similar
to spatial super resolution, angular super resolution also helps to cope with the spatial
angular resolution trade-off. Moreover, it provides a solution to increase the density of
the sub-aperture views of the sparsely captured LF content. View synthesis algorithms
shall be categorized into two based on the presence of the depth map as an input. A
recent overview of the view synthesis literature can be found in [2]. Quality of the
depth map used for view synthesis may affect the intensity and type of distortions
over the synthesized views.

Various factors may affect the performance of view synthesis algorithms. Conse-
quently, the visual quality of the synthesized views may vary. One important factor is
the occlusions in the captured scene. Occluded areas in the image needs to be filled
with information that is unseen previously. Therefore the problem itself (sometimes
referred as inpainting) is ill-posed and one of the common inverse imaging problems.
Additionally, separating the occluded pixels from the occluding pixels can be an-
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other challenge based on the input views. These challenges often leads to structural
distortions around the contour of the occluding objects in the scene.

High baseline distances (i.e., the distance between the neighboring sub-aperture
views of a LF) further increases the difficulty of the view synthesis task. By increasing
the baseline distance, we also increase the disparity between sub-aperture views
resulting in distortions with higher intensity and consequently a synthesized view
with lower visual quality [4].

Lambertian reflectance model [5] assumes that the light reflects from a surface
based on the surface normal and light directions, and the amount of light reflected
from the surface is equally bright in every angle. However, complex real world
scenes often do not have this property which is violated by specular, translucent
and certain reflective surfaces. Pixels that belong to non-lambertian surfaces cannot
be represented with a single depth value. Consequently, view synthesis algorithms
encounter yet another challenge on non-lambertian surfaces. Inconsistencies along
the angular dimension of non-lambertian surfaces can be observed as a result.

1.2.2.3 Temporal super resolution
Temporal super resolution is only a concern for LF video content. Due to slower
adoption of LF videos in the literature, the current state of the research regarding
to temporal super resolution is somehow limited. However, the characteristics of
temporal super resolution distortions are generally common with its 2D counterpart.

Despite similar characteristics, there are two additional complexity for LF video
temporal super resolution. First of all, consistency among the 4D LF need to be
ensured as opposed to a 2D image. Furthermore, due to high dimensionality of the
LF content, current plenoptic cameras can only shoot up to a limited frame rate. As
an example, Lytro Illum 2.0 [6] camera shoots only 3 fps. As an alternative solution,
Ting et al. [7] proposed a hybrid system containing a DSLR camera and a plenoptic
camera to capture high frame rate LF videos. In cases where such hybrid systems
are not applicable, direct use of existing LF cameras can be supported with temporal
super resolution algorithms to capture LF videos with an acceptable frame rate.

1.2.2.4 Depth estimation
Depth estimation related distortions are not only visible on acquired depth maps but
also on the LF that is processed with distorted depth maps. Therefore, the factors
that influence the LF quality due to depth map estimation are harder to isolate and
discuss in the imaging pipeline. Depending on the use-case, an accurate depth map
estimation may become crucial.

Often, depth estimation is done only for the center sub-aperture view [2]. In
scenarios where the depth maps for multiple views is estimated, the consistency
between the individual depth maps may affect the overall quality. Optimization and
evaluation of the acquired depth maps also may influence the quality assessment.
Relying on mean squared error as measurement may lower the pixel based accuracy
and promote blurry depth maps. Impact of these errors are also enhanced for LF
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content with lower baseline. Finally, occluded regions and non-lambertian surfaces
pose a challenge on the depth estimation algorithms as discussed earlier. An in-depth
overview of the literature for depth estimation of the dense LF content can be found
in [8].

1.2.3 Compression related distortions
Compression related distortions are one of the most common distortion types that are
represented in LF image quality datasets [9].The type of compression scheme dictates
the characteristics of the distortions whereas the compression rate often controls the
intensity of distortions. A detailed overview of the LF compression is given in Chapter
7.

One of the common approaches for LF compression is treating the 4D LF as a
pseudo video sequence (see Section 1.3.3.2 for more details regarding the pseudo
video sequences) and relying on existing hybrid video coding approaches such as
HEVC [10] and VVC [11]. Due to its simplicity and high efficiency, this method
is widely adopted in the literature [12]. Distortions that occurs with this type of
approaches share the same characteristics of 2D video compression distortions. They
may occur on the spatial dimension with high compression rates. Distortions that
occur as irregularities in the temporal domain instead occur in the angular domain for
LFs.

