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Abstract: Nowadays, with the rapid growth of connected objects and produced data involved in industrial processes, it 

is increasingly difficult to design and implement efficient cyber-physical systems (CPS) meeting business 

needs. As a consequence, architectures of CPS have to be able to integrate different heterogeneous actors 

(people, objects, data, services) coordinated by autonomous and self-adaptive processes capable of 

implementing the different business missions of a company. Moreover, with the emergence of Industry 4.0, 

interest in elastic services provided by cloud architectures is booming. Indeed, these architectures allow the 

smooth and scalable interconnection of interdependent systems in order to provide efficient solutions to 

facilitate the management of industrial processes. In this paper, we propose a generic architecture for 

Integration Platforms as a Service (iPaaS). This architecture offers key functionalities, namely integration and 

interoperability, but also self-decision support. One implementation based on open-source solutions and 

illustrating the benefits of this proposal in the area of the Agriculture 4.0 domain is proposed. 

1 INTRODUCTION 

In their dynamic of continuous improvement and 

digitalization, organizations are seeking to integrate 

advanced and innovative technologies to ensure their 

transition to Industry 4.0. Indeed, the emergence of 

Industry 4.0 brings a technological and philosophical 

revolution in companies, forcing them to question 

their business models. The term "Industry 4.0" 

encompasses a set of technologies and concepts 

related to the re-organization of the value chain 

(Hermann et al., 2015). This term is related to the 

accelerated advances enabled and promoted by 

information and communication technologies (ICT). 

It relies on the communication of real-time 

information to monitor and act on physical systems, 

thus exploiting a new paradigm: the cyber-physical 

systems (CPSs). Different systems communicate and 

cooperate with each other, but also with humans, to 

decentralize decision-making. Its deployment 

requires the integration of different digital technology 

know-how (Danjou et al., 2017). The fourth industrial 

revolution do not only concern production processes, 
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but also aim to revolutionize new horizons such as 

new generation smart products and services (Godreui 

et al., 2016). It requires the design and 

implementation of smart cyber-physical systems 

following an appropriate methodology and based on 

a concrete architecture that meet the challenges of 

integrating IoE actors and their intelligent 

coordination (agile, adaptable, reconfigurable and 

flexible). They should autonomously provide 

information about themselves and exchange 

information with other CPSs that are part of the 

industrial networks. They should be able to be 

adaptive to respond to multi-domain challenges 

involving different paradigms. We are talking about 

cyber-physical systems of systems (CPSoS). 

This article is structured as follows: the next 

section presents related works proposing smart 

solutions for CPS. The third section describes our 

proposal aimed at creating a flexible platform to 

manage cognitive processes in CPS able to integrate 

compliant data science approaches for decision-

making in the area of the Agriculture 4.0, followed by 

some first results. Finally, the conclusions and 

perspectives of this work are presented. 
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2 REFERENCE 

ARCHITECTURES FOR CPS 

In order to guide organizations in their transition to 

the 4th industrial revolution and to create an 

environment conducive to innovation and to the 

creation of CPS adapted to efficiently meet the new 

needs, several initiatives have been launched around 

the world and several architectures have been 

proposed.  

The most significant initiatives have been 

accompanied by government agencies and private 

organizations from countries in the most developed 

economies (Wang et al., 2017) (Zhong et al., 2017). 

Reference architectures provide a framework for 

developing solutions for Industry 4.0 in a structured 

way that allows all participants to be involved in a 

uniform manner. In this sense, standards can be 

identified and optimized. Among these architectures, 

we will find well known ones like the Reference 

Architectural Model Industrie 4.0 (RAMI4.0) and the 

Industrial Internet Reference Architecture (IIRA). 

Other different but interesting work has been 

carried out with so-called cognitive architectures 

because they allow the integration of self-

management capabilities (Kephart et al., 2003). 

Among these, we find the Adaptive Control of 

Thought - Rational (ACT-R) architecture or the Soar 

architecture. 

