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CNRS, F-75005 Paris, France

Abstract

Over the last half-century, linear viscoelastic models for crack growth in soft
solids have flourished but their predictions have rarely been compared to ex-
periments. In fact, most available models are either very approximate or cast
in forms which are not quite suitable for the analysis of actual data. Here, we
propose a linear viscoelastic approach which consistently exploits the dynamic
mechanical analysis (DMA) data. We apply this method to four sets of results
documenting fracture or adhesion rupture in soft solids with various degrees of
viscoelasticity. For elastomers, the results reproduce the well-known inconsis-
tency of the process zone size. In more viscoelastic systems however, the present
approach is able to match the measured velocity dependence of the rupture en-
ergy with physically acceptable process zone sizes. Moreover, our predictions
agree with the damage zone sizes measured by mecanoluminescence. Building
on these results, we discuss various issues arising when evaluating the linear
viscoelastic contribution to the rupture/adhesion energy in soft solids: data
quality, physical interpretation of the parameters, validity of simpler approxi-
mations and limitations of the present approach.

1. Crack growth in viscoelastic solids - the linear model

In the rupture of soft polymers (elastomers, gels, viscoelastic polymers) the
effective rupture energy G compounds the interfacial rupture energy w properly
speaking and the energy expended through bulk material dissipation around the
crack tip. Remarkably, it has been found that the rupture energy scales with
velocity V and temperature using the time-temperature scaling [1, 2] derived
from the linear dynamic mechanical response. Although fracture or adhesion
rupture inevitably involve large strains near the crack tip, especially in soft ma-
terials, this result suggests that linear viscoelasticity dominates the dissipation
processes during crack growth. In a scheme where the non linear processes (vis-
coelastic non linearities, damage, rupture,...) are assumed to be confined to a
process zone around the crack tip, the energy dissipated by viscoelasticity in a
region surrounding this process zone can be calculated by a linear theory and the
results can be used to predict the evolution of the effective fracture/adhesion
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energy as a function of velocity. And indeed many such theories have been
developed over the years (see [3, 4] for reviews).

In parallel, in the field of soft matter, fracture data have often been anal-
ysed as follows. Power law exponents for a) the fracture/adhesion energy in-
crease with crack velocity and b) the loss function increase with frequency are
compared (see [5] for an example). Because of the rather loose idea that the
enhancement of fracture energy with velocity should be related to the increase
of the loss modulus with frequency, similarity of these two exponents is deemed
sufficient to demonstrate that linear viscoelastic theory applies and, to that
point, one could think that the fracture problem in soft materials is settled. In
fact, despite the abundance of theories on the one hand and data on the other
hand, we find very few in depth comparisons of the ones with the others. The
first problem is that, of the many theories available, very few are cast under
a form suitable for comparison with experiments. The second problem is that
the data are often incomplete and not amenable to an in depth analysis. The
third problem is that, when a full comparison is finally made, there always ap-
pears a serious inconsistency. One of the prime examples is Gent’s study of
rupture/adhesion energies for several types of elastomers and interfaces. Using
a simple linear viscoelastic approach, he evidenced a characteristic size for the
non linear process zone of the order of 0.1 nm [1, 2]. More elaborate forms of the
linear viscoelastic theory by Hui et al. [4] come to identical conclusions 1. These
values for the process zone size are typical for viscoelastic fracture theory ap-
plied to elastomers : they are unacceptably low and this shortcoming critically
challenges the applicability of the theory.

In the present work, we attempt to bridge the gap between experiments
and theory. We propose a simple expression relating the dynamic storage mod-
ulus measured as a function of frequency to the velocity dependence of the
rupture/adhesion energy. We then apply this expression to four different sets
of data and show that: a) the elastomeric systems do exhibit an implausibly
small process zone size; b) more viscoelastic systems have reasonable process
zone sizes, in the micron to 10 micron range, which compare favorably with the
damage zone sizes measured by mecanolumicescence. In the light of these anal-
yses, we discuss various issues relevant for the evaluation of the contribution of
linear viscoelasticity to rupture/adhesion energies and the comparison of these
predictions with data.