Another common approach utilizes the view synthesis algorithms to efficiently
compress LF content. A subset of the sub-aperture views (with additional geometry
information) is used to reconstruct the full LF. Often, resulting artefacts depends on
the utilized view synthesis methodology. Furthermore, occluded regions and non-
lambertian surfaces may alter the geometry information, which may result in structural
artefacts on affected regions.

Finally, we have seen an increasing amount of approach utilizing learning-based
models in various part of the coding chain such as view synthesis, learning-based
prediction and sparse prediction [12]. Their efficiency and the characteristics of the
resulting distortions vary greatly from one to another.

1.2.4 Use-case specific influencing factors for LF distortions
As it is suggested in [13], based on the state of adoption several use-cases emerges
in the LF domain such as industrial, medical, commercial, educational, cultural and
communicational. A detailed analysis of the various key performance indicators [14]
and their specific relations to each use case is given in [13]. Since each use-case
may have different requirements to provide a greater user experience, understanding
use-case specific parameters for LF quality help us to allocate resources into more
beneficial parts of the imaging pipeline.

For example, in communication scenarios where the telepresence through mobile
devices is concerned the angular quality and angular resolution of the LF visualiza-
tion gain importance over other parameters. Medical use-cases on the other hand
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Table 1.1 Publicly available LF IQA datasets.

Method Distortions Display # SRC # Stim # Obs Raw
Scores

MPI-LFA [15] JOD Compression
Super Resolution

2D 14 350 40 ✗

VALID [16] DSIS Compression
Refocusing

2D 5 - - ✗

SMART [17] PC/JND Compression 2D 16
4352

(pairs)
19 ✗

WIN5-LID [1] DSCQS
Compression

Super Resolution
Refocusing

3D 10 220 23 ✗

LFDD [18] DSIS
Compression
Processing

Contrast Enhancement
2D 10 - 16 -

Turntable [19] SSCQE
Compression

Additive Noise
Gaussian Blur

3D
LF 7 168 20 -

FVV [20] ACR Compression 2D 6 265 23 ✓

VSENSE [21] Eye Tracking - 2D 20 - 21 -

prioritize the accuracy and precision of the displayed content over visual aesthetics.
Therefore, device characteristics such as spatial resolution, brightness, contrast are
more important for such scenarios.

1.3 Subjective quality assessment
Similar to the other multimedia types, subjective quality assessment is the golden
standard for estimating visual quality of LF content. Subjective experiments to
collect human preferences on the LF quality is conducted for this purpose. These
experiments are often time-consuming and costly. However, they are essential to
understand image quality and develop objective quality metrics that correlates with
the human opinion. To this end, researchers collect subjective preferences on the
quality of various LF content and made these datasets publicly available to promote
research on quality evaluation of LFs. A non-exhaustive list of publicly available
datasets is given in Table 1.1.

Unlike other multimedia types, standards and recommendations are not well estab-
lished for subjective LF quality assessment as of today. Despite the lack of standards,
individual efforts are shining light on some of the important research questions. In
their study, Darukumalli et al. [22] conducted a series of experiments with different
experiment methodologies. The experiments measures the impact of level of zoom
on the visual comfort and overall subjective preference. Conducted experiments
provides insight regarding the impact of subjective experiment design on QoE ex-
periments conducted on projection based displays, the effect of level of zoom on the
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subjective preferences, the impact of the presence (or the lack of) background on
the perceived quality and the visual discomfort. Two experiment were conducted to
measure the acceptance of zoom level. One experiment utilized the absolute category
rating (ACR) method whereas second experiment is conducted with pair compari-
son (PC) method. The third experiment measures the visual comfort with a single
stimulus (SS) method with varying level of zoom. Results indicate that the pair
comparison method reveals the user opinions better than the other two methods. The
visual comfort results acquired with the ACR and SS experiments highly correlate,
indicating that the design choice between the two has minimal effect on the outcome
of the experiment.

