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Abstract. In 2009, Franck Cassez showed that the timed opacity prob-
lem, where an attacker can observe some actions with their timestamps
and attempts to deduce information, is undecidable for timed automata
(TAs). Moreover, he showed that the undecidability holds even for sub-
classes such as event-recording automata. In this article, we consider the
same definition of opacity for several other subclasses of TAs: with re-
strictions on the number of clocks, of actions, on the nature of time, or
on a new subclass called observable event-recording automata. We show
that opacity can mostly be retrieved, except for one-action TAs and for
one-clock TAs with ε-transitions, for which undecidability remains. We
then exhibit a new decidable subclass in which the number of observa-
tions made by the attacker is limited.

Keywords: timed automata · opacity · timing attacks

1 Introduction

The notion of opacity [24,18] concerns information leaks from a system to an
attacker; that is, it expresses the power of the attacker to deduce some secret
information based on some publicly observable behaviors. If an attacker observ-
ing a subset of the actions cannot deduce whether a given sequence of actions
has been performed, then the system is opaque. Time particularly influences the
deductive capabilities of the attacker. It has been shown in [22] that it is possi-
ble for models that are opaque when timing constraints are omitted, to become
non-opaque when those constraints are added to the models.

Timed automata (TAs) [2] are an extension of finite automata that can mea-
sure and react to the passage of time, extending traditional finite automata with
the ability to handle real-time constraints. They are equipped with a finite set
of clocks that can be reset and compared with integer constants, enabling the
modeling and verification of real-time systems.
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1.1 Related work

There are several ways to define opacity problems in TAs, depending on the
power of the attacker. The common idea is to ensure that the attacker cannot
deduce from the observation of a run whether it was a private or a public run.
The attacker in [19] is able to observe a subset Σo ⊆ Σ of actions with their
timestamps. In this context, a timed word w is said to be opaque if there exists a
public run that produces the projection of w following Σo as an observed timed
word. In this configuration, one can consider the opacity problem consisting of
determining, knowing a TA A and a set of timed words, whether all words in
this set are opaque in A. This problem has been shown to be undecidable for
TAs [19]. This notably relates to the undecidability of timed language inclusion
for TAs [2]. However, the undecidability holds in [19] even for the restricted class
of event-recording automata (ERAs) [3] (a subclass of TAs), for which language
inclusion is decidable. The aforementioned negative results leave hope only if the
definition or the setting is changed, which was done in four main lines of work.

First, in [27,28], the input model is simplified to real-time automata [20],
a restricted formalism compared to TAs. In this setting, (initial-state) opacity
becomes decidable [27,28]. In [29], Zhang studies labeled real-timed automata
(a subclass of labeled TAs); in this setting, state-based (at the initial time, the
current time, etc.) opacity is proved to be decidable by extending the observer
(that is, the classical powerset construction) from finite automata to labeled
real-timed automata.

Second, in [5], the authors consider a time-bounded notion of the opacity
of [19], where the attacker has to disclose the secret before an upper bound, using
a partial observability. This can be seen as a secrecy with an expiration date. In
addition, the analysis is carried over a time-bounded horizon. The authors prove
that this problem is decidable for TAs.

Third, in [12,11], the authors present an alternative definition to Cassez’s
opacity by studying execution-time opacity : the attacker has only access to the
execution time of the system, as opposed to Cassez’ partial observations with
some observable events (with their timestamps). In that case, most problems
become decidable (see [10] for a survey). Untimed control in this setting was
considered in [7], while [12,11] consider also parametric versions of the opacity
problems, in which timing parameters [4] can be used in order to make the system
execution-time opaque. Timed control in this setting was considered in [8].

Finally, a very recent paper (and written concurrently) [6] addresses opac-
ity in the one-clock setting, with additional variants regarding current-location
timed opacity and initial-location timed opacity. Our result regarding decidabil-
ity over discrete time (Theorem 7) matches their result (see Remark 4)—we also
provide exact complexity. Furthermore, our respective seemingly contradictory
results on one-clock TAs without ε-transitions (we prove decidability, while un-
decidability is proved in [6]) are in fact not contradictory due to the presence of
unobservable actions in [6] (see Remark 3).
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Regarding non-interference for TAs, some decidability results are proved
in [14,15,9], while control was considered in [16]. General security problems for
TAs are surveyed in [13].

1.2 Contributions

Considering the negative results from [19] there are mainly two directions: one
can consider more restrictive classes of automata, or one can limit the capabilities
of the attacker—we address both directions in this work.

We address here ∃-opacity (“there exists a pair of runs, one visiting and
one not visiting the private locations set, that cannot be distinguished”), weak
opacity (“for any run visiting the private locations set, there is another run not
visiting it and the two cannot be distinguished”) and full opacity (weak opacity,
but with the other direction holding as well).

Our attacker model is as follows: the attacker knows the TA modeling the
system and can observe (some) actions, but never gain access to the values of
the clocks, nor knows which locations are visited. Their goal is to deduce from
these observations whether a private location was visited.

Our set of contributions is threefold.

Inter-reducibility Our first contribution is to prove that weak opacity and full
opacity are inter-reducible. This result, interesting per se, also allows us to con-
sider only one of both cases in the remainder of the paper.

Opacity in subclasses of TAs Throughout the second part of this paper (Sec-
tion 5), we consider the same attacker settings as in [19] but for natural subclasses
of TAs: first we deal with one-action TAs, then with one-clock TAs (both with
and without ε-transitions—a mostly technical consideration which makes a dif-
ference in decidability), TAs over discrete time, and a new subclass which we
call observable ERAs. Precisely, we show that:

1. The problem of ∃-opacity is decidable for general TAs and thus for all sub-
classes of TAs we consider as well (Section 5.1).

2. The problems of weak and full opacity are both undecidable for TAs with
only one action (Section 5.2) or two clocks (Section 5.3).

3. These two problems are also undecidable for TAs with a single clock, un-
less we forbid ε-transitions, in which case the problems become decidable
(Section 5.3).

4. These two problems are decidable for unrestricted TAs over discrete time
(Section 5.4), as well as for observable ERAs (Section 5.5).

These results overall build on existing results from the literature. They however
allow us to draw a clear border between decidability and undecidability. More-
over, we provide the exact complexity for most of the decidable results, which
in some cases, complexify the proofs.

As a proof ingredient for Section 5.4, we also show that language inclusion
is decidable for TAs over discrete time (a rather unsurprising—yet interesting—
result, of which we could not find a proof in the literature).
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Reducing the attacker power Then, in the third part (Section 6), we introduce a
new approach in which we reduce the visibility of the attacker to a finite number
of actions occurring at the beginning of the run, on an unrestricted TA. This
models the case of an attacker with a limited attack budget, while consider-
ing the maximal class of TAs. This more elaborate result allows us to retrieve
decidability.

1.3 Outline

Section 2 recalls necessary preliminaries. Section 3 defines the problems of in-
terest. Section 4 proves inter-reducibility of weak and full opacity. Section 5
addresses opacity for subclasses of TAs, while Section 6 reduces the power of the
attacker to a finite set of observations. Section 7 concludes.

2 Preliminaries

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-
negative rationals and non-negative reals, respectively. If a and b are two integers
with a ≤ b, the set {a, a+ 1, . . . , b− 1, b} is denoted by [[a; b]].

We let T be the domain of the time, which will be either non-negative reals
R≥0 (continuous-time semantics) or naturals N (discrete-time semantics). Unless
otherwise specified, we assume T = R≥0.

Clocks are real-valued variables that all evolve over time at the same rate.
Throughout this paper, we assume a set X = {x1 , . . . , xH } of clocks. A clock
valuation is a function µ : X→ T, assigning a non-negative value to each clock.
We write 0 for the clock valuation assigning 0 to all clocks. Given a constant
d ∈ T, µ + d denotes the valuation s.t. (µ + d)(x ) = µ(x ) + d, for all x ∈ X. If
R is a subset of X and µ a clock valuation, we call reset of the clocks of R and
denote by [µ]R the valuation s.t. for all clock x ∈ X, [µ]R(x) = 0 if x ∈ R and
[µ]R(x) = µ(x) otherwise.

We assume ./ ∈ {<,≤,=,≥, >}. A constraint C is a conjunction of inequal-
ities over X of the form x ./ d, with d ∈ Z. Given C, we write µ |= C if the
expression obtained by replacing each x with µ(x ) in C evaluates to true.

2.1 Timed Automata

A TA is a finite automaton extended with a finite set of real-valued clocks. We
also add to the standard definition of TAs a special private locations set, which
is then used to define the subsequent opacity concepts.

Definition 1 (TA [2]). A TA A is a tuple A = (Σ,L, `0, Lpriv , Lf ,X, I, E),
where: 1) Σ is a finite set of actions, 2) L is a finite set of locations, `0 ∈ L is
the initial location, 3) Lpriv ⊆ L is a set of private locations, Lf ⊆ L is a set
of final locations, 4) X is a finite set of clocks, 5) I is the invariant, assigning
to every ` ∈ L a constraint I(`) over X (called invariant), 6) E is a finite set
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Fig. 1: A TA example

of edges e = (`, g, a, R, `′) where `, `′ ∈ L are the source and target locations,
a ∈ Σ ∪ {ε} (where ε denotes an unobservable action), R ⊆ X is a set of clocks
to be reset, and g is a constraint over X (called guard).

Example 1. In Fig. 1, we give an example of a TA with three locations `0, `1
and `2, three edges, two observable actions {a, b}, and one clock x . `0 is the
initial location, `2 is the (unique) private location, and `1 is the (unique) final
location. `0 has an invariant “x ≤ 3” and the edge from `0 to `2 is labelled by
the unobservable action ε and has a guard “x ≥ 1”.

Definition 2 (Semantics of a TA). Given a TA A =
(Σ,L, `0, Lpriv , Lf ,X, I, E), the semantics of A is given by the timed transition
system TA = (S, s0, Σ ∪ {ε} ∪ R≥0,→), with

1. S =
{
(`, µ) ∈ L× RX

≥0 | µ |= I(`)
}
, s0 = (`0,0),

2. → ⊆ S × E × S ∪ S × R≥0 × S consists of the discrete and (continuous)
delay transition relations:
(a) discrete transitions: ((`, µ), e, (`′, µ′)) ∈ →, and we write (`, µ) e7→ (`′, µ′),

if (`, µ), (`′, µ′) ∈ S, e = (`, g, a, R, `′) ∈ E, µ′ = [µ]R, and µ |= g.
(b) delay transitions: ((`, µ), d, (`, µ+d)) ∈ →, and we write (`, µ)

d7→ (`, µ+
d), if d ∈ R≥0 and ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.