2. An interesting experiment

In 2006, Tay & Barquins [6] carried out JKR type adhesion experiments [7]
with glass balls pressed against flat surfaces made of natural rubber (elastic
modulus in extension E=0.89 MPa, Poisson ratio 0.498, Tg=-72◦ C). They
determined the effective adhesion energy as a function of velocity G(V ). In JKR

1Ref. [4] also brings into focus the paucity of good data – the two sets of data they analyzed
were respectively a quarter and half a century old...
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Figure 1: Storage modulus µ′(ν) and loss modulus µ′′(ν) for the natural rubber used in [6],
referred to room temperature. Local power law dependencies over frequency are shown for
the loss modulus.

set-ups, the effective adhesion can be measured over extremely long periods
of time: as a result, the limit w = G(V ≃ 0) could be measured precisely,
which is a key point for data analysis (see Sec. 6). Quantitatively, they found a
dependence ϕ = (G(V ) − w)/w = k(aTV )0.55 where w = 42.7 mJ/m2, k ≃ 45,
aT = 1.570×10−3 at 25◦C and the velocity is given in µms−1. With V in ms−1,
this is

ϕ(V ) = s V 0.55 (1)

with s = 2.57 × 103 in SI units. This power law, which applies over three
decades of velocity, clearly reflects the role of the dissipative processes in the
glass/elastomer rupture.

We want to compare this result with predictions from a linear viscoelastic
theory. For polymers the dynamic, small strain, linear response is usually mea-
sured by dynamic mechanical analysis (DMA) as a function of frequency ν. For
the natural rubber used by Tay & Barquins, the storage modulus µ′(ν) and loss
modulus µ′′(ν) are shown in Fig. 1, referenced to room temperature.

3. The model

We now show that a useful expression to calculate G(V ) from DMA data can
be derived from our earlier solution to the linear viscoelastic crack problem [8].

3.1. Solution in the time domain - effective crack tip compliance

In a nutshell, we assume that the region over which the material separates,
the process zone, extends over a characteristic size c and that this separation
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Figure 2: Schematics of the energy flux from the relaxed far field through the dissipative
viscoelastic region to the crack tip (in red). The crack is moving at velocity V . To model the
contribution of the viscoelastic dissipation to the effective, far field, rupture/adhesion energy
G(V ), the rupture processes themselves are modelled by a cohesive zone (inset, in red). The
interfacial rupture energy for face separation is w and the cohesive stress σ0. The size of the
cohesive zone c(V ) depends upon w and σ0 and the material viscoelastic response through
Eq. 4.

induces tensile stresses of magnitude σ0 (the cohesive stress) over this region.
With this so-called cohesive zone model we can couple the rupture processes at
the crack tip to the linear viscoelastic dissipation in the surrounding material
(Fig. 2). It is similar to methods previously propounded by Greenwood [9] and
many others [3, 4].

Starting with a purely elastic material, we use the linear elastic solution to
calculate the work of the cohesive stress in the process zone [10]. Since this
work is equal to the adhesion energy w, we obtain

w =
π

4

σ0
2c

E⋆
(linear elastic) (2)

where E⋆ is the plain strain modulus. The approximate derivation sketched
in Appendix A shows that Equation 2 is a self-consistency relation for the
stress and strain distributions around the process zone.

Turning now to viscoelastic materials, we assume a steady state propagation
at velocity V . The process zone size c now depends upon V and we introduce
a characteristic time tr [11] such that

c(tr) = V tr (3)

This time will be called here transit time, although the phrases residence time
or dwell time have also been used. The transit time sets the characteristic strain
rate around the crack tip.
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Figure 3: Calculation of the effective crack tip compliance J1(tr) for transit time tr using Eq. 6
and the data given in Fig. 1). The storage compliance J ′(ω) is shown (extrapolated above
ω = 2.5 107 rad.s−1) along with the kernel for three different values of tr. The calculated J1
is also plotted as a function of ω = 2π/tr, for comparison with J ′.

The distribution of strain rates in the region surrounding the process zone
can be taken into account through the standard method of linear viscoelasticity,
i.e. time convolution of elastic solutions. We can calculate the work of the
cohesive stress for a steady state propagation of the process zone [10]. In this
time domain description, using the viscoelastic compliance J(t) of the material,
we find that the work of the cohesive stress is proportional to an effective crack
tip compliance J1(tr). In a moving frame picture, J1(tr) subsumes the response
of the viscoelastic material flowing around the process zone of size c with velocity
V (Fig. 2). The expression for J1 derived in [8] is given in Appendix B (Eq. B.1).
Equating again the work of the cohesive stress to the interfacial rupture energy
w, we obtain the self-consistency equation [8]

w =
1

2
σ0

2c(tr)J1(tr) (linear viscoelastic) (4)

Equation 4 generalizes Eq. 2 in that J1(tr) replaces 1/E
∗.