A recent work from Kara et al. [23] presents an overview of the viewing condi-
tions of the LF video for subjective experiments. In their work, authors investigates
the viewing conditions for static, video and interactive content separately. The im-
pact of the viewing position of the observers, spatial and angular resolution of the
display/content are discussed. The result indicate a higher tolerance of low angular
resolution for static LF content compared to LF videos.

1.3.1 Characterization of LF content for subjective assessment
Image quality datasets are expected to be representative in terms of source content
(SRC) and the type of distortions. The type of distortions that can occur in LF content
were discussed in the previous section and this section will introduce a set of features
that can be used to identify the pristine LF content. A detailed overview of the LF
features can be found in [24].

Spatial perceptual information (SI) is a measurement of spatial information in a
scene. It is one of the common features that is used for traditional 2D images [25].
Higher SI values indicates a higher spatial complexity for a scene. In SMART LF IQA
dataset [17] it is used as the standard deviation over the Sobel [26] filtered luminance
image.

Colorfulness (CF) is another feature that is also used for 2D images which impacts
the overall aesthetic of a given content. Many descriptions exist for image colorfulness
and a detailed overview supported by subjective experiments can be found in [27].
For LF content it is described with the mean and standard deviation of the red, green
and blue pixel values [24].

Similar to SI and CF, contrast is also another feature that is commonly used for
2D and LF content. For natural images an extensive analysis of existing measures and
the definition of root mean squared contrast can be found in [28]. For LF images, in
[24], Gray Level Co-occurence Matrix (GLCM) is utilized as a contrast descriptor.

Disparity range can be used as a feature to incorporate the 3D information regard-
ing the scene. In [24], the algorithm proposed in [29] is used to estimate the pixel
disparity and the [minimum disparity, maximum disparity] range is used as a feature.
Alternatively, 95% range can be used to increase the robustness towards the errors in
disparity estimation.

Refocusing range is another feature described in [24] specificly for LF content.
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Based on the refocusing implementation publicly available in Matlab Light Field
Toolbox [30] a refocusing range is calculated.

The ratio of the occluded regions in the image can be used as another feature
related to the 3D structure of the LF scene. In [24] number of occluded pixels in
the LF is calculated with the Matlab Light Field Toolbox [30] and used as a feature.
In order to prevent bias towards the spatial resolution of the LF image, number of
occluded pixels can be normalized with the spatial resolution of a sub-aperture view.

1.3.2 Quality assessment on LF displays
LF displays are still not widely adopted in the commercial market and definitely not
available at the consumer level. Consequently, there is a lack of publicly available LF
quality datasets that are collected on LF displays.

LF displays can be categorized as back and front projection. Observers and the
light source are located on the same side of the screen for front projection displays
while the opposite holds for back projection displays. In comparison to back projec-
tion displays, front projection displays requires additional attention to experimental
conditions in terms of positioning of the observers.

There are various parameters that affects the quality of a LF content when visual-
ized on a LF display. These parameters can be also called key performance indicators
in certain literature[14]. Common with the traditional 2D displays, physical size and
the spatial resolution, brightness and color space of the LF displays greatly affect the
QoE.

On another front, angular resolution is an influencing factor specific to LF displays
that affects the visual quality. Angular resolution governs the smoothness of the par-
allax effect. Currently, commercially available LF displays are only takes horizontal
parallax into consideration and HoliVizio C80 [31] has the highest angular resolution
in the market with 0.5 degrees.

Depth budget defines the perpendicular distance around the LF display where an
object can appear [14]. It is linearly related to the angular resolution and the pixel
size of the display. Importance of the depth budget is highly content dependent and
having higher depth may improve the QoE based on the visualized scene.

1.3.2.1 IQA datasets with LF displays
Currently, there are not many publicly available dataset that assess LF quality with
LF displays. To the best of our knowledge, Turntable dataset [19] by Tamboli et al.
is the only publicly available LF IQA dataset that utilizes a LF display. The angular
resolution of the LF display was one view per degree. Holovizio HV721RC display
was used for the experiment. This display allow users to experience corresponding
viewpoints based on their angle to the display. During the rating task, each observer
rated the stimuli on the 5 positions along the viewing arc. Observers rated the stimuli
in a quality range from 1 to 5 with Single Stimulus Continuous Quality Evaluation
(SSCQE) method.
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1.3.3 Quality assessment on other displays
Subjective studies can also be conducted on other display types such as 2D and 3D
stereoscopic displays. Majority of the publicly available datasets for LF image quality
are collected with 2D displays thanks to their availability.

