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GROUP SCHEMES OVER LG-RINGS AND APPLICATIONS

TO CANCELLATION THEOREMS AND AZUMAYA

ALGEBRAS

PHILIPPE GILLE AND ERHARD NEHER

Abstract. We prove several results on reductive group schemes over
LG-rings, e.g., existence of maximal tori and conjugacy of parabolic
subgroups. These were proven in [SGA3] for the special case of semilocal
rings. We apply these results to establish cancellation theorems for
hermitian and quadratic forms over LG-rings and show that the Brauer
classes of Azumaya algebras over connected LG-rings have a unique
representative and allow Brauer decomposition.
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2 P. GILLE AND E. NEHER

Introduction

In volume III of the fundamental treatise [SGA3] on group schemes over
a scheme S, several results are only proven if S = Spec(R) for R a semilocal
ring. In this paper we extend most of these results to the case S = Spec(R)
for R an LG-ring.

LG-rings, an abbreviation of “local-global” rings, axiomatize a basic prop-
erty of a semilocal ring R. By definition, a ring R is an LG-ring if a poly-
nomial f in several variables represents a unit of R as soon as for every
maximal ideal m ⊳ R the canonical image fR/m represents a unit over R/m.
Besides semilocal rings, the class of LG-rings include rings that are von Neu-
mann regular modulo their radical and the ring of algebraic integers, see 1.2
for more examples and an historical background.

Among the results we prove for a reductive group scheme G over an LG-
ring R, we highlight the following:

(1) Every parabolic subgroup of G admits a maximal R–torus, in par-
ticular this holds for G itself (2.6, 2.8).

(2) Two parabolic subgroups of the same type are conjugate under an
element of G(R) (3.1).

(3) If R is a connected LG-ring, then G(R) acts transitively on the set
of minimal parabolic subgroups of G, and if G is semisimple, then
G(R) also acts transitively on the set of maximal split subtori of G
(4.7).

An important ingredient in the proofs of (1)–(3) is a geometric characteri-
zation of LG-rings:

(4) If M is a finite locally free module over an LG-ring R and U is
an open quasi-compact subscheme of the scheme W(M) associated
with M , then U(R) 6= ∅ ⇐⇒ U(R/m) 6= ∅ for every maximal ideal
m ⊳ R, see 1.4(a).

With (4) in place, our proof strategy often is to recast a claim in terms of
an open quasi-compact subscheme of an affine space and then follow the
approach of [SGA3].

Our applications are twofold. First, in §5 we prove several cancellation
theorems, based on the cohomological cancellation principle 5.1 which says
that certain embeddings of reductive group schemes over LG-rings induce
injective maps in cohomology. Specializing the groups involved, we easily
derive cancellation of modules and Azumaya algebras in tensor products 5.2,
cancellation of hermitian forms in 5.4 and Witt cancellation of quadratic
forms in 5.5.

Second, we consider Azumaya R–algebras A in §6 and extend several
results from R connected semilocal to R being connected LG. In particular,
we show:
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(5) Each two indecomposable finite projective A–modules are isomor-
phic. Equivalently, the Brauer class of A contains, up to isomor-
phism, a unique algebra B with idemp(B) = {0, 1}, where idemp(B)
is the set of idempotents of B (6.7).

(6) Every A with idemp(A) = {0, 1} has a Brauer decomposition (6.9).

We note that (5) says that connected LG-rings have the Wedderburn prop-
erty in the sense of [AW17] (or see [Fo, §7.6]).

Organization of the paper. We begin with a short introduction to LG-
rings in §1, list examples, recall some immediate consequences and prove the
important characterization (4) of LG-rings, stated above. Our investigation
of group schemes over LG-rings starts in §2, where we prove the crucial
result (1). We finish this section by discussing quasi-split and split reductive
groups over LG-rings.

We study parabolic subgroups of reductive group schemes over LG-rings
in §3. Besides (2) above and some immediate corollaries on three or two
parabolic subgroups (3.2, 3.6), we prove in 3.8(b) that there exists a unique
smallest element tmin in the set of types of parabolic subgroups of a reductive
R–group scheme G for R an LG-ring. This allows us to introduce the Tits
index in case G is semisimple and R is connected (no new indices occur,
3.9).

We focus on minimal parabolic subgroups and maximal split tori in §4,
in particular prove (3) above. As a consequence, it makes sense to define
the anisotropic kernel of a reductive R–group scheme G, R connected LG,
as the derived group of a minimal Levi subgroup, (4.9.1).

Finally, §5 and §6 are devoted to the applications mentioned above.

Notation. We use standard notation and terminology, but note here that
R-alg denotes the category of unital associative commutative R–algebras.
An R–scheme is a scheme over Spec(R). A finite locally free R–module
is the same as a finitely generated projective R–module, often abbreviated
as finite projective R–module. If M is such a module, W(M) denotes the
R–scheme representing the R–functor T 7→ M ⊗R T , T ∈ R-alg. For any
unital associative algebra S we write S× for the set of invertible elements
of S. Given an Azumaya algebra A, over a scheme or over a ring R, we
follow [CF, 2.4.2.2 and 2.4.2.2] and denote by GL1(A) and PGL(A) the
group schemes of invertible elements and of automorphisms of A. Regarding
cohomology, H1(R,G) = H1(Spec(R), G) is fppf-cohomology.

References to [SGA3]. Our paper has many references to [SGA3]. For
better readability, a reference to [SGA3] will simply be written by specifying
the exposé in Roman numbers and the result in arabic numbers, but leaving
out [SGA3]. For example, [SGA3, XIV, 3.20] = [XIV, 3.20].

Acknowledgements. We thank Skip Garibaldi and Holger Petersson for
having aroused our interest in LG-rings and for comments on an earlier ver-
sion of this paper. We also thank Laurent Moret-Bailly for correspondence
regarding Example 2.13.
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1. LG-rings

This section gives an introduction to LG-rings (definition, examples, im-
mediate consequences of the definition, preliminary results). In particular,
we prove the important geometric characterization 1.4 of LG-rings and of
rings satisfying the primitive condition.

1.1. LG-rings (definition and some known facts). For S ∈ R-alg we
say that a polynomial g ∈ S[X1, . . . ,Xn] represents a unit over S if there
exist s1, . . . , sn ∈ S such that g(s1, . . . , sn) ∈ S×. We apply this notion for
a polynomial f ∈ R[X1, . . . ,Xn] by viewing f as a polynomial over S using
the structure homomorphism R → S. Observe that if f ∈ R[X1, . . . ,Xn]
represents a unit over R, then it represents a unit over every S ∈ R-alg.
LG-rings are rings for which also the converse holds. Namely, we call R an
LG-ring if for every n ∈ N and every f ∈ R[X1, . . . ,Xn] the polynomial
f represents a unit over R if and only if one of the following obviously
equivalent conditions hold:

(i) f represents a unit over every localization Rm, m a maximal ideal of
R;

(ii) f represents a unit over every field R/m, m a maximal ideal of R;
(iii) f represents a unit over every field F ∈ R-alg;
(iv) f represents a unit over every S ∈ R-alg.

An LG-ring is sometimes called a “local-global ring”, hence the short form
LG, or a ring with many units. The following facts will be helpful:

(a) (Direct products) Let R1, . . . , Rn be rings. Then the direct product
R1 × · · · ×Rn is an LG-ring if and only if every Ri is an LG-ring.

(b) (Characterization) Recall that Jac(R) denotes the Jacobson radical of
a ring R, i.e., the intersection of all maximal ideals of R. The following are
equivalent for R:

(i) R is an LG-ring;
(ii) R/Jac(R) is an LG-ring.

The equivalence (bi) ⇐⇒ (bii) holds because the maximal ideals of R and
of R/Jac(R) are in obvious bijection.

(c) (Finite modules) Let M be a finitely presented and let N be a finitely
generated module over an LG-ring R. Then M ∼= N if and only if Mm

∼=
Nm for all maximal ideals m ⊳ R [EG, Thm. 2.6]. In particular, any finite
projective R–module of constant rank is free [EG, Thm. 2.10], [MW, II,
Thm.], and therefore

(1.1.1) Pic(R) = {0}.

We will give a quick proof, different from the published ones, of the last
statement in Corollary 1.6(b).
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1.2. Examples of LG-rings and some history. (a) Clearly, {0} is an
LG-ring and so is every field. It then follows from 1.1(a) and 1.1(b) that
every semilocal ring is an LG-ring.

(b) If R is an LG-ring and R′ ∈ R-alg is an integral extension, then R′

is also an LG-ring by [EG, Cor. 2.3]. In particular, every finite R–algebra
of an LG-ring R is itself an LG-ring. (Recall that an R–algebra S is finite
if and only if S is integral and of finite type as R–algebra [St, Tag 00GN].

(c) Condition 1.1?? implies that every homomorphic image of an LG-ring
is an LG-ring. Similarly, any direct limit of LG-rings is an LG-ring [EG,
§2].

(d) If R/Jac(R) is von Neumann regular, then R is an LG-ring [MW,
I, Prop.]. Recall [B:AC1, I, §2, Exc. 17] that a commutative ring A is von
Neumann regular if and only if A is absolutely flat, i.e., all A–modules are
flat.

(e) A zero-dimensional ring is an LG-ring [MW, I, Cor.]. Indeed, a ring
R is zero-dimensional if all its prime ideals are maximal. For such a ring the
Jacobson radical Jac(R) equals the nil radical, and so R/Jac(R) is absolutely
flat = von Neumann regular by [B:AC1, II,§4, Exc. 16(d)] or by [St, Tag
092F]. Therefore R is LG by (d).

(f) A polynomial in R[X1, . . . ,Xn] is called primitive if its coefficients
generate R as ideal. One says that a ring R satisfies the primitive criterion
[EG, MW] if the following equivalent conditions hold:

(I) for every primitive polynomial P ∈ R[X] there exists r ∈ R such
that P (r) ∈ R×;

(II) for every primitive Q ∈ R[X1, . . . ,Xn] there exists (r1, . . . , rn) ∈ R
n

such that Q(r1, . . . , rn) ∈ R
×;

(III) R is LG and all residue fields are infinite.

An example of a ring satisfying the primitive criterion, is the ring S−1R[X]
where R is arbitrary and S is the multiplicative subset of all primitive poly-
nomials in the polynomial ring R[X], [vdK, 1.13].

Another interesting example is the ring of all algebraic integers or of all
real algebraic integers is an LG-ring. That these rings are LG-rings, is
shown in [Da, EG]. Since they do not have homomorphic images of finite
characteristic, (III) proves our claim.

(g) Non-examples: The rings Z and R[X], R an integral domain, are not
LG-rings [GPR2, Exc. 11.42].

(h) Some history of LG-rings. It seems that the concept of an LG-ring
goes back to the paper [MW] by McDonald and Waterhouse, where the
authors refer to such a ring as a “ring in which every polynomial with local
unit values has unit values”. The motivation of [MW] comes from K–theory,
in particular the study of GL2(R) and Aut

(
GL2(R)

)
. The name “LG-ring”

was introduced in the paper [EG] by Estes and Guralnick, which is the first
in-depth investigation of LG-rings. Later on, LG-rings were used by Dias
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[Di] in her Ph.D. thesis with the goal of extending some classical theorems
on quadratic forms over fields to quadratic forms over LG-rings (her result
on Witt cancellation of quadratic forms is generalized in 5.5). The subject
seem to have fallen in oblivion until it was recently resurrected by Garibaldi-
Petersson-Racine in their paper [GPR1] and the forthcoming book [GPR2].

Our first goal is to give a more geometric approach to LG-rings, see 1.3
and 1.4.

1.3. Lemma. Let R be an LG-ring and let n ≥ 1 be an integer. We further
assume that U is an open quasi-compact subscheme of An

R = X and let I ⊳
R[X1, . . . ,Xn] be the radical ideal such that U = X \Spec(R[X1, . . . ,Xn]/I).
Hence U =

⋃
f∈I Xf .

(a) Denoting by Iprim the set of primitive polynomials in I, we have
⋃

f∈Iprim

Xf (R) =
⋃

f∈I

Xf (R) = U(R).

(b) Moreover, if U(R/m) 6= ∅ for every maximal ideal m ⊳ R, then also
U(R) 6= ∅.

Proof. (a) The first equality is obvious since Xf (R) = ∅ for f ∈ I \ Iprim.
The inclusion

⋃
f∈I Xf (R) ⊂ U(R) is obvious. For the converse we are

given u ∈ U(R) and need to find f ∈ I such that u ∈ Xf (R). Since U is
quasi-compact, the ideal I is finitely generated ([EGA-I, I, (1.1.4)]), say by
f1, . . . , fd. Let us introduce the auxiliary linear polynomial in the variables
Y1, . . . , Yd:

P (Y1, . . . , Yd) = f1(u)Y1 + · · ·+ fd(u)Yd.

We claim:

(1.3.1) for every maximal ideal m ⊳ R, P represents a unit in (R/m)×.

Indeed, fix a maximal ideal m ⊳ R and put κ = R/m. We have U(κ) =⋃
g∈I⊗RκXg(κ). Hence u⊗ 1κ ∈ Xg(κ) for some g ∈ I, i.e., g(u⊗ 1κ) ∈ κ

×.
We can write g in the form g = f1b1+· · ·+fdbd with suitable bi ∈ R and then
have P (b1, . . . , bd) = f1(u)b1 + · · · + fd(u)bd = g(u) ⊗ 1κ ∈ κ

×, establishing
the claim (1.3.1).

The LG-property now applies and says that P represents a unit in R, say
P (a1, . . . , ad) ∈ R

× for suitable ai ∈ R. Putting

(1.3.2) f = a1f1 + · · ·+ adfd ∈ I ⊂ R[X1, . . . ,Xn],

we have f(u) = a1f1(u) + · · · + adfd(u) = P (a1, . . . , ad) ∈ R×, i.e., u ∈
Xf (R).

(b) We consider the polynomial

Q = f1(X1, . . . ,Xn)Y1 + · · · + fd(X1, . . . ,Xn)Yd

∈ R[X1, . . . ,Xn, Y1, . . . , Yd].

We have seen in (a) that the assumption of (b) implies that Q represents
a unit in R/m for every maximal ideal m ⊳ R. Hence, since R is LG, the
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polynomial Q represents a unit in R, i.e., there exist (u1, . . . , un) ∈ R
n and

(a1, . . . , ad) ∈ R
d such that

Q(u1, . . . , un, a1, . . . , ad) ∈ R
×.

It then follows that u ∈ Xf (R) for the polynomial f ∈ I defined in (1.3.2),
in particular U(R) 6= ∅. �

1.4. Proposition. Let R be a LG-ring, let M be a finite locally free R-
module, and let U ⊂W(M) be an open quasi-compact subscheme.

(a) U(R) 6= ∅ ⇐⇒ U(R/m) 6= ∅ for every maximal ideal m ⊳ R.

(b) If R satisfies the primitive condition as in 1.2(f) and U is R-dense,
then U(R) 6= ∅.

Proof. (a) Of course, only the implication from right to left is to show. To do
so, we take a presentation M ⊕N = Rn, hence W(M)×R W(N) = An

R. It
then follows from [EGA, IV1, 1.1.2] (or [St, Tag 01K5]) that V = U×RW(N)
is an open quasi-compact R–subscheme of An

R. Moreover, V (R/m) 6= ∅ for
each maximal ideal m of R since W(N)(R/m) = N ⊗R (R/m) 6= 0. Now
1.3(b) shows that U(R)×N = V (R) 6= ∅, so that also U(R) 6= ∅.

(b) Let m be a maximal ideal of R, and put k = R/m. By R–denseness,
the k–variety Uk is an open dense subvariety of the affine k–space W(Mk),
in particular Uk is a rational non-empty subvariety of An

k . Since k is an
infinite field by 1.2(f), it follows that Uk(k) = U(k) 6= ∅. Now (a) implies
that U(R) 6= ∅. �

Remark. Proposition 1.4(a) characterizes LG-rings. More precisely, if R
is any base ring such that for every finite locally free R–module and every
open quasi-compact U ⊂W(M) we have the equivalence (a), then R is an
LG-ring.

Indeed, it suffices to evaluate the condition for a free R-module M of
finite rank and a principal open affine U ⊂ U(M).

1.5. Faithfully projective modules. Recall that an R–moduleM is faith-
ful if the structure map R → EndR(M), r 7→ r IdM , is injective. It is
a standard fact in commutative algebra that the following conditions are
equivalent for a finite projective R–module P :

(i) P is faithful;
(ii) every localization Pp, p ∈ Spec(R), is non-zero;
(iii) PR/m 6= {0} for every maximal ideal m ⊳ R;
(iv) P is faithfully flat;
(v) there exists an R–moduleQ such that P⊗RQ ∼= Rn for some n ∈ N+.

In this case, P is called faithfully projective.

The following corollary is a first application of Proposition 1.4. An el-
ement m of a finite projective R–module M is called unimodular if m ⊗R

1κ(p) 6= 0 for all p ∈ Spec(R), equivalently, R ·m is a free R–module of rank
1 and a direct summand of M ([GPR2, 9.17], [Lo1, 0.3]).
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1.6. Corollary. Let R be an LG-ring and let M be a finite locally free R–
module.

(a) If M is faithfully projective, M contains a unimodular element.

(b) If M has constant rank, then M is free.

Proof. (a) We consider the open subset U = W(M) \ Spec(R), that is,
the punctured affine space associated with the R-module M . Thus U(R)
consists of the unimodular elements of W(M)(R) =M . We have W(M) =
Spec(Sym(M∗)) where Sym(M∗) is the symmetric algebra of M , and R ∼=
Sym(M∗)/I where I is the ideal generated by finitely many linear forms
λ1, . . . , λn spanning M∗. Hence, by [EGA-I, I, (1.1.4)], U is quasi-compact.
Clearly, U(R/m) 6= ∅. Therefore Proposition 1.4(a) shows that U(R) is not
empty.

(b) We prove the statement by induction on the rank d of M , starting
with the obvious case d = 0. In the following we will assume that d ≥ 1.
ThenM is faithfully projective and therefore contains a unimodular element
m ∈ M . Thus M = Rm⊕M ′ with M ′ being a finite projective R–module
of rank d − 1. By the induction hypothesis, M ′ is free of rank d− 1, so M
is free of rank d. �

2. Existence of maximal tori

In this section our goal is to generalize Grothendieck’s Theorem on the
existence of maximal tori in reductive group schemes [SGA3, XIV, 3.20(*)]
from the semilocal case to the LG case, see Theorem 2.6. Our proof is a
mild modification of the original proof, and is based on the exposés XIII
and XIV of [SGA3].

Throughout this section G is a reductive group scheme defined over an
arbitrary ring R, unless specified otherwise. We abbreviate g = Lie(G)(R),
which is a Lie R–algebra whose underlying module is finite projective.

2.1. The conditions (C0), (C1), (C
′
1) and (C2) of [XIV, 2.9] hold for

Lie(G). The exposés XIII and XIV of [SGA3] are written in a more general
setting than the reductive case. For example, several results of loc. cit.
assume the conditions (C0), (C1), (C

′
1) and/or (C2) of [XIV, 2.9]. We claim:

These conditions are fulfilled in the reductive case. Indeed, the nilpotent
rank equals the reductive rank in this case, which is locally constant by
[XIX, 2.6], i.e., (C0) holds. Moreover, the proof of [XIV, 3.7] shows that
quasi-regular sections are regular for Lie algebras of reductive groups, which
proves (C2), and thereby also (C1) and (C′

1) in view of [XIV, 2.9].

2.2. Lemma. For A ∈ R-alg and gA = g⊗R A we denote by g
reg
A the set of

regular elements of the Lie A–algebra gA, defined in [XIV, 2.5]. Then the R–
functor A 7→ (gA)

reg is representable by an open quasi-compact R–subscheme
U of W(g). Furthermore, U is R-dense in W(g).
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Proof. Since the condition (C0) holds for g, the representability of the given
R–functor by an open subscheme of W(g) follows from [XIV, 2.10].

Because W(g) is an affine scheme, the structure morphism W(g) →
Spec(R) is quasi-compact in the sense of [St, Tag 01K3]. Hence, if the
immersion ι : U →W(g) is also a quasi-compact morphism, then so is the
structure morphism U → Spec(R) since quasi-compact morphisms respect
composition [St, Tag 01K6]. It is therefore sufficient to show that ι is a
quasi-compact morphism.

To do so, we will apply noetherian reduction, writing R = lim−→i∈I
Ri as

the direct limit of its finitely generated, hence noetherian Z–subalgebras. It
follows from [VIB , 10.1, 10.3] and [Co1, 3.1.11] that there exists i ∈ I and a
reductive Ri–group scheme Gi such that G = Gi×Ri

R. Let gi = Lie(Gi)(Ri)
and let Ui be the open subscheme of W(gi) representing regular elements.
Since the formation of U commutes with base change, we can assume U =
Ui ×Ri

R. Furthermore, the open immersion ι is obtained by base change
from the open immersion ιi : Ui →W(gi). Because quasi-morphisms respect
base change [St, 01K5], it is now sufficient to show that ιi is a quasi-compact
morphism. This is indeed true: SinceRi is noetherian, W(gi) is a noetherian
scheme and the open immersion ιi is q quasi-compact morphism by [St, Tag
01OX]. Thus, U is indeed quasi-compact.

Finally, since Lie algebras of reductive groups over infinite fields admit
regular elements [XIV, 2.11(b)], U is R–dense in W(g). �

2.3. Cartan subalgebras and regular elements. Let S = SpecR. A
Cartan subalgebra of the Lie algebra Lie(G) over S is a Lie subalgebra D
of Lie(G) which is locally a direct summand and whose geometric fibres Ds̄

are Cartan subalgebras of Lie(Gs̄) for all s ∈ S [XIV, 2.4]. The concept of a
Cartan subalgebra of a finite-dimensional Lie algebra over an infinite field,
is defined in [XIII, after 4.5]. In this special case, they are the nil spaces of
regular elements, and therefore always exist since regular elements exist.