Moreover we write (`, µ)
(d,e)−→ (`′, µ′) for a combination of a delay and discrete

transition if ∃µ′′ : (`, µ) d7→ (`, µ′′)
e7→ (`′, µ′).

Given a TA A with semantics (S, s0, Σ ∪ {ε} ∪ R≥0,→), we refer to the
elements of S as the configurations of A. A (finite) run of A is an alternating
sequence of configurations of A and pairs of delays and edges starting from the
initial configuration s0 and ending in a final configuration (i.e., whose location
is final), of the form (`0, µ0), (d0, e0), (`1, µ1), . . . (`n, µn) for some n ∈ N, with
`n ∈ Lf and for i = 0, 1, . . . n − 1, `i /∈ Lf , ei ∈ E, di ∈ R≥0, and (`i, µi)

(di,ei)−→
(`i+1, µi+1). A path of A is a prefix of a run ending with a configuration.

2.2 Region Automaton

We recall that the region automaton is obtained by quotienting the set of clock
valuations out by an equivalence relation ' recalled below.
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Given a TA A and its set of clocks X, we define M : X → N the map that
associates to a clock x the greatest value to which the interpretations of x are
compared within the guards and invariants; if x appears in no constraint, we set
M(x ) = 0.

Given α ∈ R, we write bαc and frac(α) respectively for the integral and
fractional parts of α.

Definition 3 (Equivalence relation ' for valuations [2]). Let µ, µ′ be
two clock valuations (with values in R≥0). We say that µ and µ′ are equivalent,
denoted by µ ' µ′ when, for each x ∈ X, either µ(x ) > M(x ) and µ′(x ) > M(x )
or the three following conditions hold:

1. bµ(x )c = bµ′(x )c;
2. frac(µ(x )) = 0 if and only if frac(µ′(x )) = 0;
3. for each y ∈ X, frac(µ(x )) ≤ frac(µ(y)) if and only if frac(µ′(x )) ≤

frac(µ′(y)).

The equivalence relation is extended to the configurations of A: let s =
(`, µ) and s′ = (`′, µ′) be two configurations in A, then s ' s′ if and only if ` =
`′ and µ ' µ′.

The equivalence class of a valuation µ is denoted [µ] and is called a clock
region, and the equivalence class of a configuration s = (`, µ) is denoted [s]
and called a region of A. Clock regions are denoted by the enumeration of the
constraints defining the equivalence class. Thus, values of a clock x that go
beyond M(x ) are merged and described in the regions by “x > M(x )”.

The set of regions of A is denoted by RA. These regions are of finite number:
this allows us to construct a finite “untimed” regular automaton, the region
automaton RAA. Locations of RAA are regions of A, and the transitions of
RAA convey the reachable valuations associated with each configuration in A.

To formalize the construction, we need to transform discrete and time-
elapsing transitions of A into transitions between the regions of A. To do that, we
define a “time-successor” relation that corresponds to time-elapsing transitions.

Definition 4 (Time-successor relation [11]). Let r = (`, [µ]), r′ =
(`′, [µ′]) ∈ RA. We say that r′ is a time-successor of r when r 6= r′, ` = `′

and for each configuration (`, µ) in r, there exists d ∈ R≥0 such that (`, µ + d)
is in r′ and for all d′ < d, (`, µ+ d′) ∈ r ∪ r′.

A region r = (`, [µ]) is unbounded when, for all x in X and all µ′ ∈ [µ],
µ′(x ) > M(x ).

Definition 5 (Region automaton [2]). Given a TA A =
(Σ,L, `0, Lpriv , Lf ,X, I, E), the region automaton is the tuple RAA =
(ΣR ,R, r0,Rf , ER) where 1) ΣR = Σ ∪ {ε}; 2) R = RA; 3) r0 = [s0];
4) Rf is the set of regions whose first component is a final location `f ∈ Lf ;
5) i) (discrete transitions) For every r = (`, [µ]) with ` /∈ Lf , r′ = (`′, [µ′]) ∈ RA
and a ∈ Σ ∪ {ε}:

(r, a, r′) ∈ ER if ∃µ′′ ∈ [µ],∃µ′′′ ∈ [µ′], (`, µ′′)
e7→ (`′, µ′′′)
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with e = (`, g, a,R, `′) ∈ E.
ii) (delay transitions) For every r = (`, [µ]) with ` /∈ Lf , r′ ∈ RA:

(r, ε, r′) ∈ ER if r′ is a time-successor of r or if r = r′ is unbounded.

As in TAs, a run of RAA is an alternating sequence of regions of RAA
and actions starting from the initial region r0 and ending in a final region, of
the form r0, a0, r1, a1, . . . rn−1, an−1, rn for some n ∈ N, with rn ∈ Rf and for
i ∈ [[0;n − 1]], ri /∈ Rf , and (ri, ai, ri+1) ∈ ER . A path of RAA is a prefix of
a run ending with a region and the trace of a path of RAA is the sequence of
actions (ε excluded) contained in this path.

3 Opacity Problems in Timed Automata

3.1 Timed Words, Private and Public Runs

Given a TA A and a run ρ = (`0, µ0), (d0, e0), (`1, µ1), . . . , (`n, µn) on A, we say
that Lpriv is visited in ρ if there exists m ∈ N such that `m ∈ Lpriv . We denote
by Visitpriv (A) the set of runs visiting Lpriv , and refer to them as private runs.
Conversely, we say that Lpriv is avoided in ρ if the run ρ does not visit Lpriv .
We denote the set of runs avoiding Lpriv by Visitpriv (A), referring to them as
public runs.

A timed word is a sequence of pairs made up of an action and a times-
tamp in R≥0, with the timestamps being non-decreasing over the sequence.
We denote by TW ∗(Σ) the set of all finite timed words over the alpha-
bet Σ. A run ρ on a TA A defines a timed word: if ρ is of the form
(`0, µ0), (d0, e0), (`1, µ1), . . . , (`n, µn) where for each i ∈ [[0;n − 1]], ei =
(`i, gi, ai, Ri, `i+1) and ai ∈ Σ ∪ {ε}, then it generates the timed word

(aj0 ,
j0∑
i=0

di)(aj1 ,
j1∑
i=0

di) · · · (ajm ,
jm∑
i=0

di), where j0 < j1 < · · · < jm and

{jk | k ∈ [[0;m]]} = {i ∈ [[0;n− 1]] | ai 6= ε}. We denote by Tr(ρ) and call trace
of ρ the timed word generated by the run ρ and, by extension, given a set of
runs Ω, we denote by Tr(Ω) the set of the traces of runs in Ω.

The set of timed words recognized by a TA A is the set of traces generated
by its runs, Tr(Visitpriv (A) ∪ Visitpriv (A)) (thus a subset of (Σ × R≥0)

∗). To
shorten these notations, we use Tr(A) for the set of timed words recognized
by A, also called language of A. Similarly, we use Trpriv (A) = Tr(Visitpriv (A))
to denote the set of traces of private runs, and Trpriv (A) = Tr(Visitpriv (A)) for
the set of traces of public runs.

In Cassez’s original definition [19], actions were partitioned into two sets,
depending on whether an attacker could observe them or not. For simplicity,
here we replaced all unobservable transition in A by ε-transitions. Projecting
the sequence of actions in a run onto the observable actions, as done by Cassez,
is equivalent to replacing these actions by ε and taking the trace of the run.
Therefore, with respect to opacity, our model is equivalent to [19].
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3.2 Defining Timed Opacity

In this section, a definition of timed opacity based on the one from [19] is intro-
duced, with three variants inspired by [10]: existential, full and weak opacity. If
the attacker observes a set of runs of the system (i.e., observes their associated
traces), we do not want them to deduce whether Lpriv was visited or not during
these observed runs. Opacity holds when the traces can be produced by both
private and public runs.

We are thus first interested in the existence of an opaque trace produced
by the TA, that is, a trace that cannot allow the attacker to decide whether it
was generated by a private or a public run. ∃-opacity, which can be seen as the
weakest form of opacity, is useful to check if there is at least one opaque trace;
if not, the system cannot be made opaque by restraining the behaviors.

Definition 6 (∃-opacity). A TA A is ∃-opaque if Trpriv (A)∩Trpriv (A) 6= ∅.

∃-opacity decision problem:
Input: A TA A
Problem: Is A ∃-opaque?
Ideally and for a stronger security of the system, one can ask the system to be

opaque for all possible traces of the system: a TA A is fully opaque whenever for
any trace in Tr(A), it is not possible to deduce whether the run that generated
this trace visited Lpriv or not. Sometimes, a weaker notion is sufficient to ensure
the required security in the system, i.e., when the compromising information
solely comes from the identification of the private runs.

Definition 7 (Full and weak opacity). A TA A is fully opaque if
Trpriv (A) = Trpriv (A). A TA A is weakly opaque if Trpriv (A) ⊆ Trpriv (A).

Full (resp. weak) opacity decision problem:
Input: A TA A
Problem: Is A fully (resp. weakly) opaque?

Example 2. The TA A depicted in Fig. 1 is ∃-opaque and weakly opaque but
not fully opaque. Indeed,

Trpriv (A) =
{
(a, τ1) · · · (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 2 ∧ τn+1 ≥ 1

}
Trpriv (A) =

{
(a, τ1) · · · (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 3

}
This TA verifies Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ∩ Trpriv (A) 6= ∅ since
(b, 1.5) ∈ Trpriv (A).

4 Inter-reducibility of Weak and Full Opacity

In this section, we prove a new result relating weak and full opacity (Section 4.2).
To this end, we first introduce in Section 4.1 a construction—that will also be
useful to prove our subsequent results in Sections 5 and 6.
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4.1 Apriv and Apub

First, we need a construction of two TAs Apriv and Apub that recognize timed
words produced respectively by private and public runs of a given TA A.

The public runs TA Apub is the easiest to build: it suffices to remove the
private locations from A to eliminate every private run in the system. (See
formal definition in Definition 11 in Appendix A.)

The private runs TA Apriv is obtained by duplicating all locations and transi-
tions of A: one copy AS corresponds to the paths that already visited the private
locations set, and the other copy AS̄ corresponds to the paths that did not (this
is a usual way to encode a Boolean, here “Lpriv was visited”, in the locations
of a TA). For each private location `priv in A we copy all transitions leading
to the copy of `priv in AS̄ and redirect them to the copy of `priv in AS . The
initial location is the one from AS̄ and the final locations are the ones from AS .
Hence all runs need to go from AS̄ to AS before reaching a final location, which
requires visiting a private location.

