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ONERA/DTIS, Université de Toulouse Thales Research & Technology

31000 Toulouse – France Palaiseau – France

June 30, 2024

Abstract

This article presents an industrial challenge to the
research community.

The sets of Ethernet extensions known as ”Time
Sensitive Networking” (TSN) is a promising candi-
date as the next backbone of real-time distributed
systems. The flexibility of TSN also an opportunity
to reconfigure the network in presence of faults.

This white paper presents an avionic case study for
a TSN reconfiguration.

1 Introduction

Redundant communication network architecture
plays a crucial role in increasing the fault tolerance of
critical real-time communication systems in aircraft.
In this setup, multiple redundant network paths are
established, ensuring that data can still be transmit-
ted seamlessly even in the event of a failure or disrup-
tion in one part of the network. Today, this redun-
dancy in aircrafts is achieved by duplicating AFDX
(Avionics Full-Duplex Switched Ethernet) networks.
This involves replicating switches, network interfaces,
and cabling to ensure uninterrupted communication
even in the event of a failure thus maintaining criti-
cal avionics systems operational during all stages of
flight.

AFDX networks offer increased bandwidth capac-
ity and improved scalability compared to traditional
avionics databus protocols. They are designed to
meet the stringent requirements of safety-critical

avionics applications, such as flight control data, nav-
igation signals, and engine telemetry, providing de-
terministic communication mechanisms to ensure the
integrity and reliability of data exchange.

However, as aviation technology continues to ad-
vance, the limitations of the AFDX architecture be-
come increasingly apparent in meeting the evolving
communication needs of modern aircraft. One signif-
icant limitation is that AFDX networks may struggle
to support the increasing complexity and bandwidth
requirements of emerging avionics systems, such as
those related to autonomous flight, predictive main-
tenance, and in-flight entertainment. Furthermore,
AFDX’s deterministic communication model, while
crucial for safety-critical applications, may hinder the
integration of non-safety-critical systems that require
more flexible and dynamic data transmission mech-
anisms. As the aviation industry seeks to embrace
new technologies and enhance passenger experiences,
the inflexibility and limitations of AFDX architecture
highlight the need for more adaptable and scalable
communication solutions to meet the demands of to-
morrow’s aircraft.

The future deployment of Time-Sensitive Network-
ing (TSN) in aircraft networks represents a significant
technological advancement that is expected to sub-
stantially improve aviation communication systems.
TSN offers several advantages over traditional AFDX
networks, including enhanced determinism, scalabil-
ity, and interoperability. One notable advantage of
TSN lies in its capability to support mixed-critical
applications within the same network infrastructure.
This means that TSN can accommodate a diverse
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Figure 1: An AFDX-TSN architecture.

range of data traffic with varying levels of importance
or urgency, from critical flight control systems to
less time-sensitive passenger entertainment systems,
all within a single network framework. By lever-
aging TSN’s advanced scheduling and prioritization
mechanisms, aircraft manufacturers can streamline
network architecture, reduce complexity, and opti-
mize resource utilization while ensuring the stringent
safety and reliability requirements of aviation opera-
tions are maintained.

The deployment of TSN networks for aviation com-
munication will be gradual over the next years. One
can expect the simultaneous deployment of both
AFDX and TSN networks in aircrafts. This will of-
fers a strategic advantage in meeting redundancy re-
quirements and reinforcing redundancy asymmetry
for avionics networks. While AFDX provides reliabil-
ity guarantees for critical communications, TSN en-
hances network efficiency and flexibility particularly
in supporting mixed-criticality applications. In such
a system, host running critical applications are con-
nected to both networks (as illustrated in Figure 1).
In the event of a failure in one of the network, critical
applications can still use the other one.

However some hosts are connected to one single
network, and one may try to reconfigure the TSN net-
work. Reconfiguring the TSN network allows isolat-

ing the malfunctioning components, thus preventing
potential cascading failures. Additionally, reconfigu-
ration ensures that the TSN network can be restored
once the issue is resolved, thus minimizing the re-
liance on the redundant AFDX network. Simultane-
ously, non-critical functions, such as passenger enter-
tainment systems, can also be reestablished, thereby
maintaining the overall operational efficiency of the
aircraft. This proactive approach to network man-
agement is essential for maintaining uninterrupted
service and upholding the stringent safety and reli-
ability standards of aviation operations, even in the
face of unforeseen failures.

