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ABSTRACT

Description of purpose Digital Breast Tomosynthesis (DBT) is a pseudo 3D X-ray imaging technique that
limits the tissue superimposition problem observed in 2D mammography. DBT is therefore on track to become a
standard of care for breast cancer screening. However, patient motion during examination is relatively common
and may compromise the consistency of the reconstruction problem and decrease the conspicuity of clinical
features in the resulting 3D volumes. Dynamic reconstruction of motion-polluted cases is therefore essential for
patient care.

Materials & Methods The reconstruction problem is enriched to include estimation and correction of patient
motion in 3D. The resolution of the dynamic problem is a two-stage process alternating between a motion-
corrected reconstruction based on the SIRT algorithm and a motion estimation based on the Projection-based
Digital Volume Correlation (P-DVC) method. It is coupled with a multiscale coarse-to-fine procedure which
allows to capture both large and fine displacements. Additionally, the dynamic reconstruction is focused on a
local region to simplify the kinematic description of patient motions and limit computation time.

Results The method was applied to 63 local regions throughout 19 DBT's showcasing motion artefacts. It enabled
to significantly reduce the objective function, correct motion artefacts and visualize smaller details previously
blurred.

Conclusion Dynamic tomosynthesis improves the reconstruction problem consistency and image quality by
enhancing the visibility of small critical clinical features. Local reconstruction around areas of interest is a
feature which helps radiologists to focus on specific details while limiting the computation time.

Keywords: Digital tomosynthesis, Dynamic reconstruction, 3D motion estimation, Digital Breast Tomosynthe-
sis, Local digital tomosynthesis

1. DESCRIPTION OF PURPOSE

Digital Breast Tomosynthesis (DBT) is a pseudo-3D X-ray imaging method which limits the tissue superimpo-
sition problem observed in standard 2D mammography, thus increasing the conspicuity of smaller structures.
However, patient motion artefacts in DBT may prevent the visibility of small clinical features.® Since motion
artefacts are subtle and hard to detect, they lead to lower screening and diagnostic performances.

In contrast to CT imaging, where dynamic reconstruction is a well-studied topic,? tridimensional motion
correction techniques were not — to the best of our knowledge — transposed to digital tomosynthesis. In
tomosynthesis, most of the existing work is focused on the thoracic area and exploits the cyclic description of
the breathing of heartbeat motion to propose a correction.* Nevertheless, these methods require a modification
of the clinical protocol, such as the use of a surrogate signal and/or additional acquisitions. A 2D /3D technique
from Marchant et al.’ was used to correct for motion in breast CT and was further adapted to provide a motion
detection algorithm in DBT, without introducing correction strategies.®

To the best of our knowledge, no 3D dynamic reconstruction method has been applied to tomosynthesis. In
this respect, previous work from the authors based on the Projection-based Digital Volume Correlation (P-DVC)
framework lays the fundamentals for dynamic reconstruction dedicated to digital tomosynthesis with DBT as an
application case.” It doesn’t require modifications of the examination protocols and has no restriction regarding
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Figure 1: Visualization of a microcalcification in the 0° projection. Color points on the top right image show the
x-axis translation of the object as measured on the projections.

the periodicity of the motion. Its experimental validation was performed on the BR3D CIRS phantom under
plate-wise 3D Rigid Body Motion (RBMs) of significant amplitude (up to 8 mm). The study presented in this
paper builds upon that result and takes the leap towards the clinical DBT application. In addition, it also
extends the technique by implementing a local reconstruction to focus on a smaller volume of interest (VOI)
and simplify the kinematics to estimate. In the present case, simple 3D kinematics such as a translation in
the chest-nipple axis is sufficient to provide significant improvement of the image quality, while the method can
easily include additional degrees of freedom when needed to correct more complex motions. Section 2 presents
the available data and a brief summary of the dynamic reconstruction problem. Results on a large sample of
motion-polluted cases are found in section 3 and the discussion on the benefits and drawbacks is reported in
section 4.

