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Abstract. In 2009, Franck Cassez showed that the timed opacity prob-1

lem, where an attacker can observe some actions with their timestamps2

and attempts to deduce information, is undecidable for timed automata3

(TAs). Moreover, he showed that the undecidability holds even for sub-4

classes such as event-recording automata. In this article, we consider the5

same definition of opacity for several other subclasses of TAs: with re-6

strictions on the number of clocks, of actions, on the nature of time, or7

on a new subclass called observable event-recording automata. We show8

that opacity can mostly be retrieved, except for one-action TAs and for9

one-clock TAs with ε-transitions, for which undecidability remains. We10

then exhibit a new decidable subclass in which the number of observa-11

tions made by the attacker is limited.12

1 Introduction13

The notion of opacity [21,15] concerns information leaks from a system to an14

attacker; that is, it expresses the power of the attacker to deduce some secret15

information based on some publicly observable behaviors. If an attacker observ-16

ing a subset of the actions cannot deduce whether a given sequence of actions17

has been performed, then the system is opaque. Time particularly influences the18

deductive capabilities of the attacker. It has been shown in [19] that it is possi-19

ble for models that are opaque when timing constraints are omitted, to become20

non-opaque when those constraints are added to the models.21

Timed automata (TAs) [2] are an extension of finite automata that can mea-22

sure and react to the passage of time, extending traditional finite automata with23

the ability to handle real-time constraints. They are equipped with a finite set24

of clocks that can be reset and compared with integer constants, enabling the25

modeling and verification of real-time systems.26

1.1 Related works27

There are several ways to define opacity problems in TAs, depending on the28

power of the attacker. The common idea is to ensure that the attacker cannot29
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deduce from the observation of a run whether it was a private or a public run.1

The attacker in [16] is able to observe a subset Σo ⊆ Σ of actions with their2

timestamps. In this context, a timed word w is said to be opaque if there exists a3

public run that produces the projection of w following Σo as an observed timed4

word. In this configuration, one can consider the opacity problem consisting of5

determining, knowing a TA A and a set of timed words, whether all words in6

this set are opaque in A. This problem has been shown to be undecidable for7

TAs [16]. This notably relates to the undecidability of timed language inclusion8

for TAs [2]. However, the undecidability holds in [16] even for the restricted class9

of event-recording automata (ERAs) [3] (a subclass of TAs), for which language10

inclusion is decidable. The aforementioned negative results leave hope only if the11

definition or the setting is changed, which was done in three main lines of works.12

First, in [24,25], the input model is simplified to real-time automata [17],13

a restricted formalism compared to TAs. In this setting, (initial-state) opacity14

becomes decidable [24,25].15

Second, in [5], the authors consider a time-bounded notion of the opacity16

of [16], where the attacker has to disclose the secret before an upper bound, using17

a partial observability. This can be seen as a secrecy with an expiration date. In18

addition, the analysis is carried over a time-bounded horizon. The authors prove19

that this problem is decidable for TAs.20

Third, in [9,8], the authors present an alternative definition to Cassez’ opacity21

by studying execution-time opacity : the attacker has only access to the execu-22

tion time of the system, as opposed to Cassez’ partial observations with some23

observable events (with their timestamps). In that case, most problems become24

decidable (see [7] for a survey).25

Regarding non-interference for TAs, some decidability results are proved26

in [11,12,6], while control was considered in [13]. General security problems for27

TAs are surveyed in [10].28

1.2 Contributions29

Considering the negative results from [16] we have mainly two directions: one can30

consider more restrictive classes of automata, or one can limit the capabilities31

of the attacker—we address both directions in this work.32

We address here ∃-opacity (“there exists a pair of runs, one visiting and33

one not visiting the private locations set, that cannot be distinguished”), weak34

opacity (“for any run visiting the private locations set, there is another run not35

visiting it and both cannot be distinguished”) and full opacity (weak opacity,36

but with the other direction holding as well).37

Our attacker model is as follows: the attacker knows the TA modeling the38

system and can observe (some) actions, but does never gain access to the values39

of the clocks, nor knows which locations are visited. Their goal is to deduce from40

these observations whether a private location was visited.41

Our set of contributions is threefold.42
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Inter-reducibility Our first contribution is to prove that weak opacity and full1

opacity are inter-reducible. This result, interesting per se, also allows us to con-2

sider only one of both cases in the remainder of the paper.3

Opacity in subclasses of TAs Throughout the second part of this paper (Sec-4

tion 5), we consider the same attacker settings as in [16] but for natural subclasses5

of TAs: first we deal with one-action TAs, then with one-clock TAs (both with6

and without ε-transitions—which makes a difference in decidability), TAs over7

discrete time, and a new subclass which we call observable ERAs. Precisely, we8

show that:9

1. The problem of ∃-opacity is decidable for general TAs and thus for all sub-10

classes of TAs we consider as well (Section 5.1).11

2. The problems of weak and full opacity are both undecidable for TAs with12

only one action (Section 5.2) or two clocks (Section 5.3).13

3. These two problems are also undecidable for TAs with a single clock, un-14

less we forbid ε-transitions, in which case the problems become decidable15

(Section 5.3).16

4. These two problems are decidable for unrestricted TAs over discrete time17

(Section 5.4), and for observable ERAs (Section 5.5).18

These results overall build on existing results from the literature, with rather19

straightforward proofs. They still allow us to draw a clear border between decid-20

ability and undecidability. Moreover, we provide the exact complexity for most21

of the decidable results, which in some cases, complexify the proofs.22

As a proof ingredient for Section 5.4, we also show that language inclusion23

is decidable for TAs over discrete time (a rather unsurprising—yet interesting—24

result, of which we could not find a proof in the literature).25

Reducing the attacker power Then, in the third part (Section 6), we introduce a26

new approach in which we reduce the visibility of the attacker to a finite number27

of actions occurring at the beginning of the run, on an unrestricted TA. This28

models the case of an attacker with a limited attack budget, while considering29

the maximal class of TAs. This more elaborate result (with its quite technical30

proof) allows us to retrieve decidability.31

1.3 Outline32

Section 2 recalls necessary preliminaries. Section 3 defines the problems of in-33

terest. Section 4 proves inter-reducibility of weak and full opacity. Section 534

addresses opacity for subclasses of TAs, while Section 6 reduces the power of the35

attacker to a finite set of observations. Section 7 concludes.36

2 Preliminaries37

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-38

negative rationals and non-negative reals, respectively. If a and b are two integers39

with a ≤ b, the set {a, a+ 1, . . . , b− 1, b} is denoted by [[a; b]].40
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Fig. 1: A TA example

We let T be the domain of the time, which will be either non-negative reals1

R≥0 (continuous-time semantics) or naturals N (discrete-time semantics). Unless2

otherwise specified, we assume T = R≥0.3

Clocks are real-valued variables that all evolve over time at the same rate.4

Throughout this paper, we assume a set X = {x1 , . . . , xH } of clocks. A clock5

valuation is a function µ : X→ T, assigning a non-negative value to each clock.6

We write 0 for the clock valuation assigning 0 to all clocks. Given a constant7

d ∈ T, µ + d denotes the valuation s.t. (µ + d)(x ) = µ(x ) + d, for all x ∈ X. If8

R is a subset of X and µ a clock valuation, we call reset of the clocks of R and9

denote by [µ]R the valuation s.t. for all clock x ∈ X, [µ]R(x) = 0 if x ∈ R and10

[µ]R(x) = µ(x) otherwise.11

We assume ./ ∈ {<,≤,=,≥, >}. A constraint C is a conjunction of inequal-12

ities over X of the form x ./ d, with d ∈ Z. Given C, we write µ |= C if the13

expression obtained by replacing each x with µ(x ) in C evaluates to true.14

2.1 Timed automata15

A TA is a finite automaton extended with a finite set of real-valued clocks. We16

also add to the standard definition of TAs a special private locations set, which17

is then used to define the subsequent opacity concepts.18

Definition 1 (TA [2]). A TA A is a tuple A = (Σ,L, `0, Lpriv , Lf ,X, I, E),19

where: 1) Σ is a finite set of actions, 2) L is a finite set of locations, `0 ∈ L is20

the initial location, 3) Lpriv ⊆ L is a set of private locations, Lf ⊆ L is a set21

of final locations, 4) X is a finite set of clocks, 5) I is the invariant, assigning22

to every ` ∈ L a constraint I(`) over X (called invariant), 6) E is a finite set23

of edges e = (`, g, a, R, `′) where `, `′ ∈ L are the source and target locations,24

a ∈ Σ ∪ {ε} (where ε denotes an unobservable action), R ⊆ X is a set of clocks25

to be reset, and g is a constraint over X (called guard).26

Example 1. In Fig. 1, we give an example of a TA with three locations `0, `127

and `2, three edges, two action {a, b}, and one clock x . `0 is the initial location,28

`2 is the (unique) private location, and `1 is the (unique) final location. `0 has29

an invariant “x ≤ 3” and the edge from `0 to `2 has a guard “x ≥ 1”.30

Definition 2 (Semantics of a TA). Given a TA A =31

(Σ,L, `0, Lpriv , Lf ,X, I, E), the semantics of A is given by the timed transition32

system TA = (S, s0, Σ ∪ {ε} ∪ R≥0,→), with33
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1. S =
{
(`, µ) ∈ L× RX

≥0 | µ |= I(`)
}
, s0 = (`0,0),1

2. → ⊆ S × E × S ∪ S × R≥0 × S consists of the discrete and (continuous)2

delay transition relations:3

(a) discrete transitions: ((`, µ), e, (`′, µ′)) ∈ →, and we write (`, µ) e7→ (`′, µ′),4

if (`, µ), (`′, µ′) ∈ S, e = (`, g, a, R, `′) ∈ E, µ′ = [µ]R, and µ |= g.5

(b) delay transitions: ((`, µ), d, (`, µ+d)) ∈ →, and we write (`, µ)
d7→ (`, µ+6

d), if d ∈ R≥0 and ∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.7

Moreover we write (`, µ)
(d,e)−→ (`′, µ′) for a combination of a delay and discrete8

transition if ∃µ′′ : (`, µ) d7→ (`, µ′′)
e7→ (`′, µ′).9

Given a TA A with semantic (S, s0, Σ ∪ {ε} ∪ R≥0,→), we refer to the el-10

ements of S as the configurations of A. A (finite) run of A is an alternating11

sequence of configurations of A and pairs of delays and edges starting from12

the initial configuration s0 and ending in a final configuration (i.e., whose loca-13

tion is final), of the form (`0, µ0), (d0, e0), (`1, µ1), · · · (`n, µn) for some n ∈ N,14

with `n ∈ Lf and for i = 0, 1, . . . n − 1, `i /∈ Lf , ei ∈ E, di ∈ R≥0, and15

(`i, µi)
(di,ei)−→ (`i+1, µi+1). A path of A is a prefix of a run ending with a config-16

uration.17

2.2 Region automaton18

We recall that the region automaton is obtained by quotienting the set of clock19

valuations out by an equivalence relation ' recalled below.20

Given a TA A and its set of clocks X, we define M : X → N the map that21

associates to a clock x the greatest value to which the interpretations of x are22

compared within the guards and invariants; if x appears in no constraint, we set23