2.1 Industry 4.0 Architectures 

As mentioned above, the RAMI 4.0 and IIRA 

reference architectures aim to facilitate the Industry 

4.0 knowledge sharing paradigm, guide 

organizational transitions, and specifically advise on 

leveraging ICT advances. Both initiatives seek to 

build a more efficient industrial world particularly 

through complex, connected and intelligent systems. 

A notable difference is that RAMI 4.0 extends this 

vision to the entire value chain and product life cycle, 

while IIRA maintains a more concrete vision of the 

ICT world. 

2.1.1 Reference Architecture Model 
Industrie 4.0 (RAMI4.0) 

The RAMI4.0 architecture is based on three 

dimensions, as we can see in Figure 1 below, namely: 

the layers (properties and system structures), the 

hierarchy levels (from the product to the connected 

world) and the life cycle and value stream (product 

lifecycle). 

The first vertical axis proposes 6 layers (asset, 

integration, communication, information, functional 

and business) allowing to break down the properties 

of a machine on different levels. Thanks to this, even 

the most complex systems can be divided and 

managed more easily. 

Regarding the second right horizontal axis, the 

hierarchy levels, from IEC 62264, represents the 

different functionalities of organizations. This 

dimension characterizes the Industry 4.0 revolution 

with the introduction of "Products" as well as the 

"Connected World" with the emergence of the 

connection of things and services (IoT). 

Finally, the left horizontal third axis targets the 

products and facilities lifecycle, based on IEC 62890. 

We can identify 2 phases: types and instances. The 

type phase is characterized by the design and 

prototyping of a product. When this phase is 

completed and the product is manufactured, the type 

phase is transferred to the instance phase (ISA). 

Figure 1: Reference Architectural Model Industrie 4.0 

(RAMI4.0) 

2.1.2 Industrial Internet Reference 
Architecture (IIRA) 

The Industrial Internet Reference Architecture was 

introduced, in 2015, by the Industrial Internet 

Consortium (IIC) and updated in 2017 to become an 

open standards-based architecture for the Industrial 

Internet of Things (IIoT). The architecture proposes 3 

dimensions, as we can see in Figure 2, comparable to 

the Reference Architectural Model Industrie 4.0 

(RAMI4.0), namely: the Viewpoints (Business, 

Usage, Functional and Implementation), the Process 

Lifecycle (IIoT system conception, design and 

implementation) and the Industrial Sectors. 

A major goal of IIoT is to connect larger, complex 

systems and implement hierarchies for machines. 

This architecture is also based on IIoT systems for the 

functional part with a decomposition in 5 

interconnected domains, namely: control (control and 



actuation), operations (management and 

maintenance), information (data collection and 

analysis), application (use-case application) and 

business (business goals) (Expósito, 2019). 

 
Figure 2: Industrial Internet Reference Architecture (IIRA) 

2.2 Architectures Evaluation 

Reference architectures such as RAMI4.0 and IIRA 

support integration, interoperability and scalability 

needs but do not explicitly consider decision part. 

While both IIRA and RAMI 4.0 provide valuable 

reference architectures for the design and 

implementation of industrial internet systems and 

smart factories, they also have some limitations: 

▪ Complexity: both architectures are complex 

and can be difficult to implement, especially 

for smaller organizations with limited 

resources and expertise. 

▪ Standardization: for both architectures, there 

is a lack of universal standards in some areas, 

such as communication protocols and data 

formats. 

▪ Cost: Implementing the architectures can 

require significant investment in hardware, 

software, and personnel. 

 

Overall, while both IIRA and RAMI 4.0 provide 

valuable guidance for the design and implementation 

of industrial internet systems and smart factories, 

organizations must carefully evaluate the specific 

needs and resources before embarking on 

implementation. 

Based on this analysis, our work proposes an 

alternative referential architecture intended to cope 

with the criteria and generic enough to be adapted to 

different application domains of the Industry 4.0. 

3 ADAPTIVE CYBER-PHYSICAL 

SYSTEMS 

This chapter presents our architecture proposal which 

consists in designing a generic architecture for 

building cyber-physical systems capable of deploying 

autonomous processes, composed of Monitoring, 

Analysis, Planning and Execution (MAPE) phases 

and including knowledge bases, built using 

information provided by experts, to guide automated 

decision-making. The solution must consider the need 

to make these knowledge bases evolve to deal with 

new contexts, new objectives and constraints of 

industrial processes. 