2. MATERIAL & METHODS
2.1 Data

The approach was tested on a variety of 63 VOIs extracted from 19 different DBT cases displaying significant
motion during acquisition. All DBTs were acquired during a normal breast cancer screening routine with a
Senographe Pristina™ (GE HealthCare, Chicago, IL, USA) across multiple clinical facilities.

For illustrative purposes, figure 1 showcases the projection at angle 0° of a Cranio-Caudale DBT acquisition
with a specific focus on the area of a macrocalcification. The higher the zooming factor, the smaller are noticeable
details — such as a microcalcification on the bottom right of the initial VOI. The top right image of figure 1 aims
at highlighting the presence of motion. It shows a close-up view of the microcalcification and the colored points
display the relative position in the chest-nipple axis (perpendicular to the plane of motion of the source) of the
detail throughout the projection series. Hence, it is clearly visible that the microcalcification (as the surrounding
area) progressively shifts towards the chestwall during the acquisition process, as would be expected if a slow
drift from the examined patient occurred.

2.2 Problem presentation

This study aims at solving the reconstruction problem while estimating and correcting for patient motion fol-
lowing the P-DVC formalism.” Starting from the static reconstruction problem, the process is based on the



minimization of the projection residuals under the assumption that the patient has nos moved during the acqui-
sition. The projection residuals are defined as the difference between the acquired projections and the digitally
computed reprojections of the reconstructed volume. With py the projection data, n,, the number of active
detector pixels and IIy the projection operator for angle 6 and f(X) the reconstructed volume, the squared
average norm of the projection residual is expressed as

X)) = ——llpy ~ T F(X)]IP, (1)

Po

for angle 6 and R*(f(X)) = (r3(f(X)))s the general projection residual metric expressed as a barycentric
average of 7(f(X)) of weight n,,/n,. The static reconstruction problem may then be formulated as f(X) =
Argmin,, R?(¢(X)). In the present paper, the strategy to reach the solution of this problem is algebraic and is
meant to optimize data consistency.

In this respect, it is essential to ensure that all the acquired projections are taken in the same configuration of
the object, which is not the case when the patient moves. To restore the consistency of the problem, additional
degrees of freedom are introduced through the estimation of a displacement field U = {Uy} describing the
patient’s motion at each time step. Hence, the dynamic reconstruction problem is expressed as

(f(X),U) = Argmin R*((X + V), (2)
P,V

In this case, the resolution is carried out by iterating on two sub-problems: i) a motion-corrected reconstruction
from known kinematics and ii) a motion estimation from a polluted reconstructed volume. The motion-corrected
reconstruction takes as an input the motion-polluted projections and the current estimate of the kinematic field
and is performed using an adaptation of the trans-SIRT algorithm described by Van Eyndhoven et al.® The
motion estimation is based on a linearization of the minimization problem around the current solution. By testing
the sensitivity to various degrees of freedom and monitoring the projection residual, it is possible to evaluate a
direction of descent and estimate an update of the kinematics for a new motion-corrected reconstruction. The
search directions are defined by an N-D kinematic basis ® on which the global displacement field is decomposed
as Uy = Z?’:lue]—@j(X ). Additionally, the whole process takes advantage of a pyramidal multiscale approach.
At first, reconstructions are performed at a lower resolution scale and the result is passed on, after a given number
of reconstruction iterations, to initiate the minimization at a higher resolution. This aims at both ensuring the
validity of the linearized problem and improving computation efficiency. In this paper, the results using a single
degree of freedom — a chest-nipple 3D RBM translation — are presented.