M(x ) = 0.24

Given α ∈ R, we write bαc and frac(α) respectively for the integral and25

fractional parts of α.26

Definition 3 (Equivalence relation ' for valuations [2]). Let µ, µ′ be27

two clock valuations (with values in R≥0). We say that µ and µ′ are equivalent,28

denoted by µ ' µ′ when, for each x ∈ X, either µ(x ) > M(x ) and µ′(x ) > M(x )29

or the three following conditions hold:30

1. bµ(x )c = bµ′(x )c;31

2. frac(µ(x )) = 0 if and only if frac(µ′(x )) = 0;32

3. for each y ∈ X, frac(µ(x )) ≤ frac(µ(y)) if and only if frac(µ′(x )) ≤33

frac(µ′(y)).34

The equivalence relation is extended to the configurations of A: let s =35

(`, µ) and s′ = (`′, µ′) be two configurations in A, then s ' s′ if and only if ` =36

`′ and µ ' µ′.37

The equivalence class of a valuation µ is denoted [µ] and is called a clock38

region, and the equivalence class of a configuration s = (`, µ) is denoted [s]39
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and called a region of A. Clock regions are denoted by the enumeration of the1

constraints defining the equivalence class. Thus, values of a clock x that go2

beyond M(x ) are merged and described in the regions by “x > M(x )”.3

The set of regions of A is denoted by RA. These regions are in finite number:4

this allows us to construct a finite “untimed” regular automaton, the region5

automaton RAA. Locations of RAA are regions of A, and the transitions of6

RAA convey the reachable valuations associated to each configuration in A.7

To formalize the construction, we need to transform discrete and time-8

elapsing transitions of A into transitions between the regions of A. To do that, we9

define a “time-successor” relation that corresponds to time-elapsing transitions.10

Definition 4 (Time-successor relation [8]). Let r = (`, [µ]), r′ = (`′, [µ′]) ∈11

RA. We say that r′ is a time-successor of r when r 6= r′, ` = `′ and for each12

configuration (`, µ) in r, there exists d ∈ R≥0 such that (`, µ+d) is in r′ and for13

all d′ < d, (`, µ+ d′) ∈ r ∪ r′.14

A region r = (`, [µ]) is unbounded when, for all x in X and all µ′ ∈ [µ],15

µ′(x ) > M(x ).16

Definition 5 (Region automaton [2]). Given a TA A =17

(Σ,L, `0, Lpriv , Lf ,X, I, E), the region automaton is the tuple RAA =18

(ΣR ,R, r0,Rf , ER) where 1) ΣR = Σ ∪ {ε}; 2) R = RA; 3) r0 = [s0];19

4) Rf is the set of regions which first component is a final location `f ∈ Lf ;20

5) i) (discrete transitions) For every r = (`, [µ]) with ` /∈ Lf , r′ = (`′, [µ′]) ∈ RA21

and a ∈ Σ ∪ {ε}:22

(r, a, r′) ∈ ER if ∃µ′′ ∈ [µ],∃µ′′′ ∈ [µ′], (`, µ′′)
e7→ (`′, µ′′′)

with e = (`, g, a,R, `′) ∈ E. ii) (delay transitions) For every r = (`, [µ]) with23

` /∈ Lf , r′ ∈ RA:24

(r, ε, r′) ∈ ER if r′ is a time-successor of r or if r = r′ is unbounded.

As in TAs, a run of RAA is an alternating sequence of regions of RAA25

and actions starting from the initial region r0 and ending in a final region, of26

the form r0, a0, r1, a1, · · · rn−1, an−1, rn for some n ∈ N, with rn ∈ Rf and for27

i ∈ [[0;n − 1]], ri /∈ Rf , and (ri, ai, ri+1) ∈ ER . A path of RAA is a prefix of28

a run ending with a region and the trace of a path of RAA is the sequence of29

actions (ε excluded) contained in this path.30

3 Opacity problems in timed automata31

3.1 Timed words, private and public runs32

Given a TA A and a run ρ = (`0, µ0), (d0, e0), (`1, µ1), · · · , (`n, µn) on A, we say33

that Lpriv is visited in ρ if there exists m ∈ N such that `m ∈ Lpriv . We denote34

by Visitpriv (A) the set of runs visiting Lpriv , and refer to them as private runs.35
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Conversely, we say that Lpriv is avoided in ρ if the run ρ does not visit Lpriv .1

We denote the set of the runs avoiding Lpriv by Visitpriv (A), referring to them2

as public runs.3

A timed word is a sequence of pairs made of an action and a non-decreasing4

timestamp in R≥0. We denote by TW ∗(Σ) the set of all finite timed words5

on the alphabet Σ. A run ρ on a TA A defines a timed word: if ρ is of6

the form (`0, µ0), (d0, e0), (`1, µ1), · · · , (`n, µn) where for each i ∈ [[0;n − 1]],7

ei = (`i, gi, ai, Ri, `i+1) and ai ∈ Σ ∪ {ε}, then it generates the timed8

word (aj0 ,
j0∑
i=0

di)(aj1 ,
j1∑
i=0

di) . . . (ajm ,
jm∑
i=0

di), where j0 < j1 < · · · < jm and9

{jk | k ∈ [[0;m]]} = {i ∈ [[0;n− 1]] | ai 6= ε}. We denote by Tr(ρ) and call trace10

of ρ the timed word generated by the run ρ and, by extension, given a set of11

runs Ω, we denote by Tr(Ω) the set of the traces of runs in Ω.12

The set of timed words recognized by a TA A is the set of traces generated13

by its runs, Tr(Visitpriv (A) ∪ Visitpriv (A)) (thus a subset of (Σ × R≥0)
∗). To14

shorten these notations, we use Tr(A) for the set of timed words recognized15

by A, also called language of A. Similarly, we use Trpriv (A) = Tr(Visitpriv (A))16

to denote the set of traces of private runs, and Trpriv (A) = Tr(Visitpriv (A)) for17

the set of traces of public runs.18

In Cassez’s original definition [16], actions were partitioned into two sets,19

depending on whether an attacker could observe them or not. For simplicity,20

here we replaced every unobservable transition in A by ε-transitions. Projecting21

the sequence of actions in a run onto the observable actions, as done by Cassez,22

is equivalent to replacing these actions by ε and taking the trace of the run.23

Therefore, with respect to opacity, our model is equivalent to [16].24

3.2 Defining timed opacity25

In this section, a definition of timed opacity based on the one from [16] is intro-26

duced, with three variants inspired by [7]: existential, full and weak opacity. If27

the attacker observes a set of runs of the system (i.e., observes their associated28

traces), we do not want them to deduce whether Lpriv was visited or not during29

these observed runs. Opacity holds when the traces can be produced by both30

private and public runs.31

We are thus first interested in the existence of an opaque trace produced32

by the TA, that is, a trace that cannot allow the attacker to decide whether it33

was generated by a private or a public run. ∃-opacity, which can be seen as the34

weakest form of opacity, is useful to check if there is at least one opaque trace;35

if not, the system cannot be made opaque by restraining the behaviors.36

Definition 6 (∃-opacity). A TA A is ∃-opaque if Trpriv (A)∩Trpriv (A) 6= ∅.37

∃-opacity decision problem:
Input: A TA A
Problem: Is A ∃-opaque?

38
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Ideally and for a stronger security of the system, one can ask the system to be1

opaque for all possible traces of the system: a TA A is fully opaque whenever for2

any trace in Tr(A), it is not possible to deduce whether the run that generated3

this trace visited Lpriv or not. Sometimes, a weaker notion is sufficient to ensure4

the required security in the system, i.e., when the compromising information5

solely comes from the identification of the private runs.6

Definition 7 (Full and weak opacity). A TA A is fully opaque if7

Trpriv (A) = Trpriv (A). A TA A is weakly opaque if Trpriv (A) ⊆ Trpriv (A).8

Full (resp. weak) opacity decision problem:
Input: A TA A
Problem: Is A fully (resp. weakly) opaque?

9

Example 2. The TA A depicted in Fig. 1 is ∃-opaque and weakly opaque but
not fully opaque. Indeed,

Trpriv (A) =
{
(a, τ1) . . . (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 2 ∧ τn+1 ≥ 1

}
Trpriv (A) =

{
(a, τ1) . . . (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 3

}
This TA verifies Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ∩ Trpriv (A) 6= ∅ since10

(b, 1.5) ∈ Trpriv (A).11

4 Inter-reducibility of weak and full opacity12

In this section, we prove a new result relating weak and full opacity (Section 4.2).13

To this end, we first introduce in Section 4.1 a construction—that will also be14

useful to prove our subsequent results in Sections 5 and 6.15

4.1 Apriv and Apub16

First, we need a construction of two TAs Apriv and Apub that recognize timed17

words produced respectively by private and public runs of a given TA A.18

The public runs TA Apub is the easiest to build: it suffices to remove the19

private locations from A to eliminate every private run in the system. (See20

formal definition in Definition 11 in Appendix A.)21

The private runs TA Apriv is obtained by duplicating all locations and transi-22

tions of A: one copy AS corresponds to the paths that already visited the private23

locations set, and the other copy AS̄ corresponds to the paths that did not (this24

is a usual way to encode a Boolean, here “Lpriv was visited”, in the locations25

of a TA). For each private location `priv in A we copy all transitions leading26

to the copy of `priv in AS̄ and redirect them to the copy of `priv in AS . The27

initial location is the one from AS̄ and the final locations are the ones from AS .28

Hence all runs need to go from AS̄ to AS before reaching a final location, which29

requires visiting a private location.30

8
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Fig. 2: Apub and Apriv with the example from Fig. 1

Definition 8 (Private runs TA Apriv).1

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. The private runs TA2

Apriv = (Σ,LS ] LS̄ , `S̄0 , LSpriv , LSf ,X, I ′, E′) is defined as follows:3

1. LS = {`S | ` ∈ L} and LS̄ = {`S̄ | ` ∈ L}.4

2. LSf = {`Sf | `f ∈ Lf} is the set of final locations, and LSpriv = {`Spriv | `priv ∈5

Lpriv} is the set of private locations;6

3. I ′ is defined such as I ′(`S) = I ′(`S̄) = I(`)7

4. E′ = ES ] ES̄ ] ES̄→S where ES and ES̄ are the two disjoint copies of E8

respectively associated to the sets of locations LS and LS̄, and ES̄→S is a9

copy of the set of all transitions that go toward LS̄priv where the target location10

`S̄priv has been changed into `Spriv . More formally:11

ES =
{
(`S , g, a, R, `′S) | (`, g, a,R, `′) ∈ E

}
ES̄ =

{
(`S̄ , g, a, R, `′S̄) | (`, g, a,R, `′) ∈ E

}
ES̄→S =

{
(`S̄ , g, a, R, `Spriv ) | (`, g, a,R, `priv ) ∈ E

}
.