2 Re-configuration challenge

The subject of this challenge is the reconfiguration of
the TSN network. More details on TSN, the issues in
computing and deploying a new configuration will be
presented in next sections. Here are presented some
global constraints and objectives:

• online computation: One objective is to be able
to get the best of the network whatever the num-
ber of faults. One approach would be to con-
sider offline all possible faults, and to compute a
configuration adapted for each fault. This may
hold for small systems or when considering sin-
gle faults. In the considered systems, this may
be infeasible. For example, a networks made
10 switches having each 8 ports may lead to
80 single faults, more than 6.000 double faults,
etc. Then, the approach considered here is to
compute on demand, online a new configuration
when some faults occur.

• embedded computation: The computation must
be done with the resources embedded in the ve-
hicle, no access to outside computation resources
(cloud computing) is assumed.

• short reconfiguration time: after a fault, of
course, the sooner the recovery, the better it
is. Note that this reconfiguration can be de-
composed into three sub-phases: fault detection,
the identification of faulty elements, computa-
tion, the computation of a new configuration,
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and the deployment of the computed configura-
tion. Among these three phases, the deployment
phase as specific issues, presented in Section 6.

• continuous operation: The computation and the
deployment of the new configuration must pe-
nalise as little as possible the part of the system
that is still in nominal mode, i.e. the data flows
that do experience any fault on their path.

Several kinds of fault can appear on a system. In
this study, we address permanent fail-silent faults of
links, input port or output port. That is to say, a
physical output port can be decomposed into a log-
ical input port, and each sub-part can fail silently
independently. Since the failure of a link is equiva-
lent as the failure of the connected ports, only port
failure will be considered.
Routing errors, transient faults, and babbling id-

iots will not be considered.
The fault detection is out of the scope of the chal-

lenge (it is assumed that the CNC is able to have this
knowledge), even if the real solution will have to face
it1.

3 Case study

The case study consists of a TSN network with 5
switches (SW1 to SW5) connecting 15 avionics com-
puters (ES1 to ES15). The computers belong to dif-
ferent avionics systems, either critical or non-critical.
Critical avionics systems are essential for the safe

operation and navigation of an aircraft. Failure of
these systems can have serious implications for flight
safety. We consider following critical avionics systems
and computers in the case study:

• Flight Control Systems

1The Connectivity Fault Management protocol (CFM, [8])
has been developed with a similar objective, but it does not
fully comply with TSN. For example, Continuity Check(CC)
messages are sent periodically to check the continuity between
a source and a destination. But this just tests if there exists
one path between the source and the destination. But in TSN,
two flows from the same source to the same destination may
use different paths (for load balancing for example), and the
CC protocol will not be able to detect if one is broken.

– Autopilot System: Automates the control
of the aircraft, maintaining heading, alti-
tude, and speed. (ES1)

– Fly-by-Wire System: Electronic interfaces
that replace traditional manual flight con-
trols. (ES2)

• Navigation Systems

– Global Positioning System (GPS): Pro-
vides precise location and time information.
(ES3)

– Instrument Landing System (ILS): Assists
with landing by providing lateral and ver-
tical guidance. (ES4)

• Monitoring and Management Systems

– Flight Management System (FMS): Inte-
grates navigation, performance, and air-
craft operation to provide operational ef-
ficiency. (ES5)

– Engine Indication and Crew Alerting Sys-
tem (EICAS): Displays engine and system
status and alerts the crew to issues. (ES6)

– Aircraft Condition Monitoring System
(ACMS): Monitors various parameters of
the aircraft’s systems and components for
maintenance purposes. (ES7)

• Display System

– Primary Flight Display (PFD): Shows es-
sential flight data such as attitude, altitude,
airspeed, and heading. (ES8)

– Multi-Function Display (MFD): Can show
a variety of information, including naviga-
tion maps, weather data, and system sta-
tus. (ES9)