One can use the equivalence of quasi-coherent OS–modules andR–modules
to translate the definition of a Cartan subalgebra of Lie(G) to that of a Car-
tan subalgebra of the R–Lie algebra g = Lie(G)(R). In particular, a Cartan
subalgebra of g is always a direct summand of the finite projective Lie alge-
bra g.

The R–functor, associating with A ∈ R-alg the set of Cartan algebras
of gA, is representable by a quasi-projective finitely presented R-scheme D

[XIV, 2.16]. Also, the R–subfunctor X of D ×R W(g), defined by

X(A) = {(h, y) ∈ D(A)× gA : y ∈ h}

for each R–algebra A, is representable by a quasi-projective R–scheme X .
Furthermore, the first projection p1 : X → D is a vector bundle.

We denote by ψ : X → W(g) the second projection, and recall that the
restriction ψ−1(U) → U is an isomorphism, where U ⊂ W(g) is the open
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scheme of 2.2. In particular, this implies that a regular element of gA is
contained in a unique Cartan subalgebra of gA.

2.4. Theorem. We assume that R is an LG-ring and that one of the fol-
lowing conditions hold:

(i) R satisfies the primitive criterion;
(ii) G is adjoint.

Then g admits a regular element and hence a Cartan R–subalgebra.

Proof. By 2.3, a regular element is contained in a (unique) Cartan subalge-
bra of g. It is therefore enough to prove that g contains regular elements.

Case (i): Regular elements always exist in finite-dimensional Lie algebras
over infinite fields [XIII, 4.2], i.e., U(R/m) 6= ∅ for all infinite residue fields
of R. Since U ⊂W(g) is open and quasi-compact by 2.2, Proposition 1.4(b)
shows that U(R) 6= ∅.

Case (ii): Applying again Proposition 1.4(b) and Lemma 2.2, it suffices
to show that U(R/m) 6= ∅ for every maximal ideal m ⊳ R. As mentioned in
(i), this is always true if R/m is infinite. But it is also true if R/m is finite
and (ii) holds, according to a result of Chevalley-Serre [XIV, App.]. �

2.5. Groups of type (C) and Cartan subalgebras. Let S = Spec(R).
We recall that a smooth R–subgroupH ⊂ G with connected geometric fibers
is a subgroup of type (C) if Lie(H) is a Cartan OS–Lie subalgebra of Lie(G).
The map H 7→ Lie(H)(R) is a bijection between subgroups of type (C) of G
and the R–Cartan subalgebras of Lie(G)(R), [XIV, 3.9]. The inverse map
is given by h 7→ NormG(h)

0. We shall use that R–subgroups of type (C) are
precisely the maximal tori of G when G is adjoint, [XIV, 3.18].

2.6. Theorem. Let R be an LG-ring and let G be a reductive R–group
scheme. Then G admits a maximal R–torus.

Proof. Let Z(G) be the (schematic) centre of G. The flat quotient G/Z(G) is
represented by a semisimple adjoint R–group scheme G ad, [XXII, 4.3.5(ii)]
or [Co1, 3.3.5]. Moreover, T 7→ T/Z(G) defines a bijective correspondence
between the set of maximal tori of G and the set of maximal tori of G ad.
Thus, without loss of generality we can assume that G is adjoint. Then
Theorem 2.4(ii) provides a Cartan R–algebra of g, which by 2.5 “integrates”
to a maximal torus of G. �

2.7. Lemma (Tori in subgroups of type (RC)). Let G be a reductive group
scheme over a ring R, let H ⊂ G be a subgroup scheme of G of type (RC)
in the sense of [XXII, 5.11.1] and let radu(H) be the unipotent radical of H,
[XXII, 5.11.4]. Suppose:

(i) every reductive R–group scheme admits a maximal torus, e.g., as-
sume that R is an LG-ring, and

(ii) H1(R, radu(H)) = 0, e.g., assume that there exists a parabolic sub-
group scheme P ⊂ G such that radu(H) = radu(P ) ∩H.
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Then G admits a maximal torus contained in H.

Proof. (Modelled after the proof of [XXVI, 4.2.7(ii)]) The unipotent radical
U = radu(H) is a smooth, finitely presented, and normal subgroup scheme
of H, whose geometric fibres are connected and unipotent. Furthermore, by
[XXII, 5.11.4], we have an exact sequence of R–group schemes

1 −→ U −→ H
f
−→M −→ 1

where M is reductive. The subgroup H is in particular of type (R), so that
H and G have the same rank by [XXII, 5.2.2(b)]. By the properties of U ,
this is then also the rank of M .

The assumption (i) provides us with a maximal R–torus T of M . Let
N = f−1(T ) be its pre-image. We thus have an induced exact sequence

1 −→ U −→ N
f
−→ T −→ 1

of R–group schemes. The properties of U and T , together with [VIB ,
9.2(viii)], imply that N is a smooth and finitely presented subgroup scheme
of G. Moreover, by [XVII, 5.1.1(i)(a)], its geometric fibres Ns̄, s ∈ Spec(R),
are connected, solvable and contain a maximal torus of Gs̄. Thus, N is a
subgroup scheme of G of type (R). We have rankN = rankM = rankG,
and by [XXII, 5.6.9(ii)] also radu(N) = radu(H) = U .

By [XXII, 5.6.13], the functor of maximal tori of N is representable by
an R–scheme T , which is a U–torsor. It then follows from assumption (ii)
that T (R) 6= ∅, i.e., N admits a maximal torus T , which is a maximal torus
of G because rankN = rankG. Hence T ⊂ N ⊂ H fulfills our claim.

That H1(R, radu(H)) = 0 in case there exists a parabolic subgroup
scheme P ⊂ G such that radu(H) = radu(P ) ∩ H, is shown in [XXVI,
2.11] (use [XXVI, 2.5]). �

2.8. Corollary (Tori in parabolic subgroups). Let R be an arbitrary ring
satisfying the condition 2.7(i), e.g., suppose that R is an LG-ring, and let G
be a reductive R–group scheme. Then every parabolic subgroup of G contains
a maximal torus of G.

Proof. A parabolic subgroup P of G is a group of type (RC) by [XXVI, 1.5].
The condition 2.7(ii) holds by [XXVI, 2.2]. Hence Lemma 2.7 with H = P
proves the claim. �

Corollary 2.8 is the special case P = Q of Proposition 3.4, whose proof
requires however much more work. We will present an immediate application
of Corollary 2.8 to quasi-split groups.

2.9. Quasi-split reductive groups. We refer the reader to [XXIV, 3.9]
for the definition of a quasi-split reductive group over an arbitrary scheme
S. It simplifies greatly if S is an LG-scheme, i.e., S = Spec(R) for R an
LG-ring:
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(a) If S is an LG-scheme, a reductive S–group G is quasi-split if and
only if G admits a Borel subgroup.

Indeed, it is explained in [XXIV, 3.9] that a reductive group G over a scheme
S with Pic(S) = 0 is quasi-split if and only if it contains a Killing couple, i.e.,
a pair (B,T ) consisting of a Borel subgroup B of G and a maximal torus T
of G contained in T . But, by Corollary 2.8, every Borel subgroup contains
a maximal torus of G. We note that (a) is the definition of a quasi-split
reductive S–group in [Co1, 5.2.10].

Recall ([Co1, §7.2] or [CF, 2.2.4.9]) that an inner form of a reductive
S–group scheme G is a twisted form of G under a torsor in the image of
H1(S,G/Z(G)) in H1(S,Aut(G)).

(b) For an LG-scheme S, up to isomorphism every reductive S–group
admits a unique quasi-split inner form.

This is proven in [Co1, 7.2.12] for semilocal S, but as [Co1, 7.2.13] states,
(b) holds whenever Pic(S′) = 0 for any finite étale cover S′ of S. By 1.2(b),
such a cover is again an LG-scheme, so that (1.1.1) establishes the condition
Pic(S′) = 0.

2.10. Split reductive groups ([XXIV, 2.14]). Let S be a scheme for
which Pic(S) = 0, and let G be a reductive S–group scheme of constant
type. Then G is split if and only if G contains a split maximal torus.

The result applies to S = Spec(R) for R an LG-ring since by (1.1.1) we
know that Pic(R) = 0. Moreover, by Theorem 2.6 we know that a reductive
group scheme G over an LG-ring R contains a maximal torus T .

2.11. Isotrivial reductive groups. A reductive group scheme G over S is
isotrivial if there exists a finite étale cover (= finite étale surjective) S′ → S
such that GS′ is split [Gi1, 4.4.1]. By [Gi1, 2.3], an isotrivial reductive
S–group scheme G is necessarily of constant type. If G is of constant type
with underlying Chevalley group scheme G0 (over Z), then G is isotrivial if
and only if the Aut(G0)–torsor Isom(G0,S , G) is isotrivial.

2.12. Corollary. Let R be an LG-ring and let G be a reductive R–group
scheme of constant type which is linear, e.g., G is semisimple [Gi2, Cor. 4.3].
Then G is isotrivial. In particular, if R is connected and simply connected
(= does not admit non-trivial finite étale covers), then G is split.

Proof. Theorem 2.6 provides a maximal R–torus T of G. Since T is linear
(and of constant rank), T is isotrivial according to a result of Grothendieck,
see [Gi2, Th. 3.3]. In other words, there exists a finite étale cover R′ of R
such that TR′ is split. Since R′ is an LG-ring as well, we conclude that GR′ is
split in view of 2.10. Assume now that R connected and simply connected.
Then R′ = R× · · · ×R, so that T is already split. �

2.13. Example. The ring Z of algebraic integers is an LG-ring by 1.2(f).
It is also well-known that Z is simply-connected. Hence, Corollary 2.12
shows that any semisimple group scheme over Z is split. In particular, this
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holds for the semisimple Z–group G of type G2, which is known to be the
automorphism group scheme of an octonion algebra O over Z ([Co2, B.15]
or [GPR2, 55.4]). As a consequence, O is split.

Moret-Bailly told us that this is a direct consequence of a theorem of
Rumely on the existence of points for “reasonable” schemes over Z [Ru, Th.
1] (see also [MB, Th. 1.3]). For H a flat affine group scheme of finite type
over Z whose generic fiber is (smooth) connected, Rumely’s Theorem implies
that any H-torsor has a Z-point, so is trivial. Since Z is simply connected a
semisimple Z-group G is an inner form of its Chevalley form G0, that is, is
the twist of G0 by a G0,ad-torsor E where G0,ad is the adjoint group of G0.
Since E is trivial, it follows that G is split.

Coming back to the example of octonions, Rumely’s theorem directly
does the job, since the automorphism group G2 of the split octonions is
connected. Of course, one could also appeal to the strong approximation
theorem to show that H1(Z, G2) vanishes. Indeed, a class in H1(Z, G2)
arises from γ ∈ H1(R,G2) where R is the ring of integers of a number field
F . Furthermore we can assume that γF = 1 since H1(Q, G2) = 1. But then
[Ha, Satz 3.3] proves γ = 1.

Yet another way to see that any octonion algebra over the LG-ring Z is
split, has been communicated to us by Skip Garibaldi and works for any
simply connected LG-ring R: By [GPR2, 19.16(b)], any octonion algebra
over R contains a quadratic étale subalgebra. It is split, since R is simply
connected. By [GPR2, 22.9], the algebra O is therefore reduced. But then
it is split by [GPR2, 22.16] and 1.6(b).

3. Parabolic subgroups (conjugacy, relative positions)

A fundamental result of Borel-Tits proves conjugacy of parabolic sub-
groups of the same type in reductive groups over a field [BT, Th. 4.13(a)].
This was extended by Demazure to reductive group schemes over a semilo-
cal ring [SGA3, XXVI, 5.2, 5.10]. In Theorem 3.1 we prove this result for
reductive groups over an LG-ring. In 3.2 and 3.6 we apply this to conjugate
parabolic subgroups to a transversal or osculating position.

We use the notion of an opposite parabolic subgroup of a reductive group
scheme as defined in [XXVI, 4.3.1]. Over an affine base, every parabolic
subgroup admits an opposite parabolic subgroup [XXVI, 4.3.5(i)]. We will
also employ the concept of the type(P ) ∈ Of

(
Dyn(G))(R) of a parabolic

subgroup P of G, defined in [XXVI, 3.2].

3.1. Theorem. Let R be an LG-ring, and let G be a reductive R-group
scheme with a pair (P,P ′) of opposite parabolic subgroup schemes of G.
We abbreviate the unipotent radicals of P and P ′ by U = radu(P ) and
U ′ = radu(P ′) respectively.

(a) Any parabolic subgroup Q of G of the same type as P has the form

Q = uu′

P for suitable u ∈ U(R) and u′ ∈ U ′(R). In particular, the
group G(R) acts transitively on (G/P )(R).
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(b) The map H1(R,P )→ H1(R,G), induced by the inclusion P ⊂ G, is
injective.

(c) We have a decomposition G(R) = U(R)U ′(R)P (R).

Proof. (a) By [XXVI, 3.6], we have an isomorphism G/P
∼
−→ Partype(P )(G)

where Partype(P )(G) stands for the smooth projective R-scheme of parabolic
subgroups of type type(P ). Hence it suffices to prove the first part of (a).

We consider the R-subfunctor Opp(/P ) of Partype(P )(G) of parabolic sub-
groups which are opposite to P . By [XXVI, 2.5] (or [Co1, 5.4.3]), we have
U ∼= W(E) for a locally free R–module of finite type. (That E has fi-
nite type, is not explicitly stated in [XXVI, 2.5], but follows for example
from the representability of W(E).) Hence U is an affine smooth R-scheme.
Furthermore, according to [XXVI, 4.3.6], we have a commutative diagram

U � � //

≀
��

G/P ′

≀
��

Opp(/P ) �
� // Partype(P ′)(G),

This implies that Opp(/P ) is representable by an affine smooth R-scheme,
since this is so for U .

We consider the R-subfunctor Opp(/P ) ∩ Opp(/Q) of Partype(P ′); it is
representable by an open R-subscheme V of U . We claim that it is also
quasi-compact. Indeed, we have a commutative diagram

V //

a

��

Opp(/Q)

b

��

Opp(/P ) //

c
''❖❖

❖❖
❖❖

❖❖
❖❖

❖

Partype(P ′)(G)

dvv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

Spec(R)

in which the top rectangle is cartesian and c and d ◦ b are quasi-compact
morphisms since Opp(/P ) and Opp(/Q) are affine schemes. As d is a pro-
jective, hence separated morphism, cancellation ([EGA, IV1, 1.1.2] or [St,
Tag 03GI]) says that b is quasi-compact morphism. By base change, a is
quasi-compact and so c ◦ a is quasi-compact too, i.e., V is a quasi-compact
scheme.

For every R-ring A, the set V (A) is the set of A–parabolic subgroups of
GA which are opposite to P and to Q. For a residue field R/m of R, two
parabolic subgroups of GR/m of the same type are conjugate by [BT, 4.3],
so that [BT, 6.27] says that V (R/m) is non-empty for each maximal ideal
m of R. Since R is a LG-ring, Proposition 1.4 implies that V (R) 6= ∅. In
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other words, P and Q admit a common opposite R–parabolic subgroup Q′.
We now use the isomorphism of R-functors [XXVI, 4.3.5.(i)]

Opp(/P )
∼
−→ Lev(/P ), H 7→ H ∩ P

between parabolic subgroups of G opposite to P and Levi subgroups of
P , and note that it is P–equivariant. We consider the two Levi subgroups
L = P ′∩P andM = Q′∩P of P . Since P is a subgroup of type (RC), [XXVI,
1.8] says that M = uL for an unique u ∈ U(R), so that Q′ = uP ′ by using

the above bijection. It follows that P ′ = u−1

Q′ is opposite to P and to u−1

Q.

Similarly, there exists a unique u′ ∈ U ′(R) such that u−1

P ∩P ′ = u′

(P ∩ P ′)

and u−1

Q = u′

P . Thus Q = u−1u′

P .

(b) According to [Gir, III, 3.3.1], transitivity in (a) implies that the map
H1(R,P ) → H1(R,G) has trivial kernel. The classical twisting argument
applies and yields the injectivity of the map H1(R,P )→ H1(R,G), see for
example the proof of [XXVI, 5.10].

(c) Let g ∈ G(R) and apply (a) to Q := gP . Thus, there exists u ∈ U(R),

and u′ ∈ U ′(R) such that Q = uu′

P . It follows that (uu′)−1g ∈ NG(P )(R) =
P (R). Thus g ∈ P (R)U ′(R)U(R). By applying this to g−1, we obtain the
desired decomposition G(R) = U(R)U ′(R)P (R). �

We can also extend [XXVI, 5.3] to LG-rings.

3.2. Proposition. Let R be an LG-ring, and let G be a reductive R-group
scheme. Let P , P ′, Q be three parabolic R–subgroups of G. Then there
exists g ∈ G(R) such that gQ and P as well as gQ and P ′ are in transversal
position.

Proof. We denote by Gen(Q/P ) the open subscheme of G representing the
subfunctor which assigns to an S–scheme S′ the set of elements g ∈ G(S′)
such that gQS′ and PS′ are in transversal position [XXVI, 4.2.4(iii)]. We
have to show that X = Gen(Q/P ) ∩Gen(Q/P ′) ⊂ G has an R-point.

We claim that Gen(Q/P ) → G is quasi-compact. Indeed, since quasi-
compact morphisms allow (fpqc) descent (see for example [GW, 14.51]) and
since (G,P ) is splitable étale-locally [XXVI, 1.14], we can assume that G
is split and that P = PI is a standard parabolic subgroup. In this case,
Gen(Q/P )→ G arises by base change from the analogous morphism over Z.
But the latter is quasi-compact since Spec(Z) is noetherian [St, Tag 01OX].
Since quasi-compact morphism allow base change [St, Tag 01K5], we are
done. (Alternatively, one can use noetherian reduction as in the proof of
2.2, to prove that Gen(Q/P ) → G is quasi-compact.) In any case, since
Gen(Q/P ) and Gen(Q/P ′) are quasi-compact, so is their fibre product X.

We pick a parabolic subgroup Q′ of G which is opposite to Q, ([XXVI,
4.3.5(i)]), put U = radu(Q) and U ′ = radu(Q′), and let ι : U ×R U

′ → G,
(u, u′) 7→ uu′, be the immersion obtained by restricting the open immersion
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U ×R Q
′ → G ([XXVI, 4.3.2.b(vi)]). We then consider the fibre product

U ×R U
′ ι // G

V //
?�

OO

X = Gen(Q/P ) ∩Gen(Q/P ′)
?�

OO

.

The right immersion is open and quasi-compact, hence so is V →֒ U ×R U
′.

Moreover, by [XXVI, 2.5], U = W(M) for some locally free R–module M
of finite rank. The analogous fact then holds for U ×R U

′.
With the aim of applying Proposition 1.4(a) to V ⊂ U×RU

′ =W (M), let
m ⊳ R be a maximal ideal of R, and put k = R/m. By [XXVI, 5.3] we know
that there exists g ∈ G(k) such that g fulfills the claim of the proposition
for R = k. By 3.1(c) we can write g in the form g = uu′q with u ∈ U(k),
u′ ∈ U ′(k) and q ∈ Q(k). But then uu′ ∈ V (k). Hence, by 1.4(a), we get
V (R) 6= ∅. Thus X(R) 6= ∅, as desired. �

Corollary 2.8 is the special case P = Q of the following Proposition 3.4.

3.3. Parabolic subgroups in standard position [XXVI, 4.5.1]. Let
S be a scheme and let G be a reductive S–group scheme. Two parabolic
subgroups P and Q of G are said to be in standard position, if they satisfy
the following equivalent conditions (i)–(iv):

(i) P ∩Q is smooth.

(ii) P ∩Q is a subgroup of type (R).

(ii)′ P ∩Q is a subgroup of type (RC).

(iii) P ∩Q contains (fpqc)-locally a maximal torus of G.

(iv) P ∩Q contains Zariski-locally a maximal torus of G.

Moreover, if S = Spec(R) for a semilocal ring, then (i)–(iv) is equivalent to

(v) P ∩Q contains a maximal torus.

If S is the spectrum of a field, every pair of parabolic subgroups is in standard
position by [XXVI, 4.1.1] or [BT, 4.5].

Our goal is to generalize condition (v) to S = Spec(R) for R an LG-ring,
see 3.4(c). In order to do so, we need to retake part of the proof of [XXVI,
4.5.1]; at the same time we will add more details.

Regarding the equivalence of the conditions above, we note that the im-
plications (ii)′ =⇒ (ii) =⇒ (i) and (iv) =⇒ (iii) are trivial. The
implication (i) =⇒ (ii)′ is easy: because of [XXVI, 4.1.1] and [BT, 4.5],
every geometric fibre Ks̄ of K = P ∩Q is connected and contains a maximal
torus Ts̄ of Gs̄ such that the roots of Ks̄ with respect to Ts̄ are a closed
subset of the roots of (Gs̄, Ts̄). Thus, if K is smooth, it is a subgroup of
type (RC) by definition. We will show the remaining implications (iii) =⇒
(i) and (iii) =⇒ (iv) in the proof of 3.4, since they easily follow from the
arguments in the proof of 3.4. The statements 3.4(a) and 3.4(b) below are
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used in the proof of (iii) =⇒ (iv) in [XXVI, 4.5.1], which is the main point
of the proof the equivalences in [XXVI, 4.5.1]

Regarding (3.4.1) we note that P ∩Q is a subgroup of type (RC) by (ii)′

and hence has a unipotent radical radu(P ∩Q), defined in [XXII, 5.11.4].

3.4. Proposition. Let P and Q be two parabolic subgroups of a reductive
S–group scheme G such that P ∩Q contains a maximal torus of G (fpqc)-
locally, cf. 3.3. Then the following hold.