However, this equation on its own is not sufficient to predict the effective
rupture/adhesion energy G(V ), which is measured in the far field. If we assume
the system is large enough, i.e. there is no finite size effects, then far from
the dissipative region surrounding the process zone, the material is in a fully
relaxed state (Fig. 2) and the far field response is described by J(t = ∞), the
long time compliance. As a result [8], the effective rupture/adhesion energy can
be expressed as

G(V )

w
=

J1(t = ∞)

J1(tr)
(5)

where we have used J(t = ∞) = J1(t = ∞).
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3.2. Effective crack tip compliance in the frequency domain

Eqs. 4 and 5 provide the required relations between the rupture/adhesion
energy enhancement G(V )/w and the linear viscoelastic compliance J(t). This
time domain solution, however, is inconvenient because the dynamic response
is usually measured by DMA, in the frequency domain. Also, compared to time
domain measurements, the DMA data usually span a wide range of frequencies
through time-temperature superposition, including the very high frequencies
necessary for the analysis of elastomeric materials, as seen in Fig. 1. To obtain
an expression for the effective crack tip compliance J1 in the frequency domain,
we use the complex compliance J(ω), which is the Fourier transform of J(t).
As shown in Appendix B, J1 can be expressed as a function of the storage
compliance J ′, the real part of J(ω):

J1(tr) =
4

π

∫ +∞

0

J ′(ω)
ωtr − sin(ωtr)

ω2tr
2 d (ln(ω)) (6)

Finally, J(ω) is the inverse of the complex shear modulus µ(ω) = µ′(ω)+ iµ′′(ω)
which is directly measured by DMA:

J(ω) = J ′(ω) + iJ ′′(ω) = µ(ω)−1 (7)

3.3. Using the model

In practice, we start from the measured moduli µ′(ω), µ′′(ω) (see Fig. 1 for
an example). Algebraic inversion of the complex modulus results in the complex
compliance J(ω) and the real part, the storage compliance J ′, is shown in Fig. 3.
The calculation of the effective crack tip compliance for a any given tr is carried
out through Eq. 6 by convolution of J ′ with the kernel, in a ln(ω) scale (natural
logarithm). Fig. 3 also displays the kernel for three different transit times.
Since tr only appears in the product ωtr in Eq. 6, in a log scale the kernel is
shifted by log(1/tr) with an invariant shape. Interestingly, in contrast to other
approaches [12], there is no need for arbitrary cut-offs to ensure convergence
of integral expressions: the natural regularization of the crack singularity by
the cohesive zone model is reflected in the shape of the kernel (Fig. 3), which
provides high frequency convergence (Eq. 6). The resulting effective compliance
J1 is also plotted in Fig. 3 as a function of ω = 2π/tr. Note that due to the
convolution process, it shows the same evolution as J ′ but somewhat shifted to
higher frequencies.

Once the effective compliance has been calculated from the DMA data for
all tr, we can simultaneously solve Eqs 3 and 4 for tr and c(tr), for any given
crack velocity V . Finally, we obtain the predicted effective rupture/adhesion
energy enhancement G(V )/w from Eq. 5.

The limit cases are easily recovered. For smaller velocities V (larger transit
times tr) the kernel shifts to lower frequencies, the effective compliance increases,
the effective rupture energy G decreases and reaches w for tr → ∞. Conversely,
for larger velocities V (smaller transit times tr), the kernel shifts to higher
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a)

b)

Figure 4: Adhesion rupture for natural rubber on glass. a) left axis - real and imaginary parts
of the shear modulus as a function of angular frequency (cf Fig. 1) - tan(δ) is also shown
(inner y axis scale). Right axis - real (cf Fig. 3) and imaginary parts of the shear compliance
as a function of angular frequency. b) left axis - adhesion energy as a function of velocity
(shown as crosses - calculated from fit to experimental data from [6]) and models for three
values of the single free parameter c∞. The result for a simpler form of the model (Eq. 12)
is also shown as dashed lines. Right axis - evolution of the predicted cohesive zone size as a
function of velocity for the full model.
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frequencies, the effective compliance decreases and the effective rupture energy
G increases. For tr → 0 (V → ∞), the enhancement reaches

J(t = ∞)/J(t = 0) = J(ω = 0)/J(ω = ∞) = µ′(ω = ∞)/µ′(ω = 0) (8)

i.e. the ratio of the moduli in the glassy and the elastomeric states.