Definition 8 (Private runs TA Apriv).
Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. The private runs TA

Apriv = (Σ,LS ] LS̄ , `S̄0 , LSpriv , LSf ,X, I ′, E′) is defined as follows:

1. LS = {`S | ` ∈ L} and LS̄ = {`S̄ | ` ∈ L}.
2. LSf = {`Sf | `f ∈ Lf} is the set of final locations, and LSpriv = {`Spriv | `priv ∈

Lpriv} is the set of private locations;
3. I ′ is defined such as I ′(`S) = I ′(`S̄) = I(`)

4. E′ = ES ] ES̄ ] ES̄→S where ES and ES̄ are the two disjoint copies of E
respectively associated with the sets of locations LS and LS̄, and ES̄→S is a
copy of the set of all transitions that go toward LS̄priv where the target location
`S̄priv has been changed into `Spriv . More formally:

ES =
{
(`S , g, a, R, `′S) | (`, g, a,R, `′) ∈ E

}
ES̄ =

{
(`S̄ , g, a, R, `′S̄) | (`, g, a,R, `′) ∈ E

}
ES̄→S =

{
(`S̄ , g, a, R, `Spriv ) | (`, g, a,R, `priv ) ∈ E

}
.

Example 3. We illustrate these constructions in Fig. 2 with A from Fig. 1.

The languages of Apriv and Apub are respectively Trpriv (A) and Trpriv (A).

Remark 1. By a minor modification on Apriv , one can build a TA Amemo that
recognizes exactly the same language as A and that stores in each location
whether the private locations set has been visited. To do so, we add the set {`S̄f |
`f ∈ Lf} to the set of final locations in Apriv and we remove each `S̄priv ∈ LS̄priv
from LS̄ in the same way as we did in Apub : the private locations of Amemo are
exactly those of Apriv . Notably, A is weakly (resp. fully) opaque if and only if
Amemo is weakly (resp. fully) opaque.
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Fig. 2: Apub and Apriv with the example from Fig. 1

4.2 Inter-reducibility Proof

While the distinction between weak and full notions of opacity can lead to mean-
ingful changes [10], within our framework both associated problems are inter-
reducible.

Theorem 1. The weak opacity decision problem and the full opacity decision
problem are inter-reducible.

Proof. Let us first show that the full opacity decision problem reduces to the
weak opacity decision problem. Let A be a TA. In order to test whether A is fully
opaque, we can test both inclusions: Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ⊇
Trpriv (A). The first inclusion can be decided directly by testing whether A is
weakly opaque. In order to test the second inclusion, we need to build a TA
B where private and public runs are inverted. To do so, we first build Apub

and Apriv and then define B as the TA constituted of Apub and Apriv as well
as two new locations `′0 and `′priv . The location `′0 is the initial location of B
and `′priv is the only private location. For x ∈ X, both `′0 and `′priv have the
invariant x = 0, ensuring no time may elapse in those locations. From `′0, with a
transition labeled by ε, one may reach either the initial location of Apriv (`S0 ) or
`′priv , from which an ε-transition leads to the initial location of Apub (`0). The
final locations of B are the final locations of Apub and Apriv . The public runs
of B are the ones starting in `′0, going immediately to `S0 , and then following a
run of Apriv until a final location of Apriv is reached. As the initial transition is
labeled by ε, we have Trpriv (B) = Trpriv (A). Similarly, the private runs of B are
the ones starting in `′0, going immediately to `′priv followed immediately by going
to `S0 , and then follows a run of Apub until a final location of Apub is reached.
As the two initial transitions are labeled by ε, we have Trpriv (B) = Trpriv (A).
Hence, A is fully opaque if and only if A and B are weakly opaque.

Let us now show the converse reduction. LetA be a TA. We will define a TA B
such that B is fully opaque if and only if A is weakly opaque. To do so, we want
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that Trpriv (B) = Trpriv (A) and Trpriv (B) = Trpriv (A) ∪ Trpriv (A). Indeed, if
these equalities hold, Trpriv (B) = Trpriv (B) would be equivalent to Trpriv (A) =
Trpriv (A) ∪ Trpriv (A) which holds if and only if Trpriv (A) ⊆ Trpriv (A). As for
the first reduction, B contains a copy of Apub and Apriv as well as two new
locations `′0 and `′priv . The location `′0 is the initial location of B and `′priv is the
only private location. For x ∈ X, both `′0 and `′priv have the invariant x = 0,
ensuring no time may elapse in those locations. From `′0, with a transition labeled
by ε, one may reach either the initial location of Apub (`S0 ) or `′priv , from which
an ε-transition leads either to `S0 or to the initial location of Apub (`0). The final
locations of B are the final locations of Apub and Apriv . The public runs of B
are the ones starting in `′0, going immediately to `0, and then following a run of
Apub until a final location of Apub is reached. As the initial transition is labeled
by ε, we have Trpriv (B) = Trpriv (A). Similarly, the private runs of B are the
ones starting in `′0, going immediately to `′priv followed immediately by going to
`S0 followed by a run of Apriv , or to `0, followed by a run of Apub until a final
location of Apub is reached. As the two initial transitions are labeled by ε, we
have Trpriv (B) = Trpriv (A)∪Trpriv (A). Hence, A is weakly opaque if and only
if B is fully opaque. ut

5 Opacity Problems for Subclasses of Timed Automata

In this section, we consider the decidability status and complexities of the three
opacity problems presented in Section 3 for several subclasses of TAs: TAs with
one clock, TAs with one action, TAs under discrete time and observable ERAs.
We first show the decidability of the ∃-opacity problem in the general case. Then,
we focus on each class of TAs listed above to study weak and full opacity.

5.1 ∃-opacity Problem

We show here (see Appendix B) that in general the ∃-opacity problem is PSPACE-
complete relying on the reachability problem in TAs, which is known to be
PSPACE-complete [2] as well, even for TAs with two clocks [21]. This theorem
considers multiple subclasses of TAs which we will describe more in depth in
future sections.

Theorem 2. Given a TA A, deciding the ∃-opacity problem for A is PSPACE-
complete, even when restricting A to be a one-action TA, discrete-time TA, an
oERA5, or a single clock TA where integers appearing in guards are given in
binary.

If the number of clocks in A is fixed and integers appearing in guards are
given in unary, the ∃-opacity problem is in NLOGSPACE.

5 See Section 5.5.
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5.2 Timed Automata with a Single Action

Recall that the universality problem consists in deciding whether a TA A accepts
the set of all timed words. In [26], it is shown that the class of one-action TAs
is one of the simplest cases for which the universality problem is undecidable
among TAs. Therefore, this gives the intuition (see Appendix C for proof) that
the weak and full opacity problems are undecidable as well for one-action TAs
(|Σ| = 1).

Theorem 3. The full and weak opacity problems for TAs with one action are
undecidable.

Remark 2. The problems of execution-time opacity introduced in [10] are a
particular decidable subcase of these undecidable opacity problems with one-
action TAs. Indeed, the execution time is equivalent to a unique timestamp
associated with the last action of the system.

5.3 Timed Automata with a Single Clock

Following the same reasoning as in Section 5.2 (based on a different existing
result on TAs), we show that full opacity is undecidable for one-clock TAs.

Theorem 4. The full and weak opacity problems for one-clock TAs are unde-
cidable.

Proof. By reusing the same proof argument as in Theorem 3, using the fact that
universality for one-clock TAs (with ε-transitions) is undecidable [1].

Without ε-transitions We now prove that the weak and full opacity problems
become both decidable in the context of one-clock TAs (|X| = 1) without ε-
transitions, relying on the fact that the language inclusion problem for one-
clock TAs without ε-transitions is decidable [26].

By definition, a TA is weakly opaque if Trpriv (A) is included in Trpriv (A).
As Trpriv (A) and Trpriv (A) are respectively recognized by Apriv and Apub , the
decidability of the weak opacity problem is directly obtained from the decidabil-
ity of the inclusion of two languages. Full opacity follows immediately, from the
bidirectional language inclusion.

Theorem 5. Full and weak opacity are decidable for one-clock TAs without ε-
transitions.

Note however that, while decidable, this problem cannot be effectively solved
as the algorithm given by [26] is non-primitive recursive. Moreover, this bound
is tight as shown in [1]. Hence, by imitating the approach of Theorem 3, one can
reduce the language inclusion problem to the weak opacity, and thus show the
complexity is tight for weak and full opacity as well.
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Remark 3. This result might seem to contradict the result of a concurrently
written paper [6] that proves undecidability of (language-based) opacity for one-
clock TAs without ε-transitions—but it does not. The discrepancy comes from
the fact that our attacker observes all actions (the unobservable actions are
encoded into ε-transitions), while their setting considers unobservable actions—
which can act as ε-transitions even in the absence of syntactic ε-transitions.

Now, due to the undecidability of language universality for TAs with at
least two clocks [26, Theorem 21], we can prove the following with the same
construction as in Theorem 3:

Theorem 6. Full and weak opacity are undecidable for TAs with ≥ 2 clocks.

5.4 Timed Automata over Discrete Time

In the general case, clocks are real-valued variables, with valuations thus ranging
over T = R≥0. TAs over discrete time however restrict the clock’s behavior to
valuations over T = N. Since the arguments used in [2] to prove the undecidabil-
ity of the universality problem in TAs rely on continuous time, this proof cannot
be used to establish undecidability of opacity over discrete time. In fact, relying
on the region automaton (defined in Section 2.2) over discrete time and classical
results on finite regular automata, we show decidability of the opacity problems
as well as their exact complexity.

If µ, µ′ are two discrete clock valuations (i.e., with values in N), the definition
of ' from Section 2.2 can be simplified into: µ ' µ′ if and only if for each x ∈ X,
either µ(x ) = µ′(x ) or µ(x ) > M(x ) and µ′(x ) > M(x ).

In continuous time, for each run of the TA, there is a unique corresponding
run of the region automaton. In discrete time, thanks to the simplified form of
the definition of ', the converse statement that a run of the region automaton
corresponds to a unique run of the TA nearly holds. Loss of information however
remains when every clock goes beyond their maximum constant, as time elapsing
is not measured beyond this point. In order to measure it, we add a letter t (for
ticks) which occurs each time that an (integral) time unit passes in the region
automaton. This change can be operated directly on the TA A so that the
correspondence between paths of A and RAA becomes immediate.

More precisely, we add a clock z and add self-loop transitions et = (`, (z =
1), t, {z}, `) on each location ` ∈ L of A. We also add the guard “z = 0” to each
discrete transition of A.

We illustrate the resulting TA on a simple example in Fig. 3. We depict a
discrete-time TA A, its transformation by the procedure we just described and
finally its region automaton RAA (over discrete time).