3.1 5C layered referential architecture 
for CPS 

In order to facilitate and assist in the design, 

implementation and management of cyber-physical 

systems for Industry 4.0, a referential architecture in 

5C layers will be presented in this section. This 

referential architecture is intended to build and 

coordinate CPS and to allow cooperation and 

collaboration of CPSoS. This architecture is well 

suited for CPS involved in Industry 4.0 

manufacturing processes, as well as for the 

elaboration of smart products and the provision of 

smart services. 

This proposal promotes a generic and concrete 

architectural framework, based on a 5C layered 

architecture and resulting from an improvement of the 

previously presented reference architectures and the 

integration of the Internet of Everything (IoE) 

concept. 

3.1.1 5C Layers 

The 5C Layered architecture follows an incremental 

approach that allows the assembly of components of 

a CPS and also goes as far as its composition to create 

systems of systems (Sanchez, 2020). 

The two lowest layers (C1..C2) are intended to 

cope with the integrability (connectivity) and 

interoperability (communication) challenges of the 

heterogeneous actors involved in CPS (people, 

things, data, services, etc.). The three highest layers 

(C3..C5) are intended to incrementally integrate 

monitoring, analysis, planning and management 

capabilities required to allow coordination of CPS as 

well as cooperation and collaboration of Cyber-

Physical Systems of Systems (CPSoS). 

The Table 1 presents each layer and describe the 

architectural functionalities offered to the involved 

entities. 

 

 

 



Table 1: Architecture layers and functionalities 

Layer Description 
Architectural 

functionality 

C1: 
Connection 

entities share a 

common medium or 

channel 

Network 
Connectivity 

C2: 
Communication 

two or more entities 

are able to understand 

each other by 
exchanging messages 

via a common 

medium or channel 

Integrability 

Interoperability 

Interaction 
modes 

C3: 
Coordination 

two or more entities 
working together 

following the orders 

or the instructions of 
a coordinator 

Intra-system 

orchestration 

(CPS) 

C4: 

Cooperation 

two or more entities 

work together to 

achieve individual 

goals 

Inter-systems 

orchestration 

(CPSoS) 

C5: 
Collaboration 

two or more entities 

work together to 
achieve a common 

global goal 

Inter-systems 

choreography 

(CPSoS) 

3.1.2 Autonomic Management dimension 

In addition to the 5 levels previously presented 

representing a structural dimension for the design of 

CPS and CPSoS, our architecture must also integrate 

a behavioral dimension allowing the intelligent 

management of the structural elements involved. 

This behavioral dimension must offer a generic 

and scalable approach, allowing to offer self-

adaptation capabilities to the context in order to 

enable the achievement of the goals established for 

the CPS. 

We believe that the architecture proposed by 

autonomic computing (AC) offers the framework 

required to integrate this behavioral dimension for 

self-management. 

This architecture offers several structural and 

behavioral recommendations to implement self-

management capabilities and thus build an autonomic 

system. Adaptive actions are implemented by 

adaptive algorithms operating within a closed-loop 

control system. These algorithms can be generically 

described as a process that includes monitoring, 

analysis, planning and execution (MAPE) activities 

that share a common knowledge base. 

With regard to our 5-levels structure, the 

autonomic behavior would develop progressively, 

starting from the lowest levels thanks to the 

implementation of the required functionalities at the 

level of connection and communication to retrieve 

observations and execute adaptation actions on the 

CPS actors. At the coordination level, the autonomic 

MAPE process will allow to self-manage the actors 

involved in order to achieve the objectives set for the 

CPS. At the cooperation and collaboration levels, the 

CPS will function as actors that can be monitored and 

who can carry out adaptation actions in order to 

achieve the individual or shared objectives of the 

CPSoS. 

Having now the structural and behavioral 

dimensions of our architecture in place, a suitable 

methodology is still required to guide the process of 

building CPS based on our reference architecture.  