(a) The (fpqc)–image sheaf of the multiplication morphism

f : radu(P )⋊ (P ∩Q)→ G, (u, h) 7→ uh

is representable by a parabolic subgroup P ′ of G, satisfying

P ′ = (P ∩Q). radu(P ).

(b) The induced map f ′ : radu(P )⋊ (P ∩Q)→ P ′ is smooth and

(3.4.1) radu(P ∩Q) = radu(P ′) ∩ (P ∩Q).

(c) If S = Spec(R) with R an LG–ring, then P ∩Q contains a maximal
S-torus of G.

Proof. We put K = P ∩Q and prove (a) and (b) together. These statements
are local with respect to the (fpqc)-topology. Hence, after passing to a
suitable cover, we can assume that K contains a split maximal torus T and
that P and Q have constant type.

We let R be the root system of (G,T ), choose an order on R and denote by
Ur, r ∈ R, the associated root subgroups. First some general reminders. For
each closed subset R0 of R, we have an S–subgroup HR0

of type (R), which
is characterized by its Lie algebra: Lie(HR0

) = Lie(T ) ⊕
⊕

r∈R0
Lie(Ur),

[XXII, 5.4.2, 5.4.7]. The multiplication map
∏

r∈R0∩R+
Ur ×S T ×S

∏
r∈R0∩−R+

Ur −→ HR0

is an open immersion, [XXII, 5.4.4], whose image we denote by ΩR+,R0
,

the so-called big cell of HR0
. We claim that ΩR+,R0

is schematically dense
in HR0

. Indeed, each fibre HR0,s, s ∈ S, is an integral scheme in which
ΩR+,R0

∩ HR0,s is open and nonempty, hence dense, so that the reference

[EGA, IV3, 11.10.10] proves our claim
(1).

Coming back to the situation at hand, in view of [XXVI, 1.14] we can
assume that P = HR1

and Q = HR2
for parabolic subsets R1 and R2 of R.

Since according to [BT, Cor. 4.5], the group K has geometrically connected
fibers, it is shown in [XXII, 5.4.5] that

(3.4.2) K = HR1∩R2
,

and that K is S–smooth and of type (R). Since R1 ∩ R2 is a closed subset
of R, it follows from the definition of groups of type (RC) that K is such a

(1)This argument is taken from the web version of [XXII, 5.6.7, N.D.E. (38)]
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group. Note that our arguments so far show the implication (iii) =⇒ (i) of
3.3 (as well as (iii) =⇒ (ii)′, which is however not needed).

We denote by Rs
1 = R1 ∩ −R1 the symmetric part of R1 and let Ra

1 =
R1 \ R

s
1 so that URa

1
= radu(P ), [XXVI, 1.12]. Thus, using the notation

established so far, the map f of (a) is defined on

(3.4.3) radu(P )⋊K = URa
1
⋊HR1∩R2

.

We put
R′ = (R1 ∩R2) ∪R

a
1 = (Rs

1 ∩R2) ∪R
a
1.

One easily shows, see [BT, 4.4], that R′ is a closed subset of R satisfying
R′ ∪ (−R′) = R, i.e., R′ is a parabolic subset of R. Therefore P ′ = HR′ is
a parabolic subgroup of G, [XXVI, 1.4]. Keeping in mind (3.4.3), we now
claim that

f factorizes through an S-homomorphism

f ′ : URa
1
⋊HR1∩R2

→ P ′, (u, h) 7→ uh.
(3.4.4)

In other words, we contend that the induced map f♯ : URa
1
⋊HR1∩R2

→ G/P ′

is the trivial map. Since Ra
1 ⊂ R′, this is equivalent to f♭ : HR1∩R2

→ G/P ′

being the trivial map. This is the case when we restrict f♭ to the big open
cell ΩR+,R1∩R2

of HR1∩R2
which is a schematically dense in HR1∩R2

. Hence,
by [St, Tag 01RH], it follows that f♭ and therefore also f♯ is trivial, finishing
the proof of (3.4.4). Note that (3.4.4) is part of the claim (a) (surjectivity
will be established later). Next we show the first part of (b), namely

(3.4.5) f ′ is smooth.

It follows from (3.3) and the definition of URa
1
, HR1∩R2

and P ′ that Lie(f ′) :

Lie
(
URa

1
⋊HR1∩R2

)
→ Lie(P ′) admits a section (as OS–module map), so is

in particular surjective. The reference [EGA, IV4, 17.11.1(d)] then shows
that f ′ is smooth along the unit section, so is smooth everywhere. We have
thus proven the first part of (b).

It follows, see e.g. [EGA, IV4, 17.5.1], that Ker(f ′) is smooth and hence
in particular flat, so that the quotient

(
URa

1
⋊ HR1∩R2

)
/Ker(f ′) is repre-

sentable by an S–group scheme H ′ which is locally of finite presentation
and equipped with a monomorphism h′ : H ′ → P ′, [XVI, 2.3]. We consider
the commutative diagram

URa
1
⋊HR1∩R2

f ′

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

// H ′

h′

yytt
tt
tt
tt
tt
t

P ′

.

The quotient map URa
1
⋊HR1∩R2

→ H ′ is smooth surjective and f ′ is smooth,

hence h′ : H ′ → P ′ is smooth in view of [EGA, IV4, 17.7.7] (or see [St, Tag
02K5]). According to [EGA, IV4, 17.9.1], the smooth monomorphism h′ is
an open immersion. Since P ′ has smooth connected fibers, h′ is surjective
and we conclude that h′ is an isomorphism. This then proves (a) in full.
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To finish the proof of (b), it remains to show (3.4.1), i.e., radu(K) =
radu(P ′)∩K. In view of (3.4.2) and the definition of P ′, this boils down to
the equality

(R1 ∩R2)
a = R′a ∩R1 ∩R2,

which is a special case of Lemma 3.5.
Once (b) established, the implication (iii) =⇒ (iv) of 3.3 follows: we

apply [XXVI, 2.11] to the parabolic subgroup P ′ and its subgroup K of type
(RC) (recall 3.3(iii) =⇒ 3.3(ii)′), and get that K admits a Levi subgroup,
hence contains Zariski-locally a maximal torus of G by [XIV, 3.20].

(c) By (b), the parabolic subgroup scheme P ′ and its subgroup K of type
(RC) satisfy the assumptions of Lemma 2.7, so that (c) follows by applying
that lemma. �

The notation of the following Lemma 3.5 is the same as that in the proof
of 3.4, except that we consider subsets of an arbitrary free Z–module M :
For a subset N ⊂M we put N s = N ∩ (−N) and Na = N \N s = N \(−N).

3.5. Lemma. Let A and B be subsets of a free Z–module M . We consider
C = (A ∩B) ∪Aa = (As ∩B) ∪Aa. Then

Ca ∩A ∩B = (A ∩B)a.

Proof. We will first establish several auxiliary statements, starting with

(3.5.1) (As ∩B)a = As ∩Ba.

Indeed, since As = −As we have x ∈ (As ∩ B)a ⇐⇒ x ∈ As ∩ B and
−x /∈ (As ∩B) ⇐⇒ x ∈ As ∩B and −x /∈ B ⇐⇒ x ∈ As ∩Ba. Next, we
claim

(3.5.2) Ca = (As ∩B)a ∪Aa = (As ∩Ba) ∪Aa.

Because of (3.5.1) we only need to prove the first equality. By definition of
Ca, we have

x ∈ Ca ⇐⇒ x ∈ (As ∩B) ∪Aa

and − x /∈ As ∩B and − x /∈ Aa.
(3.5.3)

This easily implies the inclusion Aa ⊂ Ca: if x ∈ Aa, then x ∈ A and
−x /∈ A = As ∪ Aa, in particular −x /∈ As ∩ B and −x /∈ Aa. We also see
that (As ∩ B)a = As ∩ Ba ⊂ Ca since x ∈ As ∩ Ba ⇐⇒ x ∈ As ∩ B and
−x /∈ B. Moreover −x ∈ As, so that −x /∈ Aa also holds. We have now
proved (As ∩ B)a ∪Aa ⊂ Ca. For the proof of the other inclusion, consider
x ∈ As ∩B, but −x /∈ As ∩B and −x /∈ Aa, cf. (3.5.3). Since As = ±As we
get x /∈ B, thus x ∈ As ∩ Ba = As ∩ Ba by (3.5.1). This finishes the proof
of (3.5.2). Next we observe

(3.5.4) (A ∩B)a = (Aa ∩B) ∪ (A ∩Ba)
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since x ∈ (A∩B)a ⇐⇒ x ∈ A∩B, but −x /∈ A or −x /∈ B ⇐⇒ x ∈ Aa∩B
or x ∈ A ∩Ba. Finally, by (3.5.2) and (3.5.4),

Ca ∩A ∩B =
(
(As ∩Ba) ∪Aa

)
∩ (A ∩B)

=
(
(As ∩Ba) ∪Aa

)
∩B = (As ∩Ba) ∪ (Aa ∩B)

= (A ∩Ba) ∪ (Aa ∩B) = (A ∩B)a. �

With Propositions 3.2 and 3.4 in place, we can now also extend [XXVI,
5.4] to LG-rings.

3.6. Corollary. Let R be an LG-ring, let G be a reductive R-group scheme,
and let P , Q be two parabolic subgroups of G. Then there exists g ∈ G(R)
such that gP ∩Q is a parabolic subgroup of G.

Proof. Our proof follows the proof of [XXVI, 5.4]. We include it for the
convenience of the reader.

Let P ′ be an opposite parabolic R–subgroup of G. Proposition 3.2, ap-
plied to the triple (P ′, P,Q) provides an R–parabolic R–subgroup P ′

1 of G
of same type as P ′ such that P ′

1 and P (resp. P ′
1 and Q) are in transversal

position, hence in particular in standard position. By Proposition 3.4(c),
there exists a maximal torus T of G such that T ⊂ P ′

1 ∩Q. Let P1 be the
opposite parabolic R–subgroup of P ′

1 related to T , [XXVI, 4.3.3]. It follows
that P1 ∩ Q is an R–parabolic subgroup [XXVI, 4.4.5]. Since P and P1

are both opposite to P ′
1, they have same type, so that P1 = gP for some

g ∈ G(R), according to Theorem 3.1(a). Thus gP ∩ Q is an R–parabolic
subgroup of G as desired. �

Having established Corollary 3.6 for LG-rings, we also get [XXVI, 5.5 and
5.7] for LG-rings replacing semilocal rings in loc. cit..

3.7. Corollary ([XXVI, 5.5(i)] for semilocal rings). Let G be a reductive
group scheme over an LG-ring, and let P and Q be two parabolic subgroups
of G such that t(P ) ⊂ t(Q). Then there exists g ∈ G(S) such that gP ⊂ Q.

3.8. Corollary ([XXVI, 5.7(i)] for semilocal rings). Let G be a reductive
group scheme over an LG-ring.

(a) Let t, t′ ∈ Of(Dyn(G)
)
(S). If there exist parabolic subgroups of type t

and t′, then there also exists a parabolic subgroup of type t ∩ t′.
(b) There exists a smallest element tmin in the set of types t(P ), P any

parabolic subgroup of G.

3.9. The Tits index. Let G be a semisimple group scheme over a con-
nected LG-ring. In view of 3.8(b), we can define the Tits index of G as
(Dyn(G), tmin), following [Ti] for fields and the generalization to the semilo-
cal case [PS, p. 202-203]. Moreover, as the diligent reader will verify, all the
facts used in [PS] for semilocal rings hold in fact for LG-rings. In particular,
[PS, Thm. 3] extends to connected LG-rings: The Tits index of G is one of
those listed in Tits’ original table [Ti, Table II], reproduced in [PS, App.].
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4. Minimal parabolic subgroups, maximal split subtori

The topic of this section is minimal parabolic subgroups, their Levi sub-
groups and maximal split tori in reductive group schemes over a connected
scheme S. We investigate the relations between these subjects in Proposi-
tion 4.3 and in Lemma 4.6 for arbitrary connected S. In case S = Spec(R)
for R a connected LG-ring and G a reductive R–group scheme, we show in
Theorem 4.7 that the group G(R) acts transitively on the minimal parabolic
subgroups and on the maximal split tori of G. This allows us to define the
anisotropic kernel of G in 4.9.

For perspective we note here that Appendix B contains results on para-
bolic and Levi subgroups based on the dynamic method.

We start by reviewing the concepts used in Proposition 4.3.

4.1. Isotropic and irreducible reductive groups. Let G be a reductive
group scheme over an arbitrary scheme S.

Generalizing the well-known concept of an (an)isotropic reductive group
over a field [BT, 4.23] or over a connected semilocal scheme [XXVI, 6.13], we
call G isotropic if it admits a subgroup isomorphic to Gm,S ; otherwise, G is
said to be anisotropic, [Gi1, 7.1.1]. Because of B.3, these concepts coincides
with those defined in [PS, §5] for semisimple group schemes over a connected
semilocal scheme.

Following [Gi1, 3.5.1], we say that G is reducible (as reductive group
scheme) if G admits an everywhere proper parabolic subgroup P , i.e., Ps̄ (

Gs̄ for all s ∈ S, and P admits a Levi subgroup; otherwise, G is said to be
irreducible. The two notions are related by [Gi1, Thm. 7.3.1(2)]:

(a) A reductive S–group scheme G is isotropic if and only if G is re-
ducible or the central torus rad(G) is isotropic. In particular, a
semisimple S–group scheme is isotropic if and only if it is reducible.

If S is affine, the notion of reducibility of G is equivalent to the existence
of an everywhere proper parabolic subgroup [XXVI, 2.3], so the definition
here agrees with the terminology of [GP, 3.2].

We will generalize the concepts of (an)isotropic and (ir)reducible reductive
group schemes in B.2, and the criterion (a) in B.3.

4.2. Maximal split subtori, minimal parabolics, and faithful repre-
sentations. A maximal split subtorus of G is a split subtorus of G which
is maximal among all split subtori of G. By [XXIV, 2.11], such a torus
always exists if S is a scheme with trivial Picard group, e.g., S is an LG-
scheme, and G has constant type. Existence is also assured in the setting of
Proposition 4.3.

A parabolic subgroup of a reductive S–group G is a minimal parabolic
subgroup if for all parabolic subgroups Q of G with Q ⊂ P we have Q = P ,
[XXVI, 5.6].
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We use the term faithful linear representation of an S–group scheme G
in the sense of [Gi2], i.e., it is a group monomorphism G → GL(E) where
E is a locally free OS–module of finite rank.

Now that we have explained all the concepts used in the following Propo-
sition 4.3, we can finally state it. In fact, Proposition 4.3 is a refinement of
[Gi1, Prop. 7.4.1], which proves the implications (4.3.1).

4.3. Proposition. Let S be a connected scheme, G a reductive S-group
scheme, and T0 a split subtorus of G. Moreover, let P be a parabolic subgroup
of G for which CG(T0) := CentG(T0) is a Levi subgroup of P ; such a parabolic
subgroup exists by [XXVI, 6.2]. We consider the following assertions:

(i) T0 is a maximal split S-subtorus of G;

(ii) T0 is a maximal split S-subtorus of CG(T0);

(iii) The reductive S-group CG(T0)/T0 is anisotropic;

(iv) The reductive S-group CG(T0)/T0 is irreducible;

(v) The reductive S-group CG(T0) is irreducible;

(vi) P is a minimal parabolic subgroup of G.

We then have the implications

(4.3.1) (i)⇐⇒ (ii)⇐= (iii) =⇒ (iv)⇐⇒ (v)⇐⇒ (vi)

Furthermore, if G admits a faithful linear representation, then (ii)⇐⇒ (iii).

Proof. It suffices to prove the implication (ii) =⇒ (iii) under the assumption
that G admits a faithful linear representation. Let T0 be a maximal split
S-subtorus of CG(T0). We argue by contradiction and therefore assume
that CG(T0)/T0 contains a subtorus Gm,S. Denoting by E ⊂ CG(T0) the
preimage of this subtorus Gm,S under the quotient map, we get an exact
sequence of S–group schemes

(4.3.2) 1 −→ T0 −→ E −→ Gm,S −→ 1.

By [XVII, 7.1.1], E is of multiplicative type. Clearly, it is also of finite
type and it has a faithful linear representation. Therefore, by [Gi2, 3.3], the
group scheme E is isotrivial, i.e., it is split by a finite étale cover, which we
can assume to be a (connected) Galois cover S′ → S, whose Galois group we

denote by Γ (2). According to the dictionary [X, 1.1], the extension (4.3.2)
corresponds to an extension

0 −→ Z −→ Ê(S′) −→ Zr0 −→ 0

(2) We use here: Given a finite étale cover T → S of a connected scheme S, there exists

a connected Galois cover S′
→ S dominating T → S. Proof: Since finite étale covers form

a Galois category with respect to the base change functor induced by any geometric point
of S [St, Tag 0BNB], the axioms of a Galois category [St, Tag 0BMZ] imply that T → S
is a product of finite étale connected covers. The existence of a Galois cover as claimed
then follows from [St, Tag 0BN2], see the discussion in [St, Tag 03SF].
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of Γ–modules, where Zr0 = HomS′−gr(E,Gm,S′). The Γ–module Z is the
trivial module. Hence H1(Γ,Z) = HomGroups(Γ,Z) = 0 because Γ is finite.
Thus, this extension splits, so that E is a split S–subtorus of CG(T0). This
contradicts the maximality of T0. �

4.4. Remarks. (a) The implication (ii) =⇒ (iii) is false without an ad-
ditional assumption. Indeed, according to [X, 1.6], there exists a non-
split rank 2 torus T over a singular projective connected complex curve
S such that T admits a split subtorus T0 ∼= Gm and an S–exact sequence
1 → T0 → T → Gm → 1. Thus, T0 is a maximal split subtorus of the
reductive S–group T = CT (T0), yet CT (T0)/T0 is isotropic. We note that T
is locally split in the sense of A.1.

(b) The implication (iv) =⇒ (iii) is already false for G = Gm = T and
the obvious split subtorus T0 = {1}. One may then be tempted to conjec-
ture that (iv) =⇒ (iii) holds at least in the semisimple case. But this is
false too: indeed, let G = SL3 and let T0 be the image of Gm,S under the
diagonal homomorphism t 7→ diag(t, t2, t−3). The centralizer CG(T0) is the
standard diagonal maximal torus of G of rank 2. Hence CG(T0)/T0 ∼= Gm,S

is irreducible, but also isotropic.

(c) The reader may have noticed that our proof of (ii) =⇒ (iii) in 4.3
only uses that CG(T0) has a faithful linear representation. This is however
equivalent to our assumption on G: if CG(T0) has a faithful linear represen-
tation, then so does rad(G), the unique maximal torus of the centre Z(G)
of G, and therefore also G by [Gi2, Thm. 4.1].

4.5. The dynamic description of parabolic and Levi subgroups. Let
S be a scheme and let H be a reductive S–group scheme. We recall the
“dynamic method” in the sense of [Co1, 4.1, 5.2].

We will refer to a homomorphism λ : Gm,S → H of S–groups as a cochar-
acter (or a 1–parameter subgroup [Co1, Def. 4.1.6]). Any cocharacter gives
rise to a conjugation action of Gm on H, and so for a fixed h ∈ H(S) to an
orbit map orbh : Gm → H, which assigns to an S–scheme T and t ∈ Gm(T )
the element λ(t)h|Tλ(t)

−1 ∈ H(T ). If orbh extends to a morphism Ga → H,
i.e., an element of H(Ga), such a morphism is unique (since H is separated)
and we will abbreviate this by “λ(t)hλ(t)−1 ∈ H(Ga)” (the abbreviation
“limt→0 λ(t)hλ(t)

−1 exists” is used in [Co1, §4.1]). One then defines an
S–functor PH(λ) which assigns to an S–scheme T the group

PH(λ)(T ) =
{
h ∈ H(T ) : λ(t)hGm,T

λ(t)−1 ∈ H(Ga,T )
}

It is known that PH(λ) is represented by a parabolic subgroup scheme of H,

denoted PH(λ). The centralizer CentH(λ) = CH(λ) of λ is a Levi subgroup
of PH(λ); its unipotent radical is given by those elements for which the limit
is 1 [Co1, 4.1.7].

If S is a connected scheme, and (P,L) is a pair consisting of a parabolic
subgroup of G and a Levi subgroup L of P , then there exists a cocharacter λ
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such that (P,L) =
(
PG(λ),CG(λ)

)
, [Gi1, Thm. 7.3.1(1)]. We will refine this

result in B.1. We point out that even over a connected S there may exist
parabolic subgroups which do not contain Levi subgroups and hence are not
amenable to a dynamic description, [Co1, Ex. 5.4.9]. However, this cannot
happen if S is affine [XXVI, 2.3] (or [Co1, 5.4.8]). Thus, over an affine
base every parabolic subgroup P has the form P = PH(λ) for a suitable
cocharacter λ ([Gi1, 7.3.2]).

In 4.6, we will use the dynamic method to describe minimal parabolic
subgroups and their Levi subgroups over a connected base.

4.6. Lemma (Minimal parabolic subgroups and their Levi subgroups). Let
G be a reductive group scheme over a connected scheme S.

(a) G admits a minimal parabolic subgroup.

(b) Let L be a Levi subgroup of a minimal parabolic R-subgroup P of G,
and let T0 be a maximal split S-subtorus of the torus rad(L); it is
unique by Lemma A.6(b). Then L = CentG(T0).

(c) We assume furthermore that G admits a faithful linear representa-
tion, and let T0 be a maximal split subtorus of G. Then CentG(T0)
is a Levi subgroup of a minimal parabolic subgroup of G.

Proof. Since S is connected, the type of G is constant [XXII, 2.8], and so is
the type of any parabolic subgroup of G.

(a) The length of a strictly increasing chain of parabolic subgroups of G
is bounded by the relative dimension of G. So it is obvious that a minimal
S–parabolic subgroup of G exists.