With this construction, time information becomes superfluous in the TA as it
can be deduced from the number of ticks that were produced, which also appears
within a path of the region automaton. For instance, consider the run on the A
of Fig. 3a that remains four time units in `0 before going to `f . The timed word
(a, 4) on the original TA A becomes (t, 1)(t, 2)(t, 3)(t, 4)(a, 4) in our transformed
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`0 `f

x > 2
a

(a) A

`0 `f

x > 2
∧z = 0

a

z = 1
t

z ← 0

z = 1
t
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(b) A completed with ticks

`0
x = 0
z = 0

`0
x = 1
z = 1

`0
x = 1
z = 0

`0
x = 2
z = 1

`0
x = 2
z = 0

`0
x > 2
z = 1

`0
x > 2
z = 0

`f
x > 2
z = 0

`f
x > 2
z = 1

ε t ε t ε t

t

ε

ε a

(c) RAA

Fig. 3: A discrete-time region automaton example

TA. The untimed word obtained in RAA is tttta, which means that four ticks
occurred before the action a was produced. From this information, the original
timed word (a, 4) can be reconstructed. In the rest of this subsection, we only
consider TAs enhanced with ticks. From the previous discussion, we have (see
Appendix D):

Lemma 1. The language of a discrete-time TA and the language of its region
automaton are in bijection.

Thus, we show that the language inclusion problem for discrete-time TAs can
be reduced to its decidable equivalent for finite regular automata.

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-
complete.

We can then adapt this result to the weak and full opacity problems in a
similar way as done in Section 5.3.

Theorem 7. Both weak and full opacity of discrete-time TAs are EXPSPACE-
complete.

Remark 4. Two very recent works [23,6] concurrently established decidability of
the opacity of TAs over discrete time. Our main distinct contribution lies in
establishing the exact complexity of the problems.

5.5 Observable Event-Recording Automata

In [19], the opacity problems were shown to be undecidable for Event-Recording
Automata (ERAs) [3], a subclass of TAs where every clock x is associated with
a specific event ax and x is reset on a transition if and only if this transition
is labeled by ax. Due to this, the valuations of clocks are entirely determined
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by the duration since the last occurrence of the associated events. One of the
main interest of ERAs is that they are determinizable [3]. This determinization
is carried out through the standard subset construction.

The undecidability result from [19] on ERAs required to make the events ax
unobservable. Hence, in our framework they would be replaced by ε-transitions.
We define observable ERAs (oERAs) as ERAs where the actions resetting the
clocks must be observable. This means that the information required for the
determinization now belongs to the trace that is observed.

Given an oERA A, we can thus build through the subset construction a TA
DetA such that any path ρ in A corresponds to a path ρD in DetA with the
same trace and ending in a location labeled by the set of all the locations of A
that can be reached with a run that has the same trace as ρ. This information,
combined with the construction of Amemo (Remark 1) which stores in the state
of the TA whether the private location was visited or not, provides the following
result (see Appendix E).

Theorem 8. Both weak and full opacity are PSPACE-complete for oERAs.

6 Opacity with Limited Attacker Budget

One of the causes for the undecidability of the opacity problems in [19] stems
from the unbounded memory the attacker might require to remember a run of
the TA. As a consequence, one can wonder whether the opacity problems remain
undecidable when the attacker performs only a finite number of observations.
This models the case of an attacker with a limited attack budget. In this section,
we prove that the weak and full opacity problems become decidable whenever,
given N ∈ N, the attacker only observes the first N actions (with their times-
tamps). To the best of our knowledge, this is i) the second result of the literature
(after [12]) providing a decidable opacity result for the full class of TAs over dense
time, and ii) the first result limiting the number of observations of an attacker
in the context of opacity for TAs.

For instance, if (a, 1.2)(b, 1.4)(b, 1.5)(a, 2.1) is the trace of a public run of the
system, and N = 2, then the attacker only observes the trace (a, 1.2)(b, 1.4).
If (a, 1.2)(b, 1.4)(c, 1.6) is the trace of a private run, the trace observed by the
attacker is (a, 1.2)(b, 1.4) again and the attacker cannot conclude whether a
private run occurred or not.

Formally, and in order to define new variants of opacity representing this
framework, given a TAA, we define a new TA (depicted in Fig. 4) which emulates
the behavior of A up to the Nth observation. This TA is an unfolding of A with
N+1 copies of A, where ε-transitions are taken within each copy, and transitions
with an observable action lead to the next copy. A run ends when either a final
location or the final copy is reached.

Definition 9 (N-observation unfolding of a TA).
Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA and let N ∈ N. We call N -

unfolding of A the TA UnfoldN (A) = (Σ,L′, `00, L
′
priv , L

′
f ,X, I ′, E′) where
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`00
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`0f

`1k A1

`1f

. . . `N AN

`Nf

ε

a1

aN

Fig. 4: The construction of an N -observation unfolded TA

1. L′ =
N⋃
i=0

Li where the sets Li are N + 1 disjoint copies of L where each

location ` ∈ L has been renamed `i ∈ Li: for 0 ≤ i ≤ N , Li = {`i | ` ∈ L};
2. `00 ∈ L0 is the initial location;

3. L′priv =
N−1⋃
i=0

Lipriv where Lipriv are the copies within Li of the private locations

of A;

4. L′f = (
N⋃
i=0

Lif )∪LN where Lipriv are the copies within Li of the final locations

of A;
5. I ′(`i) = I(`) for l ∈ L and i ≤ N extends I to each Li;

6. E′ =
N−1⋃
i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N

– Ei = {(`i, ε, g, R, `′i) | (`, ε, g, R, `′) ∈ E};
– Ei→i+1 = {(`i, a, g, R, `′i+1) | (`, a, g, R, `′) ∈ E ∧ a ∈ Σ}.

Definition 10 (Opacity w.r.t. N observations). Let A be a TA and let
N ∈ N. We say that A is weakly (resp. fully, ∃-) opaque w.r.t. N observations
when UnfoldN (A) is weakly (resp. fully, ∃-) opaque.

We now state our main result. The proof is quite technical, so we only give
a high-level sketch. The full proof can be found in Appendix F.

Theorem 9. The problem of deciding, given a TA A and N ∈ N, whether A is
∃-opaque w.r.t. N observations is PSPACE-complete.

The problems of weak or full opacity w.r.t. N observations are in 2-
EXPSPACE.

Proof (sketch). ∃-opacity can be checked in PSPACE through the same approach
as Theorem 2. Indeed, even if N is given in binary, and thus UnfoldN (A) is of
exponential size, the region automaton of UnfoldN (A) remains simply exponen-
tial in the size of A. Hardness can be achieved with N = 0 with the same method
as Theorem 2.

Concerning the problems of weak and full opacity w.r.t. N observations, as in
Section 5.4, our goal is to rely on the region automaton to translate the opacity
problems from the TA to another problem on a finite automaton. However, there
is no immediate correspondence between runs of the TA and runs of the region
automaton, leading to a more involved proof.
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More precisely, given a TA A = (Σ,L, `0, Lpriv , Lf ,X, I, E) and N ∈ N,
we build the unfolding of the TA Amemo described in Remark 1. Recall that
Amemo recognizes the same language as A but stores within the locations the
information whether Lpriv was visited. As such, Amemo has the same opacity
properties as A, so we can consider UnfoldN (Amemo) instead of UnfoldN (A) to
study the opacity of A.

Additionally, we enrich this TA with ticks. In Section 5.4, we added a single
tick to the automaton which counted the time elapsed since the start of the run.
Here, the TA includes as well, for each 0 < k ≤ N , a tick clock counting the
time elapsed since the kth observation. As multiple ticks may need to occur at
the same time, we develop the alphabet of ticks to describe the set of tick clocks
that need to be reset, i.e., the tick t{k1,...,km} is produced by the TA if for every
0 ≤ i ≤ m, the kith observation (or the start of the run if ki = 0) occurred an
integer number of time units before.

Note that the addition of these ticks immediately uses the assumption that
only N actions are observed.

In the new ticked automaton, we will establish a correspondence between
runs of the TA and paths of the region automaton, allowing us to reduce the
opacity problems to non-reachability of bad states in the determinization of the
region automaton, implying decidability.

Considering the complexity, the unfolding of the TA, assuming N is in bi-
nary, is exponential in the number of states. Adding the ticks means adding
an exponential number of clocks as well. Hence the region automaton is doubly
exponential in the original TA, and its determinization is triply exponential.
Reachability being in NLOGSPACE implies the 2-EXPSPACE algorithm.

A full proof with all technical details can be found in Appendix F. ut

7 Conclusion and Perspectives

In this paper, we addressed three definitions of opacity on subclasses of TAs, to
circumvent the undecidability from [19]. We first proved the inter-reducibility of
weak and full opacity. Then, while undecidability remains for one-action TAs,
we retrieve decidability for one-clock TAs without ε-transitions, or over discrete
time, or for observable ERAs. Our result for one-clock TAs without ε-transitions
is tight, since we showed that increasing the number of clocks or adding ε-
transitions leads to undecidability. Finally, we studied the case of an attacker
with an observational power with a limited budget, i.e., that can only perform a
finite set of observations. We proved this latter case to be decidable on the full
TA formalism. We summarize the results from Section 5 in Table 1.

Future work Perspectives include being able to build a controller to ensure a TA
is opaque, as well as investigating parametric versions of these problems, where
timing constants considered as parameters (à la [4]) can be tuned to ensure
opacity.
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Table 1: Summary of Section 5 (
√

= decidability, × = undecidability)
Subclass ∃-opacity weak opacity full opacity
|Σ| = 1 ×Theorem 3
|X| = 1 without ε-transitions

√
Theorem 5 (non-primitive recursive-c)

|X| = 1
√
Theorem 2 ×Theorem 4

|X| = 2 (PSPACE-c) ×Theorem 6
T = N

√
Theorem 7 (EXPSPACE-c)

oERAs
√

Theorem 8 (PSPACE-c)

Finally, our result in Section 6 considers an attacker with a fixed attack
budget; an interesting future work would be to derive a maximum attack budget
such that the system remains opaque.
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`0 `fA
`priv

(a) Apub

`S0 `SfAS

`S̄0 `S̄fAS̄

`Spriv

(b) Apriv

Fig. 5: Illustrating Apub and Apriv

A Formal Definitions

Definition 11 (Public runs automaton Apub).
Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. We define the public runs TA

Apub = (Σ,L \ Lpriv , ∅, Lf \ Lpriv ,X, I ′, E′) with I ′ and E′ precised as follows:

1. I ′ is the restriction I|L\Lpriv
of I to the set of locations of Apub;

2. E′ = E \ {(`, g, a,R, `′) ∈ E | ` ∈ Lpriv ∨ `′ ∈ Lpriv} is the remaining set of
transitions when private locations are removed from L.

Example 4. We illustrate the constructions of Apub and Apriv in Figs. 5a and 5b.

B Complexity of the ∃-opacity Problem

B.1 ∃-opacity Problem for General TAs

Let us first show that the ∃-opacity problem for TA lies in PSPACE.