LF content can be passively displayed on 2D displays as a pseudo video sequence.
Frames of these video sequence are often individual sub-aperture views of the LF
content on a pre-defined trajectory. In addition, frames of the pseudo video sequence
can be refocused version of the LF scene. Passive methodology ensures that the same
content is being delivered to all observers in the experiment. However, it fails to
provide an interactive experience of the LF content.

Interactive experiments on 2D displays requires user input to determine the tra-
jectory of the displayed sub-aperture views or refocused image on the focus stack.
This allows observers to experience the LF content freely. Due to interactive viewing
experience, displayed content varies from one observer to another resulting in higher
variety in subjective preferences.

1.3.3.1 IQA datasets with other displays
Referring back to the Table 1.1, there are many LF IQA datasets in the literature that
are collected on 2D displays. In this section, we will introduce these datasets and
discuss some of the details. Interested readers are recommended to refer to the recent
work from Ellahi et al. [9] for more details.

MPI-LFA dataset [15] consists of 5 real and 9 synthetic dense LF scenes. LF
scenes in the datasets contains only horizontal parallax and has the resolution of
960 × 720 × 101. HEVC compression algorithm and and various reconstruction
related distortions were used to generate stimuli. In total, the dataset contains 350
LF in total with Just Objectionable Difference (JOD) scores. JOD scores defines the
amount of objectionable difference between two stimuli. The experiment is conducted
with Nvidia glasses to allow stereoscopic display. Acquired results suggests that
optical flow based reconstruction outperforms both nearest neighborhood and linear
interpolation methods. In addition, HEVC compression artefacts were easy to notice
by participants in the majority of content.

VALID dataset [16] contains 5 LF scenes with 15 × 15 angular and 625 × 434
spatial resolution. Both passive and interactive methodology were utilized with DSIS
methodology on a scale of 7 (-3 indicating the poorest quality, +3 indicating best
quality). Compression related distortions and refocusing were evaluated in the dataset.
Authors did not share any information regarding the participant demographics.

SMART dataset [17] contains 16 LF scenes that are selected based on content
features such as spatial information, colorfulness, contrast, brightness, etc. LF scennes
were captured with Lytro Illum plenoptic camera. 4 compression algorithms were
used to generate the stimuli. Pairwise Comparison (PC) methodology were used to
gather Just Noticeable Difference (JND) steps for each stimuli.

WIN5-LID dataset [1] contains 10 LF scenes (6 real, 4 synthetic scenes) and
their quality scores collected with a 3D stereoscopic display. HEVC, JPEG2000
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compression algorithms and linear, nearest neighborhood and two learning based
angular super resolution algorithms were used to generate the distorted stimuli. In
total, 220 stimuli were rated in the experiment. Picture quality and the overall quality
of the LFs were collected with Double Stimulus Continuous Quality Scale (DSCQS)
methodology.

LFDD dataset [18] consists of 8 synthetic LF scenes as the reference stimuli.
JPEG, JPEG2000, VP9, AVC, HEVC are some of the compression algorithms that
are used to generate the distorted stimuli. Additionally, simple noise and geometrical
distortions were tested. Subjective experiment was conducted via crowdsourcing.
DSIS was chosen as the subjective testing methodology. A predefined trajectory was
used to generate the pseudo video sequences.

FVV dataset [20] contains 6 reference free viewpoint videos with 50 unique views
presented as a video sequence from left to right to left in 100 frames. Compression
and super-resolution artefacts are used to generate the distorted stimuli. Although it is
not named as a LF dataset, the dataset shares the same characteristics with MPI-LFA
dataset as it provides a high resolution horizontal parallax with LF related distortions
as the stimuli.

VSENSE dataset [21] investigates the visual attention of refocused LF content.
Focus stacks for refocusing were generated via the Fourier Disparity Level [32] method
on 20 different LFs. Although the dataset does not provide any quality evaluation, we
have mentioned the dataset due to close relation of visual attention to image quality.
The experiment were conducted to investigate the effect of changes in focus on the
visual attention of the observers. Visual attention was measured by collecting eye
tracking data from the left eye of the observers during the experiment.