(b) According to [Gi1, Thm. 7.3.1], there exists an S–group homomor-
phism λ : Gm,S → G such that P = PG(λ) and L = CG(λ) (notation of 4.5).
We can suppose that λ is non-trivial. Hence, by A.3, Gm,S/Ker(λ) ∼= Gm,S.
Without loss of generality, we can then assume that λ is a monomorphism.
In particular, λ factors through the unique maximal split S-subtorus T0 of
rad(L). We have L ⊂ CG(T0) ⊂ CG(λ) = L so that L = CG(T0) as desired.

(c) This follows from Proposition 4.3, (i) =⇒ (vi). �

4.7. Theorem (Transitivity of G(R) on minimal parabolic subgroups and
maximal split tori). Let R be a connected LG-ring, and let G be a reductive
R-group scheme.

(a) The group G(R) acts transitively on the minimal R–parabolic sub-
groups of G.

(b) We assume furthermore that G admits a faithful linear representa-
tion (e.g. G is semisimple). Then the group G(R) acts transitively
on the maximal split R–subtori of G.

Proof. (a) Let P and Q be minimal parabolic subgroups of G. Corollary
3.6 shows that there exists g ∈ G(R) such that gP ∩ Q is an R–parabolic
subgroup of G. By minimality, we have gP ∩Q = Q = gP .
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(b) Let T1 and T2 be maximal split R-subtori of G. We want to show that
T1 and T2 are G(R)–conjugate. According to Lemma 4.6(c), the centralizers
Li = CG(Ti), i = 1, 2, are Levi subgroups of minimal parabolic subgroups
Pi of G. Applying (a), reduces to the case P1 = P2. Since Levi subgroups
of a fixed parabolic subgroup are G(R)–conjugate by [XXVI, 1.8], we can
further assume that L1 = L2. According to Proposition 4.3, (i) =⇒ (ii),
T1 and T2 are maximal R–split tori of L1 = L2 and a fortiori a maximal
split tori of the torus rad(L1). Since we have uniqueness for maximal split
subtori of a given subtorus (Lemma A.6(b)), we conclude that T1 = T2. �

Theorem 4.7(b) is proven in [XXVI, 6.16] for a reductive R–group scheme
over a connected semilocal R.

4.8. Remarks (Witt-Tits decomposition). Let R be a connected LG-ring,
and let G be a reductive R–group scheme. Then the conclusions of [Gi1,
4.3.1, 4.4.3, 5.2.1] regarding the Witt-Tits decomposition of H1(Spec(R), G)
hold.

Indeed, the reader will easily check that the proofs of the quoted refer-
ences, stated in [Gi1] for semilocal rings, only require that R is a connected
ring for which G(R) acts transitively on the set of minimal parabolic sub-
groups of G. But this is 4.7(a).

4.9. The anisotropic kernel. Let R be a connected LG-ring and let G be
a reductive R–group scheme.

By 4.6(a), G admits minimal parabolic subgroups and by 4.7(a), they are
all conjugate. Let us fix one of them, say Pmin. Levi subgroups of Pmin exist
by [XXVI, 2.3], and they are all conjugate by [XXVI, 1.8]. Let us fix one
of them, say Lmin. The derived subgroup D(Lmin) of Lmin is a semisimple
R–group scheme. It follows from [XXVI, 1.20] and [Gi1, Lem. 3.2.1(2)] that
D(Lmin) is irreducible, hence anisotropic by 4.1(a). Summarizing, up to iso-
morphism, there exists up to isomorphism a unique semisimple anisotropic
R–subgroup of G, defined as

(4.9.1) Gan = D(Lmin)

and called the anisotropic kernel of G. The terminology follows Tits [Ti] for
the case of a field and Petrov-Stavrova [PS] for the case of semilocal rings.

4.10. Example. Let G be a reductive group scheme over a connected LG-
ring, and suppose T0 is a split subtorus of G for which CentG(T0)/T0 is
anisotropic. Then

(i) T0 is a maximal split subtorus of G;
(ii) there exist parabolic subgroups of G admitting CentG(T0) as Levi

subgroup, and any such parabolic subgroup is minimal;
(iii) D

(
CentG(T0)

)
is an anisotropic kernel of G.

Indeed, Proposition 4.3 implies (i) and (ii), while (iii) follows from the defini-
tion (4.9.1) of an anisotropic kernel. We will specialize this example in 6.13
to determine the anisotropic kernel of GL1(A), A an Azumaya R–algebra.
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In the remainder of this section we investigate the interplay between ar-
bitrary parabolic subgroups of a reductive group over a connected LG-ring,
Levi subgroups and split subtori.

4.11. Proposition ([XXVI, 6.8] for R semilocal connected). Let R be a
connected LG-ring, let G be a reductive R–group scheme, let P ⊂ G be a
parabolic subgroup scheme and let L be a Levi subgroup of P , which exists
by [XXVI, 2.3]. We put Q = rad(L) and let Q0 the maximal split subtorus
of Q, which exists by A.6(d). Then

(4.11.1) L = CentG(Q0).

The proof of 4.11 for a connected LG-scheme is the same as the proof of
[XXVI, 6.8], up to replacing the reference [XXVI, 3.20] by 2.6. We leave the
details to the reader.

Recall [XXVI, 6.2]: If S is any scheme, and Q a split subtorus of a
reductive S–group scheme, then there exists a parabolic subgroup of G for
which CentG(Q) is a Levi subgroup.

Combining this result with 4.11, we get the following corollary, which is
[XXVI, 6.9] in the semilocal case.

4.12. Corollary. Let S be a connected LG-scheme, G a reductive S–group,
and T a critical subtorus in the sense that T = rad

(
CentG(T )

)
. We denote

the maximal split subtorus of T by T0. Then the following are equivalent:

(i) CentG(T ) is a Levi subgroup of a parabolic subgroup of G;
(ii) CentG(T ) = CentG(T0);
(iii) Lie(G)T = Lie(G)T0 .

More corollaries of Proposition 4.11 are established in [XXVI, 6.10–6.12]
for reductive groups over a connected semilocal scheme. Their proofs carry
over without change to groups over a connected LG-scheme. We state these
corollaries below for the reader’s convenience.

4.13. Corollary ([XXVI, 6.10] for R semilocal connected). Let S be a con-
nected LG-scheme, and let G be a reductive S–group. Then the following
conditions are equivalent for a subgroup scheme L of G:

(i) There exists a parabolic subgroup with Levi subgroup L.
(ii) There exists a split subtorus of G whose centralizer is L.
(iii) There exists a cocharacter Gm,S → G whose centralizer is L.

4.14. Corollary ([XXVI, 6.11] for R semilocal connected). Let S be a con-
nected LG-scheme, and let G be a reductive S–group. Given a torus T , we
denote by T0 its unique maximal split subtorus, whose existence is guaranteed
by A.6(d). Then the maps

L 7→ rad(L)0, Q 7→ CentG(Q)
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are order-reversing inverse bijections between the set of Levi subgroups of
parabolic subgroups of G and the set of split subtori Q of G satisfying Q =
rad(CentG(Q))0.

5. Cancellation Theorems

In this section we prove several cancellation theorems that are classically
known over fields, in some cases even over semilocal rings, but that we
establish here over LG-rings: cancellation of modules and Azumaya algebras
in tensor products 5.2, cancellation of hermitian forms in 5.4 and cancellation
of quadratic forms in 5.5. All of these cancellation results are applications
of the cohomological injectivity result of Theorem 3.1(b). We start with
presenting the principle 5.1 that describes the basis of cancellation.

5.1. Cancellation Principle. Let R be an LG-ring. We consider the dia-
gram (5.1.1) of R–group schemes and R–group homomorphisms

(5.1.1) G
∆
−−−→ L

incL−−−→ P
incP−−−→ H

where G and H are reductive R–group schemes, P is a parabolic subgroup
of H with Levi subgroup L, the map ∆ is split as group homomorphism, and
where incL and incP are the natural inclusions. Then the canonical map

(5.1.2) α : H1(R,G) −→ H1(R,H),

induced by the composition of the maps in (5.1.1), is injective.

Proof. The sequence 5.1.1 of group homomorphisms induces maps in coho-
mology:

(5.1.3)

H1(R,G)

��

� � ∆∗

// H1(R,L)

∼= inc∗L
��

H1(R,H) H1(R,P )
inc∗P

oo

.

In the diagram (5.1.3) the map ∆∗ is injective since ∆ is a split group
homomorphism, the map inc∗L is a bijection by [XXVI, 2.3] and the map
inc∗P is injective by Theorem 3.1(b). �

As a first application of the Cancellation Principle 5.1, we prove a can-
cellation result for finite projective modules and for Azumaya algebras over
LG-rings. Cancellation of Azumaya algebras was proven for semilocal rings
by Knus [Kn1, Thm. 3.3] and again by Ojanguren-Sridharan in [OS, Cor. 1],
see also [Kn2, III, 5.2.3(b)].

5.2. Application (Cancellation of modules and Azumaya algebras). Let R
be an LG-ring.

(a) LetM1 andM2 be finite projective R–modules, and let N be a faithfully
projective R–module. Then

(5.2.1) M1 ⊗R N ∼=M2 ⊗R N =⇒ M1
∼=M2
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(isomorphism of R–modules). In particular, for any n ∈ N+,

(5.2.2) M
(n)
1
∼=M

(n)
2 =⇒ M1

∼=M2.

(b) Let A, B and C be Azumaya R–algebras. Then

(5.2.3) A⊗R C ∼= B ⊗R C =⇒ A ∼= B.

In particular, for n ∈ N+,

(5.2.4) Mn(A) ∼= Mn(B) =⇒ A ∼= B.

Proof. (a) We apply the Principle 5.1 with the following choices:

(i) G = GLd is the R–group scheme representing the R–functor which
associates with T ∈ R-alg the group GLd(T ) of invertible matrices
in Md(T );

(ii) H = GLnd;
(iii) L the subgroup scheme of GLnd, representing the R–functor which

associates with T ∈ R-alg the subgroup

L(T ) = {diag(x1, . . . , xn) : xi ∈ GLd(T )}

of GLnd(T );
(iv) P is the product of L and upper triangular matrices in GLnd;
(v) ∆ is the diagonal group homomorphism

∆: GLd → L, x 7→ diag(x, . . . , x)

which is split by the projection onto the first factor

pr1 : L→ GLd, diag(x1, . . . , xn) 7→ x1.

We first prove (5.2.2). In view of the rank decomposition of finite pro-
jective modules and of 1.1(a), it is no harm to assume that M1 and hence
also M2 have constant rank, say they are both of rank d. Thus, they repre-
sent cohomology classes [M1] and [M2] in H1(R,GLd). The assumption in
(5.2.2) is that α([M1]) = α([M2]) ∈ H

1(R,GLnd). Therefore [M1] = [M2]
by injectivity of α.

We now prove (5.2.1) as a consequence of (5.2.2). Let Q be an R–module
such that N ⊗R Q is free of finite rank, say N ⊗R Q ∼= Rn, see 1.5. Observe

that M1 ⊗R N ⊗R Q ∼= M1 ⊗R R
(n) ∼= M

(n)
1 . Therefore, the assumption in

(5.2.1) implies M
(n)
1
∼=M

(n)
2 , which forces M1

∼=M2 by (5.2.2).

(b) The proof of (b) is a straightforward modification of the proof of (a).
Quotioning the sequence

GLd
∆
−−−→ L

incL−−−→ P
incP−−−→ GLnd

of (a) by the central Gm, we obtain the sequence of R–group schemes

PGLd
∆̄
−−−→ L = L/Gm

incL̄−−−→ P = P/Gm
incP̄−−−→ PGLnd

which satisfies the assumptions of the Principle 5.1, cf. [Gi1, 3.2.1]. Thus
the canonical map ᾱ : H1(R,PGLd)→ H1(R,PGLnd) is injective. The co-
homology set H1(R,PGLd) represents the isomorphism classes of Azumaya
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algebras of constant degree d. The map ᾱ sends the class of an Azumaya
R–algebra D of degree d to the class [Mn(D)] ∈ H1(R,PGLnd).

For the proof of (5.2.4) we can assume that A and B have constant rank,
say rank d. Then (5.2.4) follows from injectivity of the map ᾱ above. To
prove (5.2.3), we can suppose that C has constant rank n. Then C⊗RC

op ∼=
EndR(C), where on the right hand side we view C as projective R–module
of rank n. Since C ∼= Rn by 1.6(b), we get C⊗RC

op ∼= Mn(R). Now (5.2.3)
follows:

A⊗R C ∼= B ⊗R C =⇒ A⊗R C ⊗R C
op ∼= B ⊗R C ⊗R C

op

=⇒ Mn(A) ∼= Mn(B) =⇒ A ∼= B. �

Based on 5.2(b), we will be able to say more about Azumaya algebras
over LG-rings in §6.

5.3. Remark (Additive Cancellation of modules). The additive version of
(5.2.1) is known to be true too, even in a more general setting than modules
over LG-rings [EG, Thm. 2.5]: Let R be an LG-ring, let S ∈ R-alg be a
direct limit of finite R–algebras, and let M1, M2 and N be S–modules. If
N is finitely generated, then

(5.3.1) M1 ⊕N ∼=M2 ⊕N =⇒ M1
∼=M2.

The proof of loc. cit. establishes that EndS(N) has 1 in the stable range of
EndR(N) and then applies a result of Evans [Ev, Thm. 2] to show (5.3.1).
Additive cancellation goes back to the classical results of Bass [Bas, 6.6,
9.3]; in the semilocal case it is proven in [Kn2, VI; (1.3.3)].

The point of this remark is that the special case S = R and M1, M2

and N finite projective R–modules of (5.3.1) can easily be proven using the
Cancellation Principle 5.1. Indeed, there exists a finite projective R–module
N ′ such thatM⊕N ′ ∼= Rn for some n ∈ N+. ThereforeM1⊕R

n ∼=M2⊕R
n.

By induction on n, it suffices to prove the case n = 1,

(5.3.2) M1 ⊕R ∼=M2 ⊕R =⇒ M1 ⊕M2.

It follows that rankRM1 = rankRM2. Applying the standard rank decom-
position of finite projective modules and 1.1(a), we can assume thatM1 and
M2 have constant rank r.

Let L be the Levi subgroup of the parabolic subgroup P of the reductive
R–group scheme H = GLr+1, given with obvious meaning by

L =

(
GLr 0
0 Gm

)
, P =

(
GLr ∗
0 Gm

)
.

We can apply the Cancellation Principle 5.1 with ∆: G = GLr → L the
obvious embedding and L ⊂ P ⊂ GLr+1 = H as above. Hence, we get an
injective map

(5.3.3) H1(R,GLr) →֒ H1(R,GLr+1),
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which sends the isomorphism class of a finite projective R–module Q of rank
r to the isomorphism class of Q ⊕ R. Thus, injectivity of (5.3.3) yields a
proof of (5.3.2).

The final two results of this section concern cancellation of hermitian and
quadratic forms. For the convenience of the reader, Appendix C reviews the
concepts needed for 5.4 and 5.5 and their proofs.

5.4. Application (Cancellation of hermitian forms). Let R be an LG–ring,
and let S/R be a quadratic étale extension with standard involution σ. Then
cancellation holds for (S, σ)–hermitian spaces: if h1, h2 and h3 are hermitian
spaces such that h1 ⊥ h3 and h2 ⊥ h3 are isometric, then already h1 and h2
are isometric:

(5.4.1) h1 ⊥ h3 ∼= h2 ⊥ h3 =⇒ h1 ∼= h2.

Proof. The form h3 ⊥ (−h3) is hyperbolic [Kn2, I; 3.7.3]. Since the as-
sumption implies that h1 ⊥ (h3 ⊥ −h3) ∼= h2 ⊥ (h3 ⊥ −h3), it is no harm
to assume that h3 is hyperbolic, say h3 = H(U3). We can then apply the
Cancellation Principle 5.1 with the following choices:

(i) G = U(h1) and H = U(h1 ⊥ h3) are the unitary R–group schemes
of the regular hermitian forms h1 and h1 ⊥ h3 respectively, which
are reductive R–group schemes by C.6(d).

(ii) L = U(h1)×R RS/R

(
GL(U3)

)
;

(iii) P is the stabilizer of U3 in H, which by C.7 is a parabolic subgroup
of H with Levi subgroup L.

(iv) ∆: U(h1)→ U(h1)×R U(h3) is the canonical embedding.

Thus the natural map H1
(
R,U(h1)

)
→ H1

(
R,U(h1 ⊥ h3)

)
is injective.

Taking the bijection of C.6(e) as identification, it sends the isometry class
of a hermitian space h′ to the isometry class of h′ ⊥ h3, which implies
(5.4.1). �

Remark. For a semilocal ring R, a more general result than 5.4 is proven
in [Kn2, VI; (5.7.5)] — it concerns cancellation of unitary (= hermitian)
spaces over unitary rings.

5.5. Application (Cancellation of quadratic forms). Let R be an LG-ring,
let q1 and q2 be nonsingular quadratic forms and let q3 be a regular quadratic
form. Then

(5.5.1) q1 ⊥ q3 ∼= q2 ⊥ q3 =⇒ q1 ∼= q2.

Proof. Applying the rank decomposition C.8(g) of the quadratic forms qi,
i = 1, 2, 3, together with 1.1(a), we can assume that the qi have constant
rank. We can further suppose that all three ranks are positive, since other-
wise the claim is obvious. Moreover, because the quadratic form q3 ⊥ −q3
is hyperbolic by [Bae, I, (4.7)], we can assume that q3 is hyperbolic. In
particular, q3 is regular, so that q := q1 ⊥ q3 is nonsingular by (C.8.3).
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At this point, the reader might be inclined to apply the principle 5.1 to
O(q1) and O(q), which by C.15 describe the isometry classes of nonsingular
quadratic forms. This is however not possible because O(·) is not reductive
in general. A way out of this problem is to use SO(q1) and SO(q) instead,
which are indeed reductive group schemes by C.16, and then investigate the
relation between H1(R,SO(·)) and H1(R,O(·)).

Following this approach, we apply 5.1 with G = SO(q1) and H = SO(q),
using the parabolic and Levi subgroups of H exhibited in C.17. Hence

α : H1(R,SO(q1))→ H1(R,SO(q))

is injective. To link H1(R,SO(·)) and H1(R,O(·)), we use that there exist
an R–group scheme A, an R–group homomorphismD and an exact sequence
of R–group schemes

(5.5.2) 1 −→ SO(q)
i
−→ O(q)

D
−−→ A −→ 1

where i is the canonical inclusion and where

A =

{
µ2,R, if q has odd rank,

Z/2ZR, if q has even rank.

Indeed, this follows from C.16(c) in the odd rank case and from (C.16.5) in
the even rank case.

Part of the long exact cohomology sequence associated with (5.5.2) is the
sequence of pointed sets

O(q)
D(R)
−−−−→ A(R)

δ
−→ H1(R,SO(q))

i∗
−→ H1(R,O(q)),

in which D(R) is surjective by C.13(b), implying that i∗ has trivial kernel.
Since the parities of the ranks of q1 and q agree, we have the analogous exact
sequence (5.5.2) for q1 replacing q, with the same A. Moreover, we get a
commutative diagram of pointed sets

H1(R,SO(q1))
i∗1 //

α
��

H1(R,O(q1))
D∗

//

β
��

H1(R,A)

H1(R,SO(q))
i∗ // H1(R,O(q))

D∗

// H1(R,A)

where i∗1 is associated to the inclusion i1 : SO(q1) → O(q1) and where β
maps the isometry class of q2 to that of q2 ⊥ q3 (recall C.15). Our claim
then is that β has trivial kernel. But this follows from a simple diagram
chase, using that α is injective and that i∗ has trivial kernel. �

Remarks. For regular quadratic forms over fields of characteristic not
2, the result 5.5 goes back to Witt, and is therefore referred to as Witt
cancellation, even in more general settings.

Witt cancellation is proven in [EKM, Thm. 8.4] for quadratic forms over
arbitrary fields, in [Bae, III, Cor. 4.3] for regular quadratic forms q1, q2 and
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q3 over semilocal rings, and in [Di, II, 6.4] for LG-rings, again for regular
forms, following Baeza’s approach which in turn goes back to Knebusch.

Witt cancellation is not true if all qi are merely nonsingular, see [EKM,
p. 49] for a counterexample.

6. Azumaya algebras over LG-rings

In this section we consider Azumaya algebras over rings. One of its goals
is Corollary 6.9 on the Brauer decomposition of Azumaya algebras over con-
nected LG-rings. This is a consequence of Theorem 6.7 which says that
indecomposable finite projective modules of Azumaya algebras over a con-
nected LG-ring are isomorphic. Another highlight of this section is Propo-
sition 6.2 proving that an Azumaya algebra A of constant degree over an
LG-ring admits a splitting ring which is a maximal étale subalgebra of A.

We start this section with Corollary 6.1, which is an application of cancel-
lation of tensor products of Azumaya algebras and establishes “Hilbert 90”.
In this corollary, Br(R) denotes the Brauer group of a ring R as defined in
[Fo, §7.3], which is the Brauer-Azumaya group of [C-TS, 3.1.3].

6.1. Corollary. Let R be an LG-ring, and let A be an Azumaya R–algebra.

(a) If B is another Azumaya R–algebra with degA = degB, then A and
B are isomorphic as R–algebras if and only if their Brauer classes agree,

(6.1.1) A ∼= B ⇐⇒ [A] = [B] ∈ Br(R).

(b) (“Hilbert 90”) H1
(
R,GL1(A)

)
= {1}.

Proof. (a) It suffices to prove that [A] = [B] =⇒ A ∼= B. The equality
[A] = [B] means that there exist faithfully projective R–modules P and Q
such that A⊗R EndR(P ) ∼= B ⊗R EndR(Q) as R–algebras. Using the rank
decomposition of P and Q, we can easily reduce to the case that both P and
Q have constant rank. Hence, by 1.6(b), there exist m,n ∈ N+ such that
Mm(A) ∼= Mn(B) (isomorphism of R–algebras). Comparing degrees, we get
m = n, hence A ∼= B by (5.2.4).