4. First examples - elastomers

As a first example of application, we turn back to the adhesion of natural
rubber to glass measured by Tay & Barquins [6]. The velocity dependence of
G(V ) (Eq. 1) has been measured over three decades and the interfacial rupture
energy w has been determined from the very low velocity experiment so that
σ0 is the only free parameter. Loss and storage modulus have been measured
over about 12 decades (Fig. 1). We have calculated J ′, J1(tr) (Fig. 3 - see also
Fig. 4 a) and G(V ) through Eq. 5 (Fig. 4 b). In practice, we use c∞ ≡ c(tr =
∞) as the free parameter, which is directly connected to σ0 through Eq. 4.
Results for different values of c∞ are shown in Fig. 4 b and we find a reasonable
agreement between model and data for c∞ = 3 10−13 m. For the evolution of
G(V ), assuming a power law dependence, the model predicts a slightly lower
exponent than observed. In fact, due to the spread of the kernel, this exponent
is still marginally sensitive to the high frequency data for J(ω) which, above
ω = 2.5 107 rad.s−1, lies beyond our measurement range (Fig. 3) and must be
extrapolated (e.g. by an inverse power function). In any case, the process zone
size is excessively small, as typical in the literature.

Similarly, we can apply the theory to the elastomer peel data taken from
reference [1]. In this paper, the evolution of µ′ and µ′′ with angular frequency
is reported (their Fig. 14) along with the evolution of G(V ) (their fig. 11 -
triangles) for styrene butadiene crosslinked with 1.5 % peroxide (Tg=-27◦).
G(V ) exhibits a noticeable plateau at low velocities from which we derive a
reasonably reliable value of w = 2.3 J/m2. The data µ′(ω), µ′′(ω) (left) and the
compliance J ′(ω) and J ′′(ω) (right) are shown in Fig. 5 a while Fig. 5 b displays
the predicted G(V ) (left) and c(V ) (right). We find a reasonable agreement for
c∞ = 2 10−11 m. Our value is close to the value (≃ 1 10−11 m) estimated by
the authors (more about their method in the Discussion) and follows a similar
evolution with velocity (their Fig. 17). As in the previous example, the process
zone size is exceedingly small, which seems to confirm that the linear viscoelastic
theory is actually unsuitable to account for the fracture or adhesion energy in
elastomers.

5. Analysing data for more viscoelastic systems

As a third example, we turn to recent data documenting the rupture of a
polyethylacrylate elastomer with a somewhat higher Tg = −18◦ [13]. The G(V )
dependence is shown in Figs. 6 b. Here, because Tg is closer to room tempera-
ture, the determination of the low velocity adhesion was more difficult. However,
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Figure 5: Fracture energy of a styrene butadiene rubber. Data taken from [1]. a) left axis -
real and imaginary parts of the shear modulus measured as a function of angular frequency -
tan(δ) is also shown (inner y axis scale). Right axis - real and imaginary parts of the shear
compliance as a function of angular frequency. b) left axis - measured fracture energy as a
function of velocity and models for two values of the free parameter c∞. The result for the
approximation Eq. 12 is also shown as dashed lines. Right axis - evolution of the cohesive
zone size as a function of velocity for the full model.
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a)

b)

Figure 6: Fracture energy of an ethylacrylate elastomer. Data taken from [13]. a) left axis -
real and imaginary parts of the shear modulus measured as a function of angular frequency -
tan(δ) is also shown (inner y axis scale). Right axis - real and imaginary parts of the shear
compliance as a function of angular frequency. b) left axis - fracture energy as a function of
velocity and model for c∞ = 5 10−7. The result for the approximation Eq. 12 is also shown
as dashed lines. Right axis - size of the damage zone L measured in ref [13] (crosses) and
evolution of the cohesive zone size c as a function of velocity as derived from the present model
(dashed line).
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the authors observe that the obtained value (w=30 J/m2) is consistent with the
Lake-Thomas prediction for this cross link density [13]. The loss and storage
modulus were also measured as a function of frequency (Figs. 6 a). But the
most salient feature in these experiments is the use of mechanochromic moeities
inserted in the polymer chains. These molecules break at a definite local stress
level, an event which can be subsequently detected by fluorescence microspec-
troscopy. Monitoring the process post mortem, the authors could identify the
region around the crack path where material damage has occurred and measure
its size L (Figs. 6 b, crosses). It stands to reason that the size of this damage
zone should somehow be related to the size of the process zone c as defined here
so that L is an interesting addition to our rupture data.

Comparing the predicted G(V ) with the data for this ethylacrylate elastomer
(Fig. 6 b, left hand axis), we find a reasonable match for c∞ = 5 10−7 m. The
predicted process zone size evolves with velocity between 0.6 and 30 microns
(Fig. 6 b, dashed line, right hand axis). These values are much larger and more
physically acceptable than the cases above. Moreover, the size of the damage
zone L as measured in the mecanofluorescence experiments is found to increase
from 3 to 50 µm which is qualitatively consistent with the calculated process
zone size c. Note that these are optical measurements and the values of L
are expected to level off at a minimum of ca 1 µm at low velocities due to
instrumental resolution. All in all, it seems that this case is much more aptly
accounted for by the linear viscoelastic theory.