1.3.3.2 Impact of visualization trajectory
As stated previously, passive visualization of the LF content can be done by arranging
sub-aperture views with a predefined trajectory as pseudo video sequence. In this
case, the impact of trajectory can affect the visual quality of the LF. Figure 1.2 presents
6 different trajectories that are used in a comparative analysis in [33]. The trajectories
are visualized with red arrows and explanations are quoted below:

• V1: spiral scan from the external to the internal views in clockwise direction
• V2: diagonal scan in a spiral fashion starting from the view on the left inferior

corner
• V3: horizontal scan from left to right starting from the view on the left superior

corner
• V4: spiral scan in counter-clockwise direction starting from the center view
• V5: vertical scan from bottom to top starting from the view on the left inferior

corner
• V6: diagonal scan from left to right

12 LF content from the EPFL LF dataset [34] is used to generate the pseudo video
sequences with the 6 trajectories. 28 participants were recruited to evaluate the quality
of the generated video sequences with ACR methodology on a scale from 1 to 5 (1:
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FIGURE 1.2

A common method to create pseudo video sequences for subjective experiments with-
out user interaction. One of the predefined trajectories above can be used to generate
a video sequence from the sub-aperture views.

bad, ..., 5: excellent). A training phase was utilized prior to the experiment in order
to let the observer familiarize with the task. Mean Opinion Score (MOS) is used to
indicate the quality of each video sequence along with the 95 percentile Confidence
Interval (CI).

Figure 1.3 presents the result of the comparison between the 6 trajectories in terms
of MOS and CI values. Overlapping CIs between the 5 trajectories (V1, V3, V4, V5,
V6) except V2 indicates a non-significant difference. On the other hand, V2 has
significantly lower MOS value than the other trajectories. Referring to Figure 1.2,
lower MOS value can be explained, trajectory contains large disparity on both vertical
and horizontal dimensions around the corner of the trajectories. This may disturb the
observers and consequently lower the MOS value. A more detailed discussion and
analysis of the results can be found in [33].

On another front, Figure 1.4 visualizes a sample rendering trajectory on the LF
images with horizontal parallax only. The effect of rendering trajectory on the quality
of experience is discussed in details for free viewpoint videos in [35]. Although they
follow a different naming convention, free viewpoint videos are LF with horizontal
parallax and the rendering trajectory of this LF is defined over temporal dimension.
The results indicate that the observers shows significant preference towards certain
rendering trajectories. Based on the regions of interest in the content, careful selection
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FIGURE 1.3

Comparison of the MOS scores and their 95% CIs for the 6 predefined trajectories

of rendering trajectory is required.

1.4 Objective quality assessment
Although subjective experiments are the golden standard for quality assessment au-
tomatically assessing the image quality is still necessary for many applications. It
is also not practical to conduct a subjective experiment every time a quality evalu-
ation is required. Additionally, determining the quality of LF content for real-time
applications cannot be done via subjective experiments. To this end, objective quality
metrics allow us to estimate the image quality in an automated fashion.

1.4.1 Visibility of LF related distortions on EPI
We have investigated the LF specific distortions and their sources in LF imaging
pipeline in Section 1.2. Many of these distortions were considered when collecting
LF image quality datasets in the literature. In this section, we will investigate these
distortions on the selected datasets and their visibility on the EPI representations.

A visual inspection of the EPI patches and corresponding edge maps from 5 differ-
ent LFs in MPI-LFA dataset [15](see Section 1.3.3.1) is given in Figure 1.5. Reference
EPI patch (i.e., pristine, without distortion) is displayed at the top meanwhile the 4 EPI
patches below contains distortions due to super-resolution algorithms indicated on the
left. A brief examination of the EPI patches reveals the characteristics of each super-
resolution method. Edge maps acquired with Canny edge detection algorithm [36]
provides a binary map emphasising the visibility of this phenomenon.

Based on this observation, it is natural to investigate the benefit of EPI represen-
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FIGURE 1.4

Rendering trajectory on LF with only horizontal parallax defined on the temporal di-
mension.

tations on the image quality metric performances. Therefore, next section introduces
a set of image quality metrics that leverages structural information within an image
to predict the overall quality. Afterwards, we compare the difference between metric
performances on EPI and sub-aperture view representations.