Non-critical avionics systems, while important for
enhancing the functionality and convenience of the
aircraft, are not essential for the basic operation and
safety of the flight. We consider following non-critical
avionics systems in the case study:

• Weather Information System
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Figure 2: Case study: TSN network connecting
avionics computers

– Provides real-time weather updates and
forecasts to the flight crew, though not as
critical as primary weather radar systems.
(ES10)

• Cabin Management Systems

– Control lighting, temperature, and other
comfort-related features in the passenger
cabin. (ES11)

– Manage public address (PA) systems and
intercoms for crew communication. (ES12)

• In-Flight Entertainment System

– Provides passengers with audio and video
entertainment options, games, and infor-
mation about the flight. (ES13)

• Automatic Flight Information Reporting System

– Transmits aircraft performance and main-
tenance data to ground stations for analysis
and tracking. (ES14)

• Wi-Fi and Connectivity System:

– Provide internet access and communication
services for passengers and crew. (ES15)

Figure 3: Architecture of a TSN output port.

4 TSN reminder

The Time-Sensitive Networking (TSN) group of
IEEE has defined a set of addenda to Ethernet stan-
dard designed to provide a real-time network. The
term TSN is widely used to name a network imple-
menting these extensions. This paragraph presents
a short overview of TSN, a very clear and complete
presentation can be found in [4].

A TSN output port is made of (up to) 8 queues,
called traffic classes, numbered from #7 to #0.
When several queues compete for the output port,
a static priority arbitration is used, #7 having the
highest priority and #0 the lowest (cf. Figure 3).
We do not consider preemption in this study.

To each traffic class is associated a “Transmis-
sion selection algorithm” (TSA), which is sometimes
called “shaper”. Only the “Credit-based shaper”
(CBS), will be presented in this study2. Each traffic
class is also controlled by a gate, which is open or
closed, depending on the clock value and a configura-
tion table (the Gate Control List – GCL). The GCL
can be seen as a cyclic time schedule. This schedule
states when each of the 8 gates is open or closed at
each instant. It is implemented as a list of open/close
states associated with a duration.

At any given time, the frame at head of a queue
can compete for emission if its TSA allows it and if

2A presentation of ATS and CQF can be found respectively
in [5] and [11].
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its gate is open, and if it has enough time to be emit-
ted up to completion (including any media dependent
overhead like Inter Frame Gap, IFG [1, Fig. 8–17]).

4.1 TAS

The gates and the associated GCL have been intro-
duced in [3] to forward scheduled traffic (ST), i.e.
traffic where the transmission time of each frame re-
spects a predefined schedule (also known as Time-
Triggered – TT – scheduling [9]). But the implemen-
tation relies on gate schedule, not on frame sched-
ule, adding some specific constraints when designing
a schedule. Designing a GCL to ensure TT scheduling
for a class is commonly called Time Aware Shaping
(TAS), and the class is also called a TAS class.

• When the gate of one queue is open, the oth-
ers may also be open, leading to some competi-
tion, resolved by the static priority arbitration
and some optional preemption mechanism [2].
This is often avoided by building GCL such that,
when the gate of a TAS class is open, all other
gates are closed. This is called exclusive gating.

• Frames are stored in a FIFO queue. When a
frame is received before another one, it must be
forwarded before. No overtaking (order inver-
sion) between frames is allowed (whereas it was
possible in a frame-based schedule like TTEth-
ernet [13]). The schedule has to deal with it.

• Since some jitter may occur in internal switching
time, and since clocks are not perfectly synchro-
nized, some margin must be accounted for in the
schedule.

• When the gate is open, the head of queue frame
will be forwarded (if the opening window is large
enough).

Building a TAS schedule consists in configuring the
GCL of each port such that each gate opening inter-
val (commonly called ”time window”, ”transmission
window”) is aligned with the one of the upstream and
downstream port, in order to offer a bounded latency.
An illustration is provided in Figure 5. An overview
can be found in [14].

SW1 SW2ES1

ES2

ES3

ES4

A, B A, B

A, B, C

C C

Figure 4: Simple network used to illustrate TAS be-
havior.