As a last example, we consider similar experiments performed on a methy-
lacrylate network with a glass transition temperature Tg=+18◦, near room
temperature ([13]). For this very viscoelastic material, it is even more difficult
to obtain w. Higher temperature results have been shifted to lower values, based
on the DMA shift factors (Fig. 7 b). Nevertheless, there is no sign of low velocity
plateau from which w = G(V ≃ 0) could be evaluated. The authors suggest to
take an approximate value in the same range as the ethylacrylate (see above)
and we will take w ≃ 50 Jm−2. The loss and storage moduli have also been
measured (Fig. 7 a). From these data, a reasonable fit to G(V ) is obtained for
c∞ = 4 10−7 m (Fig. 7 b), quite similar to the value for the ethylacrylate sample.
Here, two comments are in order: 1) the measured size of the damage zone L
(crosses) is roughly one order of magnitude larger than the size predicted for the
process zone; 2) the measured power law for G(v) is not accounted for properly
by the theory, especially in the low velocity (i.e. high temperature) region: the
exponent found from the data is significantly larger than the predicted value.
Other reasonable values of w were tested and did not significantly change the
predicted slope.

Since our model for the linear viscoelastic contribution is robustly based on
extensive DMA data, we can relax some of the simplifying assumptions. As a
first try, we note that in [13], the authors take into account the contribution of
molecular damage to the dissipated energy and hence to the effective adhesion.
Assuming that the damage energy is additive and given as in [13], we clearly
need to decrease the predicted viscoelastic contribution. This can indeed be
obtained (Fig. 8 a plain red line) assuming a larger process zone size c∞ =
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a) b)

Figure 7: Fracture energy of a viscoelastic methylacrylate elastomer. Data taken from [13].
a) left axis - real and imaginary parts of the shear modulus measured as a function of angular
frequency - tan(δ) is also shown (inner y axis scale). Right axis - real and imaginary parts of
the shear compliance shown as a function of angular frequency. b) left axis - fracture energy
as a function of velocity (◦ 25◦, □ 40◦, △ 60◦ and ⋄ 80◦) and model for (b) c∞ = 4 10−7.
The result for the approximation to the model (Eq. 12) is also shown as dashed lines. Right
axis - size of the damage zone L measured in ref [13] (×) and evolution of the cohesive zone
size c as a function of velocity as derived from the present model (dashes).
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a) b)

Figure 8: Same data as Fig. 7. a) same model as Fig. 7 b, with a larger process zone size
c∞ = 1 10−5: the linear viscoelastic contribution is smaller (plain red line). We can then add
the damage energy calculated in [13] with a rupture energy of 2 eV per bond (purple crosses).
Note that the prediction for c and G are proportional. This is due to the classical assumption
of constant cohesive zone parameters w and σ0; b) with velocity dependent w(tr) and σ(tr).
Note that the theory now predicts non proportional evolutions of c and G, which matches the
data better.
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1 10−5 m, resulting in lower strain rates for a given crack velocity. With the
damage contribution inferred from [13] (damage energy 2 eV per bond), the total
adhesion enhancement (purple crosses) is seen to match the data reasonably
well. Moreover, the predicted evolution of the process zone size (dashed blue
line) now matches the measured damage zone size much better. In this way,
additive damage energy can be taken into account and in the present case seems
to provide a more consistent description of the data. Agreement remains wanting
in the lower velocity range, however, with some discrepancy for both process
zone size and effective adhesion energy.

In fact, this shortcoming points to a classical assumption in the linear vis-
coelastic fracture theory: implicitly, it is assumed that the interfacial parameters
w and σ0 are independant of velocity. Then, comparison of Eq. 4 with 5 shows
that the predicted evolutions of c(V ) and G(V ) are strictly proportional as seen
e.g. in Fig. 8 a. Clearly the data tells a different story: the process zone size
evolves more slowly than the effective adhesion energy.