To achieve effective orchestration in an 

autonomic system, it is necessary to have a high 

degree of automation, real-time monitoring and 

analysis, and the ability to adapt to changing 

conditions.  

The following section will introduce a well-suited 

system engineering methodology that could be 

followed to build CPS based on the Autonomic 5C 

layered architecture. 

3.1.3 System engineering methodology 

In order to help innovation and development project 

managers in their transition to a more connected 

industry adapted to tomorrow's needs, we propose a 

methodological approach to determine and define 

precisely the different phases allowing designing and 

integrating complex systems related to Industry 4.0.  

In the area of software engineering and systems 

engineering, several methodologies and modeling 

frameworks have been proposed for the development 

of complex systems. 

A recent methodology successfully used at the 

industrial level for system engineering and based on 

this standard is the ARCADIA methodology 

(Capella). This methodology is an example of an 

MBSC methodology that also includes a language 

(Roques, 2016). We cannot directly compare UML or 

SySML with ARCADIA because ARCADIA is both 

a language and a method. 

Arcadia has been influenced by systems 

engineering and in particular the distinction between 

requirements and solutions (Roques, 2016). This 

method also promotes a viewpoint approach. The 

central viewpoint in Arcadia is a functional 

viewpoint. Functions are used to describe what the 

system needs to do, and then functions to describe 

what the logical or physical components do and how, 

what they do, will contribute to the system. In 

addition, other points of view such as performance or 

security must be satisfied and conform to the context 

of the specific project. This allows the same system 



to be seen from many different points of view 

depending on the system to be designed.  

This methodology proposes 5 incremental phases 

to identify the functional and non-functional 

requirements of the system (operational and 

functional analysis phases) and to design the system 

architecture (logical and physical architectures and 

EPBS). Moreover, the method has its own language 

mainly due to the lack of the concept of functions with 

languages like UML or SysML. 

Our methodology is based on an extension of the 

Arcadia methodology, in order to integrate additional 

viewpoints and views, capable of incorporating the 

structural and behavioral levels of our referential 

architecture for Industry 4.0 CPS. 

3.2 Agriculture 4.0 domain 

As this work was carried out in collaboration with the 

Maïsadour agricultural cooperative, it was logical to 

deploy and evaluate this approach on agricultural 

processes, mainly on the cereal drying process. 

As presented above, the ARCADIA method was 

therefore chosen and followed in order to model an 

integration Platform as a Service (iPaaS) type 

approach because it allows to design its architecture 

while defining, evaluating and exploiting the 

collaboration of the systems (Capella). With this 

method, our architecture could be divided into 4 parts: 

Operational Architecture, System Architecture, 

Logical Architecture and Physical Architecture. 

The logical architecture, presented in Figure 3, 

highlight the different functionalities of the system 

and show the collaboration and communication of the 

latter by detailing the different sub-functions. 

The iPaaS platform is composed of 3 modules or 

features: the integration module, the process manager 

and the prediction module. The logical actors and 

entities, on the left, represent the data sources and 

collectors, which can be also interpreted as the 

workspace or environment. The integration module 

allows the exchange of information between all the 

systems and actors involved in the process. In 

addition, it will play the role of translator because it 

will transform and standardize the data in order to 

make all the actors collaborate. Next, we find the 

process manager who ensures that the process runs 

smoothly step by step. It provides an overview of the 

various business processes and their interactions. 

Finally, the prediction module, composed of various 

decision models, allows the processing, analysis and 

prediction of data thanks to knowledge bases 

designed from heterogeneous sources (humans, IS, 

sensors, PLCs, ...). For this last module, it is essential 

to build decision models capable of integrating expert 

knowledge while ensuring a suitable accuracy of the 

decisions taken.  

For the decisional part, i.e. recommendations or 

automated decision making, 2 models were initially 

integrated and tested in order to evaluate the global 

approach. After that, we thought of developing a 

more concrete and complete decisioning module, 

namely, a generic Data-Driven Decision Support 

System (DDDSS) that could meet a wide range of 

needs in an adapted and precise manner.