3. RESULTS
3.1 Analysis of a case with available ground truth

Figure 2 compares a static 2(a) and dynamic 2(b) reconstruction of a Cranio-Caudal (CC) DBT case. The static
volume presents a large streaking artefact caused by the inaccurate reconstruction of the central macrocalcifica-
tion. In comparison, this artefact is milder in the dynamic reconstruction, which speaks for a good correction of
the kinematics. In addition, the bottom right microcalcification (red boxes in figure 2(b)) is significantly more
conspicuous than in the static reconstructed volume. This is highlighted by the 4.5 mm long transversal profile
averaged over 3 consecutive rows in figure 2(c), where a concentrated intensity peak is visible around 1.8 mm
in the dynamic reconstructed image while the general intensity remains widely spread out in the profile of the
static volume. This means that the consistency of the information around the specific area was restored and
the reconstruction could successfully concentrate the intensity and sharpen the image. In addition, measuring
the standard deviation within a small 2D bounding box including the microcalcification in the polluted and
corrected volumes provides a quantitative metric of sharpness.’ In the present example, the values are respec-
tively 2.15-1072 and 3.73- 1072 for the static and dynamic cases respectively, thus confirming that the dynamic
reconstruction led to a sharper textured image. This suggests that the motion has been properly accounted for
in the latter case.

As an additional validation, the dynamic reconstruction process provides access to the measured kinemat-
ics, which can be compared with an independent measurement. For the example of figure 2, the motion of
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Figure 2: Comparison of static (left) and dynamic (middle) reconstructions of a motion-polluted DBT case. The
right figure shows a comparison of gray level profiles averaged over 3 consecutive rows across the microcalcification
located in the red box

the microcalcification has been manually tracked on each radiograph, and scaled accounting for the projection
magnification, to provide a reference for a quantitative comparison. Figure 3 displays the evolution of the chest-
nipple translation degree of freedom for each projection angle of the dynamic reconstruction (blue), as compared
to the manual measurement (dotted black). Conventionally, the position at the time of the 0° projection was
taken as a reference. As can be seen from the motion estimation, over the entire sequence of acquisitions, a
displacement amplitude of around 1.2 mm in the chest-nipple axis is observed, which induces a large inaccuracy
in the reconstruction of textures that are less than a millimeter wide. Here, the average absolute error between
both methods is shown to be 0.08 mm, which is slightly smaller than the detector pitch of 0.1 mm, (the ultimate
limit of the manual tracking) and demonstrates the coherence of such techniques.
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Figure 3: Comparison of two independent motion estimation for a microcalcification of figure 2: manual mea-
surement (dotted black), dynamic motion estimate (blue)

3.2 Analysis of a larger dataset

For generalization purposes, the local dynamic reconstruction algorithm has been run on 63 VOIs extracted from
19 DBT cases. Each case was processed with a fixed number of 10 iterations per reconstruction, 5 displacement
field estimations per reconstruction scale and 4 consecutive scales, namely 1:10, 1:5, 1:2 and 1:1. In total 200
reconstruction iterations and 20 displacement field estimations were performed for each VOI. Static and dynamic
reconstructions have been run in parallel (i.e., same scales, and same number of iterations per scale) to ensure
a fair comparison.

For all 63 cases, the static and dynamic projection residuals metric R (i.e., Root-Mean-Square (RMS) value)
were computed and compared, which showed that 63% of the cases were improved by the dynamic process. In
this respect, performing a Wilcoxon signed-rank test on the difference of the RMS asserts that the median of the
dynamic reconstruction residuals is significantly lower than the one of the static reconstructions (p < 0.05).



For illustrative purposes, figure 4 displays a visual comparison for 5 cases — labeled (a) to (e) — based on the
reconstructions as displayed for clinical evaluation. The two first columns present side by side and with the same
gray level dynamics the images of 2D slices respectively obtained from static and dynamic reconstructions. The
third column reports the evolution over the reconstruction iterations of the projection residual metrics R(f (X))
and R(f(X 4 U)) respectively for both the static and dynamic reconstruction strategies. On these curves,
the changes of reconstruction scale are visible every 50 iterations, where the introduction of additional details
in the projections used for the reconstruction leads to a temporary increase of the metric. For the dynamic
reconstruction, an update of the displacement field is performed every 10 iterations. The values of the average
projection residuals typically decay until reaching a final value which was used for the previously described
Wilcoxon test.