Example 3. We illustrate these constructions in Fig. 2 with A from Fig. 1.12

The languages of Apriv and Apub are respectively Trpriv (A) and Trpriv (A).13

Remark 1. By a minor modification on Apriv , one can build a TA Amemo that14

recognizes exactly the same language as A and that stores in each location15

whether the private locations set has been visited. To do so, we add the set {`S̄f |16

`f ∈ Lf} to the set of final locations in Apriv and we remove each `S̄priv ∈ LS̄priv17

from LS̄ in the same way as we did in Apub : the private locations of Amemo are18

exactly those of Apriv . Notably, A is weakly (resp. fully) opaque if and only if19

Amemo is weakly (resp. fully) opaque.20

9



4.2 Inter-reducibility of weak and full opacity1

While the distinction between weak and full notions of opacity can lead to mean-2

ingful changes [7], within our framework both associated problems are inter-3

reducible.4

Theorem 1. The weak opacity decision problem and the full opacity decision5

problem are inter-reducible.6

Proof. Let us first show that the full opacity decision problem reduces to the7

weak opacity decision problem. Let A be a TA. In order to test whether A is fully8

opaque, we can test both inclusions: Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ⊇9

Trpriv (A). The first inclusion can be decided directly by testing whether A is10

weakly opaque. In order to test the second inclusion, we need to build a TA11

Amemo where private and public runs are inverted. To do so, we first build Apub12

and Apriv and then define A′ as the TA constituted of Apub and Apriv as well as13

two new locations `′0 and `′priv . The location `′0 is the initial location of A′ and14

`′priv is the only private location. For x ∈ X, both `′0 and `′priv have the invariant15

x = 0, ensuring no time may elapse in those locations. From `′0, with a transition16

labeled by ε, one may reach either the initial location of Apriv (`S0 ) or `′priv , from17

which an ε-transition leads to the initial location of Apub (`0). The final locations18

of A′ are the final locations of Apub and Apriv . The public runs of A′ are the19

ones starting in `′0, going immediately to `S0 , and then following a run of Apriv20

until a final location of Apriv is reached. As the initial transition is labeled by ε,21

we have Trpriv (A′) = Trpriv (A). Similarly, the private runs of A′ are the ones22

starting in `′0, going immediately to `′priv followed immediately by going to `S0 ,23

and then follows a run of Apub until a final location of Apub is reached. As the24

two initial transitions are labeled by ε, we have Trpriv (A′) = Trpriv (A). Hence,25

A is fully opaque if and only if A and A′ are weakly opaque.26

Let us now show the converse reduction. Let A be a TA. We will define a
TA A′ such that A′ is fully opaque if and only if A is weakly opaque. To do so,
we want that Trpriv (A′) = Trpriv (A) and Trpriv (A′) = Trpriv (A) ∪ Trpriv (A).
Indeed, if these equalities hold, Trpriv (A′) = Trpriv (A′) would be equivalent
to Trpriv (A) = Trpriv (A) ∪ Trpriv (A) which holds if and only if Trpriv (A) ⊆
Trpriv (A). As for the first reduction, A′ contains a copy of Apub and Apriv as
well as two new locations `′0 and `′priv . The location `′0 is the initial location of
A′ and `′priv is the only private location. For x ∈ X, both `′0 and `′priv have the
invariant x = 0, ensuring no time may elapse in those locations. From `′0, with
a transition labeled by ε, one may reach either the initial location of Apub (`S0 )
or `′priv , from which an ε-transition leads either to `S0 or to the initial location
of Apub (`0). The final locations of A′ are the final locations of Apub and Apriv .
The public runs of A′ are the ones starting in `′0, going immediately to `0, and
then following a run of Apub until a final location of Apub is reached. As the
initial transition is labeled by ε, we have Trpriv (A′) = Trpriv (A). Similarly, the
private runs of A′ are the ones starting in `′0, going immediately to `′priv followed

10



immediately by going to `S0 followed by a run of Apriv , or to `0, followed by a run
of Apub until a final location ofApub is reached. As the two initial transitions are
labeled by ε, we have Trpriv (A′) = Trpriv (A) ∪ Trpriv (A). Hence, A is weakly
opaque if and only if A′ is fully opaque. ut

5 Opacity problems for subclasses of timed automata1

In this section, we consider the decidability status and complexities of the three2

opacity problems presented in Section 3 for several subclasses of TAs: TAs with3

one clock, TAs with one action, TAs under discrete time and observable ERAs.4

We first show the decidability of the ∃-opacity problem in the general case. Then,5

we focus on each class of TAs listed above to study weak and full opacity.6

5.1 ∃-opacity problem7

We show here (see Appendix B) that in general the ∃-opacity problem is PSPACE-8

complete relying on the reachability problem in TAs, which is known to be9

PSPACE-complete [2] as well, even for TA with two clocks [18]. This theorem10

considers multiple subclasses of TAs as well that we will describe more in depth11

in future sections.12

Theorem 2. Given a TA A, deciding the ∃-opacity problem for A is PSPACE-13

complete, even when restricting A to be a one-action TA, discrete-time TA, an14

oERA, or a single clock TA where integers appearing in guards are given in15

binary.16

If the number of clocks in A is fixed and integers appearing in guards are17

given in unary, the ∃-opacity problem is in NLOGSPACE.18

5.2 Timed automata with a single action19

Recall that the universality problem consists in deciding whether a TA A accepts20

the set of all timed words. In [23], it is shown that the class of one-action TAs21

is one of the simplest cases for which the universality problem is undecidable22

among TAs. Therefore, this gives the intuition (see Appendix C for proof) that23

the weak and full opacity problems are undecidable as well for one-action TAs24

(|Σ| = 1).25

Theorem 3. The full and weak opacity problems for TAs with one action are26

undecidable.27

Remark 2. The problems of execution-time opacity introduced in [7] are a28

particular decidable subcase of these undecidable opacity problems with one-29

action TAs. Indeed, the execution time is equivalent to a unique timestamp30

associated to the last action of the system.31

11



5.3 Timed automata with a single clock1

Following the same reasoning as in Section 5.2 (based on a different existing2

result on TAs), we show that full opacity is undecidable for one-clock TAs.3

Theorem 4. The full and weak opacity problems for one-clock TAs are unde-4

cidable.5

Proof. By reusing the same proof argument as in Theorem 3, using the fact that6

universality for one-clock TAs (with ε-transitions) is undecidable [1].7

Without ε-transitions We now prove that the weak and full opacity problems8

become both decidable in the context of one-clock TAs (|X| = 1) without ε-9

transitions, relying on the fact that the language inclusion problem for one-10

clock TAs without ε-transitions is decidable [23].11

By definition, a TA is weakly opaque if Trpriv (A) is included in Trpriv (A).12

As Trpriv (A) and Trpriv (A) are respectively recognized by Apriv and Apub , the13

decidability of the weak opacity problem is directly obtained from the decidabil-14

ity of the inclusion of two languages. Full opacity follows immediately, from the15

bidirectional language inclusion.16

Theorem 5. Full and weak opacity are decidable for one-clock TAs without ε-17

transitions.18

Note however that, while decidable, this problem cannot be effectively solved19

currently as the algorithm given by [23] is non-primitive recursive.20

In addition, due to the undecidability of language universality for TAs with21

at least two clocks [23, Theorem 21], we can prove the following with the same22

construction as in Theorem 3:23

Theorem 6. Full and weak opacity are undecidable for TAs with ≥ 2 clocks.24

5.4 Timed automata over discrete time25

In the general case, clocks are real-valued variables, with valuations thus ranging26

over T = R≥0. TAs over discrete time however restrict the clock’s behavior to27

valuations over T = N. Since the arguments used in [2] to prove the undecidabil-28

ity of the universality problem in TAs rely on the continuous time, this proof29

cannot be used to establish undecidability of opacity over discrete time. In fact,30

relying on the region automaton (defined in Section 2.2) in discrete time and31

classical results on finite regular automata, we show decidability of the opacity32

problems.33

If µ, µ′ are two discrete clock valuations (i.e., with values in N), the definition34

of ' from Section 2.2 can be simplified into: µ ' µ′ if and only if for each x ∈ X,35

either µ(x ) = µ′(x ) or µ(x ) > M(x ) and µ′(x ) > M(x ).36

Over continuous time, for each run of the TA, there is a unique corresponding37

run of the region automaton. Over discrete time, thanks to the simplified form38

12
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Fig. 3: A discrete-time region automaton example

of the definition of ', the converse statement that a run of the region automaton1

corresponds to a unique run of the TA nearly holds. Loss of information however2

remains when every clock goes beyond their maximum constant, as time elapsing3

is not measured beyond this point. In order to measure it, we add a letter t for4

ticks which occurs each time that an (integral) time unit passes in the region5

automaton. This change can be operated directly on the TA A so that the6

correspondence between paths of A and RAA becomes immediate.7

More precisely, we add a clock z and add self-loop transitions et = (`, (z =8

1), t, {z}, `) on each location ` ∈ L of A. We also add the guard “z = 0” to each9

discrete transition of A.10

We illustrate the resulting TA on a simple example in Fig. 3. We depict a11

discrete-time TA A, its transformation by the procedure we just described and12

finally its region automaton RAA (over discrete time).13

With this construction, time information become superfluous in the TA as it14

can be deduced from the number of ticks that were produced, which also appears15

within a path of the region automaton. For instance, consider the run on the A16

of Fig. 3a that remains four time units in `0 before going to `f . The timed word17

(a, 4) on the original TA A becomes (t, 1)(t, 2)(t, 3)(t, 4)(a, 4) in our transformed18

TA. The untimed word obtained in RAA is tttta, which means that four ticks19

occurred before the action a was produced. From this information, the original20

timed word (a, 4) can be reconstructed. In the rest of this subsection, we only21

consider TAs enhanced with ticks. From the previous discussion, we have (see22

Appendix D):23

Lemma 1. The language of a discrete-time TA and the language of its region24

automaton are in bijection.25

Thus, we show that the language inclusion problem for discrete-time TAs26

can be reduced to its decidable equivalent for finite regular automata. This27

13



result was indirectly proven recently in [20], our contribution hence lies mainly1

in establishing exact complexity.2

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-3

complete.4

We can then adapt this result to the weak and full opacity problems in a5

similar way as done in Section 5.3.6

Theorem 7. Weak and full opacity of discrete-time TAs are EXPSPACE-7

complete.8

5.5 Observable Event-Recording Automata9

In [16], the opacity problems were shown to be undecidable for Event-Recording10

Automata (ERAs) [3], a subclass of TAs where every clock x is associated to a11

specific event ax and x is reset on a transition iff this transition is labeled by ax.12