1.4.1.1 Structural image quality metrics
Natural image counter evaluation (NICE) [37] is a full-reference structural image
quality metric that relies on the edge maps of reference and distorted image. Extracted
edge maps from the reference and distorted images are first dilated with a plus-sign
kernel. Later, non-zero elements in the XOR maps between the dilated image pair is
calculated to be pooled into a final quality score. Different edge maps might affect
the performance of the metric.

Gradient magnitude similarity deviation (GMSD) [38] is another full-reference
structural image quality metric that utilizes the directional image gradients. Both
reference and distorted images are convoluted with Prewitt [39] filters (horizontal
(ℎ𝑥) and vertical(ℎ𝑦)):

ℎ𝑥 =


1/3 0 −1/3
1/3 0 −1/3
1/3 0 −1/3

 , ℎ𝑦 =


1/3 1/3 1/3
0 0 0

−1/3 −1/3 −1/3


Later, gradient magnitudes at each pixel location for both images are calculated

as follows:
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FIGURE 1.5

Sample EPI patches of 5 different LFs from MPI-LFA dataset[15]. Edge maps of the EPI
patches are also presented below to demonstrate the visibility and characteristics of
various distortions.

𝑚𝑟 (𝑖) =
√︃
(𝑟 ⊛ ℎ𝑥)2 (𝑖) + (𝑟 ⊛ ℎ𝑦)2 (𝑖) (1.2)

𝑚𝑑 (𝑖) =
√︃
(𝑑 ⊛ ℎ𝑥)2 (𝑖) + (𝑑 ⊛ ℎ𝑦)2 (𝑖) (1.3)

to be used to calculate gradient magnitude similarity (GMS) map with the follow-
ing function

𝐺𝑀𝑆(𝑖) = 2𝑚𝑟 (𝑖)𝑚𝑑 (𝑖)
(𝑚𝑟 )2 (𝑖) + (𝑚𝑑)2 (𝑖)

(1.4)

Finally, GMS maps are pooled with standard deviation pooling to estimate the
final image quality of the distorted image in comparison to the reference image.

Morphological Wavelet Peak Signal-to-Noise Ratio (MW-PSNR) [40] calculates
the image quality based on morphological wavelet decomposition. PSNR is calculated
between each band of decomposed reference and distorted image pairs.

1.4.1.2 Sub-aperture Views vs EPI
Structural information present in the EPI regarding the angular dimension of the LF
makes it an important representation to understand the presence and the intensity
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Table 1.2 PCC between metric predictions and MOS scores on FVV
dataset[20]. First column corresponds to PCC values when EPI representa-
tions are used whereas second column corresponds to PCC values on sub-
aperture views.

EPI View

MW-PSNR 0.7698 0.7921
GMSD 0.7410 0.6715
NICE 0.5122 0.4310

of distortions. With this motivation, we investigate the performance of the three
structural image quality metrics that are introduced in the previous section on sub-
aperture view images and EPIs. Interested readers are recommended to refer to the
original work [41] for more information regarding the motivation and the experiment.

Experiment was conducted on FVV dataset [15] (see Section 1.3.3.1). Stimuli in
FVV dataset contains 50 horizontally arranged sub-aperture views with no vertical
parallax. For each

Table 1.2 presents the result of the experiment in terms of Pearson Correllation
Coefficient (PCC) between the metric predictions and MOS values for the three
metrics used in the experiments. Higher PCC values indicate a better performance
for the metrics. Both sub-aperture views and EPI representations were used to
test the metrics. It can be observed that the GMSD and NICE metrics performs
better when used over EPI representations instead of sup-aperture views. Structural
information such as directional gradients and edge maps reveals the distortions that
causes inconsistencies in the angular domain. Consequently, GMSD and NICE that
relies on filtering the image with Prewitt and Canny kernels performs better on EPI
representations. On the other hand, MW-PSNR performance is lower when used
over EPI representations. This can be explained by the low spatial resolution of each
EPI slice. Multi-scale wavelet decomposition cannot be fully utilized due to the low
resolution.