(b) Let PGL(A) be the automorphism group scheme of A, [CF, 2.4.4.2].
The standard exact sequence of Spec(R)–group schemes,

1→ Gm → GL1(A)→ PGL(A)→ 1

gives rise to a long exact sequence of pointed cohomology sets, part of which
is

H1(R,Gm)→ H1(R,GL1(A))
α
−→ H1(R,PGL(A))

δ
−→ H2(R,Gm).

On the left end, H1(R,Gm) = Pic(R) = 0 by (1.1.1), which implies that α
has trivial kernel. The set H1(R,PGL(A)) classifies twisted forms of A. If B
is such a twisted form, it has the same degree as A. By [Gir, 4.2.12.(iii)], the
map δ sends the isomorphism class of B to [A]− [B] ∈ Br(R) ⊂ H2(R,Gm).
Hence, part (a) implies that δ has trivial kernel, i.e., α has trivial image.
The standard torsion argument then proves (b). �
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6.2. Proposition. Assume that R is LG-ring. Let A be an Azumaya R–
algebra of constant degree d.

(i) A admits a maximal étale R–subalgebra S of finite degree d and
A⊗R S ∼= Md(S).

(ii) If R is connected, then A admits a connected finite étale R–subalgebra
S′ such that A⊗R S

′ ∼= Md(S
′).

Proof. (i) According to Theorem 2.6, the reductive R–group schemeGL1(A)
admits a maximal torus T . By [Gi2, Prop. 3.2], T occurs from an embedding
S →֒ A of a maximal finite étale algebra S of degree d and T = GL1(S).
The canonical S–module A is finite projective of constant rank d and A⊗R

S ∼= EndS(A) as Azumaya S–algebras ([Fo, 7.4.2], [KO, III, Prop. 6.1]).
In particular, A ⊗R S is a neutral Azumaya S–algebras of degree d. Next,
S is an LG-ring by Example 1.2(b). Since A ⊗R S and Md(S) are both
neutral Azumaya S–algebras of the same degree, Corollary 6.1(a) enables
us to conclude that A⊗R S ∼= Md(S).

(ii) Because R is connected, we have a decomposition S = S1 × · · · × Sc
with Si finite étale connected. Since A ⊗R S ∼= Md(S), we obtain that
A⊗R S

′ ∼= Md(S
′) for S′ = S1. �

6.3. Indecomposable finite projective modules. Let R be an arbitrary
ring and let A be an Azumaya R–algebra. Recall that an A–module M is
called decomposable if there exists a family (Mi)i∈I of submodules Mi of M
such that M =

⊕
i∈I Mi and every Mi 6= 0. Otherwise, it is called indecom-

posable. HenceM = {0} is decomposable by taking I = ∅, and an A–module
M is indecomposable if and only if M 6= 0 and idemp

(
EndA(M)

)
= {0, 1}.

Here idemp(B) = {b ∈ B : b2 = b} is the set of idempotents of an R–algebra
B.

Following [DI, V, p. 131], we define an equivalence relation ∼ on the set
of indecomposable finite projective left A–modules by P ∼ Q ⇐⇒ there
exists an invertible R–module E such that P ∼= Q⊗RE as (left) A–modules.
Obviously, if Pic(R) = {0}, then “equivalence” reduces to “isomorphism”.
We will use the following result.

6.4. Theorem ([DI, V; Thm. 1.1]). Let A be an Azumaya algebra over a
connected ring R. Then

P 7→ EndA(P )
op

induces a bijection between the set of equivalence classes of indecomposable
finite projective A–modules and the set of isomorphism classes of Azumaya
R–algebras B satisfying

(6.4.1) A ∼Br B and idemp(B) = {0, 1},

where ∼Br indicates Brauer equivalence.
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The inverse map assigns to B satisfying (6.4.1) the module P constructed
as follows: By definition of A ∼Br B there exists a faithfully projective
R–module P satisfying

(6.4.2) A⊗R B
op ∼= EndR(P ).

We use the canonical R–algebra homomorphism A→ A⊗R B
op and (6.4.2)

to endow P with an A–module structure. It is finite projective as A–module
by [Fo, 4.4.1]. Viewing B as a subalgebra of EndR(P ) the double centralizer
theorem inmplies

(6.4.3) B ∼= EndA(P ).

Hence idemp
(
EndA(P )

)
= {0, 1} which says that P is an indecomposable

A–module by the characterization of indecomposability mentioned in 6.3.

6.5. Corollary. Let R be a connected ring. Then every Brauer class α ∈
Br(R) has a representative B satisfying idemp(B) = {0, 1}.

Proof. By Theorem 6.4, it suffices to show that for every Azumaya R–algebra
A there exists an indecomposable finite projective A–module. This can be
seen by decomposing the finite “projective” left A–module AA. �

6.6. Lemma. Let R be a connected ring and let A be an Azumaya R–algebra.
Then the following conditions are equivalent:

(i) Any two indecomposable finite projective A–modules are equivalent.
(ii) Up to isomorphism, the Brauer class of A contains a unique B sat-

isfying idemp(B) = {0, 1}.

If these conditions hold, then we have for B as in (ii) that

(iii) deg(B) = ind([A]), in particular deg(B)
∣∣ deg(A).

(iv) Up to equivalence, the left B–module BB is the unique indecompos-
able finitely generated projective left B–module.

(v) In addition to (i) and (ii), suppose Pic(R) = {0}, and let M and N
be finite projective R–modules satisfying rankRM ≥ rankRN . Then
N is a homomorphic image of M .

Proof. The equivalence (i)⇐⇒ (ii) is a special case of Theorem 6.4.

(iii) We can write A as a finite sum of indecomposable finitely generated
projective A–modules, say A = P1 ⊕ · · · ⊕ Pn. By (i) we can assume that
there exists an indecomposable finite projective A–module P such that Pi =
P ⊗R Ei for some invertible R–module Ei. Thus, rankR Pi = rankR P and
we get

(6.6.1) rankRA = n rankR P and rankRA · rankRB = (rankR P )
2

where the second equation in (6.6.1) follows from (6.4.2). The two equations
in (6.6.1) imply

(6.6.2) rankR P = n rankRB, rankRA = n2 rankRB.

The second equation then forces degB
∣∣deg(A).
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Let [A] = α ∈ Br(R). By definition ind(α) = gcd{degA′ : A′ ∼Br A}.
The equivalence (i)⇐⇒ (ii) shows that the condition (i) also holds for A′.
Since A ∼Br A

′ =⇒ B ∼Br A
′, it then follows that deg(B)

∣∣ deg(A′), and
therefore deg(B) = ind(α).

(iv) As observed in (iii), the condition (i) holds for B replacing A. Hence
we get (6.6.2) for A = B, which forces n = 1 and therefore (iv).

(v) Since Pic(R) = 0, “equivalence” in (i) becomes “isomorphism”. We
fix an indecomposable finite projective A–module K, and then get M ∼= Ka

and N ∼= Kb for positive integers a and b. The rank assumption on M and
N implies that a ≥ b. The claim then follows. �

6.7. Theorem ([DeM, Thm. 1] for R semilocal). Let R be a connected LG-
ring. Then the condition 6.6(i) holds with “equivalence” replaced by “iso-
morphism”. Hence the conditions (ii)–(v) of 6.6 are satisfied too.

Proof. Let P and Q be indecomposable finite projective A–modules. Since
R is connected, rankR P and rankRQ are constant, so that Corollary 1.6
says that P and Q are free as R–modules. Without loss of generality we can
therefore suppose that rankR P ≥ rankRQ. We claim:

(6.7.1) Q is a homomorphic image of P .

Assuming (6.7.1) for a moment, we can quickly finish the proof. Indeed,
because Q is projective, any epimorphism P → Q splits. But P is indecom-
posable. Therefore P ∼= Q.

It remains to prove (6.7.1). This can be done by observing that 6.6(i) and
hence 6.6(v) holds for the localization Rm in a maximal ideal m⊳R, thanks to
[DeM, Thm. 1]. Applying then [EG, Thm. 2.6(i)], proves the claim. A more
direct proof of (6.7.1) goes as follows. Since P and Q are free of finite rank
as R–modules, HomR(P,Q) is an affine space; it contains the open quasi-
compact subscheme U ′ = {ϕ ∈ HomR(P,Q) : ϕ is surjective } (note that the
complement of U ′ is given by the vanishing of finitely many minors). The
A–linear maps HomA(P,Q) is a subspace of HomR(P,Q), hence is again
an affine space. It contains U = {ϕ ∈ HomA(P,Q) : ϕ is surjective} =
HomA(P,Q) ∩ U ′ as an open quasi-compact subscheme. If m ⊳ R is any
maximal ideal of R, it is well-known that 6.6(i) and hence 6.6(v) hold for R
replaced by the field R/m, i.e., U(R/m) 6= ∅. But then Proposition 1.4(a)
shows that U(R) 6= ∅, which is (6.7.1). �

6.8. The Wedderburn property. Condition (ii) of 6.6 and Theorem 6.7
say that a connected LG-ring R has the Wedderburn property in the sense of
[AW17] or [Fo, §7.6], i.e., for every Azumaya R-algebra A over a connected
ring R there is up to isomorphism a unique representative B in the Brauer
class of A such that idemp(B) = {0, 1} and Bop ∼= EndA(M) for some A-
progenerator moduleM . As far as we know, this was previously only known
for connected semilocal rings [DeM, Cor. 1].
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Examples of rings that do not have the Wedderburn property are given
in [AW14, Ex. 1.5], [Bas, page 46] and [Ch].

6.9. Corollary (Brauer Decomposition for LG-rings). Let R be a connected
LG-ring, let A be an Azumaya R–algebra with idemp(A) = {0, 1}, and let
ind([A]) = pm1

1 . . . pmc
c be the prime factor decomposition of ind([A]). Then

there exist Azumaya R–algebras B1, . . . , Bc satisfying

(6.9.1) deg(Bi) = pmi

i and idemp(Bi) = {1, 0}

for i = 1, . . . , c, as well as

(6.9.2) A ∼= B1 ⊗R · · · ⊗R Bc.

The conditions (6.9.1) and (6.9.2) determine the family (B1, . . . , Bc) up to
isomorphism.

Proof. Because Br(R) is an abelian torsion group, we can write α = [A] ∈
Br(R) as α = α1+· · ·+αc where αi ∈ Br(R) has order pmi

i for 1 ≤ i ≤ c. We
now use Gabber’s Theorem [Ga, II, Thm. 1] for each class αi. It says that

there exist Azumaya R–algebras Ai satisfying αi = [Ai] and deg(Ai) = pℓii
for some ℓi ∈ N+. Next, by 6.7, we can apply 6.6. Thus, there exist Azumaya
algebras Bi satisfying [Bi] = [Ai] and idemp(Bi) = {0, 1} for i = 1, . . . , c.
Observe that deg(A) = ind(A) and deg(Bi) = ind(αi) by 6.6(iii). We then
get

deg(B1 ⊗R · · · ⊗R Bc) =
∏c

i=1 deg(Bi)

=
∏c

i=1 ind(αi)
(∗)
= ind(α) = deg(A)

where (∗) holds by [AW17, Thm. 3]. Similarly,

[A] = α = α1 + · · · + αc = [A1] + · · ·+ [Ac]

= [B1] + · · ·+ [Bc] = [B1 ⊗R · · · ⊗R Bc],

so that Corollary 6.1(a) yields the isomorphism (6.9.2).
Unicity: Let (B′

1, . . . , B
′
c) be a family of Azumaya R-algebras satisfying

(6.9.1) and (6.9.2). By 6.6(iii) we then get ind([B′
i]) = deg(B′

i) = pmi

i ,

thus per([Bi]) = pℓii for some ℓi ≤ mi. It follows that [A] = [B′
1] + · · · +

[B′
c] is the decomposition of [A] into primary components. Hence [B′

i] =
[Bi] for i = 1, . . . , c. As deg(B′

i) = pmi

i = deg(Bi), another application of
Corollary 6.1(a) yields B′

i
∼= Bi. �

The results in 6.4–6.9 show the importance of Azumaya algebras A sat-
isfying idemp(A) = {0, 1}. While this is a purely algebraic condition, it is
perhaps not surprising that these algebras also have a natural group the-
oretic characterization, which in fact holds beyond the case of connected
LG-rings. We will prove this in 6.12, using the following Lemmas 6.10 and
6.11 which (in our view) are of independent interest.

For an Azumaya algebra A over a scheme S, the S–group scheme GL1(A)
is for example defined in [CF, 2.4.2.2].
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6.10. Lemma. Let A be an Azumaya algebra over a connected scheme S,
and let e be an idempotent of A = A(S).

(a) Then

λe : Gm,S −→ GL1(A) =: G,

t(∈ Gm,S(T )) 7→ teT + t−1(1A(T ) − eT )
(6.10.1)

(T an S–scheme) is a cocharacter such that

λe is central ⇐⇒ e ∈ {0, 1}

⇐⇒ G = PG(λ) = CG(λ).
(6.10.2)

(b) e = 0 ⇐⇒ eT = 0 for some S–scheme T ; analogously for e = 1.

Proof. (a) It is immediate that λe is a cocharacter, which is central if e ∈
{0, 1}. In general, let Aij , i, j ∈ {1, 0} be the Peirce spaces of A with respect
to the orthogonal idempotents e1 = e and e0 = 1 − e. Thus Aij = eiA ej .
The centralizer of λe in A is CA(λe) = A11⊕A00.

Assume now that λe is central. Then A = CA(λ) = A11×A00. It follows
that A11 and A00 are ideals of A. They induce ideals I1 and I0 of OS by
Ii = Aii ∩OS , i = 1, 0, which satisfy Aii = IiA. Since A = A11×A00 we
have OS = I1×I0. Because S is connected, either Ii = OS , i.e., e = 1, or
I1 = 0, i.e., e = 0.

Clearly, λe is central ⇐⇒ G = CG(λ). Since CG(λ) ⊂ PG(λ) ⊂ G in
general, this proves the second equivalence.

(b) The parabolic subgroup PG(λe) has constant type since S is connected
[XXVI, 3.3]. Hence, if eT = 0, then PG(λe)(T ) = G(T ). Because PG(λe)
has constant type, we get PG(λ) = G and therefore e ∈ {0, 1} by (6.10.2).
The assumption e = 1 contradicts eT = 0. Thus e = 0. The other direction
is obvious. �

6.11. Lemma. Let A be an Azumaya algebra over a connected scheme S,
and suppose λ : Gm,S → GL1(A) is a non-central cocharacter. Then {0, 1} (
idemp

(
A(S)

)
.

Proof. Let B = Aλ be the subalgebra of A centralizing the image of λ, and
let C be the centre of B. By [Gi2, Prop. 3.2] we know that C is a finite étale
OS–algebra of positive rank. We will eventually show that C(S) contains
a nontrivial idempotent e defined by using the decomposition of C into its
connected components. But first we need to eliminate the case that C is
connected.

By construction of C, the image of λ lies in C, and this also holds for the
central cocharacter ∆. Thus λ, ∆ ∈ HomS−gr(Gm,S ,GL1(C)). To compare
the two cocharacters, let C be the scheme associated with the finite étale
OS–algebra C and let RC/S(·) be the Weil restriction. Then GL1(C) =
RC/S(Gm, C), (Gm,S)C = Gm,C and the fundamental identity of the Weil
restriction RC/S becomes (after a canonical identification)

HomS−gr

(
Gm,S ,RC/S(Gm,C)

)
= HomC−gr(Gm,C ,Gm,C).
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Suppose that C is connected. Then HomC−gr(Gm,C ,Gm,C) ∼= Z with basis
∆. Therefore λ = ∆n for some n ∈ Z, in particular λ is central, contradic-
tion. Therefore C, equivalently C, is not connected.

Let C1× · · ·×Cm be the decomposition of C corresponding to the decompo-
sition of C into its connected components, and let e1, . . . , em be the identity
elements of the algebras Ci(S). Then the ei are non-zero idempotents of A
since Ci(S) 6= 0, and e1 6= 1 because m ≥ 2. �

We use the concepts of (ir)reducible and (an)isotropic group schemes as
defined in 4.1. For an Azumaya algebra A over a scheme S the S–group
scheme SL1(A) is for example defined in [CF, 3.5.0.91]; it is semisimple
by [CF, 3.5.0.92]. The S–group scheme PGL(A) is a semisimple S–group
scheme by [CF, 3.0.5.82].

6.12. Proposition. Let A be an Azumaya algebra over a connected scheme
S. The following are equivalent:

(i) SL1(A) is isotropic,
(ii) SL1(A) is reducible,
(iii) GL1(A) is reducible,
(iv) PGL(A) is reducible,
(v) PGL(A) is isotropic,
(vi) idemp

(
A(S)

)
) {0, 1}.

Proof. By 4.1(a), the equivalences (i) ⇐⇒ (ii) and (iv) ⇐⇒ (v) hold since
SL1(A) and PGL(A) are semisimple S–group schemes. The equivalences

(ii) ⇐⇒ (iii) ⇐⇒ (iv) are special cases of [Gi1, 3.5.3(b)(3) and 3.2.1(2)].
If e is an idempotent as in (vi), then λe is not central by (6.10.1). Hence

G = GL1(λe) 6= CG(λe) and a fortiori G 6= PG(λe), which proves (iii).
Conversely, if (iii) holds, then G contains a proper parabolic subgroup P

with a Levi subgroup L. By [Gi1, 7.3.1(1)] we have (P,L) = (PG(λ),CG(λ)
for a non-central cocharacter λ. Thus (vi) follows from Lemma 6.11. �

6.13. Corollary (Anisotropic kernel of GL1(A)). Let R be a connected LG-
ring and let A be an Azumaya R–algebra. By 6.4 and 6.7 there exist unique
n ∈ N and an Azumaya algebra B with idemp(B) = {0, 1} such that A =
Mn(B). Then a minimal parabolic subgroup Pmin of G = GL1(A) and a
minimal Levi subgroup Lmin are

Pmin =



GL1(B) ∗ ∗

0
. . . ∗

0 0 GL1(B)


 , Lmin =



GL1(B) 0 0

0
. . . 0

0 0 GL1(B)


 .

(3)The reference refers to the web version of the article: https://hal.science/hal-
01063601v2/document. The published version does not distinguish between H and
Hss = H/ rad(H).
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A maximal split torus T0 of G and an anisotropic kernel Gan of G are

T0 =



Gm 0 0

0
. . . 0

0 0 Gm


 , Gan =



SL1(B) 0 0

0
. . . 0

0 0 SL1(B)


 .

Proof. It is clear that T0 as displayed above is a split torus whose centralizer
in G has the form of the matrix group Lmin. The quotient Lmin/T0 can be
identified with 


PGL(B) 0 0

0
. . . 0

0 0 PGL(B)




which is anisotropic by 6.12. Example 4.10 can therefore be applied and
yields that the matrix groups displayed above are a minimal parabolic sub-
group, a minimal Levi subgroup, a maximal split torus and an anisotropic
kernel respectively. �

Appendix A. Maximal split subtori of groups of multiplicative
type

In this appendix, we study maximal split and maximal locally split S-
subtori of groups of finite multiplicative type. We prove their existence in
A.6, and show in the Example A.9(b) that the two notions are different in
general.

A.1. Basic notions, review. We mainly use the terminology and notation
of [SGA3, VIII, IX], as before abbreviated by [VIII] and [IX], see also [Co1,
App. B] and [Oe]. Throughout this appendix, S is an arbitrary scheme.

Given an abelian group M , one denotes by DS(M) = Spec(OS [M ]))
the abealin S–group scheme representing the functor of characters of the
constant S–group MS . An S–group scheme G is called split, equivalently
diagonalizable, if G is isomorphic to an S–group DS(M) for some abelian
group M . A possible confusion with the notion of a split reductive S–group
cannot occur, if the reader takes the context into account. A split S–torus is
an S–group T isomorphic to DS(Z

r) for some r ∈ N+. We call an S–group
scheme G locally split if there exists a family (Si)i∈I of open subschemes Si
of S such that S =

⋃
i∈I Si and every G|Si

= G ×S Si is diagonalizable. If
in this case all G|Si

are split tori, we call T a locally split torus.
An S–group G has multiplicative type if G is locally diagonalizable for the

fpqc topology, i.e., for every s ∈ S there exists an open affine neighbourhood
U of s in G and a finite family (Xi)i∈I of affine schemes together with
flat morphisms fi : Xi → U such that U =

⋃
i fi(Xi) and every G|Xi

is
diagonalizable. In this case, we call G a torus, if all GXi

are split tori. A
group of finite multiplicative type is a group of multiplicative type which is
also of finite type.
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Let G be a group of multiplicative type. For s ∈ S let Gs be the fibre of
s. There exists an extension k of the residue field of s such that (Gs)k is
diagonalizable, say ∼= DS(Ms) for some abelian groupMs. The isomorphism
class of Ms is independent of the choice of k, and called the type of G at
s, [IX; 1.4]. The function on the underlying topological space Stop of S,
associating with s ∈ S the type of G in s, is locally constant. Assume now
that G has finite multiplicative type. For every s ∈ S the type of G is a
finitely generated abelian group Ms. Hence we get a well-defined, locally
constant function rank(G) : Stop → N, associating with s ∈ S the rank of the
finitely generated abelian group Ms. It follows that we obtain a partition
S =

⊔
r≥0 Sr such that every Sr is an open and closed subscheme of S and

G|Sr is of constant rank r. If G = T is a torus, this is the so-called partition
by type, [Oe, 5.4].

A subtorus of a group G of multiplicative type is a monomorphism T → G
where T is torus. By [IX; 2.5] or [Co1, B.1.3] in the finite type case, T → G
is a closed immersion. Obviously, T is called a split subtorus or a locally
split subtorus, if T is a split torus or a locally split torus. We say T is a
maximal split subtorus or maximal locally split subtorus, if the image of T
in G is maximal with respect to inclusion among all split subtori or locally
split subtori respectively.