Due to this, the valuations of clocks are entirely determined by the duration13

since the last occurrence of the associated events. One of the main interest of14

ERAs is that they are determinizable [3]. This determinization is carried out15

through the standard subset construction.16

The undecidability result from [16] on ERAs required to make the events ax17

unobservable. Hence, in our framework they would be replaced by ε-transitions.18

We define observable ERAs (oERAs) as ERAs where the actions resetting the19

clocks must be observable. This means that the information required for the20

determinization now belongs to the trace that is observed.21

Given an oERA A, we can thus build through the subset construction a TA22

DetA such that any path ρ in A corresponds to a path ρD in DetA with the23

same trace and ending in a location labeled by the set of all the locations of A24

that can be reached with a run that has the same trace as ρ. This information,25

combined with the construction of Amemo (Remark 1) which stores in the state26

of the TA whether the private location was visited or not, provides the following27

result (see Appendix E).28

Theorem 8. Weak and full opacity are PSPACE-complete for oERAs.29

6 Opacity with limited attacker budget30

One of the causes for the undecidability of the opacity problems in [16] stems31

from the unbounded memory the attacker might require to remember a run of32

the TA. As a consequence, one can wonder whether the opacity problems remain33

undecidable when the attacker performs only a finite number of observations.34

This models the case of an attacker with a limited attack budget. In this section,35

we prove that the weak and full opacity problems become decidable whenever,36

given N ∈ N, the attacker only observes the first N actions (with their times-37

tamps). To the best of our knowledge, this is i) the second result of the literature38

14



`00

`0i
`0jA0

`0f

`1k A1

`1f

. . . `N AN

`Nf

ε

a1

aN

Fig. 4: The construction on an N -observation unfolded TA

(after [9]) providing a decidable opacity result for the full class of TAs over dense1

time, and ii) the first result limiting the number of observations of an attacker2

in the context of opacity for TAs.3

For instance, if (a, 1.2)(b, 1.4)(b, 1.5)(a, 2.1) is the trace of a public run of the4

system, and N = 2, then the attacker only observes the trace (a, 1.2)(b, 1.4).5

If (a, 1.2)(b, 1.4)(c, 1.6) is the trace of a private run, the trace observed by the6

attacker is (a, 1.2)(b, 1.4) again and the attacker cannot conclude a private run7

occurred or not.8

Formally, and in order to define new variants of opacity representing this9

framework, given a TAA, we define a new TA (depicted in Fig. 4) which emulates10

the behavior of A up to the Nth observation. This TA is an unfolding of A with11

N+1 copies of A, where ε-transitions are taken within each copy, and transitions12

with an observable action lead to the next copy. A run ends when either a final13

location or the final copy is reached.14

Definition 9 (N-observation unfolding of a TA).15

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA and let N ∈ N. We call N -16

unfolding of A the TA UnfoldN (A) = (Σ,L′, `00, L
′
priv , L

′
f ,X, I ′, E′) where17

1. L′ =
N⋃
i=0

Li where the sets Li are N + 1 disjoint copies of L where each18

location ` ∈ L has been renamed `i ∈ Li: for 0 ≤ i ≤ N , Li = {`i | ` ∈ L};19

2. `00 ∈ L0 is the initial location;20

3. L′priv =
N−1⋃
i=0

Lipriv where Lipriv are the copies within Li of the private locations21

of A;22

4. L′f = (
N⋃
i=0

Lif )∪LN where Lipriv are the copies within Li of the final locations23

of A;24

5. I ′(`i) = I(`) for l ∈ L and i ≤ N extends I to each Li;25

6. E′ =
N−1⋃
i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N26

– Ei = {(`i, ε, g, R, `′i) | (`, ε, g, R, `′) ∈ E};27

– Ei→i+1 = {(`i, a, g, R, `′i+1) | (`, a, g, R, `′) ∈ E ∧ a ∈ Σ}.28

Definition 10 (Opacity w.r.t. N observations). Let A be a TA and let29

N ∈ N. We say that A is weakly (resp. fully) opaque w.r.t. N observations when30

UnfoldN (A) is weakly (resp. fully) opaque.31
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We now state our main result. The proof is quite technical, so we only give1

a high-level sketch. The full proof can be found in Appendix F.2

Theorem 9. The problem of deciding, given a TA A and N ∈ N, whether A is3

∃-opaque is PSPACE-complete.4

The problems of weak or full opacity w.r.t. N observations are in 2-5

EXPSPACE.6

Proof (sketch). ∃-opacity can be checked in PSPACE through the same approach7

as Theorem 2. Indeed, even if N is given in binary, and thus UnfoldN (A) is of8

exponential size, the region automaton of UnfoldN (A) remains simply exponen-9

tial in the size of A. Hardness can be achieved with N = 0 with the same method10

as Theorem 2.11

Concerning the problems of weak and full opacity w.r.t. N observations, as in12

Section 5.4, our goal is to rely on the region automaton to translate the opacity13

problems from the TA to another problem on a finite automaton. However, there14

is no immediate correspondence between runs of the TA and runs of the region15

automaton, leading to a more involved proof.16

More precisely, given a A = (Σ,L, `0, Lpriv , Lf ,X, I, E) and N ∈ N. We17

build the unfolding of the TA Amemo described in Remark 1. Recall that Amemo18

recognizes the same language asA but stores within the locations the information19

whether Lpriv was visited. As such, Amemo has the same opacity properties as A,20

so we can consider UnfoldN (Amemo) instead of UnfoldN (A) to study the opacity21

of A.22

Additionally, we enrich this TA with ticks. In Section 5.4, we added a single23

tick to the automaton which counted the time elapsed since the start of the run.24

Here, the TA includes as well, for each 0 < k ≤ N , a tick clock counting the25

time elapsed since the k’th observation. As multiple ticks may need to occur at26

the same time, we develop the alphabet of ticks to describe the set of tick clocks27

that need to be reset, i.e., the tick t{k1,...,km} is produced by the TA if for every28

0 ≤ i ≤ m, the ki’th observation (or the start of the run if ki = 0) occurred an29

integer number of time units beforehand.30

Note that the addition of these ticks immediately uses the assumption that31

only N actions are observed.32

In the new ticked automaton, we will establish a correspondence between33

runs of the TA, and paths of the region automaton, allowing us to reduce the34

opacity problems to non-reachability of bad states in the determinization of the35

region automaton, implying decidability.36

Considering the complexity, the unfolding of the TA, assuming N is in bi-37

nary, is exponential in the number of states. Adding the ticks means adding38

an exponential number of clocks as well. Hence the region automaton is doubly39

exponential in the original TA, and its determinization is triply exponential.40

Reachability being in NLOGSPACE implies the 2-EXPSPACE algorithm.41

A full proof with all technical details can be found in Appendix F. ut
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Table 1: Summary of Section 5 (
√

= decidability, × = undecidability)
Subclass ∃-opacity weak opacity full opacity
|Σ| = 1 ×Theorem 3
|X| = 1 without ε-transitions

√
Theorem 5 (PSPACE-c)

|X| = 1
√
Theorem 2 ×Theorem 4

|X| = 2 (PSPACE-c) ×Theorem 6
T = N

√
Theorem 7 (EXPSPACE-c)

oERAs
√

Theorem 8 (PSPACE-c)

7 Conclusion and perspectives1

In this paper, we addressed three definitions of opacity on subclasses of TAs, to2

circumvent the undecidability from [16]. We first proved the inter-reducibility of3

weak and full opacity. Then, while undecidability remains for one-action TAs,4

we retrieve decidability for one-clock TAs without ε-transitions, or over discrete5

time, or for observable ERAs. Our result for one-clock TAs without ε-transitions6

is tight, since we showed that increasing the number of clocks or adding ε-7

transitions leads to undecidability. Finally, we studied the case of an attacker8

with an observational power with a limited budget, i.e., that can only perform a9

finite set of observations. We proved this latter case to be decidable on the full10

TA formalism. We summarize the results from Section 5 in Table 1.11

Future work Perspectives include begin able to build a controller to ensure a TA12

is opaque, as well as investigating parametric versions of these problems, where13

timing constants considered as parameters (à la [4]) can be tuned to ensure14

opacity.15

Finally, our result in Section 6 considers an attacker with a fixed attack16

budget; an interesting future work would be to derive a maximum attack budget17

such that the system remains opaque.18
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`0 `fA
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(a) Apub
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Fig. 5: Illustrating Apub and Apriv

A Formal definitions1

Definition 11 (Public runs automaton Apub).2

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA. We define the public runs TA3

Apub = (Σ,L \ Lpriv , ∅, Lf \ Lpriv ,X, I ′, E′) with I ′ and E′ precised as follows:4

1. I ′ is the restriction I|L\Lpriv
of I to the set of locations of Apub;5

2. E′ = E \ {(`, g, a,R, `′) ∈ E | ` ∈ Lpriv ∨ `′ ∈ Lpriv} is the remaining set of6

transitions when private locations are removed from L.7

Example 4. We illustrate the constructions of Apub and Apriv in Figs. 5a and 5b.8

B Complexity of the ∃-opacity problem9

B.1 ∃-opacity problem for general TAs10

Let us first show that the ∃-opacity problem for TA lies in PSPACE.11

Proof. Let A be a TA. We build Apriv and Apub from A as described in Sec-12

tion 4.1. Noting that the product of two TAs recognizes the intersection of13

their languages [2, Theorem 3.15] (assuming the two TAs share no clock), we14

build the TA Apriv × Apub , product of Apriv and Apub , which language is15

Trpriv (A) ∩ Trpriv (A). To build this product, we can rename all clocks from16

Apub so that Apriv and Apub share no clock.17

The ∃-opacity problem is by definition the non-emptiness of the intersection
of Trpriv (A) and Trpriv (A). Moreover, the reachability of a final location of
Apriv ×Apub is equivalent to the non-emptiness of the language of Apriv ×Apub ,
and thus of the set Trpriv (A) ∩ Trpriv (A). Since reachability is decidable in
PSPACE in TAs [2], the same holds for the ∃-opacity problem. ut

We now reduce the reachability problem for timed automata, known to be18

PSPACE-complete, to the ∃-opacity problem.19

20



Proof. Let A = (Σ,L, `0, ∅, Lf ,X, I, E) be a timed automaton.1

We suppose that X is not empty and define (see Fig. 6) A′ =2

(Σ,L ∪
{
`′0, `

′
1, `
′
f

}
, `′0, Lf , Lf ∪

{
`′f

}
,X, I ′, E′) where I ′ an invari-3

ant extending I such that I ′(`′0) = I ′(`′1) = I ′(`′f ) = true and4

E′ = E ∪
{
(`′0, ε, (x = 0), ∅, `0), (`′0, ε, (x = 0), ∅, `′1), (`′1, ε, true, ∅, `′f )