To break down this strict proportionality, we no longer assume constant
cohesive zone parameters w and σ0. Indeed, while strain rate independence
makes sense to showcase the linear viscoelastic contribution to dissipation when
comparing theories with each other, it appears simplistic when the aim is to
asses data. After all, the process zone is host to large strain, high strain rate,
non reversible deformations (including but not limited to non linear viscoelas-
ticity and damage) leading to actual material separation/rupture, and these can
hardly be expected to remain completely independent of strain rate. Therefore,
as a second try, we now lift this restriction by allowing strain rate dependence
for the process zone parameters, in the spirit of [14]. Taking w(tr) = ww̃(tr)
and σ(tr) = σ0σ̃(tr), the self consistency equation Eq. 4 becomes

c(tr)

c∞
=

J1(tr = ∞)

J1(tr)

w̃(tr)

σ̃(tr)2
(9)

while Eq. 5 becomes
G

w
=

J1(tr = ∞)

J1(tr)
w̃(tr) (10)

Clearly, c and G are no longer proportional. To demonstrate the potential of
this new point of view, we take very simple ad hoc dependencies σ̃ = 1+(tα/t)

α

and w̃ = 1 + (tβ/t)
β . We observe a significant improvement in the match

between model and data for c∞ = 3 10−5 m, w = 50 Jm−2 and weak strain rate
dependences α = β = 0.1 and tα = tβ = 1 103 (Fig. 8 b).

6. Discussion

The framework given by Eqs. 3 (crack velocity), 4 (self-consistency) and 5
(relation between far field and process zone) is not more than the umpteenth
variation over the same linear viscoelastic model [3, 4]. However, with the ef-
fective crack compliance cast under the form Eq. 6, it allows a very direct com-
parison with data. A number of comments are in order, based on the examples
we have just analysed.
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Exp ωonset (s
−1) Vonset (ms−1) cappro (m) c∞ (m)

Tay 3 105 6 10−7 2 10−12 3 10−13

Gent SB 1 10−5 2 10−16 2 10−11 2 10−11

Slootman EA 4 101 1 10−5 2.5 10−7 5 10−7

Slootman MA 1 10−2 1 10−7 1 10−5 4 10−7

Table 1: Simple evaluation of the approximate process zone size cappro = V/ω where V and ω
are defined by G(V )/w = J ′(0)/J ′(ω) = 2) and comparison with process zone size calculated
from the present model.

6.1. Quality of the data

The comparison with the data is reliable if the measured G(V ) includes not
only the intermediate velocity dependent regime but also some evaluation of
G in the low velocity regime, as in Sec. 2. From a low velocity plateau we can
derive the interfacial rupture energy w and from the fit to the velocity dependent
regime we can determine the remaining free parameter σ0 (or equivalently c∞).
If the low velovity plateau is not evidenced in the data, as is the often case, w
is not determined and the analysis is essentially inconclusive. Indeed, w and σ0

are then equivalent. Figs. 4 and 5, which show G(V) calculated for various c∞
values, illustrate this problem very clearly: in the intermediate region, where
G depends upon velocity, changing c∞ mainly results in a vertical shift of the
curve – this is also what happens when changing w. In brief, without a proper
evaluation of w, e.g. from a low velocity plateau, a reliable evaluation of the
linear viscoelastic contribution becomes impossible and no conclusion can be
derived as to the applicability of the model. Direct comparison with µ′′(ω)
through power law exponents, for example, does not bring any insight: different
exponents can be found in different frequency ranges (Fig. 1) and a comparison
with µ′′ has actually little physical ground.

6.2. Comparison with Gent’s approach

In depth data analysis has also been carried out by Gent in his 1994 eval-
uation of elastomer rupture [1] using a more qualitative approach. We now
compare our approach with Gent’s.

Gent first comments on the evolution of G(V ), which resembles µ′(ω) but not
µ′′(ω) nor tan(δ) (”only the storage modulus varies with frequency in approx-
imately the right way and approximately the right factor”). He then proceeds
to use a simplified approach based on the classical Schapery/Knauss formula-
tion [15, 16]. To that aim, he uses the relation

G(V )

w
=

µ′(tr = c/V )

µ′(tr = ∞)
(11)

Comparing to Eq. 5, we find that here 1/µ′(tr) stands for a simple approximation
to the effective compliance J1(tr).

This comparison suggests a further approximation: replacing Eq. 6 with

J1(tr) ≃ J ′(ω = 2π/tr) (12)
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We have also plotted the results (dashed lines) in Figs. 4, 5, 6 and 7. It appears
that this very simple approximation is working well, but the increase of G(V )
with velocity is anticipated by roughly one decade in velocity. This can be
understood if we recall that, due to the convolution of J ′(ω) in Eq. 6, J1(ω)
follows J ′(ω) with a frequency lag of the order of a decade (Fig. 3). Note that
such a shift of the characteristic time, for the same level of approximation, has
been observed earlier, e.g. in the time domain model by Greenwood, who found
a scaling of 0.24 between the two characteristic times, assuming a specific crack
face interaction and a three-element solid [9].