A.2. Lemma. Let T be a torus and let Q be the quotient of T by a subgroup
of multiplicative type. Then Q is a torus. Moreover,

(i) if T is locally split, then Q is a locally split torus.
(ii) If S is connected and T is a split torus, then Q is a split torus with

rankQ ≤ rankT .

Proof. We first prove (i). By definition of “locally split”, it suffices to show:

(A.2.1) If T is a split torus, then Q is a locally split torus.

For the proof of (A.2.1) we write T in the form T = DS(M) with M ∼= Zr

and observe that any torus is a group of finite multiplicative type, so that we
can apply [IX; 2.11(i)]: the group Q is a locally split group of multiplicative
type. Hence, Zariski-locally Q = DS(N) for some abelian group N . Cartier
duality [VIII; §3] provides a monomorphism NS → MS of constant group

schemes, so that N is torsion free and finitely generated. Therefore, N ∼= Zr′

with r′ ≤ r, in particular Q is a split S–torus, proving (A.2.1) and thus also
(i).

We next show (ii) by modifying the proof of (A.2.1). Indeed, the reference
[IX; 2.11(i)] also says that Q is a split group of multiplicative type if S is
connected. Hence, as the proof of (i) shows, Q is a split torus.

Finally, we can prove the general case: If T is a torus, then Q is a torus.
Being a torus is local for the fpqc topology. We can therefore assume that
T is a split torus. Then Q is locally split by (i), which is all we needed to
show. �
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A.3. Example. By [Co1, B.3.3], any fppf-closed subgroup of a group G of
multiplicative type is a group of multiplicative type. Hence, Lemma A.2
holds for fppf-closed subgroups of tori.

For example, by A.2(ii), if S is a connected scheme and if λ : Gm,S → H
is a non-trivial group homomorphism, then Gm,S/Ker(λ) ∼= Gm,S.

The following lemma is the first step towards the existence of a maximal
locally split subtorus.

A.4. Lemma. Let G be an S–group of finite multiplicative type.

(a) Then the family of locally split S–subtori of G is a directed poset with
respect to inclusion.

(b) If S is connected, the family of split S–subtori of G is a directed poset
with respect to inclusion.

Proof. (a) It suffices to show:

(i) If E1 and E2 are locally split subtori of G, then there exists a locally
split subtorus of G containing E1 and E2.

To prove this, we consider the S–group scheme E1 ×S E2 and claim that
E1×S E2 is a locally split torus. Indeed, Zariski-locally E1 and E2 have the
form DS(M1) and DS(M2) for free abelian groups of finite type. Since for
arbitrary abelian groups N1 and N2 we have

(A.4.1) DS(N1)×S DS(N2) ∼= DS(N1 ×N2),

see e.g. [Oe, 5.1], it follows that E1 ×S E2 is a locally split torus.
Let h : E1 ×S E2 → G be the group homomorphism given by multiplica-

tion. By [IX; 2.7], its kernel Ker(h) is a subgroup of multiplicative type, so
that E3 := (E1 × E2)/Ker(h) is a locally split torus by A.2(i). Moreover,
again by [IX; 2.7], the canonical map E3 → G is a monomorphism. Clearly,
E1∩Ker(h) = {0}. Therefore, E1 → E3 is a closed immersion, and the same
holds for E2 → E3. Thus, (i) holds.

The proof of (b) is a straightforward modification of the proof of (a), see
[XXVI, 6.5]: If E1 and E2 are split tori, then so is E1×SE2 by (A.4.1). The
quotient E3 is then a split torus by A.2(ii). �

A.5. Lemma. (a) A monomorphism T →֒ T ′ between S–tori with the same
rank functions is an isomorphism.

(b) Assume that S is connected and that G is an S–group of finite mul-
tiplicative type. Then every family of S–subtori of G, which is a directed
poset with respect to inclusion, admits a unique maximal element.

Proof. We can assume that S is non-empty. All statements are local for the
fpqc topology, allowing us to deal with split S-tori.

(a) We are given a monomorphism f : T = DS(M) → DS(M
′) = T ′,

where M and M ′ are free Z–modules of rank r. Cartier duality provides an

epimorphism f̂ : M ′
S → MS of constant S–schemes. For each point s of S,
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we obtain a surjective map f̂s : M
′
s → Ms between free Z-modules of same

finite rank. The map f̂s is then an isomorphism, and hence so are f̂ and f .

(b) Let (Ti)i∈T be a family as in the statement of (b). Since S is connected,
G has of constant rank, say rank r. By the same reason, each Ti has constant
rank, say rankTi = ri. Note ri ≤ r. Let rj be maximal among all ri, i ∈ I.
We claim that Tj is a maximal element of the given family. Indeed, fix
i ∈ I and let Tk be a member of the family such that Ti ⊂ Tk and Tj ⊂ Tk.
We have rj = rk by maximality of rj . Applying (a) yields Tj = Tk, hence
Ti ⊂ Tj . Thus Ti is a maximal element; unicity is obvious. �

We can now prove the existence of maximal (locally) split subtori.

A.6. Proposition. Let G be an S–group of finite multiplicative type.

(a) If E is a maximal locally split S–subtorus of G, then E is unique.
(b) If S is connected, G admits a unique maximal locally split S–subtorus.
(c) G admits a maximal split S–subtorus.
(d) If S is connected, G admits a unique maximal split S–subtorus.

Proof. Lemma A.4(a) tells us that the family of locally split S–subtori of G
is a directed poset, implying (a), while Lemma A.5(b) shows the existence
of a maximal element in case S is connected. Hence (b) holds.

(c) We use the partition S =
⊔

r≥0 Sr by rank, see A.1. Up to localizing

at some Sr, we can then assume that G has constant rank r and that S 6= ∅.
Since an ascending chain of split tori of bounded rank is stationary, it follows
from Lemma A.5(a) that T admits a maximal split S–subtorus.

(d) The reasoning is the same as for (b), using this time Lemma A.4(b).
�

Proposition A.6 implies that a torus T over a connected S admits both a
maximal split subtorus T0 and a maximal locally split subtorus Tl0. Clearly,
T0 ⊂ Tl0. The following Proposition A.7 gives a sufficient criterion for the
two subtori to coincide, while the Examples A.9 show that in general the
two tori do not coincide.

In Proposition A.7 we denote by X∗(T ) = HomS−gr(Gm, T ) the commu-
tative S–group of cocharacters of a torus T ; it is a locally constant S–group
scheme. We also recall [St, Tag 033N]: a connected, normal locally noether-
ian scheme is integral and hence has a field of fractions.

A.7. Proposition. Assume that S is connected, normal and locally noether-
ian with field of fractions K. By Lemma A.6(d), the S–torus T has a unique
maximal split S–subtorus, denoted T0.

(a) We have X∗(T0)(K) = X∗(T0)(S) = X∗(T )(S) = X∗(T )(K).

(b) T0 is the unique maximal locally split S–subtorus of T .

(c) The formation of T0 commutes with Zariski localization.
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Proof. We shall use that T is isotrivial [X, 5.16], that is, there exists a finite
étale cover S′ of S which splits T . Grothendieck’s Galois theory [SGA1, V,
§8] (or see footnote (2)) allows us to assume that the cover S′ is a connected
Galois cover over S. We denote the Galois group of S′/S by Γ; this is also
the Galois group of K ′/K, where K ′ is the fraction field of S′.

(a) We have X∗(T )(S
′) = X∗(T )(K

′); by taking Γ-invariants, we obtain
X∗(T )(S) = X∗(T )(K) and, similarly, X∗(T0)(S) = X∗(T0)(K). We have
the obvious inclusion X∗(T0)(S) ⊂ X∗(T )(S); so it remains to establish the
other inclusion. To do so, we are given λ : Gm,S → T . Its image E is a
split S-torus, so that Lemma A.4(b) implies that E ⊂ T0. It follows that λ
factorizes through T0, so that λ comes from X∗(T0)(S).

(b) Let Tl0 be the maximal locally S–split subtorus of T . Clearly T0 is
the maximal S-split subtorus of Tl0. Since Tl0,K is split, applying (a) to Tl0,
shows that X∗(T0)(K) = X∗(Tl0)(K). It follows that T0 and Tl0 have the
same rank, so that T0 = Tl0 in view of Lemma A.5(a).

(c) This follows immediately from (a). �

A.8. Remarks. (a) That X∗(T )(S) = X∗(T )(K) can be also proven by
applying [X, 8.4].

(b) The argument of Proposition A.7(b) can be generalized as follows.
Suppose that S is an integral scheme with field of fractions K and that T
is an S–torus. Let T0 and Tl0 be the maximal split and locally maximal
split subtorus of T . If T0,K = Tl0,K (this is the crucial assumption), then
T0 = Tl0.

A.9. Examples. Example (a) below shows that A.7(c) is wrong without
the normality assumption, while Example (b) shows that A.7(b) is wrong
without the normality assumption. These examples are taken from [Co1,
Exc. 2.4.12].

Let k be an algebraically closed field of characteristic zero. For each n ≥ 1,
let Xn = Spec(An) be the k-scheme obtained by gluing 2n affine lines in a
loop, with 0 on the i-th line glued to 1 on the (i + 1)-th line (i ∈ Z/2nZ).
This means that

An =
{
(Pi) ∈

∏

i∈Z/2nZ

k[xi] | Pi(0) = Pi+1(1) ∀ i ∈ Z/2nZ
}
.

We have then a canonical k–map fn : X̃n =
⊔

i∈Z/2nZ A
1
k → Xn, obtained

by inclusion An ⊂
∏

i∈Z/2nZ k[xi].

(a) The group Z/2Z acts on X1 by permuting x0 and x1. Since Z/2Z acts
freely on X1(k) = k ⊔ k/ ∼, where the equivalence relation ∼ identifies 0 of
each summand with 1 of the following summand, the action of Z/2Z on X1 is
free [DG, Cor. III, 2.2.5]. The algebraic group Z/2Z ∼= µ2 is diagonalizable,
so that the fppf quotient X = X1/(Z/2Z) is representable by the affine

scheme X = Spec(A) where A = (A1)
Z/2Z = {P ∈ k[x] | P (0) = P (1)},

[VIII.5.1]. Furthermore, the quotient map q : X1 → X is a Z/2Z–torsor.
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We observe that X is a nodal affine curve. We denote by a its nodal point
and note that X \ {a} ∼= Gm. Summarizing, we have a cartesian diagram of
Z/2Z-torsors

A1
k ⊔A1

k

f1
��

q̃ // A1
k

��
X1

q // X

.

Clearly the Z/2Z-torsor q : X1 → X is trivial once restricted to X \ {a}.
We claim:

(A.9.1) The Z/2Z-torsor q : X1 → X is not trivial at the local ring OX,a.

Assume to the contrary that there exists a splitting sa : Spec(OX,a) → X1

of q. It extends to a splitting s : U → X1 of q defined on an affine open
neighborhood U of a in X. Let V be the inverse image of U in A1

k; this
is an affine open neighborhood of 0 and 1. Then s induces a section s̃ of
V ⊔ V → V . Since A1

k is irreducible, V is connected, hence s̃ is the first (or
the second) component map. It follows that s̃(V ) contains the two nodal
points a0, a1 of X1, so that s(a) = a0 = a1. This is a contradiction, proving
the claim (A.9.1).

We consider the isotrivial X–torus T = RX1/X(Gm)/Gm, that is, the
quotient of the Weil restriction RX1/X(Gm) by the diagonal Gm. Its iso-

morphism class is determined by [X1] ∈ H
1(X,Z/2Z). Then T |X\{a} is split,

but T ×S Spec(OX,a) is not split according to (A.9.1).

(b) We now assume n ≥ 2. The map Z/2n+1Z→ Z/2nZ, [i] 7→ [i] induces
a morphism

g̃n :
⊔

i∈Z/2n+1Z

A1
k →

⊔

i∈Z/2nZ

A1
k

which is a Z/2Z–torsor, where Z/2Z is the kernel of Z/2n+1Z → Z/2nZ
and acts by permuting the factors. This map induces a Z/2Z–torsor gn :
Xn+1 → Xn fitting in the cartesian diagram

X̃n+1

f̃n
��

g̃n // X̃n

fn
��

Xn+1
gn // Xn

.

We claim

The Z/2Z–torsor gn : Xn+1 → Xn is locally trivial

for the Zariski topology, but is not trivial.
(A.9.2)

Since a section of gn must come from a section of g̃n, the argument of (a)
shows that such a section does not exist. For each i ∈ [0, 2n − 2], we denote
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by Ũi (resp. Ṽi) the open subset of X̃n (resp. X̃n+1) which is A1
k⊔A

1
k located

at i and i+ 1. Also, we denote by Ui (resp. Vi) the fiber product

An
� � //

∏
j∈Z/2nZ

k[xj ]

k[Ui]
?�

OO

� � // k[xi]× k[xi+1]
?�

OO
.

(resp. with k[Vn] ⊂ An+1). We then get a cartesian of isomorphisms

Ṽi

f̃n≀

��

g̃n

∼
// Ũi

fn≀

��
Vi

gn

∼
// Ui

.

Since the Ui’s cover Xn, we obtain that gn : Xn+1 → Xn admits sections for
the Zariski topology, establishing the claim (A.9.2).

We consider the Xn–torus Tn = RX2n/Xn
(Gm)/Gm of rank one, whose

isomorphism class is determined by [X2n] ∈ H1(Xn,Z/2Z). Then Tn is
isotrivial and (A.9.2) shows that Tn is locally split of rank 1, but is not
split.

Appendix B. Parabolic subgroups of reductive groups via the
dynamic method

In this appendix we consider parabolic and Levi subgroups of a reductive
group H over a connected scheme S that can be described by the dynamic
method, reviewed in 4.5. The appendix complements §4 on minimal para-
bolic subgroups and their Levi subgroups.

We start with an improvement of [Gi1, Thm. 7.3.1]. According to part
(2) of that theorem, a reductive S–group scheme H over a connected S is
isotropic in the sense of 4.1 if and only if its radical torus rad(H) is isotropic
or H is reducible, also defined in 4.1. This characterization is a conse-
quence of part (1) of [Gi1, Thm. 7.3.1] which proves Theorem B.1 without
the important invariance of λ under the S–group scheme Aut(H,P,L), the
automorphisms of H normalizing P and L.

B.1. Theorem. Let S be a connected scheme and let P be a parabolic sub-
group of the reductive S–group H, equipped with a Levi subgroup L ⊂ P .
Then there exists a cocharacter λ : Gm → H which is fixed by Aut(H,P,L)
and which allows a dynamic description of P and L as P = PH(λ) and
L = CH(λ).

Proof. Our proof is a refinement of the proof of [Gi1, Thm. 7.3.1].
Because S is connected, the reductive group H has constant type [XXII,

2.8], so it is a form of a Chevalley S-group G equipped with a Killing couple
(B,T ) and defined over Z. This gives rise to a root datum and a Dynkin



46 P. GILLE AND E. NEHER

diagram ∆. For I ⊂ ∆ we let PI and LI be the standard parabolic and Levi
subgroup associated with I. Since triples of type (H,P,L) allow descent,
there exists I ⊂ ∆ such that (H,P,L) is the twist of (G,PI , LI) under the
sheaf torsor E = Isom

(
(G,PI , LI), (H,P,L)

)
.

We now move to the adjoint quotients H ad = H/ZH and G ad = G/ZG

where ZH and ZG are the centres of H and G respectively. By [Gi1,
Lem. 3.2.1], the pairs (P ad, L ad) = (P/ZH , L/ZH) and the analogously
defined (P ad

I , L ad
I ) are pairs of parabolic subgroups and Levi subgroups of

H ad and G ad respectively. Using the last line of [Gi1, Ex. 7.2], the original
proof of B.1 shows that (P ad

I , L ad
I ) has a dynamic description with respect to

a cocharacter λ ad
I : Gm → G ad, which is fixed by Aut(G ad, P ad

I , L ad
I ). Since

(H ad, P ad, L ad) is a twisted form of (G ad, P ad
I , L ad

I ), the pair (P ad, L ad)

has a dynamic description with respect to the twist λ ad : Gm → H ad of λ ad
I .

By construction, λ ad is fixed by

Aut(H ad, P ad, L ad) = Aut(G ad, P ad
I , L ad

I )E .

Next, we consider the derived groups D(H) and D(G) and recall that H ad

and G ad are quotients of D(H) and D(G) respectively. Let n be an integer
annihilating the finite diagonalizable S–group scheme ZD(G). Then n also

annihilates the centre ZD(H) of D(H). Hence the cocharacter (λ ad)n : Gm →

H ad uniquely lifts to a cocharacter λ : Gm → D(H). The original proof of
B.1 shows that (P,L) has a dynamic description with respect to λ. It remains
to be shown that λ is fixed by Aut(H,P,L). This follows from the unicity of
the lifting of (λ ad)n, since the action of Aut(H,P,L) on HomS−gp(Gm,H

ad)

factorizes through the map Aut(H ad, P ad, L ad). �

B.2. Irreducible and anisotropic actions. We extend the notion of a
reducible or isotropic reductive group scheme (4.1) to the setting where an
S-group schemeM acts on a reductive S–group schemeH by automorphisms
of H. In this situation we say that the action is reducible if it normalizes a
pair (P,L) consisting of an everywhere proper parabolic subgroup P of H
in the sense of 4.1 and a Levi subgroup L of P . Otherwise, the action is
called irreducible. If S is connected, as in B.3 and B.4, then P is everywhere
proper if and only if P is proper because the type of a parabolic subgroup
is locally constant [XXVI, 3.2].

Similarly, we say that the action of M on H is isotropic, if it centralizes
an S–subgroup of H isomorphic to Gm,S. Otherwise, the action is called
anisotropic.

For S the spectrum of a field and M = Gm,S , Corollary B.3 is [BT, 4.23].

B.3. Corollary. Assume that S is connected and that an S–group scheme
M acts on the reductive S–group H. Then the following are equivalent:

(i) The action of M on H is isotropic.

(ii) The action of M on rad(H) is isotropic or the action of M on H is
reducible.
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Proof. (i) =⇒ (ii): Suppose the image of the non-trivial map λ : Gm,S →
H is centralized by the action of M , and consider the parabolic subgroup
P = PH(λ) together with its Levi subgroup L = CH(λ), see 4.5. If P = H,
then λ is central and takes values in rad(H), so that the action of M on
rad(H) is isotropic. Otherwise, P is a proper parabolic subgroup. Since M
normalizes (P,L), its action on H is reducible.

(ii) =⇒ (i): If the action of M on rad(H) is isotropic, so is its action on
H. Assume now that the action of M on H is reducible, that is, there exists
a pair (P,L) consisting of a proper parabolic subgroup P of H and a Levi
subgroup ⊂ P , such that (P,L) is normalized by M . Theorem B.1 provides
a group homomorphism λ : Gm,S → H such that (P,L) = (PH(λ),CH(λ))
and such that λ is fixed by Aut(H,P,L). In particular, λ is non-central.
After quotioning by Ker(λ), we can assume that λ is a monomorphism, A.3.
Since M acts on H through Aut(H,P,L), the image of λ is fixed by M .
Thus, the action of M on H is isotropic. �

The following Proposition B.4 is a complement to Theorem B.1.

B.4. Proposition. Assume that S = Spec(R) is affine and connected, that
M is a flat affine R–group scheme whose geometric fibers are linearly re-
ductive, e.g., M is of multiplicative type, and that M acts on the reductive
group H. If M normalizes a parabolic subgroup P of H, there exists an
M–invariant group homomorphism λ : Gm,S → H such that P = PH(λ) and
such that CH(λ) is a Levi subgroup of P which is normalized by M .

Proof. Let U be the unipotent radical of P which, according to [XXVI, 2.1],
is Aut(P )–linearizable, that is, U admits a composition series 1 = Un ⊂
Un−1 ⊂ · · · ⊂ U1 = U which is Aut(P )-stable and such that Ui/Ui+1 =
W (Ei) where each Ei is a locally free R–module of finite type on which the
action of Aut(H,P ) is linear. A fortiori, the action ofM on U is linearizable.

By [XXVI, 2.3 and 1.9], the set of sections of P → X := P/U is non-empty
and is a principal homogeneous space under U(R). For each R–ring A, the
group M(A) acts on the A-sections of P → X. Let s : X → P be such a
section. For each m ∈M(A), there exists a unique uA(m) ∈ U(A) such that
msA = uA(m)−1

sA. For m1,m2 ∈M(A), we apply m1 to m2sA =uA(m2)−1

sA
and get

m1m2sA =
m1(uA(m2))−1

(m1sA) =
m1 (uA(m2))−1

(uA(m1)−1

sA)

=
m1 (uA(m2))−1 uA(m1)−1

(sA),

so that uA(m1m2) = uA(m1) ·
m1(uA(m2)). The map uA : M(A) → U(A),

m 7→ uA(m), is therefore a 1-cocycle for the action onM(A) on U(A), so that
the data of the uA’s for A running over all R–rings define an Hochschild 1-
cocycle (or crossed homomorphism) u ∈ Z1

coc(M,U), as defined by Demarche
[Dem, §3.2]. Thus, we obtain a cohomology class [u] ∈ H1

coc(M,U). We now
claim

(B.4.1) H1
coc(M,U) = 1.
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We postpone the proof of (B.4.1) for the moment. Assuming (B.4.1), we
get an element v ∈ U(R) such that uA(m) = v−1

A
mvA for all m ∈ U(A). It

follows that msA =
mv−1

A
vA sA, so that s′ = vs is an M -invariant section of

P → X. In particular, s(X) is a Levi subgroup of P which is M–invariant.
Theorem B.1 then shows that there exists an M–invariant homomorphism
λ : Gm → H such that (P, s(X)) = (PH(λ), CH (λ)) as desired.