Proof. Let A be a TA. We build Apriv and Apub from A as described in Sec-
tion 4.1. Noting that the product of two TAs recognizes the intersection of
their languages [2, Theorem 3.15] (assuming the two TAs share no clock), we
build the TA Apriv × Apub , product of Apriv and Apub , which language is
Trpriv (A) ∩ Trpriv (A). To build this product, we can rename all clocks from
Apub so that Apriv and Apub share no clock.

The ∃-opacity problem is by definition the non-emptiness of the intersection
of Trpriv (A) and Trpriv (A). Moreover, the reachability of a final location of
Apriv ×Apub is equivalent to the non-emptiness of the language of Apriv ×Apub ,
and thus of the set Trpriv (A) ∩ Trpriv (A). Since reachability is decidable in
PSPACE in TAs [2], the same holds for the ∃-opacity problem. ut

We now reduce the reachability problem for timed automata, known to be
PSPACE-complete, to the ∃-opacity problem.
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Proof. Let A = (Σ,L, `0, ∅, Lf ,X, I, E) be a timed automaton.
We suppose that X is not empty and define (see Fig. 6) A′ =

(Σ,L ∪
{
`′0, `

′
1, `
′
f

}
, `′0, Lf , Lf ∪

{
`′f

}
,X, I ′, E′) where I ′ an invari-

ant extending I such that I ′(`′0) = I ′(`′1) = I ′(`′f ) = true and

E′ = E ∪
{
(`′0, ε, (x = 0), ∅, `0), (`′0, ε, (x = 0), ∅, `′1), (`′1, ε, true, ∅, `′f )

}
∪{

(`′f , a, true, ∅, `′f ) | a ∈ Σ
}

for some x ∈ X.

`0 `fA

`′0

`′1 `′f

ε
x = 0

ε
x = 0

Σ

Fig. 6: TA A′ for the PSPACE-hardness of ∃-opacity

The timed automatonA′ is ∃-opaque if and only if a final location is reachable
in A. Indeed, the set Trpriv (A′) contains all the possible timed traces with the
action set Σ, and the private runs on A′ correspond exactly to runs on A. Hence
Trpriv (A′) ∩ Trpriv (A′) 6= ∅ if and only if Trpriv (A′) 6= ∅, i.e., if there is a
run on A that reaches a final location. Since the reachability problem in TA is
PSPACE-complete, we deduce from this construction that the ∃-opacity problem
is PSPACE-hard.

Note that this reduction holds as well for one-action TAs, discrete-time TAs and
oERAs.

B.2 ∃-opacity Problem for TAs with a Fixed Number of Clocks

Fix N as a constant. We consider now the ∃-opacity problem for TAs with N
clocks.

In the previous section, the ∃-opacity problem for TAs was shown to be within
PSPACE. The algorithm reduces the problem to a reachability query on the prod-
uct automaton Apriv×Apub (a TA with 2N clocks). The reachability problem for
TAs is usually solved by studying reachability in the associated region automa-
ton. Reachability in automata being in NLOGSPACE and the region automata
being exponential in general produces the result. More precisely, the number of
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states of the region automata is bounded by |L|(N ! · 2N ·
∏
x∈X

(2M +2)) [2] where

M is the highest constant occuring in guards and invariants. Note that, since
N is a constant, this number becomes polynomial when integers in guards and
invariants (and thus M) are given in unary. Hence the reachability problem falls
to NLOGSPACE, which implies the ∃-opacity problem also lies in NLOGSPACE
then.

Concerning the hardness, let us show that the ∃-opacity problem remains
PSPACE-hard for one-clock automata with constants in binary. Note that the
reduction of the previous section does not apply, as reachability in TA with
one clock is not PSPACE-hard. We reduce the reachability problem in two-clock
automata, known to be PSPACE-complete [21], to the ∃-opacity problem in one-
clock automata.

Let Ax,y = (Σ,L, `0, ∅Lf ,X, I, E) a TA with clocks x and y. First we relabel
every transition (including silent transitions) of Ax,y with a new alphabet Σ′ =
{ai | 1 ≤ i ≤ |E|} such that each letter of Σ′ labels exactly one transition of
Ax,y. We denote the obtained automaton by A′x,y.

Given a guard g, we define gx and gy as respectively the constraints in g over
x and y. Hence, g = gx ∧ gy. For z ∈ {x, y}, we then define the automaton Az =
(Σ,L, `0, ∅, Lf , {z} , Iz, Ez) with Ez = {(`, a, gz, R ∩ {z} , `′) | (`, a, g, R, `′) ∈ E}
and Iz is similarly obtained by only keeping the z part of the invariant.

We have that a word accepted by A′x,y is also accepted by A′x and by A′y, as
each of those TAs have less constraints. Moreover, if a word is accepted by A′x
and by A′y, as the corresponding run is entirely characterized by its trace (since
each transition has its own label) and satisfied the constraints on both clocks,
then it is accepted by A′x,y.

We build the TA B over the single clock x as the classical union construc-
tion of A′x and A′y, and set as private locations the final locations of A′x. More
precisely, we add a new initial location `′0 from which one can reach the initial
location of A′x and A′y by a transition labelled by a new letter ] and with the
guard (x = 0). Moreover, we relabel every occurrence of y in the copy of A′y into
x.

As the runs of A′x (resp. A′y) provide the private (resp. public) runs of B, B
is ∃-opaque if and only if there is a pair of runs of same trace accepted by A′x
and A′y, thus a word accepted by A′x,y or equivalently a reachable final location
in Ax,y. Moreover, B is polynomial in the size of Ax,y. Therefore the ∃-opacity
problem in one-clock automata is PSPACE-hard.

C Opacity of One-Action TAs

Proof. We first prove the undecidability of the full opacity problem. Let A be
a TA with a single action. We want to build a TA such that if we can answer
the full opacity problem of this TA, then we can decide the universality problem
for A. We consider the following TA: we add an initial location exited by two
ε-transitions that must be taken urgently (i.e., no time may elapse before taking
them). The first ε-transition leads to a secret location which leads (again via
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`0

`priv `fA

`?

x = 0
ε

ε
x = 0

ε
x = 0

a
x ← 0

x = 0
ε

Fig. 7: Automaton B: Reduction from universality to full opacity

an urgent ε-transition) to the initial location of the TA A and the other leads
to a location where every finite timed words on Σ can be read before reaching
a final location. We denote this TA B and illustrate its construction in Fig. 7.
The language recognized by A corresponds exactly to the traces of private runs
of B, and the traces of public runs of B are all the finite timed words on Σ.
Therefore, B is fully opaque if and only if Trpriv (B) = Trpriv (B) if and only
if Tr(A) = TW ∗(Σ) if and only if A is universal. Since universality for TAs
with one action is undecidable [26], we conclude that the full opacity problem
for one-action TAs is undecidable.

Finally, with Theorem 1, we deduce the undecidability of weak opacity for
TAs with one action. ut

D Opacity of TAs over Discrete Time

Lemma 1. The language of a discrete-time TA and the language of its region
automaton are in bijection.

Proof. Let A be a discrete-time TA. We explicit the bijection of the lemma.
Given a path ρ of A generating the timed word w, as A includes ticks, w is

of the form

(t, 1) . . . (t, τ0)(a0, τ0) (t, τ0+1) . . . (t, τ1)(a1, τ1) . . . (t, τn−1+1) . . . (t, τn)(an, τn).

To the timed word w, we associate the untimed word produced within the region
automaton by the path [ρ]) corresponding to ρ:

tt . . . t︸ ︷︷ ︸
τ0 times

a0 tt . . . t︸ ︷︷ ︸
(τ1−τ0) times

a1 . . . tt . . . t︸ ︷︷ ︸
(τn−τn−1) times

an.

This association is injective as the sequence (τi)i≤n which was removed
in the transformation depends only on the number of t of the timed
word. Moreover, it is surjective as given an untimed word in RAA w′ =
tt . . . t︸ ︷︷ ︸
k0 times

a0 tt . . . t︸ ︷︷ ︸
k1 times

a1 . . . tt . . . t︸ ︷︷ ︸
kn times

an produced by a path [ρ′] of the region au-

tomaton, defining

w = (t, 1) . . . (t, k0)(a0, k0)(t, k0 + 1) . . . (t, k0 + k1)(a1, k0 + k1) . . . (an,

n∑
i=0

ki)
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we have that w is the timed word generated by the unique path of the TA
corresponding to ρ′ and w is associated with w′. ut

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-
complete.

We separate both directions of the proof, due to how voluminous the hardness
is. We start by showing that the language inclusion in discrete-time TAs can be
achieved in EXPSPACE.

Proof. Let A and B be two discrete-time TAs, and let RAA and RAB be their
respective region automata. Then from Lemma 1, we have

Tr(A) ⊆ Tr(B) if and only if Tr(RAA) ⊆ Tr(RAB)

Thus deciding the language inclusion in discrete-time TAs amounts to solving
the language inclusion problem in the context of finite regular automata, which
can be done in PSPACE in the size of the region automata. Noting that the
region automata of the ticked TA is exponential in the size of the initial TA, this
produces an EXPSPACE algorithm. ut

Let us now show that the language inclusion in discrete-time TAs is
EXPSPACE-hard. To do so, we will reduce a succinct variant of the equality
of rational expressions.

Definition 12 (Rational expressions with square). The expressions ∅, ε,
and a with a ∈ Σ are rational expressions with square. If exp1 and exp2 are
rational expressions with square, then so are exp1 + exp2, exp1 · exp2, exp∗1 and
exp2

1.
A rational language with square is a set of words on Σ represented by a

rational expression with square.

The operators on the rational expressions are interpreted in the usual way. For
instance, the expression (a+ab)2 represents the set of words {aa, aab, aba, abab}.
There can be several expressions representing the same language.

The expressivity of rational languages with square is exactly the same as
of rational languages since using the square is equivalent to concatenating an
expression with itself. However, the description of a language with square may
be exponentially more succinct. Hence why we have

Proposition 2. [25] Let L1 and L2 be two rational languages with square. De-
ciding whether L1 = L2 is EXPSPACE-complete.

Proof (Proof of the hardness of language inclusion for discrete-time TA). Let
L be a rational language with square and exp be the rational expression with
squares that represents it. From the structure of exp, we will build a timed
automaton which untimed language is L.

Since we will compare the timed language of TAs, and we only want to com-
pare their untimed languages, we need to impose a standard for the timestamps
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of their words. We choose that each action must occur at an even number of time
units. More precisely, if the automaton recognizes words of at least one letter it
will read the first one without any delay and waits two time units between each
letter. To do this we use the clock x which is reused for all the constructions,
and which is reset only when a letter occurs. Every operation, beside reading a
letter, must then be done in time 0. In particular, our constructions always start
and end with x = 0, and only allows time to elapse when a letter is read. We
present in the following table (Fig. 8) the inductive constructions corresponding
to the basic rational expressions and the operators +, ·,∗. The case of the square
operator is explained separately.