In brief, the approximation Eq. 12 is certainly quite acceptable as a first
approach, for example when checking if the process zone is ludicrously small...
Note also that J ′(ω) can be reasonably well approximated by 1/µ′(ω), especially
at frequencies below the glass transition where µ′′(ω) ≪ µ′(ω) so that there is a
close connection between Eq. 11 on the one hand, and Eqs. 5 and 12 on the other
hand. Applying the procedure outlined by Gent [1], but using Eq. 12, we can
now readily derive an approximate process zone size cappro and predict an effec-
tive rupture/adhesion energy from the data, without performing the convolution
in Eq. 6. Consider Eq. 5 and take a given value for the ratio, say an amplifica-
tion of 2. Define Vonset and ωonset by G(Vonset)/w = J ′(ω = 0)/J ′(ωonset) = 2.
Basically, we are here taking the velocity at the upturn of G(V ), the angular
frequency at the downturn of J ′(ω) and evaluating cappro as Vonset/ωonset. Re-
sults from this procedure are shown in Table 1 : this simple approach efficiently
predicts c∞ in order of magnitude and, in favourable cases (Gent SB, Slootman
EA) even reasonably well. In particular, the much larger values predicted for
the acrylate elastomers readily come out, in fair agreement with the observed
extent of damage L [13]. We conclude that, given its simplicity, Eq. 12 is def-
initely a good way to obtain a quick evaluation of the contribution of linear
viscoelasticity to rupture/adhesion. With differences of up to a factor of ten
between the two evalutions of c∞ (cf the Tay and the Slootman MA data) how-
ever, using the full model may still be a good idea for finer analyses, or for more
elaborate cases.

6.3. Evaluation of the cohesive stress

It is also interesting to evaluate the cohesive stress σ0 from the c values.
The results are summarized in Table 2. The anomalously small cohesive zone
sizes result in cohesive stresses which exceed the measured Young’s modulus
by two to three orders of magnitude. In contrast, the cohesive stress for the
acrylates is ”only” between 3 to 20 times larger than the small strain, relaxed
Young’s modulus. These values are much more acceptable, all the more so as
the cohesive stress reflects the non-linear phenomena taking place in the process
zone, with large strains and strain rates, leading to rupture.

6.4. When does linear viscoelasticity play a role?

Finally, because it is simple and robust, the model propounded here can
be used to pertinently assess the contribution of linear viscoelasticity to the
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Exp w (J.m−2) Tg (◦ C) c∞ (m) J(∞) (Pa−1) σ0 (Pa)
Tay 0.043 -72 3 10−13 3.1 10−6 3.0 108

Gent SB 2.3 -27 2 10−11 1.7 10−6 3.7 108

Slootman EA 30 -18 5 10−7 3.0 10−6 6.3 106

Slootman MA 50 +18 4 10−7 3.1 10−6 9.0 106

Sl. MA (with damage) ” ” 1 10−5 ” 1.8 106

Sl. MA (var. w and σ) ” ” 3 10−5 ” 1.0 106

Table 2: Model parameters and characteristic stress σ0 for different experiments as calculated
from Eq. 4.

fracture/adhesion energy of soft solids in a variety of cases. Based on the four
examples shown above, it is clear that standard elastomers are not good candi-
dates: this is the conclusion reached by Gent and others [1, 3, 4]. In this case,
the glass transition is at such high frequency (Fig 3) that implausibly small pro-
cess zone sizes must be invoked to account for the measured fracture/adhesion
energies at typical crack velocities. This means that in elastomers, the contri-
bution of linear viscoelasticity remains minute and dissipation is dominated by
non-linear processes connected to damage and rupture, in a process zone with
a size too large to induce significant linear viscoelastic dissipation.

In contrast, we have also considered acrylates with glass transitions closer
to room temperature: significant viscoelastic dissipation is predicted for process
zone sizes in the range of microns to tens of microns, consistent with the damage
zone sizes measured by mecanoluminescence. The measured velocity dependence
of the fracture energy can then be accounted for within the scope of a linear
model, with physically acceptable estimates of the cohesive stresses and process
zone sizes.

An interesting feature in these data sets is the size of the damage zone sur-
rounding the crack path measured by mecanoluminescence. Comparison of the
predictions with the data directly challenges the ubiquitous (and highly suspect)
assumption that the process zone parameters are independent of velocity. Of
course, the interpretation of the measured damage zone size is not unambiguous
and the precise relation that exists between this experimental damage zone and
the process zone in the model is not clear. Here we have assumed that they are
equal, and we could show that need only a weak dependence of both interfacial
rupture energy and cohesive stress to account for the data. This result could
not be obtained in the standard framework where the process zone parameters
are constant.