We now come to the proof of (B.4.1). According to [Dem, Prop. 3.2.8],
we have an exact sequence of pointed sets

1→ H1
coc(M,U)→ H1

0(M,U)→ H1(R,U)

where H1
0(M,U) is the set of isomorphism classes of M -U–torsors over R

[Dem, 3.2.6]. We know from [XXVI, 2.2] that H1(R,U) = 1, so that it is
enough to show that H1

0(M,U) = 1.
According to Grothendieck for M of multiplicative type [IX, 3.1] and

Margaux in general [Ma, Th. 1.2], we have H1
coc(M,Ui/Ui+1) = 0 for i =

1, . . . , n−1 so that H1
0(M,Ui/Ui+1) = 0 by the exact sequence above applied

to Ui/Ui+1. On the other hand, by [Dem, Prop. 3.5.1] for i = 1, . . . , n − 1
we have an exact sequence of pointed sets

H1
0(M,Ui+1)→ H1

0(M,Ui)→ H1
0(M,Ui/Ui+1),

so that we conclude by “dévissage” that H1
0(M,U) = 1, finishing the proof

of (B.4.1). �

B.5. Remarks. (a) The proof of Proposition B.4 is clearly inspired by De-
marche’s paper [Dem] and by McNinch’s approach [Mc].

(b) Let k be a field, let H be a reductive k–group and let M ⊂ H be a
subgroup of H. Following Serre [Se1, Se2], see also [BMR], the subgroupM
is called H–completely reducible, if wheneverM ⊂ P , where P is a parabolic
subgroup of H, then M ⊂ L for some Levi subgroup of P .

Provisionally, we will use the completely analogous terminology for reduc-
tive groups over a scheme S. Specializing Proposition B.4 to the case of M
being a subgroup of H acting on H by inner automorphisms, the proposi-
tion implies that M is H–completely reducible. This generalizes [Ja, 11.24],
proven there for algebraically closed fields and restated in [BMR, Lem 2.6].
In characteristic 0, the result is due to Mostow.

Appendix C. Hermitian and quadratic forms over rings

In this appendix we review the concepts needed for Propositions 5.4 and
5.5, but not more. This appendix is not an introduction to the topics of the
section heading, like for example the book [Kn2], nor did the authors strive
for the most general setting, i.e., considering forms over schemes instead of
base rings. Despite this limitation, the appendix will hopefully still serve as
a useful quick introduction to regular hermitian and nonsingular quadratic
forms over rings, their associated isometry groups and the link to their flat
cohomology sets.
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Throughout this appendix, R is an arbitrary base ring, S is an algebra in
R-alg, equipped with an R–linear involution σ. This will later be specialized
to the hermitian case, where S is a quadratic étale extension with standard
involution σ, and to the quadratic case, where S = R and σ = IdR. The
general setting avoids a duplication of definitions.

C.1. Sesquilinear forms. (a) (Modules) Unless specified otherwise, all
modules considered will be finite projective S–modules. Given such a mod-
ule M , we denote by σM its σ–conjugate, i.e., the S–module with the same
additive group as M , but with the S–action given by s ⋆ (σm) = σ(s)m for
s ∈ S and m ∈M , using the S–action of M on the right-hand side.

Instead of the usual dual space HomS(M,S) we will use its twisted version

M∗ := σ HomS(M,S).

One has an isomorphism of S–modules M∗ ∼
−→ HomS(σM,S), given by

ϕ 7→
(
σm 7→ (σ ◦ ϕ)(m)

)
([Kn2, I; Lem. (2.1.1)]).

(b) (Sesquilinear forms) A sesquilinear form, also called an (S, σ)–sesqui-
linear form is a bi-additive map h : M ×M → S, which is defined on a finite
projective S–module M and which satisfies

h(m1s1, m2s2) = σ(s1)h(m1,m2) s2

for all mi ∈ M and si ∈ S. We will denote such a sesquilinear form by
(M,h) or simply by h.

Given two sesquilinear forms (M1, h1) and (M2, h2), an S–linear map
f : M1 → M2 is an isometry if f is bijective and if h2

(
f(m1), f(m

′
1)
)
=

h1(m1,m
′
1) holds for all m1,m

′
1 ∈ M1. In this case, we say that (M1, h1)

and (M2, h2) are isometric, abbreviated by (M1, h1) ∼= (M2, h2) or simply
by h1 ∼= h2.

(c) (Hermitian and symmetric forms) A sesquilinear form (M,h) is called
(S, σ)-hermitian or simply hermitian, if h(m,m′) = σ

(
h(m′,m)

)
holds for

all m,m′ ∈ M . In the quadratic case, i.e., (S, σ) = (R, Id), we say h is
symmetric instead of hermitian.

(d) (Adjoints, regularity) A sesquilinear form (M,h) gives rise to the S–
linear map h∗ : M →M∗, m 7→ h(m,−), called the adjoint of (M,h). Map-
ping h to h∗ gives rise to a bijection between the S–module of sesquilinear
forms on M and HomS(M,M∗). We call h regular if h∗ is a bijection, hence
an isomorphism of S–modules.

(e) (Orthogonality) Given two sesquilinear forms (M1, h1) and (M2, h2),
their orthogonal sum is the sesquilinear form h1 ⊥ h2 defined on M =
M1 ⊕M2 by

(h1 ⊥ h2) (m1 +m2, m
′
1 +m′

2) = h1(m1,m
′
1) + h(m2,m

′
2)

form1,m
′
1 ∈M1 andm2,m

′
2 ∈M2. The sesquilinear form h1 ⊥ h2 is regular

if and only if h1 and h2 are regular ([Kn2, I, (3.6.2.2)]). The analogous
statement holds for the property “hermitian”.
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(f) (Base change) Let T ∈ R-alg. Then ST = S ⊗R T is an object
in R-alg with a T–linear involution σT = σ ⊗ 1T , and ST /T satisfy the
assumptions of this appendix. Given a finite projective S–module M we
put MT = M ⊗R T = M ⊗S ST , which is canonically a finite projective
ST–module. The twisted dual respects this base change: the canonical map
ω : M∗ ⊗R T

∼
−→ (MT )

∗ is an isomorphism because M is finite projective.
Let now (M,h) be an (S, σ)–sesquilinear form. Then (M,h) uniquely

extends to an (ST , σT )-sesquilinear form hT on MT by requiring

hT (m⊗ t, m
′ ⊗ t′) = h(m,m′)⊗ tt′

for m,m′ ∈ M and t, t′ ∈ T . The adjoint maps (hT )
∗ and the base change

h∗ ⊗ 1R are related by the commutative diagram

(C.1.1)

M ⊗R T
h∗⊗IdT //

(hT )∗ %%❑❑
❑❑

❑❑
❑❑

❑❑
M∗ ⊗R T

ω
∼=yyrrr

rr
rr
rr
r

(MT )
∗

.

Hence, if (M,h) is regular, then so is (MT , hT ).

(g) (Hyperbolic forms [Kn2, I, (3.5)]) Let U be a finitely generated pro-
jective S-module. One defines a hermitian module H(U) = (U ⊕ U∗, hH(U))
by hH(U)(u1 + ϕ1, u2 + ϕ2) = ϕ1(u2) + σ(ϕ2(u1)) for ui ∈ U and ϕi ∈ U

∗.
One calls (M,h) hyperbolic if it is isometric to H(U) for some U .

A hyperbolic space (M,h) = H(U) is equipped with a natural action of
the R-group scheme RS/R

(
GLS(M)

)
, R(·) = Weil restriction, as follows.

For each R-ring T , each g ∈ RS/R

(
GLS(M)

)
(T ) = GLS⊗RT (M ⊗R T ) and

each pair (u, f) ∈ (U ⊗R T )⊕ (M∗ ⊗R T ), we have g.(u, f) = (g.u, f ◦ g−1).
It follows that we have a closed embedding

(C.1.2) RS/R

(
GLS(U)

)
→֒ U(M,h)

of R–group schemes.

(h) (Totally isotropic submodules) Let (M,h) be a hermitian module. A
submodule U ⊂ M is called totally isotropic if U is complemented and
U ⊂ U⊥, where, in general,

U⊥ = {m ∈M : h(m,U) = 0}.

A vector m ∈ M is isotropic if m is unimodular and h(m,m) = 0. In case
(S, σ) = (R, Id) we also require q(m) = 0.

(i) A sesquilinear form (M,h) is diagonalizable if there exists a basis
(e1, . . . , en) of the S–module M such that h(ei, ej) = 0 whenever i 6= j.

(j) The free S–module M = Sn, n ∈ N+, carries the split hermitian form
h0,n, defined by

(C.1.3) h0,n
(∑n

i=1 eisi,
∑n

j=1 ejs
′
j

)
=

∑n
i=1 σ(si)s

′
i.
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The term “split” will be justified in Lemma C.5 where we consider regular
hermitian forms.

We characterize regularity of sesquilinear forms in the following lemma.

C.2. Lemma. Assume S ∈ R-alg is finite projective as R–module. Then
the following are equivalent for a sesquilinear form h.

(i) h is regular;
(ii) hT is regular for all T ∈ R-alg;
(iii) hK is regular for all algebraically closed fields K ∈ R-alg;
(iv) hRm

is regular for all maximal m ∈ Spec(R);
(v) there exists a Zariski cover (f1, . . . , fn) of R such that hRfi

is regular

for all i;
(vi) hR/m is regular for all maximal m ∈ Spec(R);
(vii) hT is regular for some faithfully flat T ∈ R-alg.

Proof. Let h = (M,h). We will use that the adjoint map h∗ : M → M∗

is bijective as S–linear map if and only if the underlying R–linear map is
bijective. Moreover, by transitivity of “finite projective” ([Fo, 1.1.8]), M and
M∗ are finite projective as R–modules. We will use the following scheme to
prove C.2.

(vii) +3 (i) +3

��

(ii) ks +3

��

(iii)

(v)

KS

(iv)ks ks +3 (vi)

The implications (i) =⇒ (ii) and (i) =⇒ (iv) follow from the commuta-
tive diagram (C.1.1), while (ii) =⇒ (iii) and (ii) =⇒ (vi) are trivial. The
implication (iii) =⇒ (ii) follows again from (C.1.1), for (R,S, T ) replaced
by the triple (F, S ⊗R F,K). For (iv) ⇐⇒ (vi) we need h∗Rm

bijective
⇐⇒ h∗R/m bijective, which is [B:AC1, II, §3.2, Cor. de la Prop. 6].

(iv) =⇒ (v): By [B:AC1, II, §5.1, Prop. 2(ii)] there exists for every m ∈
Spec(R) a gm ∈ R such that h∗gm is bijective. The existence of a Zariski cover
with the stated property then follows as usual: {gm : m ∈ Spec(R) maximal}
generates R as an ideal; one takes a generating set {f1, . . . , fn} of this ideal.
(v) =⇒ (vii): By [B:AC1, II, §5.1, Prop. 3] the algebra S = Rf1×· · ·×Rfn

is faithfully flat and h∗S =
∏

i h
∗
fi

is bijective. Finally, the implication (vii)

=⇒ (i) follows from [B:AC1, I, §3.1, Prop. 2]. �

C.3. Hermitian spaces. In C.3 – C.7 we consider the “hermitian case”,
i.e.,

(C.3.1) S is a quadratic étale R–algebra with standard involution σ.

A hermitian sesquilinear form will be hermitian with respect to (S, σ). A
hermitian space (M,h) is a hermitian module (M,h) with h a regular her-
mitian form; a hermitian space of rank r is a hermitian space (M,h) for
which M is a locally free S–module of constant rank r.
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C.4. Lemma (LG diagonalizability, hermitian case). Let R be an LG-ring,
let (S, σ) be a quadratic étale R–algebra with standard involution σ, and let
(M,h) be a hermitian space with M having constant positive rank. Then
(M,h) is diagonalizable, in particular

(C.4.1) {h(m,m) : m ∈M} ∩R× 6= ∅.

Proof. This is [GPR2, Exc. 21.21(a)]; its proof is given in [GPR3]: one can
assume thatM has constant rank; one then shows (C.4.1) and finally proves
diagonalizability by induction on the rank of M (recall [Kn2, I, (3.6.2.1)]
and 1.6(b)). �

C.5. Lemma. Let R be arbitrary and let (S, σ) be a quadratic étale R–algebra
with standard involution σ.

(a) (Zariski-diagonalizability) Let (M,h) be a hermitian space with M
being faithfully projective. Then (M,h) is Zariski-locally diagonalizable,
i.e., there exists a Zariski cover (f1, . . . , fm) of R such that for every g =
f1, . . . , fm the base change (M,h)Rg := (MRg , hRg ) is the split hermitian
form (C.1.3) for appropriate n ∈ N+, possibly varying with g.

(b) The following are equivalent for a hermitian form (M,h).

(i) M is locally free of rank n and h is regular.
(ii) There exists a flat cover T ∈ R-alg such that (M,h)T is isometric

to the split form (C.1.3).

Proof. (a) Let m ⊳ R be a maximal ideal of R. By Lemma C.4, (M,h)
is diagonalizable over the local ring Rm. Therefore, since Rm

∼= lim−→f /∈m
Rf ,

there exists f /∈ m such that hRf
is diagonalizable. Hence the ideal generated

by {f ∈ R : h|Rf
is diagonalizable} is all of R, from which (a) easily follows.

(b) Assume (i). Let (f1, . . . , fm) be a Zariski cover as in (a), and put
T ′ = Rf1 × · · · × Rfm. Then T ′ is a flat cover of R and (M,h)T ∼= (Sn, h′)
with a diagonalizable h′. Since a flat cover T ′′ of T ′ is a flat cover of R,
it suffices to prove (ii) under the assumption that M ∼= Sn and that h is
diagonalizable with respect to the standard basis (e1, . . . , en) of Sn. Note
h(ei, ei) = ri ∈ R× since h is supposed to be hermitian and regular. Let
R[X1, . . . ,Xn] be the polynomial ring in n variables. Then

T = R[X1, . . . ,Xr]
/
(X2

1 − r1, . . . ,X
2
n − rn)

is a flat cover of R such that hT = h0,n.
Conversely, if (ii) holds, thenM is locally free of rank n ([B:AC1, II, §5.3,

Prop. 4]) and h is regular by Lemma C.2. �

C.6. Proposition (Unitary groups). Let (S, σ) be quadratic étale with stan-
dard involution σ, and let (M,h) be a hermitian space. Then the following
hold.

(a) A := EndS(M) is an Azumaya S-algebra.
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(b) There exists a unique involution τh on A, the adjoint involution sat-
isfying

(C.6.1) h(m1, f(m2)) = h(τh(f)(m1),m2)

for all mi ∈M and f ∈ A. The triple (S,A, τh) is an Azumaya algebra with
involution of second kind in the sense of [CF, 2.7.0.33].

(c) We define U(M,h) := U(A, τh) where U(A, τh) is the unitary R–group
scheme of [CF, 3.5.0.84]. Then, for every R–ring T ,

U(M,h)(T ) = {f ∈ GLS⊗RT (M ⊗R T ) : f is an isometry of hT }

where hT is the base change of h in the sense of C.1(f).

(d) The group U(M,h) is a reductive R–group scheme. If M has constant
rank n, then U(M,h) has type An−1.

(e) Fix n ∈ N+. The map [(M,h)] 7→ [Isom
(
(Sn, h0,n), (M,h)

)
] is a

bijection between the set of isometry classes of hermitian spaces over (S, σ)
of rank n and H1

(
R,U(Sn, h0,n)

)
. Equivalently, for every hermitian space

(M,h) of rank n, the set of twisted forms of (M,h) is in bijection with
H1

(
R,U(M,h)

)
.

Proof. For (a) see for example [Fo, 7.1.10]. In case S is a field, (b) is proven
in [KMRT, 4.1]; the same proof works in our setting. (c) Since h

(
(τh(f) ◦

f)(m1),m2

)
= h

(
f(m1), f(m2) by (C.6.1), the equation τh(f) ◦ f = IdM ,

defining U(M,h)(T ), is equivalent to h ◦ (f × f) = h, i.e., f is an isometry.
(d) follows from [CF, 3.5.0.87].

(e) Using C.5(b), it is straightforward (but somewhat technical) to de-
fine the gerbe of hermitian spaces of rank n over the big affine fppf site of
Spec(R). The claim then becomes a special case of [CF, 2.2.4.5]. Alterna-
tively (and more down-to-earth), one can easily adjust the notion of a tensor
system of [GPR2, 54.7] to apply to hermitian spaces, cf. C.1(d). The claim
then becomes a consequence of the Descent Theorem [GPR2, 54.15]. �

Remark. SinceU(M,h) is smooth, it is known ([Mil1, III, Remark 4.8] or

[CF, 2.2.5.15]) that the canonical map H1
ét
(R,U(M,h))

∼
−→ H1(R,U(M,h))

is a bijection. Thus, one can replace twisted forms with respect to the flat
topology in C.6(e) by twisted forms in the étale topology. The analogous
remark applies to C.5(b).

C.7. Proposition (Parabolic and Levi subgroups of U(M,h)). Assume
(C.3.1), and let (M,h) be a hermitian space over (S, σ) containing a to-
tally isotropic submodule U ⊂M .

(a) Then there exists a totally isotropic submodule V and a submodule M ′

such that

(C.7.1) M = (U ⊕ V ) ⊥M ′, (U ⊕ V, h|U⊕V ) ∼= H(U),

in particular (M ′, h|M ′) is a hermitian space.
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(b) The subgroup scheme P of G = U(M,h) which stabilizes U is a
parabolic subgroup of the reductive R–group scheme G.

(c) Consider a decomposition (M,h) = (U ⊕ V ) ⊥M ′ as in (C.7.1), and
the embedding RS/R(GL(U)) →֒ G defined in (C.1.2). Then the R–group
scheme L = RS/R(GL(U))×R U(M ′, h|M ′) is a Levi subgroup of P .

Proof. (a) Since the trace map S → R, s 7→ s+ σ(s) is surjective [Kn2, III,
(4.2.1)], it follows from [Kn2, I, (3.1.1)] that h is an even hermitian module
in the sense of [Kn2, I, (3.1)]. The lemma is therefore a consequence of [Kn2,
I, (3.7.1)]. That V can be chosen totally isotropic follows from the proof of
[Kn2, I, (3.7.1)].

(b) We will use the dynamic method of 4.5. It is easily verified that

λ : Gm → U(M,h), t 7→ t IdU +t−1 IdV +1M ′

defines a cocharacter. Writing a g ∈ U(M,h)(T ), T ∈ R-alg, as a matrix
g = (gij)1≤i,j≤3 with respect to the submodules (U, V,M ′), one finds

λ(t) (gij)λ
t)−1 =




g11 t2g12 tg13
t−2g21 g22 t−1g23
t−1g31 tg32 g33


 .

Hence, g ∈ PG(λ)(T ) ⇐⇒ 0 = g21 = g31 = g23, i.e., g stabilizes U and
U⊥ = U ⊕M ′. Since g is an isometry, the latter conditions are equivalent
to g stabilizing U .

(c) The centralizer of the cocharacter λ above consists of those g that
are diagonal with respect to (U, V,M ′). These are easily seen to be the
isometries in L(T ). The claim then follows from the dynamic method. �

Remarks. (1) That P in C.7(b) is parabolic with Levi subgroup L as
in (c), is not surprising and likely folklore. It is in the spirit of Appendix
T of Conrad’s course [Co3], which identifies the parabolic subgroups for
symplectic and special orthogonal groups over fields.

(2) Suppose that M is free of rank n ≥ 2 and that U has rank i for some
1 ≤ i < n/2. Then P is of type An−1 \ {i}, while the derived group D(L)
has absolute type Ai−1 ×An−1−i for i ≥ 2 and type An−2 for i = 1.

C.8. Quadratic forms. From now on until the end of this appendix we
consider quadratic forms. Thus, we specialize C.1 to (S, σ) = (R, Id). Unless
stated otherwise, R is arbitrary and, we recall, M is a finite projective R–
module. Below is a quick reminder of the basics of quadratic forms over
rings; proofs and more can be found in [Bae] and [Kn2, I, II].

(a) A quadratic form (over R) is a pair (M, q) consisting of a finite pro-
jective R–module M and a map q : M → R satisfying q(rm) = r2q(m)
for all r ∈ R and m ∈ M and for which the polar form bq, defined by
bq(m,m

′) = q(m + m′) − q(m) − q(m′) for m,m′ ∈ M , is a (symmetric)
bilinear form on M . We often abbreviate (M, q) = q and refer to (M, q)
as a quadratic module. We call (M, q) a faithful quadratic R–module if M
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is a faithfully projective R–module, 1.5. We say that (M, q) is a quadratic
module of rank n ∈ N, if M has constant rank n.

An isometry f : (M1, q1)→ (M2, q2) is an R–linear isomorphism f : M1 →
M2 satisfying q2 ◦ f = q1. If (M1, q1) = (M2, q2) = (M, q), the isometries of
(M, q) form a group O(M, q) = O(q), the orthogonal group of q.

(b) (Regularity) By definition, a quadratic form q is regular , if bq is regular
in the sense of C.1(d).

(c) (Base change) Let T ∈ R-alg and let (M, q) be a quadratic form.
Analogous to C.1(f) we consider the T–moduleMT =M ⊗RT . There exists
a quadratic form (MT , qT ) uniquely determined by the condition qT (m⊗t) =
q(m)t2 for all m ∈M and t ∈ T ([GPR2, 11.5], [Sa, Thm. 1]). The polar of
qT is the base change of the polar bq of q, i.e., bqT = (bq)T . In particular, if
q is regular, then so is qT .

(d) (Radical) The radical of a quadratic module (M, q) is the submodule
rad(q) = {m ∈ M : q(m) = 0 = bq(m,M)} of M . Given T ∈ R-alg, clearly
rad(q)⊗R T ⊂ rad(qT ). This inclusion is in general not an equality, cf. (e).