Rational expression
with square exp

Timed automaton Aexp

ε

a ∈ Σ

exp1 · exp2

exp1 + exp2

exp∗

ε
x = 0

a
x = 0

ε
x = 2
x ← 0

Aexp1
Aexp2

ε
x = 0

Aexp1

Aexp2

ε
x = 0

ε
x = 0

Aexp

ε
x = 0

ε
x = 0

ε
x = 0

Fig. 8: Table of timed automata constructions Aexp for regular expressions
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For the square construction Aexp2 (Fig. 9) we need to add three additional
clocks per square occurrence: the first one, z, manages the particular case of the
empty word ε by detecting whether some time has passed during the crossing of
Aexp, while the clocks y and v are used to force exactly two passages in Aexp.

Indeed, the shift between the clocks x, y and v (with values kept between zero
and two all along the run) permits to keep in memory the number of remaining
passage in Aexp by being modified once during the first passage (¬), a second
time between the first as second passage (), and being checked at the end of
the second passage (®). These added clocks cannot be reused in nested squares
constructions. Thus we introduce a number of clocks equal to three times the
maximal number of nested squares in the expression to build the corresponding
timed automaton.

More precisely, the previously built TA Aexp is modified into Ãexp by adding
on every location silent loop transitions resetting y and v when they reach 2, as
well as a silent loop transition with guard x = 1 ∧ y = 1 and reset set {y, v}.
At most one of the latter loops, denoted by ¬, is taken during an execution,
and it requires at least one letter to be triggered. This transition ensures that
y = v 6= x in the following. This property is necessary to take the transition ,
which now ensures that x = v 6= y, which will allow taking the transition ®.
As mentionned, taking the transition ¬ requires at least one letter to be read,
hence why, when exp contains the empty word, we need the clock z to give an
alternative way to exit the gadget. Formally, we have

Ãexp
ε

x = 0
y ← 0
z ← 0
v ← 0

ε
ε

z = 0

ε
x = 0 ∧ y = 1
∧ v = 0

®


ε

x = 0 ∧ y = 1
∧ v = 1
v ← 0

¬:

¬

x = 1
y = 1
y ← 0
v ← 0

ε

Fig. 9: TA Aexp2

Ãexp is the automaton Aexp modified through ¬.
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Definition 13 (Square construction). Let Aexp = (Σ,L, `0, ∅, Lf ,X, I, E) be
the timed automaton corresponding to the rational expression with square exp.
Then, the TA corresponding to exp2 is Aexp2 = (Σ,L ∪ {`′0, `′f}, `′0, ∅,

{
`′f

}
,X ∪

{v, y, z} , I ′, E′) where I ′ is the extension of I such that I ′(`′0) = I ′(`′f ) = true,
and

E′ =E ∪ {(`′0, ε, true, ∅, `0)}∪⋃
`∈L

{(`, ε, y = 2, {y} , `), (`, ε, v = 2, {v} , `), (`, ε, x = 1 ∧ y = 1, {v, y} , `)}∪

⋃
`f∈Lf

{(`f , ε, x = 0 ∧ y = 1 ∧ v = 1, {v} , `′0),

(`f , ε, z = 0, ∅, `′f ), (`f , ε, x = 0 ∧ y = 1 ∧ v = 0, ∅, `′f )}.

Two rational languages with square L1 and L2, respectively represented by
the expressions exp1 and exp2, are equal if and only if the automata Aexp1

and
Aexp2

recognize the same timed language. The obtained automata are timed
automata with discrete time of polynomial size in the rational expressions. Thus
from Proposition 2 follows the EXPSPACE-hardness of language inclusion for
discrete-time TA. ut

Theorem 7. Both weak and full opacity of discrete-time TAs are EXPSPACE-
complete.

Proof. Let A be a discrete-time automaton with private locations set Lpriv . The
construction in Section 4.1 is still compatible with discrete time clocks so we can
build two discrete-time TAs Apriv and Apub such that Tr(Apriv ) = Trpriv (A)
and Tr(Apub) = Trpriv (A). Then testing the weak opacity property on A is
equivalent to testing the inclusion Tr(Apriv ) ⊆ Tr(Apub). Therefore the weak
opacity problem in discrete-time TAs is in EXPSPACE.

EXPSPACE-hardness can easily be obtained by the following reduction: Given
two TA A and B, one can build a TA which private runs are the runs of A and
which public ones are those of B. We do this by making the initial location of A
private and considering the natural construction of the union of A and B. Hence
comparing the languages of A and B amounts to testing weak opacity on the
built automaton.

As before, thanks to Theorem 1, we can extend this result to the full opacity
problem. ut

E PSPACE-completeness of Weak / Full Opacity for
oERAs

Let us first explain why the algorithm for weak opacity presented in the main
document is in PSPACE. As a summary, this algorithm consists in, given an
oERA A, building the corresponding Amemo , determinizing it through the subset
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construction, taking its region automaton, and then testing reachability of a
location containing a final private location, but no final public location.

The determinization of the oERA causes the number of locations to become
exponential in the size of the entry, and the construction of the region automaton
gives an exponential number of clock regions, bounded by |X| ·2|X| ·

∏
x∈X

(2M(x)+

2) [2]. The size of the region automaton is thus exponential in the number of
locations and the number of clocks of A. On the region automaton, testing the
reachability of a location can be done in NLOGSPACE. Hence the problem of
weak opacity in oERA is in PSPACE.

Let us now explain why these problems are PSPACE-hard. We reduce from
the reachability problem for TA, which is PSPACE-complete.

Let A be a timed automaton, with a set of final locations Lf . We consider
A′ the TA obtained by setting in A the set of private locations to Lf . This way,
every run of A′ are private. Thus A′ is weakly opaque if and only if no final
location of A is reachable. Hence, the weak opacity problem in oERA is hence
PSPACE-hard.

These results extend to full opacity thanks to Theorem 1.

F Opacity with N Observations

Given a A = (Σ,L, `0, Lpriv , Lf ,X, I, E) and N ∈ N. We build the unfolding of
the TA Amemo described in Remark 1. Recall that Amemo recognizes the same
language as A but stores within the locations the information whether Lpriv

was visited. As such, Amemo has the same opacity properties as A, so we can
consider UnfoldN (Amemo) instead of UnfoldN (A) to study the opacity of A.

Additionally, we enrich this TA with ticks. In Section 5.4, we added a single
tick to the automaton which counted the time elapsed since the start of the run.
Here, the TA includes as well, for each 0 < k ≤ N , a tick counting the time
elapsed since the k’th observation. As multiple ticks may need to occur at the
same time, we develop the alphabet of ticks to describe the set of tick clocks
that need to be reset, i.e., the tick t{k1,...,km} is produced by the TA if for every
0 ≤ i ≤ m, the ki’th observation (or the start of the run if ki = 0) occurred an
integer number of time units beforehand. Note that the addition of these ticks
immediately uses the assumption that only N actions are observed.

Definition 14 (Addition of ticks to the Unfolding construction).
Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA, N ∈ N and let UnfoldN (A) =

(Σ,L′, `00, L
′
priv , L

′
f ,X, I ′, E′) the unfolding of A. We define the Tick construction

Tick(UnfoldN (A)) = (Σ′, L′, `00, L
′
priv , L

′
f ,X′, I ′, E′′) where

1. Σ′ = Σ ∪Σ0 ∪Σt where Σ0 =
{
a0 | a ∈ Σ

}
is a copy of the alphabet Σ that

is used to represent within the action’s name that it occurred at the same
time as the previous action, and Σt = {tK | K ⊆ [[0;N ]],K 6= ∅} is the set of
ticks associated with each set of added clocks;

2. X′ = X ∪ Xt where Xt = {xi | i ∈ [[0;N ]]} is the set of the N + 1 tick clocks;
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3. E′′ =
N−1⋃
i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N

– Ei = {(`i, ε, g ∧
i∧

k=0

(xk < 1), R, `′i) | (`, ε, g, R, `′) ∈ E′} ∪

{(`i, tK ,
∧
k∈K

(xk = 1) ∧
∧

m∈[[0;i]]\K
(0 < xm < 1), {xk | k ∈ K}, `i) | `i ∈

Li ∧K ⊆ [[0; i]] ∧K 6= ∅};

– Ei→i+1 = {(`i, a0, g ∧
i∧

k=0

(xk < 1) ∧
i∨

m=0
(xm = 0), R ∪ {xi+1}, `′i+1) |

(`, a, g, R, `′) ∈ E′} ∪ {(`i, a, g ∧
i∧

k=0

(0 < xk < 1), R ∪ {xi+1}, `′i+1) |

(`, a, g, R, `′) ∈ E′}.
We obtain in this way the timed automaton Tick(UnfoldN (Amemo)). Let

RATick(UnfoldN (Amemo)) be the region automaton of this automaton. Thanks to
the added ticks, paths of RATick(UnfoldN (Amemo)) sharing the same trace corre-
spond to runs of A for which the (at most) N observations occurred within
the same time intervals (due to the tick representing the total time) and the
fractional part of the timing of those observations have the same order. This is
the information we mainly need, and thus we wish to regroup every path of the
region automaton with the same trace. As the region automaton is a finite au-
tomaton, we can realize usual operations on it, that is, first remove ε-transitions
(by fusing them with the following non-ε-transition) and then determinizing the
automaton through the subset construction. We denote by B(A) the resulting
automaton. We call beliefs the states of B(A), i.e., they describe the set of regions
the attacker believes the system may be in.

Let B be a belief of B(A) and Bpriv (resp. Bpub) be the subset of B containing
the regions which associated location in Amemo is private (resp. public) and final.
We say that B is weakly (resp. fully) discriminating if Bpriv 6= ∅ and Bpub = ∅
(resp. if either Bpriv 6= ∅ and Bpub = ∅ or Bpriv = ∅ and Bpub 6= ∅). The
discriminating beliefs in B(A) allow to characterize the opacity problems.

Proposition 3 (Relation between opacity and discriminating belief).
A TA A is weakly (resp. fully) opaque w.r.t. N observations if and only if B(A)
does not contain any weakly (resp. fully) discriminating belief.

Proof. We focus on weak opacity, the full opacity case can be treated similarly.