As a final observation, we consider the role of non-linear processes in the
rupture/adhesion of soft solids. Note that a time-temperature rescaling is often
used to patch together rupture/adhesion data taken at different temperatures
to build up a master curve over an extensive velocity range, as was done e.g. in
Refs. [1] or [13]. For a linear theory, the reference temperature is indifferent, and
the results should not be affected. But the rupture phenomena are inherently
non linear so that the use of time temperature superposition raises questions.
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Maybe the present results mean that scaling too far away from the measurement
temperature leads to difficulties. We suggest that this is the reason why the
linear viscoelastic crack theory could work for... viscoelastic systems, but seems
inadequate for bona fide elastomers.

7. Conclusion

We have analysed rupture/adhesion data for more or less viscoelastic elas-
tomers. To do so, we have first provided a model relating the velocity de-
pendence of the effective rupture/adhesion energy and the linear mechanical
response (loss and storage modulus) as a function of frequency. In this model,
an effective crack compliance J1 encapsulates a self-consistent description of the
viscoelastic deformation taking place around the process zone (Eq. 4). It can
be connected to the far field to provide an expression for the linear viscoelastic
contribution to the effective rupture/adhesion energy (Eq. 5).

J1 can be expressed in a form (Eq. 6) especially suitable for data analysis
(Fig. 3). Alternatively, a very simple approximation for J1, Eq. 12, has also
been given and was shown to work reasonably well, although it is shifted in
frequency by about one decade. This simple approximation also provides a
direct connection to Gent’s approach [1].

As already pointed out previously [2, 3, 4], for typical elastomers, the data
can be adjusted only by assuming ridiculously small values of c∞ (and ridicu-
lously high values of the cohesive stress), which actually means that the linear
viscoelastic dissipation is negligible in this case. However, for the two more vis-
coelastic systems investigated here, the values of c∞ are much more acceptable,
and consistent with the damage zone sizes measured by mecanoluminescence.
Moreover, for the methacrylate system, for which the data are more complete,
we find that we can account for the full set of data only if the simplistic assump-
tion of velocity independent process zone parameters is abandoned. A simple
(weak) phenomenological dependence for cohesive energy and cohesive stress
on strain rate was shown to provide significantly improved agreement with the
data.

We have also highlighted that good quality data should contain not only
the velocity dependent regime but also the low velocity plateau from which
the interfacial rupture energy w can be evaluated. In this case, the model
unequivocally leaves one single adjustable parameter, directly related to the
cohesive stress. In the absence of reasonable estimate for w, no conclusive
analysis can be carried out.

In brief, the present description of linear viscoelastic fracture is simple and
powerful enough that it can help understand the fracture of soft solids. By
providing a simple prediction for the linear viscoelastic contribution to the rup-
ture/adhesion energy under a form which can be directly applied to data, it
should help reach a better understanding of rupture in soft matter.
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Appendix A. Approximate derivation of the self-consistency equa-
tion

For completeness, we sketch a derivation of Eq. 2. which expresses the
necessary self-consistency of the stress distribution in the cohesive zone. This
relation directly results from the integration of the cohesive stresses σ in the
displacement of the opening crack faces uz ie

w = −
∫ +∞

0

σ(z)duz

which can also be written as

w = −
∫ c

0

σ
duz

dx
dx (A.1)

A simple scaling relation is obtained by noting that

duz/dx ≃ σ0/E
∗ (elastic) (A.2)

from which an approximate form of Eq. 2 is derived directly. The exact prefac-
tor, of order one depends on the details of the cohesive model used.
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Appendix B. Effective compliance in the frequency domain

In the following, we will use a different approximation for the effective crack
tip compliance. In our previous work [8, 10], we found the approximate expres-
sion

J1(tr) =
2

tr
2

∫ tr

0

(tr − τ)J(τ)dτ (B.1)

for the effective compliance of the crack. Eq. B.1 is not practical for fast ma-
terials like natural rubber. Indeed, experimentally, good small strain dynamic
data is obtained with time temperature superposition in the frequency domain.
It takes the form of a complex shear modulus µ(ω) = µ′(ω) + iµ′′(ω) where
ω = 2πν is the angular frequency. In Fourier space, this complex shear modulus
is the inverse of the complex compliance J(ω) = J ′(ω) + iJ ′′(ω)

J(ω) = µ(ω)−1 (B.2)

while J(ω) is the Fourier transform

J(t) =
2

π

∫ +∞

0

J ′(ω) sin(ωt)d (ln(ω)) (B.3)

Inserting this equation into the time domain expression for the local effective
compliance Eq. B.1, we obtain the frequency domain expression Eq. 6.
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