The local VOIs for all cases (a-e) were selected so that at least one calcification is apparent at the center of
the reconstruction, sometimes so obvious that it produces streaking artefacts (c), sometimes quite faint (d).

e In the static reconstruction, cases (a), (b) and (c) present a classical effect of replication of the material
point caused by motion and the resulting inconsistency between the different projections (first column of
Figure 4). Correspondingly, focusing on these central calcifications, they appear as much better focused
in dynamic reconstruction (second column of Figure 4). While on the one hand the visual results are very
satisfactory, on the other hand the progress observed in the RMS displayed in the last column of Figure 4,
appears as more ambiguous. For all five cases, dynamic residuals are lower than static ones, sometimes
by a large amount ((a), (b), (d)), sometimes only hardly visible ((c), (e)). Nonetheless, case (c) shows a
visual improvement as valuable as for cases (a) and (b) while displaying a very limited improvement in the
residual norm.

e As for case (d), the central calcification is very faint and bears little weight in the projection residuals. It
becomes less visible in the dynamic reconstruction while the metric significantly decreases (4d3), signaling
a better consistency with the original projections. However, parts of the image (like the top left and bottom
right corners) seem to be better resolved by the dynamic reconstruction. Hence, the simplicity of the chosen
kinematic basis is not sufficient to restore the full registration of all the features of the image and trade-offs
must be made, depending on the respective weights of the features in the projection residuals.

e Case (e) displays a cluster of bright calcifications which are largely polluted by motion. In addition,
figure 4el seems to suggest that all the calcifications are not moving in the same direction since the
streaks left behind the calcifications by the reconstruction are not in the same directions. The dynamic
reconstruction does not seem to show any significant visual improvement and the reading of the residual
loss is only slightly lower than the original static one.

e Finally, most of the figures 4a3, 4b3, 4¢3, 4d3 and 4e3 present accidents in the evolution of R(f(X 4+ U))
in the first 50 iterations (most visible at iteration 10 in figure 4a3). These perturbations become ever less
visible as the estimation of the displacement field stabilizes. Reasons for these discontinuities include the
estimation of large motions which contrast very much with the original motionless assumption. As a result,
they bring in the VOI objects that were not reconstructed yet and need to be progressively integrated. For
instance, this is seen in the reconstruction of case (a), which is at the limit of the chest wall. Finally, a
slow convergence of the displacement field estimation that overshoots several times before stabilizing can
also be observed in some cases not shown here.

4. DISCUSSION

The presented method is designed to improve tomosynthesis reconstruction of motion-polluted cases by minimiz-
ing the projection residual norm, R. The decrease was shown to be on average statistically significant and visual
comparison of reconstructed volumes reports encouraging improvement of image quality. In accordance with the
current hypothesis, most impressive results are achieved when the motion of the patient is in the chest-nipple
axis and homogeneous across the whole VOI, like in case (a) of figure 4, where the appearance of the two calci-
fications are corrected by a single degree of freedom. However, improvement of the projection residual and/or
reconstructed volume are not systematic. Reasons for such an apparent discrepancy are now discussed.
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Figure 4: Static (left) and dynamic (middle) reconstructions with the same gray scale dynamics for five examples
(labeled a-e). The right column displays the corresponding evolution of the average residual projections norm
along iterations, (blue curve for static, orange for dynamic). Every 50 iterations, a finer resolution is considered,
and for the dynamic case, the displacement is updated every 10 iterations.