– Assume first that B(A) contains a weakly discriminating belief B. Let r be a
region in Bpriv and w be the trace of a path leading from the initial belief of
B(A) to B. By construction of the region automaton, there exists a run ρ of
Tick(UnfoldN (Amemo)) whose untimed trace (i.e., the trace of ρ projected
on the actions) is w and such that the run corresponding to ρ in the region
automaton ends in r. In particular, ρ is a private run. Moreover, any run
whose untimed trace is w ends in a region of B. Thus, there is no public run
with trace w and in particular Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))) and
Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))), hence Tick(UnfoldN (Amemo)) is
not weakly opaque and A is not weakly opaque w.r.t. N observations.
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– Assume now that A is not weakly opaque w.r.t. N ob-
servations. Let ρ be a run of Tick(UnfoldN (Amemo)) such
that Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))) and Tr(ρ) 6∈
Trpriv (Tick(UnfoldN (Amemo))). Let [ρ] be the run corresponding to ρ
in the region automaton.6 We denote by T ([ρ]) the set of traces of runs of
Tick(UnfoldN (Amemo)) associated with [ρ].

Lemma 2. Denoting w = a0, . . . , am the trace of [ρ], T ([ρ]) contains exactly
the words (a0, τ0) . . . (am, τm) satisfying the following constraints:
1. ∀i ∈ [[0;m]], (ai ∈ Σ∪Σt =⇒ τi−τi−1 > 0)∧(ai ∈ Σ0 =⇒ τi−τi−1 = 0)

(where τ−1 = 0), meaning that two consecutive observable actions occur
at the same time if and only if the second one is in Σ0.

2. ∀i, j ∈ [[0;m]],∀J ⊆ [[0;N ]],∀I ⊆ J,
(
i < j ∧ ai = tI ∧ aj = tJ ∧ ∀k ∈

[[i+ 1; j − 1]],∀K ⊆ [[0;N ]](ak = tK =⇒ K ∩ J = ∅)
)

=⇒ τj − τi = 1,
meaning that two successive ticks of the same clocks are separated by
exactly 1 time unit.

3. τm ≥ 1 =⇒
(
∃i ∈ [[0;m]],∃I ⊆ [[0;N ]]∀j < i, ai = tI ∧ 0 ∈ I ∧ τi =

1 ∧ (aj 6∈ Σt)
)
, meaning that the first occurrence of the tick of the clock

x0 is at time 1.
4. ∀i ∈ [[0;m]], (ai ∈ Σ ∪ Σ0 ∧ τm − τi ≥ 1) =⇒ (∃k ∈

[[0;m]],∃K ⊆ [[0;N ]], ak = tK ∧ |
{
j ∈ [[0; i]] | aj ∈ Σ ∪Σ0

}
| ∈ K ∧ τk −

τi = 1) meaning that each of the N observations is followed by its corre-
sponding tick exactly one time unit after it.

5. ∀i ∈ [[0;m]],∀I ⊆ [[0;N ]], (ai = tI∧τm−τi ≥ 1) =⇒ ∃j ∈ [[i+1;m]],∃J ⊆
[[0;N ]], (I ⊆ J ∧ aj = tJ) meaning that if a clock ticked and the run is
still at least one time unit long, then there will be a new tick of this clock
within the rest of the run.

Due to its size, we postpone the proof of this lemma to the bottom of this
section.
Note that this lemma implies that T ([ρ]) depends exclusively on the trace w,
not on the path within the region automaton. Hence, given [ρ′] such that the
trace of [ρ′] is w, we have T ([ρ′]) = T ([ρ]). In particular, let B be the belief
reached in B(A) with trace w. For any region r ∈ B associated with a final
location, there exists a run ρ′ such that Tr(ρ) = Tr(ρ′) and [ρ′] ends in r. As
Tr(ρ) 6∈ Trpriv (Tick(UnfoldN (Amemo))) by assumption, we have that r is a
region associated with a private location. Hence Bpriv 6= ∅ and Bpub = ∅,
thus B is a weakly discriminating belief. ut

Proof (Proof of Theorem 9). From Proposition 3, deciding weak and full opacity
of A amounts to checking the existence of a discriminating belief in B(A). This
is simply achieved by a reachability test in the finite automaton B(A).
6 The notation [·] represents that [ρ] implicitly defines an equivalence class of runs
of Tick(UnfoldN (Amemo)). For a run ρ′ of Tick(UnfoldN (Amemo)), we thus write
ρ′ ∈ [ρ] to say that the run associated with ρ′ in the region automaton is [ρ].
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Considering the complexity, the unfolding of the TA, assuming N is in binary,
has exponentially many states. Adding the ticks means adding an exponential
number of clocks as well. Hence the region automaton is doubly exponential
and its determinisation is triply exponential. Reachability being in NLOGSPACE
implies the 2-EXPSPACE algorithm. If N is given in unary, the complexity falls
to EXPSPACE. ut

Let us finally establish Lemma 2. For ease of readability, we separate the
proofs of the two inclusions implying the lemma.

First direction of the proof We first show the easy direction of the proof:
the timed words in T ([ρ]) satisfy the five properties.

Proof. Let u = (a0, τ0) . . . (am, τm) be in T ([ρ]). Since u ∈ T ([ρ]), there exists a
run ρ′ in [ρ] on Tick(UnfoldN (Amemo)) which produces the trace u:

ρ′ = (`0, µ0)
(d0,e0)−→ . . . (`ji−1, µji−1)

(dji−1,eji−1)
−→ (`ji , µji) . . . (`n, µn)

Recall the link between the trace of a run and its transitions: for every i ∈ [[0;m]],

the ji index corresponds to the i-th observable action, i.e., ji satisfies τi =
ji∑
k=0

dk

and eji is labeled by ai. We set τ−1 = 0.

– Property 1. Let i ∈ [[0;m]]. The set of clocks reset by ε-transitions is included
in X. By definition of the indices ji, there are only ε-transitions between the
configurations (`ji−1+1, µji−1+1) if i > 0 or the initial configuration if i = 0,
and (`ji , µji). Thus, no clock from Xt is reset among these transitions and

we have µji−1+1(x) +
ji−1∑

k=ji−1+1

dk = µji(x) for each x ∈ Xt. Assume ai ∈ Σ0.

As ai ∈ Σ0, the guard of eji is of the form g∧
h∧
k=0

(xk < 1)∧
h∨
k=0

(xk = 0) with

some guard g and the copy number h ≤ i of eji ∈ Eh→h+1 (in other words,
the integer h such that the transition of the original automaton starts in the
copy Lh). In particular, there exists a clock x ∈ Xt such that µji(x)+dji = 0.

Therefore we obtain µji−1+1(x)+
ji∑

k=ji−1+1

dk = 0, which implies τi−τi−1 = 0.

Let us now assume that ai ∈ Σ∪Σt, and show that τi−τi−1 > 0. Depending
on whether ai is in Σ or in Σt, the guard of the transition eji can be of two

forms : g ∧
h∧
k=0

(0 < xk < 1) with g some guard and h some copy number, if

ai ∈ Σ; or
∧
k∈K

(xk = 1)∧
∧

m∈[[0;h]]\K
(0 < xm < 1) with K ⊆ [[0;h]] non-empty

and h a copy number, if ai ∈ Σt. In both cases, we must have µji(xk)+dji > 0
for each xk ∈ Xt such that k ≤ h. However the last observable transition
eji−1

resets one of those clocks x, which gives µji−1+1(x) = 0. Hence 0 <

µji(x) + dji = µji−1+1(x) +
ji∑

k=ji−1

dk =
ji∑

k=ji−1

dk .
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– Property 2. Let i, i′ ∈ [[0;m]], with i < i′. Assume there are I ′ ⊆ [[0;N ]] and
I ⊆ I ′ such that ai = tI and ai′ = tI′ . Suppose that for every k ∈ [[i+1; i′−1]]
and for each K ⊆ [[0;N ]], ak = tK =⇒ K ∩ I ′ = ∅. Let us show that
τi′ − τi = 1.
Let x ∈ {xk | k ∈ I} ⊆ Xt. After the reset applied by eji , we have: µji+1 =
[µji + dji ]{xk|k∈I} |= (x = 0). In order to take the transition eji′ , the clock
valuation µji′ + dji′ needs to satisfy the guard (x = 1). It remains to show
that x is not reset between eji and eji′ . Let e be a transition between eji
and eji′ . If e is an ε-transition, it does not reset any clock in Xt. If e is labeled
by a letter in Σ ∪ Σ0, it is in some Eh

′→h′+1 with h′ ≥ h and h the copy
number of the configuration preceding eji . The only clock e resets that is not
in X is xh′+1, and cannot be x since I ⊆ [[0;h]]. Finally, if e = (`, tK , g, R, `

′)
is labeled by a tick tK for some K ⊆ [[0;N ]], the hypothesis K ∩ I ′ = ∅ in
the property ensures that x is not part of the set of clocks reset by e. Hence,

we obtain µji′ (x)+dji′ = [µji +dji ]{xk|k∈I}+
ji′∑

k=ji+1

dk = τi′ − τi = 1, which

concludes the proof of the second point.
– Properties 3 and 4. Both Properties 3 and 4 are similar and require the first

tick of a clock in Xt to occur one time unit after reaching the corresponding
copy of the automaton. Indeed Property 3 is the particular case of h = 0 in
the following proof, and Property 4 is the case h > 0. Let h ∈ [[0;N ]]. We
focus on the clock xh ∈ Xt. Let i be the index of the h-th observation in the
trace, that is to say the h-th letter of the trace that is in Σ ∪Σ0. If h = 0,
we set i = −1. In any cases τi is the time of arrival in the copy h via the
transition eji ∈ Eh−1→h, and at this precise moment xh = 0. Every guard
of the transitions of Eh

′
and Eh

′→h′+1 with h′ ≥ h requires that xh < 1,
except for the transitions labeled by tK with h ∈ K, which reset xh and
require xh = 1. Thus, xh must have been reset if the run lasts more than one
time unit after the h-th observation, i.e., if τm− τi ≥ 1. The only transitions
from the copy h that can reset xh are those labeled by tK with h ∈ K; their
guards require xh = 1 so the first reset of xh after reaching the copy h needs
to occur at time τi + 1.

– Property 5. We use the same argument as Properties 3 and 4 to prove the fifth
property. Let i ∈ [[0;m]], and suppose ai = tI for some non-empty I ⊆ [[0;N ]]
and τm−τi ≥ 1. The transitions following eji require

∧
k∈I

(xk < 1), unless they

reset all the clocks in RI = {xk | k ∈ I}. As τm−τi ≥ 1, an observable action
occurs at least one time unit after eji and the clocks of RI thus needed to
be reset. Hence there is a tick transition labeled by tJ with I ⊆ J happening
after eji .

ut

Second direction of the proof Now we tackle the second direction of the
proof: we show that if a0 . . . am is the trace of a run [ρ], then all the timed words
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(a0, τ0) . . . (am, τm) that satisfy the five properties of the lemma are in T ([ρ]),
i.e., there are runs in [ρ] which produce these timed traces.