(e) (Nonsingularity) A quadratic form (M, q) is called nonsingular if
rad(qF ) = 0 for all fields F ∈ R-alg. In this case, we call (M, q) a qua-
dratic space. We point out that a “quadratic space” in the sense of [Bae] or
[GPR2] is a quadratic module (M, q) with a regular q.

If q is regular, then rad(q) = 0 and hence C.2(ii) implies

(C.8.1) q regular =⇒ q nonsingular.

The converse of (C.8.1) is not true. For example, any u ∈ R× gives rise to
a nonsingular quadratic form 〈u〉 : R→ R, given by 〈u〉(r) = ur2 for r ∈ R.
Its polar form is the symmetric bilinear form b〈u〉(r1, r2) = 2ur1r2. Hence,

〈u〉 is regular if and only if 2 ∈ R×.
However, if 2 ∈ R×, then rad(q) = {m ∈ M : bq(m,M) = 0} for any

quadratic form q and so rad(q) is stable under base change. Hence,

(C.8.2) if 2 ∈ R×, then q is nonsingular ⇐⇒ q is regular.

(f) (Orthogonality) Given two quadratic forms (M1, q1) and (M2, q2), their
orthogonal sum is the quadratic form q1 ⊥ q2, defined on M =M1 ⊕M2 by
(q1 ⊥ q2)(m1,m2) = q1(m1)+ q2(m2) for m1 ∈M1 and m2 ∈M2. The polar
form of q1 ⊥ q2 is the orthogonal sum bq1⊥q2 = bq1 ⊥ bq2 defined in C.1(e).

By C.1(e), the quadratic form q = q1 ⊥ q2 is regular if and only if q1 and
q2 are regular. Regarding nonsingularity, one easily sees:

q1 ⊥ q2 nonsingular =⇒ q1 and q2 nonsingular,

q1 regular and q2 nonsingular =⇒ q1 ⊥ q2 nonsingular.
(C.8.3)

(g) (Direct products) Let R = R0 × · · · × Rn be a direct product. Every
R–module M uniquely decomposes M =M0× · · · ×Mn as a direct product
of Ri-modules Mi = RiM . The R–module M is finite projective if and only
if every Ri–module Mi is finite projective.



56 P. GILLE AND E. NEHER

Let (M, q) be a quadratic R–module. Then bq(Mi,Mj) = 0 for i 6= j and
(Mi, qi) with qi = q|Mi

is a quadratic Ri–module. Thus

(M, q) = (M0, q0) ⊥ . . . ⊥ (Mn, qn), qi = q|Mi
.

The quadratic R–module (M, q) is regular (nonsingular respectively) if and
only if every (Mi, qi) is a regular (nonsingular respectively) quadratic Ri–
module.

A standard way to obtain the situation considered here occurs by letting
M = M0 × · · · ×Mn be the rank decomposition of a finite projective R–
module M for which Mi, 0 ≤ i ≤ n, is a finite projective Ri–module of
constant rank i.

(h) (Hyperbolic spaces) Let U be a finite projective R–module. The as-
sociated hyperbolic space H(U) is the quadratic module (U∗ ⊕ U,hyp) with
quadratic form hypU (ϕ ⊕ u) = ϕ(u), where ϕ ∈ U∗ and u ∈ U . The qua-
dratic form hypU is regular, hence nonsingular by (C.8.1). The polar form
of hyp is the hyperbolic symmetric bilinear form of C.1(g). In general, a
hyperbolic space is a quadratic module (M, q) isometric to some H(U).

(i) (Split quadratic forms) Let m ∈ N. The quadratic form q0,2m is the
hyperbolic form associated with the free R–module Rm. After identifying
Rm∗ = Rm, it is given on R2m by

(C.8.4) q0,2m(r−m, . . . , r−1, r1, . . . , rm) =
∑m

i=1 rir−i,

It is regular, hence also nonsingular by (C.8.1). The quadratic form q0,2m+1 =
〈1〉 ⊥ q0,2m on R2m+1, defined by

(C.8.5) q0,2m+1(r−m, . . . , r−1, r0, r1 . . . , rm) = r20 +
∑m

i=1 rir−i,

is nonsingular, e.g. by the even rank case, by (C.8.3) and by nonsingularity
of 〈1〉, see (e). We will refer to q0,n for n even or odd as the split quadratic
forms, see Proposition C.9 for a justification for this terminology.

C.9. Proposition. For a faithful quadratic module (M, q) the following are
equivalent:

(i) q is nonsingular;
(ii) qT is nonsingular for all T ∈ R-alg;
(iii) qR/m is nonsingular for all maximal ideals m ⊳ R;
(iv) there exists a flat cover (R1, . . . , Rn) such that each M ⊗R Ri is a

free Ri-module of finite rank ri and qRi
is the split quadratic form

q0,ri over Ri defined in C.8(i);
(v) qS is nonsingular for some faithfully flat S ∈ R-alg;

If M has constant rank n ∈ N+, then (i)–(v) are equivalent to

(vi) q is regular if n is even and q is semiregular in the sense of [Kn2,
IV, (3.1)] if n is odd;

If R is a field, then q is nonsingular if and only if

(vii) q is nondegenerate in the sense of [EKM, (7.17)], i.e., one of the
following two conditions hold:
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(a) q is regular, or
(b) char(R) = 2, rad(q) = 0, dimR{m ∈ M : bq(m,M) = 0} = 1,

and dimRM is odd.

Proof. (i) ⇐⇒ (ii) is easy. It is shown in [Sw, Prop. 1.1, Cor. 1.3] that (i)
⇐⇒ (iii) ⇐⇒ (iv)ét, defined as

(iv)ét there exists an étale cover (R1, . . . , Rn) of R such that each M⊗RRi

is a free Ri-module of finite rank ri and qRi
is hyperbolic as in (C.8.4)

if ri is even, while qRi
is the orthogonal sum of a hyperbolic form

and a 1-dimensional form 〈ai〉 with ai ∈ R
×
i in case ri is odd.

One shows (iv)ét =⇒ (iv) as in the proof of C.5(b)(i) =⇒ (ii). If (iv)
holds, then (v) is satisfied with S = R1 × · · · × Rn. For (v) ⇐⇒ (i) see
[Lo2, Lem. 6.2]. Thus, we proved that (i) – (v) are all equivalent using the
diagram

(ii) ks +3 (i) ks +3
KS

��

(iv)ét ks +3

��

(iii)

(v) (iv)ks

If R is a field, then (i) ⇐⇒ (vii) by [EKM, 7.16]. Again over a field,
(vii) implies that q is semiregular in the odd rank case by [Kn2, IV, (3.1.7)].
Finally, ifM has constant rank over an arbitrary R, then q is regular respec-
tively semiregular if and only if it is so over all residue fields R/m ([Kn2,
IV; (3.1.5)] for odd rank, C.2 for even rank). Thus, to prove that (vi) is
equivalent to q being nonsingular, we can assume that R is a field, in which
case the equivalence (vi) ⇐⇒ (vii) is easily established using [Kn2, IV,
(3.1.7)] for a semiregular q. �

C.10. Quadratic algebras. We recall ([Kn2, I, (1.3.6), and III, §4]) that
a quadratic R–algebra is an algebra S in R-alg whose underlying R–module
is projective of rank 2. Properties:

(a) A quadratic R–algebra S has a standard involution σS. If S is free with
basis {1, z} and hence z2 = az+b with a, b ∈ R, it is given by σS(z) = a−z.
In general, σS is defined by Zariski-descent.

(b) (Automorphisms) We denote by Z/2ZR the constant group scheme
of locally constant functions with values in Z/2Z = {0, 1}. By [Kn2, III,
(4.1.2)], there exists a natural R–group homomorphism

(C.10.1) ψ : Z/2ZR −→ AutR(S),

which is an isomorphism if S is étale ([Kn2, III, (4.1.2)].

(c) (Example) Let S = S0⊕S1 ∈ R-alg be a Z/2Z–graded R–algebra. We
denote by Aut(S, S1) the group of R–linear automorphisms of the R–algebra
S, i.e., the automorphisms α of S satisfying α(S1) = S1, and by

(C.10.2) Aut(S, S1)

the R–group scheme representing the R–functor T 7→ Aut(ST , (S1)T ).
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Suppose now that S = S0 ⊕ S1 satisfies

(i) R
∼
−→ S0, r 7→ r1S , and

(ii) θ : S1 ⊗R S1
∼
−→ S0, s1 ⊗ s

′
1 7→ s1s

′
1 (isomorphism of R–modules).

Thus S is a quadratic R–algebra, (S1, θ) is a discriminant module in the sense
of [Kn2, III, §3], and its standard involution σS is the grading automorphism,

(C.10.3) σS(si) = (−1)isi, si ∈ Si, (i = 0, 1,

which follows from the free case by localization. We have isomorphisms of
R–group schemes

(C.10.4) Aut(S, S1)
∼
−→ Aut(S1, θ)

∼
←− µ2,R,

where the first (obvious) isomorphism is obtained by restriction and where
the second isomorphism is x 7→ x IdS1

[Kn2, III, (3.2.1)].

C.11. Discriminant algebras. Let (M, q) be a faithful quadratic R–space
and let Cℓ(M, q) = Cℓ(q) be its Clifford algebra, [Kn2, IV, §1]. It is a (Z/2Z)–
graded R–algebra: Cℓ(q) = Cℓ0(q)⊕Cℓ1(q). The discriminant algebra Dis(q)
of (M, q) is the subalgebra of Cℓ(q) centralizing Cℓ0(q):

Dis(q) = Cℓ(q)Cℓ0(q).

Some facts that we will use (see [Kn2, IV, §4]).

(a) Discriminant algebras respect base change and direct products of base
rings.

(b) D := Dis(q) inherits the Z/2Z–grading of Cℓ(q),

D = D0⊕D1, Dj = D ∩Cℓj(q), j = 0, 1.

It is a quadratic R–algebra in the sense of C.10.

(c) (The group homomorphism Dis) By the universal property of the
Clifford algebra Cℓ(q), every g ∈ O(q) induces an automorphism Cℓ(g) of
the algebra Cℓ(q) stabilizing Cℓ0(q) and Cℓ1(q), and hence an automorphism
of the Z/2Z–graded algebra D = D0⊕D1. Thus, we get a homomorphism
of groups,

(C.11.1) Dis : O(q) −→ Aut(D,D1), g 7→ Cℓ(g)|D =: Dis(g).

(d) (Even rank) Assume M has constant even rank. Thus q is regular by
C.9(vi). In this case D is the centre of Cℓ0(q), in particular D1 = 0, and D
a quadratic étale R–algebra. Hence, by (C.10.1),

(C.11.2) Aut(D,D1) = Aut(D)
∼
←− (Z/2Z)R.

The standard involution σD of the quadratic R–algebra D is (of course) the
standard involution of the quadratic étale R–algebra D.

(e) (Odd rank) Assume M has constant odd rank. Then the discriminant
algebra D is the centre of Cℓ(q): D = Z(Cℓ(q)). Moreover, D = D0⊕D1 is
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a Z/2Z–graded R–algebra satisfying the conditions (i) and (ii) of C.10(c).
Thus

(C.11.3) Aut(D,D1) ∼= µ2,R.

C.12. Lemma (Realizing the standard involution of Dis(q)). Let (M, q) be
a faithful quadratic space, let x ∈ M with q(x) ∈ R×, and let ρx be the
associated reflection, given by ρx(m) = m − bq(m,x)q(x)

−1x for m ∈ M .
Then the automorphism Dis(ρx) ∈ Aut(D,D1), D = Dis(q), is the standard
involution of D:

(C.12.1) Dis(ρx) = σD.

Proof. The element x ∈ M ⊂ Cℓ1(q) is invertible in Cℓ(q) with inverse
x−1 = q(x)−1x. We will use the well-known formula relating ρx(m), m ∈M ,
with the inner automorphism of Cℓ(q) induced by x:

(C.12.2) ρx(m) = −xmx−1

which follows from xmx−1 = (xm)(xq(x)−1) = (−mx+bq(m,x))(xq(x)
−1) =

−m+ bq(m,x)q(x)
−1x = −σx(m). It implies

Dis(ρx)(cj) = (−1)jxcjx
−1, (ci ∈ Cℓj(q), j = 0, 1).

For the proof of (C.12.1), we can without loss of generality assume that M
has constant rank.

SupposeM has constant even rank. By [Kn2, IV, (4.3.1.4)], σD(d)x = xd
holds for d ∈ D. Since D ⊂ Cℓ0(q) we get Dis(ρx)(d) = xdx−1 = σD(d).

Suppose M has constant odd rank. Since then D = Z(Cℓ(q)), we obtain
for dj ∈ Dj , j = 0, 1, that Dis(ρx)(dj) = (−1)jxdjx

−1 = (−1)jdjxx
−1 =

(−1)jdj = σD(dj) by C.10(c). �

C.13. Lemma. Let (M, q) be a quadratic space over an LG-ring R.

(a) The following are equivalent:
(i) q(M) ∩R× 6= ∅;
(ii) M is faithfully projective.

(b) If M is faithfully projective, the group homomorphism

Dis : O(q)→ Aut(D,D1)

of (C.11.1) is surjective.

Proof. (a) The equivalence (ai) ⇐⇒ (aii) is proven in [GPR2, Lem. 11.26]
for a regular q. The proof in the nonsingular case is essentially the same.
We reproduce it here for the convenience of the reader.

Assuming (ai), it follows that q(M) 6⊂ m for every maximal ideal m ⊳ R.
In particular, MRm

6= 0, which, by (1.5), implies (aii).
Conversely, suppose that M is faithfully projective. We can view q as a

quadratic polynomial on the affine scheme W(M) and define U = W(M)q,
the principal open subscheme determined by q. Let m be a maximal ideal
of R, put k = R/m and observe that Mk 6= 0 by 1.5, while rad(qk) = 0 by



60 P. GILLE AND E. NEHER

nonsingularity of q, in particular qk 6= 0. Hence U(k) = {m ∈Mk : qk(m) 6=
0} 6= ∅, and so U(R) 6= ∅ by 1.4(a), i.e., (ai) holds.

(b) Applying the rank decomposition of quadratic modules C.8(g) and
C.11(a), we see that we can assume that M has constant rank r.

Assume that r is odd. By C.11(e) and (C.10.4), an automorphism g ∈
Aut(D,D1) has the form g|D0

= Id and g|D1
= x IdD1

for some det(g) = x ∈
µ2(R). Observe x IdM ∈ O(q). By construction of Cℓ(q), the orthogonal map
x IdM acts on Cℓ0(q) as identity, and on Cℓ1(q) as x Id. Thus Dis(x IdM ) = g.

Assume that r is even. By C.11(d) and the proof of [Kn2, III, (4.1.2)], to
every g ∈ Aut(D,D1) = Aut(D) one can associate a unique complete system
(ε0, ε1 = 1 − ǫ0) of orthogonal idempotents εi, such that g stabilizes εiD
and satisfies g|ε0 D = Id, g|ε1 D is the standard involution of the quadratic
étale ε1R–algebra ε1D. By 1.1(a), ε1R is an LG–ring. Hence, by C.8(g),
we can assume that R = ε1R, and have to show that there exists f ∈ O(q)
such that Dis(f) = σD. Since q(M) ∩ R× 6= ∅ by (a), this follows from
(C.12.1). �

C.14. Orthogonal group schemes. Let (M, q) be a quadratic form over
R. The R–group functor O(q), assigning to T ∈ R-alg the group O(q)(T ) =

O(qT ) is represented by an affine finitely presented R–group scheme O(q),
[CF, Def. 4.1.0.2] or [Co1, page 364]. Properties that we will use:

(a) (Direct products) Let R = R0× · · · ×Rn be a direct product. Orthog-
onal groups respect the decomposition of C.8(g) as follows:

O(q) = O(q0)× · · · ×O(qn),

O(M, q) ∼= p0∗
(
O(M0, q0)

)
× · · · × pn∗

(
O(Mn, qn)

)

(isomorphism of R–group schemes)

where pi : Spec(Ri)→ Spec(R) is the morphism associated with the canon-
ical projection R→ Ri.

(b) O(q) is in general not reductive. For example ([Co1, Thm. C.1.5]),
if (M, q) has constant positive rank n, then O(q) is smooth if and only if
either n is even or n is odd and 2 ∈ R×.

(c) The homomorphism Dis of (C.11.1) respects base change and thus
defines a homomorphism of R–group schemes

(C.14.1) Dis : O(q)→ Aut(D,D1), D = Dis(q),

assigning to T ∈ R-alg the map Dis(T ) : O(qT )→ Aut
(
DT ,D1,T ).

C.15. Lemma (Cohomology). Fix n ∈ N+. The map

[(M, q)] 7→ [Isom
(
(Rn, q0,n), (M, q)

)
]

is a bijection between the set of isometry classes of quadratic spaces over R of
rank n and H1

(
R,O(q0,n)

)
. Equivalently, for every quadratic space (M, q) of

rank n, the set of twisted forms of (M, q) is in bijection with H1
(
R,O(M, q)

)
.
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Proof. This can be proven in the same way as C.6(e), replacing the reference
C.5(b) used there by C.9. �

It may be appropriate to remind the reader that we are using fppf-
cohomology which does in general not coincide with étale cohomology, see
C.14(b). In this respect, the description of the Galois cohomology set
H1

Gal(R,O(q)) in characteristic 2 ([KMRT, p. 408]) is instructive.

C.16. Special orthogonal group scheme SO(q). Let (M, q) be a faith-
ful quadratic R–space, and let D = Dis(q) be its discriminant algebra.
We define the R–group scheme as the kernel of the homomorphism Dis of
(C.14.1):

(C.16.1) SO(q) = Ker(Dis).

Thus, for T ∈ R-alg we have SO(q)(T ) = {g ∈ O(qT ) : Dis(g) = IdDis(qT )}.
Since the inclusion inc : Aut(D,D1) → Aut(D) is a monomorphism, this
definition coincides with the one of [Kn2, IV, (5.1)], where SO(q) is defined
as the kernel of inc ◦ Dis. The discussion below shows that it also agrees
with the definition used in [Co1, App. C]. However, it coincides with the
definition of SO(q) in [CF, §4.3] only in the even rank case. Following is a
list of properties of SO(q) that we will use.

(a) (Direct products) Let R = R0 × · · · ×Rn be a direct product of rings,
and let (M, q) = (M0, q0)× · · · × (Mn, qn) be the corresponding decomposi-
tion into a direct product of quadratic Ri–modules, C.8(g). Analogously to
C.14(a), we have

(C.16.2) SO(M, q) ∼= p1∗
(
SO(M1, q1)

)
× · · · × pn∗

(
SO(Mn, qn)

)

into a direct product of R–group schemes. It will follow from this and the
discussion below that, in general, SO(q) is a reductive R–group scheme
which is semisimple if rankM ≥ 3.

(b) (SO and determinants) By [Kn2, IV, (5.1.1)] we have a group homo-
morphism

(C.16.3) det : O(q) −→ µ2,R, g 7→ det(g).

We always have SO(q) ⊂ Ker(det); equality holds if M has constant odd
rank or if 2 ∈ R×. This is proven in [Kn2, IV, (5.1.1)], but note the misprint
in (3) of loc. cit., where “⊂” should be “=”, as one can see from the proof.

(c) (Odd rank) Let (M, q) be a quadratic space of odd rank. Then the
morphism zM : µ2,R −→ O(q), x 7→ x IdM , is a section of det. Hence, by
(b),

(C.16.4) O(q) ∼= µ2 ×R SO(q).

If M has constant rank 1, then SO(q) = {⋆}, and if M has constant odd
rank 2n + 1 ≥ 3, then SO(q) is an adjoint semisimple R–group scheme of
type Bn (B1 = A1 for n = 1) [Co1, Prop. C.3.10].
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(d) (Even rank) Let (M, q) be a quadratic space of even rank 2n ≥ 2.
Then q is regular by C.9, and the following hold.

(i) Since the map ψ of (C.10.1) is an isomorphism, the Dickson map

Dick := ψ−1 ◦ Dis : O(q)→ Z/2ZR

is a group homomorphism satisfying SO(q) = Ker(Dick). Moreover,
by [Co1, C.2.8] or [Kn2, IV, (5.2.2)], the sequence

(C.16.5) 1 −→ SO(q) −→ O(q)
Dick
−−−→ Z/2ZR −→ 1

is exact.

(ii) If M has constant rank 2, then SO(q) is a rank one torus. Indeed,
by descent, we are reduced to the hyperbolic case q = xy where
SO(q) = Gm [Kn2, IV, 5.1.3 and V, (2.6.3)].

(iii) IfM has constant rank 2n ≥ 4, then SO(q) is a semisimple R–group
scheme of type Dn.

(e) SupposeM = U ⊕V such that q(U) = 0 = q(V ) and (M, q)
∼
−→ H(U)

under an isometry identifying V with U∗. Then, associating with g ∈ GL(U)
the map M → M , (u, v) 7→ (gu, g−1v), gives rise to a closed embedding of
R–group schemes

(C.16.6) GL(U) −→ SO(q).

C.17. Proposition (Parabolic and Levi subgroups of SO(q)). Let (M, q) be
a quadratic space, let U and V be faithfully projective submodules and let
M ′ ⊂M be a submodule such that

M = (U ⊕ V ) ⊥M ′, q(U) = 0 = q(V ), (U ⊕ V, q|U⊕V ) ∼= H(U).

(a) The subgroup scheme P of SO(q), which stabilizes U , is a parabolic
subgroup of SO(q).

(b) Moreover, GL(U)×SO(q|M ′) is a Levi subgroup of P , where the first
factor embeds into P using the embedding GL(U) → SO(q|U⊕V ) → SO(q)
of (C.16.6).

Proof. This can be shown in the same way as parts (b) and (c) of C.7, using
the same cocharacter. �
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Panoramas et Synthèses 42-43, Soc. Math. France 2014.

[Co2] , Non-split reductive groups over Z, in Autour des schémas en groupes,
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