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Abstract—Wi-Fi is one of the most notable and prevalent wire-
less technologies today. Smartphones and other Wi-Fi-enabled
devices find nearby networks using management frames known
as probe-requests. In this paper, we infer the state of smartphones
by passively monitoring their transmitted probe-requests. We
leverage the differential behaviour of probe-request bursts and
their content, based on their device states such as active/static
screen and Wi-Fi/power-saving mode ON/OFF. We use a Random
Forest based approach that can successfully predict smartphone
states just leveraging individual bursts. Based on an evaluation
using a real-world dataset of more than 200 smartphones (having
a variety of operating systems), with ground truth data available,
we show that our model reliably predicts states with accuracy
≥ 98%.

Index Terms—Wi-Fi, probe-requests, privacy, smartphones,
state, activity recognition

I. INTRODUCTION

Beside the ubiquitous availabilty of network connectivity,
the wide adoption of the Wi-Fi technology has brought a
number of unforseen application where Wi-Fi signals are
leveraged to obtain information on individuals, such as user
trajectory and pedestrian flow estimation [1], [2], human
activity recognition [3], and thus sometime threatening users’
privacy [4], [5].

Contemporary Wi-Fi devices rely on an active scan method
to discover nearby networks. To find nearby Access Points
(APs), a device transmit frames called probe-requests during
active scans, potentially exposing sensitive data [4]–[7] in
clear. Intercepting probe-requests is relatively simple and
can be achieved over off-the-shelf sniffers. Moreover, probe-
requests falls into public network traffic sniffing regulations
which motivated us to explore the same in this paper. Vendors
started to implement countermeasures to thwart privacy threats
: for instance as address randomization [7] to mitigate MAC-
based device tracking.

In this paper, we show that the state of user devices, can be
inferred with a high accuracy when considering a large pool
of available smartphones in the market. Exploiting passively
collected probe-request frames, we are able to successfully
infer (states): i) if a target device is being actively used or
not, ii) whether the power saving mode is present, and, iii)

whether the Wi-Fi connectivity is enabled1.
We notice a wide range of the device’s state-specific features

such as temporal characteristics of a probe-request burst,
sojourn time of advertised randomized MAC addresses, and,
content of a probe-request. The changes in these features with
respect to its state, could be observed irrespective of the device
manufacturer. The contributions of the paper are the following:

• We identify various information/features from passively
captured probe-requests which show differential be-
haviour with devices’ states (cf. Section V).

• Using the derived features, we introduce a novel machine
learning approach to predict a device’s state from its
probe-request advertisements (cf. Section VI).

• We demonstrate that state inference is possible with ≥
98% accuracy across a large set of devices, including all
major smartphone operating systems (cf. Section VII).

• Finally, we suggest various countermeasures that can be
adopted by device manufacturers (cf. Section VIII).

II. BACKGROUND

In the following, we explore the Wi-Fi active scanning
procedure, focusing specifically on probe-request messages.
We investigate its temporal behaviour, content, and, random
MAC addresses.

A. Wi-Fi Active Scanning

Wi-Fi-enabled devices employ active scanning to discover
nearby wireless networks and their access points (APs) [8].
During active scans, Wi-Fi-enabled devices search for avail-
able networks by transmitting management frames referred to
as probe-request frames.

When an AP receives a probe-request frame matching its
Service Set Identifier (SSID) or advertising a wildcard SSID,
it replies with a probe-response frame. Upon receiving probe-
response frames from nearby access points, the client can
assess its options and choose a network to connect to based
on factors like signal strength, security settings, and user
preferences.

To save energy, devices broadcast probe-request frames peri-
odically. Figure 1 illustrates the active scanning process from

1Even if the user disabled Wi-Fi connectivity, the Wi-Fi interface may still
be active for geolocation purposes (https://www.cnet.com/tech/mobile/stop-
android-4-3-from-always-scanning-for-wi-fi-networks/).



Name Number of devices OS Version Vendor

Pintor dataset 22 Android 4.02 - 11 Samsung, Xiomi, Huawei, Google
Android Oxygen 11 One Plus

iOS 12.05 - 14.6 Apple

Furious dataset 205 Android 4.1 - 10 Samsung, Xiomi, Huawei, Google, One Plus, HTC, Motorola,
LG, Oppo, Sony, Aquos, ASUS, ZTE, Blackberry, Alcatel

Windows Phone 8.1 Nokia
iOS 10.1 - 13.1 Apple

TABLE I: Investigated Datasets
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Fig. 1: Wi-Fi active scanning

a Wi-Fi device over time. Mobile devices repetitively send
probe-requests on available channels to receive responses from
all accessible access points. Each device performs multiple
rounds of active scanning across the available channels.