1.4.2 LF image quality metrics
As it stands today, LF is an emerging technology and quality assessment of LF is an
emerging research field. Consequently, there are no well established image quality
metrics for LF content. Due to complex imaging pipeline, ill-defined nature of the
LF related distortions and the higher dimensionality of the LF content developing
objective quality metrics is even more challenging. However, many attempts have
been made in the last decade and more than 30 objective image quality metrics exist
in the literature.

Similar to the traditional image quality metrics, we can categorize LF image quality
metrics based on the availability of the reference image as an input as full-reference
(FR), reduced-reference (RR) or no-reference (NR). When the pristine reference image
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is present as an input along with the distorted LF, the metric is called a FR metric.
Conversely, in the absence of the pristine reference the metric is called NR. In cases
where a set of feature but not the full reference LF is used, the metric is referred as a
RR metric.

On another front, we can categorize the metrics based on the LF representations
used as an input. Objective metrics can utilize a variety of LF representations such as
lenslet image, sub-aperture view, EPI, refocused image stack, pseudo video sequence.

The density of the LF (i.e., the baseline distance) can be also used to categorize the
objective quality metrics. Currently, due to majority of the publicly available datasets
using dense LFs (i.e. low baseline distance) majority of objective quality metrics are
also developed and evaluated on dense LF content. Therefore, at its current state, this
categorization might be redundant despite its importance.

The distortions being targeted by the metrics also play an important role and
therefore an informative way to categorize the metrics. Since the datasets used to
develop the metrics often dictates the distortions that are targeted by the metric, this
categorization can be done via the utilized datasets.

For LF images, metrics often contain two separate streams to evaluate the quality of
the spatial and angular dimensions. Two streams are often used to extract features and
typically a regression model or a pooling strategy is utilized to merge the two streams
into predicting the final quality of the LF content. In addition to the two streams, a
third stream can be utilized for LF video content for the temporal dimension. To this
date, there are no LF video quality metrics in the literature. Tamboli et al. conducted
a study [42] on the use of LF image quality metric [19] to assess LF video frames.
Result of the study indicates that the distortions on the temporal space can be separated
in the metric space. However, further confirmation with a subjective experiment is
required to demonstrate the efficacy of the approach.

Non-exhaustive list of the LF image quality metrics is given in Table 1.3 along
with the properties introduced above. At the input column of the table, SAV stands for
sub-aperture views whereas SMV stands for super multi-view. Below we introduce
some of these metrics. Note that, the following metrics do not consider any use-
case. In other words, they evaluate the LF quality independently from the rendering
methodology/trajectory. Therefore, the results are purely data driven and various use
cases may introduce other complications which are ignored by the proposed metrics.

First metric in the table is proposed by Ak et al. [43] and it is a NR metric which
takes EPIs from the distorted LF image as an input. It is built on the work illustrated
in Section 1.4.1. The metric utilizes the visibility of the LF related distortions on
the EPIs and relies on two set of features as the histogram of oriented gradients
(HOG) based bag-of-words codebook and a convolutional sparse coding dictionary.
The two set of features than used to predict the quality score with a support vector
regression model. The model is trained and evaluated on the MPI-LFA dataset and
the results indicate that the metric provides a high correlation to human judgement on
LF content distorted with compression and super resolution distortions with passive
display method.

Tamboli et al. proposed an objective quality metric [19] that targets the sparse LF
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Table 1.3 A non-exhaustive list of LF image quality metrics from the liter-
ature.

First
Author

Ref Input Training
Dataset

Evaluation
Dataset

LF
Density

Ak [43] NR EPI MPI-LFA [15] MPI-LFA [15] Dense

Guo [44] NR SAV HCI [45]
EPFL [34]

WIN5-LID [1] Dense

Shi [46] NR EPI
Cyclopean Img

MPI-LFA [15]
SMART [17]

WIN5-LID [1]

MPI-LFA [15]
SMART [17]

WIN5-LID [1]
Dense

Tamboli [19] FR SMV Turntable [19] Turntable [19] Sparse

Tian [47] FR SAV
EPI MPI-LFA [15] MPI-LFA [15] Dense

Zhou [48] NR SAV

MPI-LFA [15]
SMART [17]
VALID [16]

WIN5-LID [1]

MPI-LFA [15]
SMART [17]
VALID [16]

WIN5-LID [1]

Dense

content and currently it is the only publicly available objective quality metric which
is developed for sparse LF content. Steerable pyramid decomposition over the 3D
view of the reference and distorted LF content is used to extract features and quantify
the distortions. To assess the quality on the angular dimension, the metric calculates
the structural similarity between optical flow arrays obtained from the reference and
distorted LFs. The metric were evaluated on the same dataset [19] proposed in the
paper. A cross-validation is used to remove the bias towards the training/test split.