Proof. Let w = a0 . . . am be a trace in RATick(UnfoldN (Amemo)), and let
τ = (τ0, . . . , τm) be a timestamps sequence such that the timed word
(a0, τ0) . . . (am, τm) verifies the five properties of the lemma. We define the se-
quence (fi)0≤i≤N of the timestamps’ fractional parts associated with each tick
clock. For each i ∈ [[0;N ]] we set Ji =

{
j ∈ [[0;m]]|∃I ⊆ [[0;N ]], i ∈ I ∧ aj = tI

}
.

Let first(i) = min
{
j ∈ [[0;m]]||{k ∈ [[0; j]]|ak ∈ Σ ∪Σ0

}
| = i

}
(be the subscript

of the i-th observation) if i > 0 and first(0) = −1. Thus first(i) is the subscript of
the first observation in w that resets the clock xi ∈ Xt. We set fi = frac(τfirst(i)).
Then, from Properties 2 and 4 we have that for each i in [[0;N ]] and for each
j ∈ Ji, frac(τj) = fi. From Property 3, we get f0 = 0.

If i, i′ ∈ [[0;N ]] with i < i′, then Property 1 ensures that fi = fi′ if and only
if there exist j ∈ Ji ∪ {first(i)} such that j + 1 = first(i′) and afirst(i′) ∈ Σ0.
Note that the sequence (fi)0≤i≤N depends only on the timed trace and not on
the path in the region automaton.

Let [ρ] : r0, b0, r1, . . . bp−1rp be a run in Tick(UnfoldN (Amemo)) of trace w.
For n ∈ [[0; p]] we define (deduced from τ) the constraint Cτ,rn on the tick clocks,
in order to produce a run of [ρ] that corresponds to τ . We denote by `hn the
location of rn with h the number of the copy of L it belongs to, and by [µn] the
clock region of rn.

We distinguish two cases depending on whether rn is a region where at least
one tick clock has integer value (noting that, by property of the region automa-
ton, if one valuation of [µn] give an integer value to a clock, then all valuations
of [µn] do).

– ∃xi ∈ Xt, µn(xi) ∈ N: In this case and if i ≤ h we set (type 1 constraint)

Cτ,rn =

h∧
k=0

((fk ≤ fi =⇒ frac(xk) = fi − fk)

∧ (fi < fk =⇒ frac(xk) = fi − fk + 1))

∧
N∧

k=h+1

(frac(xk) = x0)

– ∀xi ∈ Xt, µn(xi) /∈ N:
Let i be the index of one of the last tick clocks that were reset in [ρ] before rn.
If there is no tick clock reset before rn, we set i = 0. Similarly, we consider
j ∈ [[0;h+ 1]] one of the clock indices of the next tick clock reset after rn. If
there is no tick clock reset after rn, we take the next tick clock reset that is
supposed to occur, i.e., j = min

{
j′ ∈ [[1;h]]|fi < fj′

}
or j = 0 if this set is

empty.
If j ∈ J0, we set (type 2 constraint)

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

(fi−fk < xk < 1−fk∧1−fk−xk = δ)∧
N∧

k=h+1

(frac(xk) = x0)
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Otherwise, and if we have 0 < j < h+1 and j /∈ J0, we set (type 3 constraint)

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

((fk < fj =⇒ (fi − fk < xk < fj − fk ∧ fj − fk − xk = δ))

∧ (fj ≤ fk =⇒ (fi − fk + 1 < xk < fj − fk + 1 ∧ fj − fk + 1− xk = δ)))

∧
N∧

k=h+1

(frac(xk) = x0)

If j = h+1 we operate a slight change on this formula to obtain the following
one: (type 4 constraint)

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

((fk < fh+1 =⇒ (fi − fk < xk ≤ fh+1 − fk ∧ fh+1 − fk − xk = δ))

∧ (fh+1 < fk =⇒ (1− fk < xk ≤ fh+1 − fk + 1 ∧ fh+1 − fk + 1− xk = δ)))

∧
N∧

k=h+1

(frac(xk) = x0)

Now we combine this information to the constraints of the clock regions of a
run in the region automaton to build a set of runs in Tick(UnfoldN (Amemo)).

For n ∈ [[0; p]] we define the set of valuations

Mn := {µ ∈ [µn] | µ |= Cτ,rn} .

We denote by [ρ]τ the subset of [ρ] defined by r′0, b0, r′1, . . . bp−1r
′
p where for each

n ∈ [[0; p]], r′n = (`hn,Mn). The idea is that the successive clock valuations of runs
of [ρ]τ are in these sets Mn of valuations which correspond to region changes:
a tick clock reaches or exits an integer value each time the next clock valuation
µ′n+1 does no more satisfy Cτ,rn .

We prove by induction that [ρ]τ is not empty. The set M0 contains at least

µ0 since it verifies Cτ,r0 = (frac(x0) = 0) ∧
N∧
k=1

frac(xk) = 0. Assume now

there is a path (`00, µ
′
0), b0, . . . , (`

h
n, µ
′
n) with µ′j ∈ Mj for each j ∈ [[0;n]]. We

show there exists µ′n+1 ∈ Mn+1 such that (`00, µ
′
0), b0, . . . , (`

h
n+1, µ

′
n+1) is a

path in r′0, b0, r
′
1 . . . r

′
n+1. It is well known [17] that in the region automaton,

((`, [µ]), a, (`′, [µ′])) ∈ ER if and only if for all µ ∈ [µ] there exists µ′ ∈ [µ′]

such that (`, µ)
e7→ (`′, µ′) ∈ E, with e being the transition associated with

((`, [µ]), a, (`′, [µ′])) in the timed automaton. Since µ′n ∈ [µn], by the above prop-
erty we can find µ′n+1 ∈ [µn+1] following the transition (rn, bn, rn+1). We show
that there is such a µ′n+1 that is also in Mn+1, i.e., such that µ′n+1 |= Cτ,rn+1 .

– Suppose first (rn, bn, rn+1) is a discrete transition, with reset set R. Only
one clock valuation µ′n+1 can succede to µ′n in this case. We show it is in
Mn+1. If bn ∈ Σ (resp. Σ0), then µ′n verifies a type 1 (resp. 4) constraint.
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We move to copy h+ 1 with a reset of some tick clocks (including xh+1) so
the next constraint to be verified is of type 1. The clock valuation µ′n+1 is
entirely determined by µ′n and the clock reset set.
Since we move to copy h + 1, the clock xh+1 is now part of the tick clocks
indexed from 0 to the current copy number, and µ′n+1(xh+1) = 0, which is
required by the constraint Cτ,rn+1 . Moreover the constraints on the other
clocks did not change. Thus the new type 1 constraint Cτ,rn+1 is verified
by µ′n+1. Now, if bn ∈ Σt, only clocks reaching 1 are reset so their frac-
tional part is not affected and the clock valuation µ′n+1 still satisfies Cτ,rn .
The constraint Cτ,rn+1

depends on the time elapsed since the last tick and
whether the transition was an observation, so in this case Cτ,rn+1

= Cτ,rn .
Finally, if bn is an ε-transition, it only resets clocks from X and we have again
Cτ,rn+1 = Cτ,rn . Since this constraint restricts only clocks from Xt and since
their valuation does not change, µ′n+1 still verifies Cτ,rn and is in Mn+1.

– We now assume that (rn, bn, rn+1) is a delay transition: there is dn ∈ (0; 1)
such that µ′n+1 = µ′n+dn. This delay must verify some conditions because µ′n
is fixed and a transition can change region only once. In all this paragraph,
we take i (resp. j) some index of the last (resp. next) reset tick clocks.
Suppose that Cτ,rn is a constraint of type 2, 3 or 4. Assume in the first case
that xj ∈ Xt is such that µn+1(xj) ∈ N (so the next constraint Cτ,rn+1

is of
type 1). Thus this clock has reached 1 (µ′n+1(xj) = 1) and Cτ,rn is a type 2
or 3 constraint. This setting entirely determines the unique reachable clock
valuation µ′n+1. From the fact that µ′n models Cτ,rn , we have some δ ∈ (0; 1)
such that 1 + fj − fj − µ′n(xj) = δ. Consequently dn = δ. We easily verify
that the obtained µn+1 satisfies Cτ,rn+1 . Now if the next clock to be reset is
xh+1 and there is no other delay transition before the next observation, then
Cτ,rn is a type 4 constraint and we need to have µ′n+1(xh+1) = fh+1, which
means that dn = fh+1−µ′n(x0). The next constraint Cτ,rn+1

is still the same
as Cτ,rn . We have some δ for Cτ,rn and obtain the new δ′ = δ − dn = 0 to
satisfy Cτ,rn+1 .
Suppose now that there will be at least one other delay transition before the
next tick clock reset. Assume Cτ,rn is of type 2, 3 or 4. Then, if this transition
changes region, it only concerns clocks from X and we have Cτ,rn = Cτ,rn+1

.
The preceding constraint gives δ = 1− µ′n(xj) if Cτ,rn is of type 2 or 3 and
δ = fj − µ′n(xj) if it is of type 4. The delay dn cannot reach δ (otherwise
µ′n+1(xj) ∈ N or the transition crosses more than one clock region at once,
two excluded cases). We can construct the new δ′ = δ − dn involved in
µ′n+1 |= Cτ,rn+1

and verify that µ′n+1 is thus still in Mn+1. Assume now that
Cτ,rn is of type 1. Then the next region must give a constraint of type 2, 3
or 4. This case is similar to the last tackled one, and for the same reasons
the delay dn cannot reach 1−fi+f∗ where f∗ ∈ {−fj , 1− fj}. In both cases
we obtain from the δ of Cτ,rn the new one δ′ = δ − dn for Cτ,rn+1

, which is
verified.

Hence and by induction, [ρ]τ is not empty.
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It remains to show that the timed trace these runs produce is
(a0, τ0) . . . (am, τm) (recall that is is the trace of [ρ] timed by a timestamp τ which
verifies the five properties of the lemma). Let ρ′ ∈ [ρ]τ . Let (ai, τi) be a letter of
the timed trace. Suppose the action ai occurs in ρ′ at time τ ′i following the clock
region [µji ]. Then the number of ticks of x0 before ai is given by the trace and is
exactly bτic = bτ ′ic. We know that frac(τ ′i) = frac(µji(x0)). Moreover, ai occurs
at the same time as the reset of a clock xk. If ai is a tick, the constraint of Mji

forces µji(x0) = fk and we have i ∈ Jk so frac(τ ′i) = fk = frac(τi). Otherwise ai
is an observation, so there exists h ∈ [[0;N − 1]] such that i = first(h + 1). The
clock xh+1 has never been reset yet so τ ′i = µji(xh+1). The constraint of Mji

gives frac(µji(xh+1)) = fh+1 and frac(µji(x0)) = fh+1. Since i = first(h+1), we
obtain frac(τi) = fh+1 = µji(x0) = frac(τ ′i). ut
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