Probe-requests include fields called information element
(IE), that allows devices to advertise their capabilities and
connection preferences. The content within IE fields can be
potentially unique to a particular device [7] or its state.

B. Probe bursts and MAC randomization

Active scanning rounds typically last for a duration on
the order of a few seconds, contingent on factors such as
the number of known access points and the availability of
non-busy channels. As depicted in Figure 1, active scanning
consists of multiple bursts of probe-requests, captured by the
sniffer on channels, with the MAC address of individual probes
within a burst remaining consistent.

However, for privacy reasons [7] the MAC is likely to
change (randomize) either in subsequent bursts or after a
certain number of bursts, a process known as MAC randomiza-
tion, [8, Sec. 12.2.10]. The longer a device keeps discovering
nearby networks, the more probes circulate from the same
device, increasing the number of randomized MACs.

The number of bursts/probes a device advertises with a
given address varies with manufacturers and devices’ state.
The inter-burst time (IBT), or the period between successive

bursts, is also variable and dependent on the state and the
manufacturer.

III. RELATED WORKS

There have been works inferring user activity from network
metadata [6], [9]–[14]. Fingerprint and timing-based attacks
are carried out to predict private individual activities like
cooking, showering, etc. in homes by eavesdropping wireless
sensors [9]. [10] also infer various user activities like walking,
exiting the premise, etc. in smart homes from passively sniffed
Wi-Fi, ZigBee, and, BLE data. RSSI fingerprints from Wi-Fi
sensing are used for detecting such user activities too [13].
Users detected on camera footage are linked with their cor-
responding smartphone identifier like the MAC address [14].
Wi-Fi-based side-channel information is used to infer mobile
passwords [11]. Vulnerabilities have been discovered in the
information fields (IE) of the Wi-Fi probe-requests that could
reveal private information of the user like language, and
socioeconomic status [6].

An active timing attack for Bluetooth using ping flooding
is proposed [15], in order to detect device changes in states
like locked/idle/active e.t.c. states. They test their solution on 3
smartphones. A small-scale demo with 4 Android smartphones
for inferring mobile screen ON/OFF was attempted using Wi-
Fi probe patterns [16].

None of the works in the literature have showcased inferring
detailed device states, like Wi-Fi ON/OFF, status of mobile
batteries, along with the active usage/static mode of the device
for a wide range of devices, OS versions, capture settings etc.
Moreover, our approach is passive and relies on a capture via
off-the-shelf hardware, while concurrent approaches require
advanced hardware to get access to lower layer signal infor-
mation (e.g. CSSI).

IV. DATASETS AND THREAT MODEL

In this section, we first have a look at the datasets that we
investigate, then we describe the threat model that we consider.
We build upon the described threat model to introduce an
attack for successfully inferring smartphones’ states, in the
next section.

A. Datasets

We utilize two extensive datasets, named Pintor and
Furious dataset, released in 2022 and 2021 respectively.
They capture probe-requests from the smartphones in a variety



of states as depicted in Table II. We detail metrics concerning
both datasets in Table I.

Pintor dataset: Pintor dataset has 22 popular device
models in practice, which were sniffed in 6 devices states [17].
It contains 20-minute duration captures of individual devices
in a Faraday cage.

There are active-screen states (A, PA, and WA) and
inactive-screen states (S, PS, and WS) (cf. Table II). In states
PA and PS, the device keeps the power-saving setting active
with the screen being active and passive respectively. For WA
and WS states, the device has the Wi-Fi interface switched off
in various screen modes. Each device configuration is observed
in the three non-overlapping channels (1,6, and, 11) of the 2.4
GHz frequency band.

Mode Screen ON Power-saving ON Wi-Fi ON

A Yes No Yes
S No No Yes

PA Yes Yes Yes
PS No Yes Yes
WA Yes No No
WS No No No

TABLE II: Device’s states

Furious dataset: Furious dataset contains probe-requests
from 205 devices [18]. Tests are conducted in a Faraday cage
with 4 Wi-Fi cards collecting traffic on channels 1, 6, and, 11
in the 2.4 GHz band while on channel 36 in the 5 GHz band.