}
∪5 {

(`′f , a, true, ∅, `′f ) | a ∈ Σ
}

for some x ∈ X.6

`0 `fA

`′0

`′1 `′f

ε
x = 0

ε
x = 0

Σ

Fig. 6: TA A′ for the PSPACE-hardness of ∃-opacity

The timed automatonA′ is ∃-opaque if and only if a final location is reachable7

in A. Indeed, the set Trpriv (A′) contains all the possible timed traces with the8

action set Σ, and the private runs on A′ correspond exactly to runs on A. Hence9

Trpriv (A′) ∩ Trpriv (A′) 6= ∅ if and only if Trpriv (A′) 6= ∅, i.e., if there is a10

run on A that reaches a final location. Since the reachability problem in TA is11

PSPACE-complete, we deduce from this construction that the ∃-opacity problem12

is PSPACE-hard.13

Note that this reduction holds as well for one-action TAs, discrete-time TAs and14

oERAs.15

B.2 ∃-opacity problem for TAs with a fixed number of clocks16

Fix N as a constant. We consider now the ∃-opacity problem for TAs with N17

clocks.18

In the previous section, the ∃-opacity problem for TAs was shown to be within19

PSPACE. The algorithm reduces the problem to a reachability query on the prod-20

uct automaton Apriv×Apub (a TA with 2N clocks). The reachability problem for21

TAs is usually solved by studying reachability in the associated region automa-22

ton. Reachability in automata being in NLOGSPACE and the region automata23

being exponential in general produces the result. More precisely, the number of24

21



states of the region automata is bounded by |L|(N ! · 2N ·
∏
x∈X

(2M +2)) [2] where1

M is the highest constant occuring in guards and invariants. Note that, since2

N is a constant, this number becomes polynomial when integers in guards and3

invariants (and thus M) are given in unary. Hence the reachability problem falls4

to NLOGSPACE, which implies the ∃-opacity problem also lies in NLOGSPACE5

then.6

Concerning the hardness, let us show that the ∃-opacity problem remains7

PSPACE-hard for one-clock automata with constants in binary. Note that the8

reduction of the previous section does not apply, as reachability in TA with9

one clock is not PSPACE-hard. We reduce the reachability problem in two-clock10

automata, known to be PSPACE-complete [18], to the ∃-opacity problem in one-11

clock automata.12

Let Ax,y = (Σ,L, `0, ∅Lf ,X, I, E) a TA with clocks x and y. First we relabel13

every transition (including silent transitions) of Ax,y with a new alphabet Σ′ =14

{ai | 1 ≤ i ≤ |E|} such that each letter of Σ′ labels exactly one transition of15

Ax,y. We denote the obtained automaton by A′x,y.16

Given a guard g, we define gx and gy as respectively the constraints in g over17

x and y. Hence, g = gx ∧ gy. For z ∈ {x, y}, we then define the automaton Az =18

(Σ,L, `0, ∅, Lf , {z} , Iz, Ez) with Ez = {(`, a, gz, R ∩ {z} , `′) | (`, a, g, R, `′) ∈ E}19

and Iz is similarly obtained by only keeping the z part of the invariant.20

We have that a word accepted by A′x,y is also accepted by A′x and by A′y, as21

each of those TAs have less constraints. Moreover, if a word is accepted by A′x22

and by A′y, as the corresponding run is entirely characterized by its trace (since23

each transition has its own label) and satisfied the constraints on both clocks,24

then it is accepted by A′x,y.25

We build the TA B over the single clock x as the classical union construc-26

tion of A′x and A′y, and set as private locations the final locations of A′x. More27

precisely, we add a new initial location `′0 from which one can reach the initial28

location of A′x and A′y by a transition labelled by a new letter ] and with the29

guard (x = 0). Moreover, we relabel every occurrence of y in the copy of A′y into30

x.31

As the runs of A′x (resp. A′y) provide the private (resp. public) runs of B, B32

is ∃-opaque if and only if there is a pair of runs of same trace accepted by A′x33

and A′y, thus a word accepted by A′x,y or equivalently a reachable final location34

in Ax,y. Moreover, B is polynomial in the size of Ax,y. Therefore the ∃-opacity35

problem in one-clock automata is PSPACE-hard.36

C Opacity of one-action TAs37

Proof. We first prove the undecidability of the full opacity problem. Let A be38

a TA with a single action. We want to build a TA such that if we can answer39

the full opacity problem of this TA, then we can decide the universality problem40

for A. We consider the following TA: we add an initial location exited by two41

ε-transitions that must be taken urgently (i.e., no time may elapse before taking42

them). The first ε-transition leads to a secret location which leads (again via43
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x = 0
ε

ε
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ε
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a
x ← 0

x = 0
ε

Fig. 7: Automaton B: Reduction from universality to full opacity

an urgent ε-transition) to the initial location of the TA A and the other leads1

to a location where every finite timed words on Σ can be read before reaching2

a final location. We denote this TA B and illustrate its construction in Fig. 7.3

The language recognized by A corresponds exactly to the traces of private runs4

of B, and the traces of public runs of B are all the finite timed words on Σ.5

Therefore, B is fully opaque iff Trpriv (B) = Trpriv (B) iff Tr(A) = TW ∗(Σ) iff6

A is universal. Since universality for TAs with one action is undecidable [23], we7

conclude that the full opacity problem for one-action TAs is undecidable.8

Finally, with Theorem 1, we deduce the undecidability of weak opacity for
TAs with one action. ut

D Opacity of TAs over discrete time9

Lemma 1. The language of a discrete-time TA and the language of its region10

automaton are in bijection.11

Proof. Let A be a discrete-time TA. We explicit the bijection of the lemma.12

Given a path ρ of A generating the timed word w, as A includes ticks, w is13

of the form14

(t, 1) . . . (t, τ0)(a0, τ0) (t, τ0+1) . . . (t, τ1)(a1, τ1) . . . (t, τn−1+1) . . . (t, τn)(an, τn).

To the timed word w, we associate the untimed word produced within the region15

automaton by the path [ρ]) corresponding to ρ:16

tt . . . t︸ ︷︷ ︸
τ0 times

a0 tt . . . t︸ ︷︷ ︸
(τ1−τ0) times

a1 . . . tt . . . t︸ ︷︷ ︸
(τn−τn−1) times

an.

This association is injective as the sequence (τi)i≤n which was removed17

in the transformation depends only on the number of t of the timed18

word. Moreover, it is surjective as given an untimed word in RAA w′ =19

tt . . . t︸ ︷︷ ︸
k0 times

a0 tt . . . t︸ ︷︷ ︸
k1 times

a1 . . . tt . . . t︸ ︷︷ ︸
kn times

an produced by a path [ρ′] of the region au-20

tomaton, defining21

w = (t, 1) . . . (t, k0)(a0, k0)(t, k0 + 1) . . . (t, k0 + k1)(a1, k0 + k1) . . . (an,

n∑
i=0

ki)

23



we have that w is the timed word generated by the unique path of the TA
corresponding to ρ′ and w is associated to w′. ut

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-1

complete.2

We separate both directions of the proof, due to how voluminous the hardness3

is. We start by showing that the language inclusion in discrete-time TAs can be4

achieved in EXPSPACE.5

Proof. Let A and B be two discrete-time TAs, and let RAA and RAB be their6

respective region automata. Then from Lemma 1, we have7

Tr(A) ⊆ Tr(B) if and only if Tr(RAA) ⊆ Tr(RAB)

Thus deciding the language inclusion in discrete-time TAs amounts to solving
the language inclusion problem in the context of finite regular automata, which
can be done in PSPACE in the size of the region automata. Noting that the
region automata of the ticked TA is exponential in the size of the initial TA, this
produces an EXPSPACE algorithm. ut

Let us now show that the language inclusion in discrete-time TAs is8

EXPSPACE-hard. To do so, we will reduce a succinct variant of the equality9

of rational expressions.10

Definition 12 (Rational expressions with square). The expressions ∅, ε,11

and a with a ∈ Σ are rational expressions with square. If exp1 and exp2 are12

rational expressions with square, then so are exp1 + exp2, exp1 · exp2, exp∗1 and13

exp2
1.14

A rational language with square is a set of words on Σ represented by a15

rational expression with square.16

The operators on the rational expressions are interpreted in the usual way. For17

instance, the expression (a+ab)2 represents the set of words {aa, aab, aba, abab}.18

There can be several expressions representing the same language.19

The expressivity of rational languages with square is exactly the same as20

of rational languages since using the square is equivalent to concatenating an21

expression with itself. However, the description of a language with square may22

be exponentially more succinct. Hence why we have23

Proposition 2. [22] Let L1 and L2 be two rational languages with square. De-24

ciding whether L1 = L2 is EXPSPACE-complete.25

Proof (Proof of the hardness of language inclusion for discrete-time TA). Let26

L be a rational language with square and exp be the rational expression with27

squares that represents it. From the structure of exp, we will build a timed28

automaton which untimed language is L.29

Since we will compare the timed language of TAs, and we only want to com-30

pare their untimed languages, we need to impose a standard for the timestamps31

24



of their words. We choose that each action must occur at an even number of time1

units. More precisely, if the automaton recognizes words of at least one letter it2

will read the first one without any delay and waits two time units between each3

letter. To do this we use the clock x which is reused for all the constructions,4

and which is reset only when a letter occurs. Every operation, beside reading a5

letter, must then be done in time 0. In particular, our constructions always start6

and end with x = 0, and only allows time to elapse when a letter is read. We7

present in the following table (Fig. 8) the inductive constructions corresponding8

to the basic rational expressions and the operators +, ·,∗. The case of the square9

operator is explained separately.10

Rational expression
with square exp

Timed automaton Aexp

ε

a ∈ Σ

exp1 · exp2

exp1 + exp2

exp∗

ε
x = 0

a
x = 0

ε
x = 2
x ← 0

Aexp1
Aexp2

ε
x = 0

Aexp1

Aexp2

ε
x = 0

ε
x = 0

Aexp

ε
x = 0

ε
x = 0

ε
x = 0

Fig. 8: Table of timed automata constructions Aexp for regular expressions
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1