Also note that the last rule (forwarding the head of
queue) differs from others Time-Triggered solutions
(like TTEthernet [13]) not using queuing but white-
board semantics (then selecting a frame based on its
flow identification, not its place in a queue). As illus-
trated in Figure 5, this may lead to forward a frame
even if this frame was not designed to use this window
(e.g. if the frame that was supposed to use this win-
dow has been lost). This fragility has been identified
in [6], and one proposed protection measure is the
frame isolation constraint. It imposes that at any
time, there is at most on frame in the TAS queue
(which is not the case in the schedule of Figure5).

4.2 Credit Based Shaper (CBS)

A CBS queue is handled with a credit counter and an
idleSlope parameter. The head of queue frame can
be forwarded only if the credit value is non negative.
The evolution rules of the credit are the following.

• When a frame is transmitted, the value of the
credit is decreased by the size of the frame3.

• When the credit is negative, it increases with
slope idleSlope.

• When a frame is waiting whereas the gate is open
(because of non preemption, or because some
higher priority frame is using the output port,
or because there is no enough time to send the
frame before the next gate closing event), the
credit increases with slope idleSlope.

3The behaviour described in the standard is slightly dif-
ferent. The credit first decreases with some sendSlope during
frame emission, then increases with the idleSlope, but both
behaviours are equivalents.
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Figure 5: Illustration of GCL-based schedule for the network represented in Figure 5. This schedule assumes
null switching time. Two flows, A and B, go from ES1 to ES3, and flow C goes from ES2 to ES4. Flows A
and B share the same time window on link ES1-SW1, and flows A and C share the same time window on
link ES1-SW2. If the frame A-1 is not sent by ES1, B-1 is forwarded and uses the time window reserved to
A-1 and C-1, forcing C-1 to use the window of C-2, and so on.

• When the gate is close, the credit is frozen.

• When the queue is empty and the credit is pos-
itive, the credit is set to 0.

This behavior is illustrated in Figure 6. A discussion
on evolution rules and TAS/CBS integration can be
found in [7].

5 System general hypotheses

Since the TSN standard allows for a large set of con-
figurations, here is the subset of mechanisms that are
used in the initial configuration of the use case. More
details will be provided in Section 3.

The system is a TSN network. Each switch has
8 queues/classes per output port. All ports do not
have the same bandwidth.

On each switch port, the highest priority class, #7,
is devoted to Time Aware Shaper (TAS). We assume
exclusive gating and frame isolation.

TAS offers very small latencies and jitter, but its
configuration is quite complex, especially when the
number of flows increases [14]. Moreover, CBS can
offer ”good enough” latency guarantees for large set
of data flows. Then, queues #6, #5 and #4 will be
shaped using CBS. The other queues have no shaping
mechanism and are used to host flows without time
constraint.

This configuration will not use Cyclic Queuing and
Forwarding (CQF) nor Asynchronous Traffic Shaping
(ATS).

No preemption will be considered.

The set of flows is statically defined and fixed (in
nominal mode). The routing is fixed and set at de-
sign.

The real system will use the Frame Replication and
Elimination for Reliability (FRER) to increase ro-
bustness of the network, but in the context of this
challenge, FRER will not be considered for applica-
tion flows since it does not raise any specific problem.

In [1, § 46], TSN defines three kinds of configu-
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Figure 6: Example of the evolution of the CBS credit of a class B. The credit value following the rules
presented is drawn in plain style, whereas the credit value as described by the standard is in dotted style.
When frame B1 is received, the credit is null, and the frame can be forwarded. The credit is decreased by
the frame size, —B1—, and then increases with slope s. When B2 is received, the credit is still negative,
and B2 must wait. When a best-effort frame BE1 is received, the output link is idle, it can be forwarded.
It then delay frame B3, and the credit becomes positive during this waiting time. Frame B4 is delayed by
a best-effort frame BE2 and a higher priority frame A1. B5 can not be fully sent before the gate closing, so
it has to wait. During gate closing, the credit is frozen.
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ration architecture: fully decentralised, centralised
network/distributed user and fully centralized. In
the centralised network/distributed user architec-
ture, each end-station is in charge of communicating
its requirements to the network (and such require-
ments are centralised in a Centralised Network Con-
figuration element – CNC), while in the fully cen-
tralised, a Centralised User Configuration element
(CUC) is in charge of gathering all requirements, us-
ing some method, and this CUC exchange informa-
tion with the CNC.