They conduct experiments in 4 states that include active
(A) and static (S) screen states. In state S, the phone screen
is locked for 20 minutes or 200 probes, whichever is first.
During state A, the screen is active and a robotic arm over
the device screen interacts with the device at a rate of 1
interaction per 5 seconds. Both A/S states are recorded with
Wi-Fi ON/OFF option separately, yielding in states WA and
WS respectively.

B. Threat model

We assume a passive attacker that controls receiving sniffers
in the targeted area, potentially over extended periods of time.
As off-the-shelf sniffers are cheap and accessible, the attacker
can even scale passive-sniffing over a sizeable geographical
area like homes, shopping malls, public squares etc., affecting
a multitude of users. Inferring states of devices in public places
or other targeted areas could lead to larger security concerns
like user harassment, targeted advertisements, and, profiling.

We assume that the attacker might have already trained on
various smartphone device models that are possibly available
to target users. We assume the smartphone is left unmodified,
and the attacker cannot physically access it. They just listen
to emitted probe-requests on various frequency bands. We
assume that the attacker does not possess abilities to link
randomized MAC addresses [7] from a particular device.

V. INFERRING SMARTPHONE STATES

In this section, we first motivate the exploitation of burst-
based metrics for the purpose of passively inferring the smart-

phone’s state. Then, we proceed to define our proposed model
and select features that could discriminate various states.

Characterizing probe-bursts: We first combine the probe-
requests captured in various active and static usage modes,
from both Pintor and Furious dataset. Basically, states:
A, PA, and, WA in Table II refer to active smartphone usage,
while states: S, PS, and WS denote static smartphone usage.

Metric Feaure Notation

Burst-based The duration of the burst Tb

Size of the burst Sb

Number of bursts using the MAC Nb

Inter-burst time IBT

Content-based Number of present IE fields Nie

Inter-burst seq. number gap SEQib

Bursts’ mean seq. number gap SEQb

MAC-based Sojourn time of burst’s MAC Tmac

TABLE III: Considered features.
For initial investigation, we consider six features (cf. Table

III) that characterize the behaviour of smartphone’s probe-
request burst:

• The duration of the burst (Tb): Tb measures the duration
for which a single burst was observed at the receiving
sniffer.

• Size of the burst (Sb): Sb denotes the number of frames
sent by the sending device, which were part of the same
burst.

• Number of bursts per MAC (Nb): MAC address changes
in the active scanning state, after a few bursts of probe
requests with a particular randomized MAC. Nb measures
the number of bursts that were observed with the same
MAC as that of the burst in consideration.

• Inter-burst time (IBT ): The time gap between two
successive probe-request bursts from a device is denoted
by IBT .

• Number of present IE fields (Nie): The probe-request
frames do contain IE element fields which contain infor-
mation about the device’s capabilities and preferences.
Out of around 256 specific elements that a smartphone
could specifically advertise, in practice, many of them are
not included. Nie measures the number of non-empty IE
fields for a random frame chosen from the burst.

• Inter-burst seq. number gap (SEQib): SEQib is the
difference between the sequence number of the last and
the first frame for a consecutive burst-pair.

As we observe in Figure 2, there is a distinct differential
probe-request bursts’ behavior observed between active and
static usage modes in smartphones. Bursts are sent with
distinct temporal and content-wise behaviour for different
states for all six features.

For instance, the figure shows that bursts tend to be shorter
in terms of the duration and the number of frames in the active
mode. Devices probe frequently during active usage and tend
to send more information in their IE fields. These findings
hold across all present OS’s that are there in Pintor and
Furious datasets.
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Fig. 2: Differential probe-request bursts’ behavior observed between active and static usage modes in smartphones

The differential behaviour can be attributed to the increased
number of applications/services that reach out for connections
during active device usage, while still trying to conserve
energy. Subsequently, it motivated us to learn these unique
trends in burst’s behaviour for classifying devices’ states, just
using captured probes.

Model and Feature selection: From our initially considered
six features, we complement them with two more features that
contribute to identifying state-specific behaviour:

• Bursts’ mean seq. number gap (SEQb): SEQb measure
the average difference in sequence numbers found in
successive frames of a single burst.

• Sojourn time of burst’s MAC (Tmac): Tmac denotes the
time for which a particular MAC address was observed.

We select a Random Forest (RF) based model to learn the
patterns and turn the state-prediction as a multi-class classi-
fication problem. RF is fast, robust to outliers, can identify
non-linear patterns, and, does not suffer from overfitting even
if more trees are appended [19].