Guo et al. proposed the NR metric [44] which utilizes sub-aperture views with
two parallel streams named sub-aperture view fusion and global context perception.
The metric is unique in the sense of its training. Pre-training of the metric is done via
synthetically generated labels, called ranking-MOS over a large collection of dense
LF content. Finally, metric is fine-tuned on WIN5-LID dataset [1].

Shi et al. proposed another NR metric [46] which utilizes the cyclopean image
array to measure the spatial quality of the LF images and EPIs to measure the angular
quality. Similar to [43], the proposed metric relies on the distribution of gradient
directions on the EPIs. A support vector regression model is used to combine extracted
features to predict final LF image quality.

A FR metric [47] was proposed by Tian et al. relying on two sets of features
(symmetry and depth) for quality estimation of LF image content. Symmetry fea-
tures were calculated over the sub-aperture views of reference and distorted LF in 2
sub-streams as the magnitude-based and orientation-based. While orientation-based
symmetry features reveals the distortions on the image details, magnitude-based fea-
tures emphasises the contour information. For the angular consistency, the proposed
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metric relies on depth features extracted from the EPIs. Angular quality is quantified
by comparing the variance of the lines in a given set of reference and distorted EPI.
A weighted average of symmetry and depth scores are then used to predict the final
quality.

Zhou et al. proposed a NR quality metric [48] where the LF image is treated as
a four dimensional tensor. The metric operates in CIELAB color space and Tucker
decomposition is used to extract principal components. Principal components spatial
characteristics is used to measure the spatial quality whereas tensor angular variation
index is used to quantify the angular consistency. After extracting features from the
two streams, a support vector regression model is equipped to predict final quality
score.

1.5 Conclusion
Industrial and academical adoption of light field content widens thanks to unique
opportunities it enables. Last decade brought a great amount of attention to the light
field research. Despite the increasing interest, we are still far from light field content
reaching out to the consumer market. In the commercial market, we have seen various
level of adoption for different use-cases such as medical, cultural, communicational,
industrial [13]. For a given use-case, the requirements for a greater user experience
may be different than others [14]. This makes the quality assessment of light fields
more challenging.

Conducting a subjective study is the ultimate way to assess the quality of experi-
ence. There is no exception for the use-cases concerning the light field content. To
this end, various subjective studies were conducted and shared with public. Among
these, there are studies assessing the quality under varying rendering trajectories,
independent of any rendering trajectory, with different focus planes, eye-tracking ex-
periments. A number of testing methodology has been used in the literature including
DSIS and pairwise comparison. Consequently, subjective preferences are shared as
mean opinion scores, pairwise comparison matrices or just observable differences
along the tested stimuli as part of the dataset. Currently number of subjective studies
with light field displays are low in number in the literature. Majority of the studies
uses traditional 2D displays and treats the light field as a pseudo video sequence. Note
that, the subjective studies that are not conducted with light field displays may not
reflect the effect of all possible influencing factors for all use-cases, they still provide
a good ground to improve upon.

Objective quality assessment of light field is still developing and the number of
publicly available light field image quality metrics is increasing. To this day, there
is no light field video quality metrics as well as an objective quality metric for high
dynamic range light field images. The metrics currently do not consider rendering
trajectory while assessing the light field quality and majority of the metrics are targeted
for dense light fields. The common scheme for the majority of metrics contains two
streams of features assessing the spatial and the angular quality separately. Often a
module such as support vector regression model is used to pool the extracted features
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from the two streams and predict the final light field quality.
With wider adoption of the light field in commercial uses, the key performance

indicators will continue to evolve. A wide variety of application will likely to adopt
light fields bringing new use-cases and challenges. This creates a need for constant
development and improvement of methods and tools to assess light field quality.
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