In the first place, it is important to recall that tomosynthesis reconstruction is a problem based on incomplete
data. So far, the present paper has focused on the advantages of a local reconstruction (namely simpler kine-
matic description and computation efficiency), however this strategy has its own limits. Since the reconstructed
volume has a smaller projection area, artefacts coming from truncated projections are more pronounced. As the
reconstruction requires projection rays which are attenuated by breast tissue both inside and outside of the VOI,
the reconstruction of the outer part of the VOI may be significantly corrupted by the lack of information. This
effect is enhanced for local tomosynthesis where the affected volume represents a larger fraction of the whole.
To counter this difficulty, applying continuation strategies to the backprojected volume in order to minimize
information loss from truncated projections may be explored in a further work.'®

Secondly, the poor quality of flatfield correction leads to discrepancies in the projection residuals and has
revealed to be a limiting factor. While such artefacts are also visible in static reconstructions, their influence
on image quality is usually disregarded. However, in dynamic reconstruction, a spurious motion may be an
opportunity to reduce the residual norm, even if not physically present. As a consequence, the estimated
displacement may reach unreasonably high amplitudes in some cases without improving the visual appearance
of the reconstructions. Most cases were corrected by forcing the mean of each projection residual to be null, but
effort should be put into ensuring collection of the flatfields associated with each patient case.

In addition, it may be noticed that the correlation between the visual and analytical improvement is not
obvious, as a large decrease in the residual does not strictly imply a large visual improvement and vice versa. In
some cases not shown here, a visual improvement of a specific clinical feature can be observed while the residual
norm of the dynamic reconstruction has increased. At variance with the discussion on a specific very local feature
(section 3.1), the choice was made here to use a global indicator, the projection residual norm, which lies at the
heart of the algebraic reconstruction method. This difference of weight from a single feature to a global analysis
may explain the contrast in the observed gains, but it is worth underlining that even with a very modest change
in the final value of residuals, the visual impression may appear very convincing for diagnosis (see e.g., case (c)).

Furthermore, it is important to remember that the present paper has focused on correcting artefacts with
3D RBMs in the chest-nipple direction. Hence, only cases that display motion that can (totally or in part) be
decomposed on the simplified kinematic basis may showcase visual improvement. Additionally, as the motion
estimation is determined over the entire VOI, it is a compromise which may do justice to some aspects but
not all, if the actual motion is poorly described by the a priori chosen displacement basis. This is particularly
visible in case (e), where many calcifications seem polluted by motions in different directions. As a consequence,
the dynamic reconstruction has provided a compromise which improves the projection residual but does not
significantly improve the image quality of the reconstruction. This shows that even though most of the time a
simple RBM may bring a significant improvement, such kinematic basis is not rich enough to entirely correct
for the complex motion of the patient. Additional degrees of freedom should be integrated to account for such
cases, which may be easily implemented in the proposed framework.

Finally, as for computational cost, the dynamic reconstruction process is more expensive than the original
static version. Here, a ratio of 4 was measured between both methods. However, the computational burden
depends on the size of the selected VOIs and exact number of reconstruction iterations chosen for the process.
Though this estimation is expected to increase with the dimension of the kinematic basis, the mentioned total
cost does not involve any optimization (e.g., on the number of iterations or selecting appropriate convergence
conditions). In addition, as the running of a static reconstruction is relatively cheap (especially in the first
iterations at low resolution), a simple test of comparison with the static reference can identify early on whether
the completion of the dynamic reconstruction is worth the time. Likewise, this can also be implemented to sort
out when to display a dynamic reconstruction to a clinician.

5. CONCLUSION

The proposed dynamic tomosynthesis technique has been shown to achieve a significant reduction in motion
artefacts in reconstructed volumes and restoring image quality. The focus on a local area reveals the kinematics
in a small portion of the breast which allows to simplify the kinematic basis supporting the identification. Let
us underline that, despite the above-discussed detail-oriented image quality improvements, the optimization
is performed on the whole projection residual resulting from the reconstruction. In other words, the method



does not require to pinpoint interesting features to perform the dynamic reconstruction. Nevertheless, the use of
existing Computed Assisted Diagnostic tools that identify areas of interest could be exploited to anticipate a local
dynamic reconstruction before the radiologist wishes to examine it. In addition, multiple local reconstructions
are expected to yield information that can be combined to approach a reconstruction of the whole sample even
with complex dynamics. Alternatively, slightly more complex kinematic descriptions may be required to correct
the motion of all the features present in the selected VOIs and will be pursued in the future.
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