As stated in Section IV-B, we stick to a relatively weaker
attacker with no MAC association ability. We observe that
a large chunk of MAC addresses ( 40%) change their MAC
addresses every burst, making the adversary unsure about the
device sending previous bursts from the burst in the consider-
ation. Considering this inability, we drop two features: Inter-
burst time (IBT ) and Inter-burst seq. number gap (SEQib)
from the primary investigation of results in Section VII, leav-
ing us with the feature-set: {Tb, Sb, Nb, Nie, SEQb, Tmac}.

We end Section VII by relaxing the association constraint
and considering a stronger attacker who could successfully
link [7] randomized addresses to a particular user. We utilize
all eight considered features showcased in Table III in that
case.

VI. METHODOLOGY

In this section, we detail our machine learning-based ap-
proach for inferring the device’s state from passively captured
Wi-Fi probe-requests. Along with the active usage of the
device from its idle state but also try to infer other parameters
like the phone battery, Wi-Fi ON/OFF option etc.

A. Data processing and training

We split the probe-requests from each device seen in the
datasets into individual bursts by separating the frame se-
quences that have inter-frame duration longer than 1 second.
We only consider bursts that have multiple captured frames.
The MAC address of a device remains the same during a
burst and acts as an identifier for the sending smartphone. This
allows us to calculate the burst and device-based metrics or
features needed to train the model. The model takes individual
bursts (bn) for training as well as the input for prediction.

To obtain a robust model against the unseen data, bursts in
the dataset are split into two subsets: 75% is used for training,
and the remaining 25% is only exploited during the testing
phase. We train the model on individual datasets and utilize
the trained model to predict smartphones’ states on respective
datasets. This is because both datasets show different numbers
of state labels (6 and 4 respectively). For binary active
usage prediction, we investigated accuracy obtained by the
model trained on Pintor dataset while testing on Furious
dataset (and vice versa). In this case, too, we observe a
similar performance as expected due to the generic state-
specific behaviour (cf. Figure 2) of probe-requests. We use the
scikit-learn [20] Python library [21], which provides the
implementation of the Random forest model.

B. Performance evaluation

To evaluate the classification efficiency, we use three met-
rics:



1) Accuracy (Acc): The first metric is the accuracy Acc,
which is the fraction of correct predictions in the test
dataset.

2) Confusion matrix (C): We compute C to further delve
into the accuracy of our state classification. The confusion
matrix is such that Cij is equal to the fraction of total
observations known to be in state i and predicted to be
in state j.
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Fig. 3: Inferences from Confusion matrix

Anything outside of the leading diagonal is a misclas-
sification. The fraction of True negatives (TN), False
negatives (FN), True positives (TP), and False positives
(FP) can be inferred from C as illustrated in Figure 3.

3) Matthew correlation coefficient (MCC): Finally, we
complement the above metrics with MCC, as it is
considered a more effective metric to other classical
methods like F1-score or receiver operating characteristic
curve (ROC AUC) [22], [23]. Specifically, for our primary
investigation of classifying binary (A/S) states, MCC
does consider the imbalanced classes and is the standard
metric [23].
MCC lies in the interval [-1; 1] and a high value (MCC
close to 1) is achieved only if the classifier scored a high
value for all the four basic rates of the confusion matrix:
sensitivity, specificity, precision, and negative predictive
value [23].

VII. RESULTS

In this section, we first test our model’s effectiveness in
predicting active usage. Next, we infer sub-states as detailed in
Table II, investigate the importance of each feature for accurate
state prediction, and examine advanced threats from attackers
enabling MAC association.

Inferring active usage: We report an overall accuracy of
0.994 and 0.981 in inferring the active usage of the smartphone
denoted by state A, for Pintor and Furious dataset
respectively.

We observe the confusion matrix in Figure 4. The fraction
of TP is very high for predicting both states A and S when
considering Pintor dataset. It stands at 0.99 for both states.
In Furious dataset too, the fraction of TP is 0.99 and 0.94
for A and S states. For Furious dataset that has a higher
number of devices (205), it is slightly more difficult to predict
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Fig. 4: Predicting active usage

the static screen state. The FP is just 0.01 for Pintor and
Furious datasets when predicting active smartphone usage.

Finally, looking at MCC, we obtain very high values of
0.989 and 0.942 for Pintor and Furious datasets respec-
tively. This attests to the reliability and the correctness of the
model’s state prediction.

Inferring sub-states: In Furious dataset, we classify into
4 states (A, S, WA, WS). On the other hand, we try to infer 6
states (A, S, PA, PS, WA, WS) in Pintor dataset, owing
to the availability of more ground-truth labels (cf. Table II).