For the square construction Aexp2 (Fig. 9) we need to add three additional2

clocks per square occurrence: the first one, z, manages the particular case of the3

empty word ε by detecting whether some time has passed during the crossing of4

Aexp, while the clocks y and v are used to force exactly two passages in Aexp.5

Indeed, the shift between the clocks x, y and v (with values kept between zero6

and two all along the run) permits to keep in memory the number of remaining7

passage in Aexp by being modified once during the first passage (¬), a second8

time between the first as second passage (­), and being checked at the end of9

the second passage (®). These added clocks cannot be reused in nested squares10

constructions. Thus we introduce a number of clocks equal to three times the11

maximal number of nested squares in the expression to build the corresponding12

timed automaton.13

More precisely, the previously built TA Aexp is modified into Ãexp by adding14

on every location silent loop transitions resetting y and v when they reach 2, as15

well as a silent loop transition with guard x = 1 ∧ y = 1 and reset set {y, v}.16

At most one of the latter loops, denoted by ¬, is taken during an execution,17

and it requires at least one letter to be triggered. This transition ensures that18

y = v 6= x in the following. This property is necessary to take the transition ­,19

which now ensures that x = v 6= y, which will allow taking the transition ®.20

As mentionned, taking the transition ¬ requires at least one letter to be read,21

hence why, when exp contains the empty word, we need the clock z to give an22

alternative way to exit the gadget. Formally, we have23

Ãexp
ε

x = 0
y ← 0
z ← 0
v ← 0

ε
ε

z = 0

ε
x = 0 ∧ y = 1
∧ v = 0

®

­
ε

x = 0 ∧ y = 1
∧ v = 1
v ← 0

¬:

¬

x = 1
y = 1
y ← 0
v ← 0

ε

Fig. 9: TA Aexp2

Ãexp is the automaton Aexp modified through ¬.
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Definition 13 (Square construction). Let Aexp = (Σ,L, `0, ∅, Lf ,X, I, E) be1

the timed automaton corresponding to the rational expression with square exp.2

Then, the TA corresponding to exp2 is Aexp2 = (Σ,L ∪ {`′0, `′f}, `′0, ∅,
{
`′f

}
,X ∪3

{v, y, z} , I ′, E′) where4

– I ′ is the extension of I such that I ′(`′0) = I ′(`′f ) = true,5

–

E′ = E ∪ {(`′0, ε, true, ∅, `0)}∪⋃
`∈L

{(`, ε, y = 2, {y} , `), (`, ε, v = 2, {v} , `), (`, ε, x = 1 ∧ y = 1, {v, y} , `)}∪

⋃
`f∈Lf

{
(`f , ε, x = 0 ∧ y = 1 ∧ v = 1, {v} , `′0), (`f , ε, z = 0, ∅, `′f ), (`f , ε, x = 0 ∧ y = 1 ∧ v = 0, ∅, `′f )

}
.

Two rational languages with square L1 and L2, respectively represented by
the expressions exp1 and exp2, are equal if and only if the automata Aexp1

and
Aexp2

recognize the same timed language. The obtained automata are timed
automata with discrete time of polynomial size in the rational expressions. Thus
from Proposition 2 follows the EXPSPACE-hardness of language inclusion for
discrete-time TA. ut

Theorem 7. Weak and full opacity of discrete-time TAs are EXPSPACE-6

complete.7

Proof. Let A be a discrete-time automaton with private locations set Lpriv . The8

construction in Section 4.1 is still compatible with discrete time clocks so we can9

build two discrete-time TAs Apriv and Apub such that Tr(Apriv ) = Trpriv (A)10

and Tr(Apub) = Trpriv (A). Then testing the weak opacity property on A is11

equivalent to testing the inclusion Tr(Apriv ) ⊆ Tr(Apub). Therefore the weak12

opacity problem in discrete-time TAs is in EXPSPACE.13

EXPSPACE-hardness can easily be obtained by the following reduction: Given14

two TA A and B, one can build a TA which private runs are the runs of A and15

which public ones are those of B. We do this by making the initial location of A16

private and considering the natural construction of the union of A and B. Hence17

comparing the languages of A and B amounts to testing weak opacity on the18

built automaton.19

As before, thanks to Theorem 1, we can extend this result to the full opacity
problem. ut

E PSPACE-completeness of weak / full opacity for oERAs20

Let us first explain why the algorithm for weak opacity presented in the main21

document is in PSPACE. As a summary, this algorithm consists in, given an22

oERA A, building the corresponding Amemo , determinizing it through the subset23

27



construction, taking its region automaton, and then testing reachability of a1

location containing a final private location, but no final public location.2

The determinization of the oERA causes the number of locations to become3

exponential in the size of the entry, and the construction of the region automaton4

gives an exponential number of clock regions, bounded by |X| ·2|X| ·
∏
x∈X

(2M(x)+5

2)[2]. The size of the region automaton is thus exponential in the number of6

locations and the number of clocks of A. On the region automaton, testing the7

reachability of a location can be done in NLOGSPACE. Hence the problem of8

weak opacity in oERA is in PSPACE.9

Let us now explain why these problems are PSPACE-hard. We reduce from10

the reachability problem for TA, which is PSPACE-complete.11

Let A be a timed automaton, with a set of final locations Lf . We consider12

A′ the TA obtained by setting in A the set of private locations to Lf . This way,13

every run of A′ are private. Thus A′ is weakly opaque if and only if no final14

location of A is reachable. Hence, the weak opacity problem in oERA is hence15

PSPACE-hard.16

These results extend to full opacity thanks to Theorem 1.17

F Opacity with N observations18

Given a A = (Σ,L, `0, Lpriv , Lf ,X, I, E) and N ∈ N. We build the unfolding of19

the TA Amemo described in Remark 1. Recall that Amemo recognizes the same20

language as A but stores within the locations the information whether Lpriv21

was visited. As such, Amemo has the same opacity properties as A, so we can22

consider UnfoldN (Amemo) instead of UnfoldN (A) to study the opacity of A.23

Additionally, we enrich this TA with ticks. In Section 5.4, we added a single24

tick to the automaton which counted the time elapsed since the start of the run.25

Here, the TA includes as well, for each 0 < k ≤ N , a tick counting the time26

elapsed since the k’th observation. As multiple ticks may need to occur at the27

same time, we develop the alphabet of ticks to describe the set of tick clocks28

that need to be reset, i.e., the tick t{k1,...,km} is produced by the TA if for every29

0 ≤ i ≤ m, the ki’th observation (or the start of the run if ki = 0) occurred an30

integer number of time units beforehand. Note that the addition of these ticks31

immediately uses the assumption that only N actions are observed.32

Definition 14 (Addition of ticks to the Unfolding construction).33

Let A = (Σ,L, `0, Lpriv , Lf ,X, I, E) be a TA, N ∈ N and let UnfoldN (A) =34

(Σ,L′, `00, L
′
priv , L

′
f ,X, I ′, E′) the unfolding of A. We define the Tick construction35

Tick(UnfoldN (A)) = (Σ′, L′, `00, L
′
priv , L

′
f ,X′, I ′, E′′) where36

1. Σ′ = Σ ∪Σ0 ∪Σt where Σ0 =
{
a0 | a ∈ Σ

}
is a copy of the alphabet Σ that37

is used to represent within the action’s name that it occurred at the same38

time as the previous action, and Σt = {tK | K ⊆ [[0;N ]],K 6= ∅} is the set of39

ticks associated to each set of added clocks;40

2. X′ = X ∪ Xt where Xt = {xi | i ∈ [[0;N ]]} is the set of the N + 1 tick clocks;41

28



3. E′′ =
N−1⋃
i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N1

– Ei = {(`i, ε, g ∧
i∧

k=0

(xk < 1), R, `′i) | (`, ε, g, R, `′) ∈ E′} ∪2

{(`i, tK ,
∧
k∈K

(xk = 1) ∧
∧

m∈[[0;i]]\K
(0 < xm < 1), {xk | k ∈ K}, `i) | `i ∈3

Li ∧K ⊆ [[0; i]] ∧K 6= ∅};4

– Ei→i+1 = {(`i, a0, g ∧
i∧

k=0

(xk < 1) ∧
i∨

m=0
(xm = 0), R ∪ {xi+1}, `′i+1) |5

(`, a, g, R, `′) ∈ E′} ∪ {(`i, a, g ∧
i∧

k=0

(0 < xk < 1), R ∪ {xi+1}, `′i+1) |6

(`, a, g, R, `′) ∈ E′}.7

We obtain in this way the timed automaton Tick(UnfoldN (Amemo)). Let8

RATick(UnfoldN (Amemo)) be the region automaton of this automaton. Thanks to9

the added ticks, paths of RATick(UnfoldN (Amemo)) sharing the same trace corre-10

spond to runs of A for which the (at most) N observations occurred within11

the same time intervals (due to the tick representing the total time) and the12

fractional part of the timing of those observations have the same order. This is13

the information we mainly need, and thus we wish to regroup every path of the14

region automaton with the same trace. As the region automaton is a finite au-15

tomaton, we can realize usual operations on it, that is, first remove ε-transitions16

(by fusing them with the following non-ε-transition) and then determinizing the17

automaton through the subset construction. We denote by B(A) the resulting18

automaton. We call beliefs the states of B(A), i.e., they describe the set of regions19

the attacker believes the system may be in.20

Let B be a belief of B(A) and Bpriv (resp. Bpub) be the subset of B containing21

the regions which associated location in Amemo is private (resp. public) and final.22

We say that B is weakly (resp. fully) discriminating if Bpriv 6= ∅ and Bpub = ∅23

(resp. if either Bpriv 6= ∅ and Bpub = ∅ or Bpriv = ∅ and Bpub 6= ∅). The24

discriminating beliefs in B(A) allow to characterize the opacity problems.25

Proposition 3 (Relation between opacity and discriminating belief).26

A TA A is weakly (resp. fully) opaque w.r.t. N observations iff B(A) does not27

contain any weakly (resp. fully) discriminating belief.28

Proof. We focus on weak opacity, the full opacity case can be treated similarly.29

– Assume first that B(A) contains a weakly discriminating belief B. Let r be a30

region in Bpriv and w be the trace of a path leading from the initial belief of31

B(A) to B. By construction of the region automaton, there exists a run ρ of32

Tick(UnfoldN (Amemo)) whose untimed trace (i.e., the trace of ρ projected33

on the actions) is w and such that the run corresponding to ρ in the region34

automaton ends in r. In particular, ρ is a private run. Moreover, any run35

whose untimed trace is w ends in a region of B. Thus, there is no public run36

with trace w and in particular Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))) and37

Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))), hence Tick(UnfoldN (Amemo)) is38

not weakly opaque and A is not weakly opaque w.r.t. N observations.39
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– Assume now that A is not weakly opaque w.r.t. N ob-1

servations. Let ρ be a run of Tick(UnfoldN (Amemo)) such2

that Tr(ρ) ∈ Trpriv (Tick(UnfoldN (Amemo))) and Tr(ρ) 6∈3

Trpriv (Tick(UnfoldN (Amemo))). Let [ρ] be the run corresponding to ρ4

in the region automaton.5 We denote by T ([ρ]) the set of traces of runs of5

Tick(UnfoldN (Amemo)) associated to [ρ].6

Lemma 2. Denoting w = a0, . . . , am the trace of [ρ], T ([ρ]) contains exactly7

the words (a0, τ0) . . . (am, τm) satisfying the following constraints:8

1. ∀i ∈ [[0;m]], (ai ∈ Σ∪Σt =⇒ τi−τi−1 > 0)∧(ai ∈ Σ0 =⇒ τi−τi−1 = 0)9

(where τ−1 = 0), meaning that two consecutive observable actions occur10

at the same time if and only if the second one is in Σ0.11

2. ∀i, j ∈ [[0;m]],∀J ⊆ [[0;N ]],∀I ⊆ J,
(
i < j ∧ ai = tI ∧ aj = tJ ∧ ∀k ∈12

[[i+ 1; j − 1]],∀K ⊆ [[0;N ]](ak = tK =⇒ K ∩ J = ∅)
)

=⇒ τj − τi = 1,13

meaning that two successive ticks of the same clocks are separated by14

exactly 1 time unit.15

3. τm ≥ 1 =⇒
(
∃i ∈ [[0;m]],∃I ⊆ [[0;N ]]∀j < i, ai = tI ∧ 0 ∈ I ∧ τi =16

1 ∧ (aj 6∈ Σt)
)
, meaning that the first occurrence of the tick of the clock17

x0 is at time 1.18

4. ∀i ∈ [[0;m]], (ai ∈ Σ ∪ Σ0 ∧ τm − τi ≥ 1) =⇒ (∃k ∈19

[[0;m]],∃K ⊆ [[0;N ]], ak = tK ∧ |
{
j ∈ [[0; i]] | aj ∈ Σ ∪Σ0

}
| ∈ K ∧ τk −20

τi = 1) meaning that each of the N observations is followed by its corre-21

sponding tick exactly one time unit after it.22

5. ∀i ∈ [[0;m]],∀I ⊆ [[0;N ]], (ai = tI∧τm−τi ≥ 1) =⇒ ∃j ∈ [[i+1;m]],∃J ⊆23

[[0;N ]], (I ⊆ J ∧ aj = tJ) meaning that if a clock ticked and the run is24

still at least one time unit long, then there will be a new tick of this clock25

within the rest of the run.26

Due to its size, we postpone the proof of this lemma to the bottom of this27

section.28

Note that this lemma implies that T ([ρ]) depends exclusively on the trace w,
not on the path within the region automaton. Hence, given [ρ′] such that the
trace of [ρ′] is w, we have T ([ρ′]) = T ([ρ]). In particular, let B be the belief
reached in B(A) with trace w. For any region r ∈ B associated to a final
location, there exists a run ρ′ such that Tr(ρ) = Tr(ρ′) and [ρ′] ends in r.
As Tr(ρ) 6∈ Trpriv (Tick(UnfoldN (Amemo))) by assumption, we have that r
is a region associated to a private location. Hence Bpriv 6= ∅ and Bpub = ∅,
thus B is a weakly discriminating belief. ut

Proof (Proof of Theorem 9). From Proposition 3, deciding weak and full opacity29

of A amounts to checking the existence of a discriminating belief in B(A). This30

is simply achieved by a reachability test in the finite automaton B(A).31

5 The notation [·] represents that [ρ] implicitly defines an equivalence class of runs
of Tick(UnfoldN (Amemo)). For a run ρ′ of Tick(UnfoldN (Amemo)), we thus write
ρ′ ∈ [ρ] to say that the run associated to ρ′ in the region automaton is [ρ].
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Considering the complexity, the unfolding of the TA, assuming N is in binary,
has exponentially many states. Adding the ticks means adding an exponential
number of clocks as well. Hence the region automaton is doubly exponential
and its determinisation is triply exponential. Reachability being in NLOGSPACE
implies the 2-EXPSPACE algorithm. If N is given in unary, the complexity falls
to EXPSPACE. ut

Let us finally establish Lemma 2. For ease of readability, we separate the1

proofs of the two inclusions implying the lemma.2

First direction of the proof We first show the easy direction of the proof:3

the timed words in T ([ρ]) satisfy the five properties.4

Proof. Let u = (a0, τ0) . . . (am, τm) be in T ([ρ]). Since u ∈ T ([ρ]), there exists a5

run ρ′ in [ρ] on Tick(UnfoldN (Amemo)) which produces the trace u:6

ρ′ = (`0, µ0)
(d0,e0)−→ . . . (`ji−1, µji−1)

(dji−1,eji−1)
−→ (`ji , µji) . . . (`n, µn)

Recall the link between the trace of a run and its transitions: for every i ∈ [[0;m]],7

the ji index corresponds to the i-th observable action, i.e., ji satisfies τi =
ji∑
k=0

dk8

and eji is labeled by ai. We set τ−1 = 0.9

– Property 1. Let i ∈ [[0;m]]. The set of clocks reset by ε-transitions is included10

in X. By definition of the indices ji, there are only ε-transitions between the11

configurations (`ji−1+1, µji−1+1) if i > 0 or the initial configuration if i = 0,12

and (`ji , µji). Thus, no clock from Xt is reset among these transitions and13

we have µji−1+1(x) +
ji−1∑

k=ji−1+1

dk = µji(x) for each x ∈ Xt. Assume ai ∈ Σ0.14

As ai ∈ Σ0, the guard of eji is of the form g∧
h∧
k=0

(xk < 1)∧
h∨
k=0

(xk = 0) with15

some guard g and the copy number h ≤ i of eji ∈ Eh→h+1 (in other words,16

the integer h such that the transition of the original automaton starts in the17

copy Lh). In particular, there exists a clock x ∈ Xt such that µji(x)+dji = 0.18

Therefore we obtain µji−1+1(x)+
ji∑

k=ji−1+1

dk = 0, which implies τi−τi−1 = 0.19

Let us now assume that ai ∈ Σ∪Σt, and show that τi−τi−1 > 0. Depending20

on whether ai is in Σ or in Σt, the guard of the transition eji can be of two21

forms : g ∧
h∧
k=0

(0 < xk < 1) with g some guard and h some copy number, if22

ai ∈ Σ; or
∧
k∈K

(xk = 1)∧
∧

m∈[[0;h]]\K
(0 < xm < 1) with K ⊆ [[0;h]] non-empty23

and h a copy number, if ai ∈ Σt. In both cases, we must have µji(xk)+dji > 024

for each xk ∈ Xt such that k ≤ h. However the last observable transition25

eji−1
resets one of those clocks x, which gives µji−1+1(x) = 0. Hence 0 <26

µji(x) + dji = µji−1+1(x) +
ji∑

k=ji−1

dk =
ji∑

k=ji−1

dk .27
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– Property 2. Let i, i′ ∈ [[0;m]], with i < i′. Assume there are I ′ ⊆ [[0;N ]] and1

I ⊆ I ′ such that ai = tI and ai′ = tI′ . Suppose that for every k ∈ [[i+1; i′−1]]2

and for each K ⊆ [[0;N ]], ak = tK =⇒ K ∩ I ′ = ∅. Let us show that3

τi′ − τi = 1.4

Let x ∈ {xk | k ∈ I} ⊆ Xt. After the reset applied by eji , we have: µji+1 =5

[µji + dji ]{xk|k∈I} |= (x = 0). In order to take the transition eji′ , the clock6

valuation µji′ + dji′ needs to satisfy the guard (x = 1). It remains to show7

that x is not reset between eji and eji′ . Let e be a transition between eji8

and eji′ . If e is an ε-transition, it does not reset any clock in Xt. If e is labeled9

by a letter in Σ ∪ Σ0, it is in some Eh
′→h′+1 with h′ ≥ h and h the copy10

number of the configuration preceding eji . The only clock e resets that is not11

in X is xh′+1, and cannot be x since I ⊆ [[0;h]]. Finally, if e = (`, tK , g, R, `
′)12

is labeled by a tick tK for some K ⊆ [[0;N ]], the hypothesis K ∩ I ′ = ∅ in13

the property ensures that x is not part of the set of clocks reset by e. Hence,14

we obtain µji′ (x)+dji′ = [µji +dji ]{xk|k∈I}+
ji′∑

k=ji+1

dk = τi′ − τi = 1, which15

concludes the proof of the second point.16

– Properties 3 and 4. Both properties 3 and 4 are similar and require the first17

tick of a clock in Xt to occur one time unit after reaching the corresponding18

copy of the automaton. Indeed Property 3 is the particular case of h = 0 in19

the following proof, and Property 4 is the case h > 0. Let h ∈ [[0;N ]]. We20

focus on the clock xh ∈ Xt. Let i be the index of the h-th observation in the21

trace, that is to say the h-th letter of the trace that is in Σ ∪Σ0. If h = 0,22

we set i = −1. In any cases τi is the time of arrival in the copy h via the23

transition eji ∈ Eh−1→h, and at this precise moment xh = 0. Every guard24

of the transitions of Eh
′
and Eh

′→h′+1 with h′ ≥ h requires that xh < 1,25

except for the transitions labeled by tK with h ∈ K, which reset xh and26

require xh = 1. Thus, xh must have been reset if the run lasts more than one27

time unit after the h-th observation, i.e., if τm− τi ≥ 1. The only transitions28

from the copy h that can reset xh are those labeled by tK with h ∈ K; their29

guards require xh = 1 so the first reset of xh after reaching the copy h needs30

to occur at time τi + 1.31

– Property 5. We use the same argument as Properties 3 and 4 to prove the fifth32

property. Let i ∈ [[0;m]], and suppose ai = tI for some non-empty I ⊆ [[0;N ]]33

and τm−τi ≥ 1. The transitions following eji require
∧
k∈I

(xk < 1), unless they34

reset all the clocks in RI = {xk | k ∈ I}. As τm−τi ≥ 1, an observable action35

occurs at least one time unit after eji and the clocks of RI thus needed to36

be reset. Hence there is a tick transition labeled by tJ with I ⊆ J happening37

after eji .38

ut

Second direction of the proof Now we tackle the second direction of the39

proof: we show that if a0 . . . am is the trace of a run [ρ], then all the timed words40
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(a0, τ0) . . . (am, τm) that satisfy the five properties of the lemma are in T ([ρ]),1

i.e., there are runs in [ρ] which produce these timed traces.2

Proof. Let w = a0 . . . am be a trace in RATick(UnfoldN (Amemo)), and let3

τ = (τ0, . . . , τm) be a timestamps sequence such that the timed word4

(a0, τ0) . . . (am, τm) verifies the five properties of the lemma. We define the se-5

quence (fi)0≤i≤N of the timestamps’ fractional parts associated to each tick6

clock. For each i ∈ [[0;N ]] we set Ji =
{
j ∈ [[0;m]]|∃I ⊆ [[0;N ]], i ∈ I ∧ aj = tI