This system will consider the fully centralized ar-
chitecture. Both the CNC and the CUC are deployed
on (the same) switch, so the communication between
the CNC and the CUC is considered fault-free. Con-
versely, FRER is used for the communications be-
tween the end-stations and the CUC, and between
the CNC and the bridges.

Future evolution may consider CNC/CUC redun-
dancy.

6 Configuration deployment is-
sues

One issue in reconfiguration is the consistency prob-
lem. It can be easily illustrated with routing. Con-
sider Figure 7: if a flow f1 was using a link from SW0
to SW1, and if it must use a different route in the new
configuration (either because some link on its initial
route is down, or in order to decrease the load on
a link it was using), using link (SW0,SW1), then at
some time, the server SW0 must stop forwarding to
SW1 and then forward to SW2. If SW2 is not aware
of this change of route, and has no output port, it
may drop the frame. One solution, presented in [12]
is to replace f1 by f ′

1, and stop emitting f1 once f ′
1

has been added in all routing tables. But dropping
frame is not the worst problem in TSN update. Con-
sider the same example in the TAS case: in the new
GCL schedule of SW1, there is no time slot devoted
to f1. Then, if the schedule is updated when there
is a frame of flow f1 in the queue, this frame will
use the window of another flow, whose frame will be
delayed to the next window, and so on, breaking the

f1

f'1

SW0

SW1

SW2

Figure 7: Routing update: flow f1 being replaced by
flow f ′1.

schedule. It may to the same kind of situation as in
Figure 5.

This problem may be a rare event, but any solution
to avoid it is welcome.

7 Computing a new configura-
tion

The core of the challenge consists in computing a
new configuration that provides the maximum utility.
This notion of utility is part of the solution. Admit-
ting the maximum number of flows is not an adequate
criterion, since a TSN flow can host flows with high
criticality for the system (control/command) and also
less critical ones (entertainment). One may consider
that priority (between #7 and #0 in TSN) is a util-
ity function and that all flows with the same priority
have the same utility. But the real-time community
knows that priority allocation is one parameter to
enhance the schedulability of a system [10]. Then, a
solution considering a utility function independent of
the priority will be valuable.

Computing a new configuration means selecting
the flows, computing the routes, the classes, and the
parameters.

Selecting the flows has two aspects. First, for some
flows, it is ”less worst” to have a degraded QoS than
no access to the network (such degradation is speci-
fied by the system designer). Consider a flow f with
some deadline D. If the algorithm is not able to build
a configuration that satify this deadline, it may be
better to propose a configuration that satisfy some
D′ > D than rejecting f . Second, it is admissible to
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drop some flow f ′ to allocate the associated resources
to the flow f if is has a higher utility. Of course, a
simpler solution where no degradation is considered,
and no lower-utility flows are dropped may be pro-
posed.

The route of each flow must be computed.

Each flow must be allocated to one TSN class. A
solution is to keep the flow class (a flow in TAS class
remains in TAS class, or is dropped, and the same for
CBS), but a solution that change the flow class may
be also of interest. For TAS class, the GCL schedule
must be provided, and for CBS classes, the idleSlope
must be provided.

The initial case study does not use CQF neither
ATS, but any solution may use it if it comes with a
strong benefit.

Likewise, the initial case study does not use Per-
Stream Filtering and Policing (PSFP), but any solu-
tion may use it.

The objectives have been presented in Section 2,
but they are not strong constraints. First, the objec-
tive to maintain continuous operation and to have
short reconfiguration time are somehow contradic-
tory: if some links are broken, the remaining links
will be used to exchange data related to the new con-
figuration, and these data may interfere with other
ones. Second, the deployment of the new configura-
tion may lead to some losses. As presented in Sec-
tion 6, preventing a frame to disturb the scheduling
may be a difficult task, and a solution may drop a few
frames to start on a clean situation. In particular, it
is better to drop one frame that to have a permanent
shift of one cycle, as for flow C in the example in
Figure 5.
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