We report an overall accuracy of 0.983 and 0.995 for
Furious and Pintor datasets respectively. Despite chal-
lenging Pintor dataset to predict deeper sub-states, we
achieve high accuracy.
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Fig. 5: Predicting sub-states: phone battery state, Wi-Fi
option ON/OFF

In Figure 5, we observe the confusion matrix. The fraction
of TP is very high for predicting various sub-states in both
Furious and Pintor datasets. It is greater than 0.95 for
all sub-states: (A, S, PA, PS, WA, WS). FPs also remain
low for both datasets.

Observing the MCC, we obtain high values of 0.948 and
0.994 for Furious and Pintor datasets respectively. It
shows that even when breaking down the active and static
smartphone screen usage, the model still predicts substates.



Importance of features: For assessing the importance of
the chosen features, we extract the weights leveraged by the
Random Forest classifier in Figure 6. We find that number
of bursts, MAC sojourn time, and, non-empty IE field length,
are very essential with a weight of ≥ 0.19. Burst duration and
bursts’ mean sequence number gap also play a part, although
smaller, in classification.

T b S b
Tmac N b N ie

SE
Q b

0.0

0.1

0.2

0.3

W
ei

gh
t

Fig. 6: Feature weights in the Random Forest model

Advanced threats: As we already mentioned in our threat
model (cf. Section IV-B), we assume that the adversary has
no knowledge of performing MAC association. Now, we relax
the constraint and use all the features stated in Table III for
training the model. This makes the attacker more potent as now
it can track the states of each device instead of just particular
MAC addresses.

In this case, we report a slightly increased overall accuracy
of 0.998 in inferring the active usage for Pintor dataset.

A S
Predicted label

A

S

Tr
ue

 la
be

l

1 0

0 1

0.0

0.2

0.4

0.6

0.8

1.0

(a) Pintor dataset

A S
Predicted label

A

S

Tr
ue

 la
be

l

1 0.08

0 0.92

0.0

0.2

0.4

0.6

0.8

1.0

(b) Furious dataset

Fig. 7: Active usage inference (with MAC association)

We observe the confusion matrix for binary state classi-
fication in Figure 7. The fraction of TP is very high for
predicting both states A and S in Pintor dataset. The value
observed is 1 across states. In Furious dataset, the fraction
of TP is 1 and 0.92 for A and S states. The FP is 0 for
both Pintor and Furious datasets when predicting the
active/static smartphone usage. Observing the MCC, we obtain
slightly higher values of 0.997 for Pintor datasets, while
Furious gives the same value as without de-randomization.

When predicting sub-states with this new model with MAC
de-randomization, accuracy practically remains the same in
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Fig. 8: Sub-states inference (with MAC association)

inferring the active usage of the smartphone, for Furious and
Pintor datasets respectively. The confusion matrix for sub-
state classification is shown in Figure 8. TP fraction remains
high for predicting various sub-states when considering both
Furious and Pintor datasets. For sub-states WA and WS
in Furious dataset, we could notice a slight improvement
in accuracy, with the fraction of FPs also remaining very low
for both datasets.

The findings suggest stronger inferences with an effective
MAC de-randomization. We chose to classify states using a
single burst. With knowledge of the smartphone’s location and
context, an adversary could achieve greater accuracy.

VIII. COUNTERMEASURES

Currently, devices send probe-requests deferentially across
various states, which increases the chances of being finger-
printed (cf. Section V). In the future, device manufacturers
need to make the probing behaviour judicious and more
uniform across various states of smartphones. The API calls
by operating systems for network selection should be made
independent of the current state of the device and its selec-
tion of user-defined features like Wi-Fi/Power-saving option
(unlike in Android [24], for instance).

Sequence numbers should be randomized at the start of each
burst (present in iOS [25]). Finally, timing and frame content-
related parameters of probe-request bursts should remain con-
sistent throughout the device’s lifetime regardless of usage.

IX. CONCLUSION

We demonstrate the successful inference of smartphone
states by analyzing Wi-Fi probe-requests. Our approach ini-
tially identifies active/static usage and can extend to detect-
ing Wi-Fi/power-saving modes. Critical features are extracted
from probe-request bursts, which vary by device state. Our
Random Forest model classifies these states with ≥ 98% ac-
curacy using extensive datasets of over 200 smartphones across
various operating systems. We also discuss advanced threats
from MAC association and suggest potential countermeasures
for device manufacturers. Future work will include more states
and state-specific features to enhance inference accuracy and
effectiveness.
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