}
.7

Let first(i) = min
{
j ∈ [[0;m]]||{k ∈ [[0; j]]|ak ∈ Σ ∪Σ0

}
| = i

}
(be the subscript8

of the i-th observation) if i > 0 and first(0) = −1. Thus first(i) is the subscript of9

the first observation in w that resets the clock xi ∈ Xt. We set fi = frac(τfirst(i)).10

Then, from properties 2 and 4 we have that for each i in [[0;N ]] and for each11

j ∈ Ji, frac(τj) = fi. From property 3, we get f0 = 0.12

If i, i′ ∈ [[0;N ]] with i < i′, then property 1 ensures that fi = fi′ if and only13

if there exist j ∈ Ji ∪ {first(i)} such that j + 1 = first(i′) and afirst(i′) ∈ Σ0.14

Note that the sequence (fi)0≤i≤N depends only on the timed trace and not on15

the path in the region automaton.16

Let [ρ] : r0, b0, r1, . . . bp−1rp be a run in Tick(UnfoldN (Amemo)) of trace w.17

For n ∈ [[0; p]] we define (deduced from τ) the constraint Cτ,rn on the tick clocks,18

in order to produce a run of [ρ] that corresponds to τ . We denote by `hn the19

location of rn with h the number of the copy of L it belongs to, and by [µn] the20

clock region of rn.21

We distinguish two cases depending on whether rn is a region where at least22

one tick clock has integer value (noting that, by property of the region automa-23

ton, if one valuation of [µn] give an integer value to a clock, then all valuations24

of [µn] do).25

– ∃xi ∈ Xt, µn(xi) ∈ N: In this case and if i ≤ h we set (type 1 constraint)

Cτ,rn =

h∧
k=0

((fk ≤ fi =⇒ frac(xk) = fi − fk)

∧ (fi < fk =⇒ frac(xk) = fi − fk + 1))

∧
N∧

k=h+1

(frac(xk) = x0)

– ∀xi ∈ Xt, µn(xi) /∈ N:26

Let i be the index of one of the last tick clocks that were reset in [ρ] before rn.27

If there is no tick clock reset before rn, we set i = 0. Similarly, we consider28

j ∈ [[0;h+ 1]] one of the clock indices of the next tick clock reset after rn. If29

there is no tick clock reset after rn, we take the next tick clock reset that is30

supposed to occur, i.e., j = min
{
j′ ∈ [[1;h]]|fi < fj′

}
or j = 0 if this set is31

empty.32

If j ∈ J0, we set (type 2 constraint)33

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

(fi−fk < xk < 1−fk∧1−fk−xk = δ)∧
N∧

k=h+1

(frac(xk) = x0)
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Otherwise, and if we have 0 < j < h+1 and j /∈ J0, we set (type 3 constraint)

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

((fk < fj =⇒ (fi − fk < xk < fj − fk ∧ fj − fk − xk = δ))

∧ (fj ≤ fk =⇒ (fi − fk + 1 < xk < fj − fk + 1 ∧ fj − fk + 1− xk = δ)))

∧
N∧

k=h+1

(frac(xk) = x0)

If j = h+1 we operate a slight change on this formula to obtain the following
one: (type 4 constraint)

Cτ,rn = ∃δ ∈ (0; 1)

h∧
k=0

((fk < fh+1 =⇒ (fi − fk < xk ≤ fh+1 − fk ∧ fh+1 − fk − xk = δ))

∧ (fh+1 < fk =⇒ (1− fk < xk ≤ fh+1 − fk + 1 ∧ fh+1 − fk + 1− xk = δ)))

∧
N∧

k=h+1

(frac(xk) = x0)

1

Now we combine this information to the constraints of the clock regions of a2

run in the region automaton to build a set of runs in Tick(UnfoldN (Amemo)).3

For n ∈ [[0; p]] we define the set of valuations4

Mn := {µ ∈ [µn] | µ |= Cτ,rn} .

We denote by [ρ]τ the subset of [ρ] defined by r′0, b0, r′1, . . . bp−1r
′
p where for each5

n ∈ [[0; p]], r′n = (`hn,Mn). The idea is that the successive clock valuations of runs6

of [ρ]τ are in these sets Mn of valuations which correspond to region changes:7

a tick clock reaches or exits an integer value each time the next clock valuation8

µ′n+1 does no more satisfy Cτ,rn .9

We prove by induction that [ρ]τ is not empty. The set M0 contains at least10

µ0 since it verifies Cτ,r0 = (frac(x0) = 0) ∧
N∧
k=1

frac(xk) = 0. Assume now11

there is a path (`00, µ
′
0), b0, . . . , (`

h
n, µ
′
n) with µ′j ∈ Mj for each j ∈ [[0;n]]. We12

show there exists µ′n+1 ∈ Mn+1 such that (`00, µ
′
0), b0, . . . , (`

h
n+1, µ

′
n+1) is a13

path in r′0, b0, r
′
1 . . . r

′
n+1. It is well known [14] that in the region automaton,14

((`, [µ]), a, (`′, [µ′])) ∈ ER if and only if for all µ ∈ [µ] there exists µ′ ∈ [µ′]15

such that (`, µ)
e7→ (`′, µ′) ∈ E, with e being the transition associated to16

((`, [µ]), a, (`′, [µ′])) in the timed automaton. Since µ′n ∈ [µn], by the above prop-17

erty we can find µ′n+1 ∈ [µn+1] following the transition (rn, bn, rn+1). We show18

that there is such a µ′n+1 that is also in Mn+1, i.e., such that µ′n+1 |= Cτ,rn+1
.19

– Suppose first (rn, bn, rn+1) is a discrete transition, with reset set R. Only20

one clock valuation µ′n+1 can succede to µ′n in this case. We show it is in21
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Mn+1. If bn ∈ Σ (resp. Σ0), then µ′n verifies a type 1 (resp. 4) constraint.1

We move to copy h+ 1 with a reset of some tick clocks (including xh+1) so2

the next constraint to be verified is of type 1. The clock valuation µ′n+1 is3

entirely determined by µ′n and the clock reset set.4

Since we move to copy h + 1, the clock xh+1 is now part of the tick clocks5

indexed from 0 to the current copy number, and µ′n+1(xh+1) = 0, which is6

required by the constraint Cτ,rn+1 . Moreover the constraints on the other7

clocks did not change. Thus the new type 1 constraint Cτ,rn+1
is verified8

by µ′n+1. Now, if bn ∈ Σt, only clocks reaching 1 are reset so their frac-9

tional part is not affected and the clock valuation µ′n+1 still satisfies Cτ,rn .10

The constraint Cτ,rn+1 depends on the time elapsed since the last tick and11

whether the transition was an observation, so in this case Cτ,rn+1 = Cτ,rn .12

Finally, if bn is an ε-transition, it only resets clocks from X and we have again13

Cτ,rn+1
= Cτ,rn . Since this constraint restricts only clocks from Xt and since14

their valuation does not change, µ′n+1 still verifies Cτ,rn and is in Mn+1.15

– We now assume that (rn, bn, rn+1) is a delay transition: there is dn ∈ (0; 1)16

such that µ′n+1 = µ′n+dn. This delay must verify some conditions because µ′n17

is fixed and a transition can change region only once. In all this paragraph,18

we take i (resp. j) some index of the last (resp. next) reset tick clocks.19

Suppose that Cτ,rn is a constraint of type 2, 3 or 4. Assume in the first case20

that xj ∈ Xt is such that µn+1(xj) ∈ N (so the next constraint Cτ,rn+1
is of21

type 1). Thus this clock has reached 1 (µ′n+1(xj) = 1) and Cτ,rn is a type 222

or 3 constraint. This setting entirely determines the unique reachable clock23

valuation µ′n+1. From the fact that µ′n models Cτ,rn , we have some δ ∈ (0; 1)24

such that 1 + fj − fj − µ′n(xj) = δ. Consequently dn = δ. We easily verify25

that the obtained µn+1 satisfies Cτ,rn+1
. Now if the next clock to be reset is26

xh+1 and there is no other delay transition before the next observation, then27

Cτ,rn is a type 4 constraint and we need to have µ′n+1(xh+1) = fh+1, which28

means that dn = fh+1−µ′n(x0). The next constraint Cτ,rn+1 is still the same29

as Cτ,rn . We have some δ for Cτ,rn and obtain the new δ′ = δ − dn = 0 to30

satisfy Cτ,rn+1
.31

Suppose now that there will be at least one other delay transition before the32

next tick clock reset. Assume Cτ,rn is of type 2, 3 or 4. Then, if this transition33

changes region, it only concerns clocks from X and we have Cτ,rn = Cτ,rn+1 .34

The preceding constraint gives δ = 1− µ′n(xj) if Cτ,rn is of type 2 or 3 and35

δ = fj − µ′n(xj) if it is of type 4. The delay dn cannot reach δ (otherwise36

µ′n+1(xj) ∈ N or the transition crosses more than one clock region at once,37

two excluded cases). We can construct the new δ′ = δ − dn involved in38

µ′n+1 |= Cτ,rn+1
and verify that µ′n+1 is thus still in Mn+1. Assume now that39

Cτ,rn is of type 1. Then the next region must give a constraint of type 2, 340

or 4. This case is similar to the last tackled one, and for the same reasons41

the delay dn cannot reach 1−fi+f∗ where f∗ ∈ {−fj , 1− fj}. In both cases42

we obtain from the δ of Cτ,rn the new one δ′ = δ − dn for Cτ,rn+1
, which is43

verified.44

Hence and by induction, [ρ]τ is not empty.45
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It remains to show that the timed trace these runs produce is
(a0, τ0) . . . (am, τm) (recall that is is the trace of [ρ] timed by a timestamp τ which
verifies the five properties of the lemma). Let ρ′ ∈ [ρ]τ . Let (ai, τi) be a letter of
the timed trace. Suppose the action ai occurs in ρ′ at time τ ′i following the clock
region [µji ]. Then the number of ticks of x0 before ai is given by the trace and is
exactly bτic = bτ ′ic. We know that frac(τ ′i) = frac(µji(x0)). Moreover, ai occurs
at the same time as the reset of a clock xk. If ai is a tick, the constraint of Mji

forces µji(x0) = fk and we have i ∈ Jk so frac(τ ′i) = fk = frac(τi). Otherwise ai
is an observation, so there exists h ∈ [[0;N − 1]] such that i = first(h + 1). The
clock xh+1 has never been reset yet so τ ′i = µji(xh+1). The constraint of Mji

gives frac(µji(xh+1)) = fh+1 and frac(µji(x0)) = fh+1. Since i = first(h+1), we
obtain frac(τi) = fh+1 = µji(x0) = frac(τ ′i). ut
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