 
Figure 3: Logical Architecture



 
Figure 4. Data-Driven Decision Support System Architecture

 

The architecture platform, Figure 4, is conformed 

of six internal elements: local repository, data 

evaluation, machine learning, model definition, 

predictions of parameters, model monitoring and user 

interphase. 

Each of the elements is defined based on its 

specific functionalities that receive and process data. 

In addition, the DDDSS, as an open system, is 

interconnected to external components databases, 

stakeholders, quantum cloud services, machines to 

exchange resources and information. 

Our solution therefore meets the various key 

elements defined above concerning the 

functionalities or services of integration, 

interoperability, decision model inclusion, 

adaptability, auditability and finally scalability. 

4 DEVELOPMENT AND 

EXPERIMENTATIONS 

In order to develop and evaluate this approach, an 

iPaaS prototype has been implemented on several 

agricultural processes, including drying, with the aim 

of optimizing machine parameters and reducing 

energy consumption (gas + electricity) and therefore 

also CO2 emissions. 

This prototype uses only open-source solutions to 

prove its efficiency at low cost. For the integration 

module, the Apache Camel framework has been 

chosen as the main integrator. For the Process 

Manager part, the adopted solution is Camunda BPM. 

Moreover, we find other solutions like Apache Kafka, 

which is a complementary integrator (Cestari et al., 

2020). 

4.1 Implementation 

The different solutions used were adopted following 

a thorough state of the art on the subject. We 

identified the characteristics and functionalities 

necessary for the proper functioning of the system in 

order to list and compare the solutions that best 

corresponded to our needs. 

Apache Camel ensures interoperability between 

the various systems thanks to a multitude of 

connectors (easily developed in case of absence) and 

the simple integration of new services or tools. 

Apache Kafka, on the other hand, will be useful for 

communications with a need for real-time data, as it 

is much better adapted than Camel for this part. 

Camunda BPM, as process manager, can be 

considered as the brain of the system. It will ensure 

that the process runs smoothly via BPMN diagrams, 

compatible with other editors, which are executed by 

integrated engines. 

To meet the scalability and elasticity needs of the 

iPaaS platform, Docker and Kubernetes were 

selected, among several technologies, as the main 

components to best manage them. 

The chosen use case, designed with Camunda, 

aims at reducing energy consumption during the grain 

drying process by optimizing the dryer parameters to 



obtain the best settings (number of burners, burner 

temperatures, extraction interval, …) and set points 

(humidity, objectives) for the proper functioning of 

the drying process with lower consumption. 

The learning models aim to define the optimal 

parameters with the lowest energy consumption 

based on 4 inputs: input humidity, desired output 

humidity, outside temperature and extraction weight. 

The predicted parameters then become the input data 

for estimating the energy consumption required for 

the process. 

4.2 Results 

This section will detail the results obtained from the 

models employed according to the methods 

mentioned throughout the work. First, we will see the 

results obtained for a complex regression problem, 

namely the parameterization of the dryers (T° 

burners, extraction intervals). Then, we will see the 

results obtained for a non-complex classification 

problem (number of burners). 

 

4.2.1 Results for regression problems 

After deploying different machine learning models to 

forecast energy consumption and optimize 

production parameters, we conclude that the deep 

learning branch and ANN artificial neural networks 

model provides the best performance overall. We 

divided the data into training and test set. Seventy per 

cent of the data was used as a training set and the 

remainder as the test set. The ANN was trained over 

700 epochs with a batch size equal to 20 and a 

learning rate equal to 0.01. The metrics are in the 

following Table 2. 

Table 2: Model performance for parameter optimization. 

Approach MAE R^2 

ANN 0.206 0.86 

 

As a result, we obtained an acceptable and reliable 

MAE loss metric to predict the parameters. The 

prediction error can be improved by implementing 

other more robust outlier elimination techniques since 

the most significant errors are obtained when the 

fundamental variables are extreme points. 

When the DDDSS Time Efficiency and Energy 

Efficiency parameters are set to the ultra-mode, the 

theoretical result is an average saving in the 

production plants of 17.5%. 

 

4.2.2 Results for classification problems 

Three evaluation tests were carried evaluate the 

feasibility of applying the quantum support vector 

machines QSVM model to solve binary classification 

problems to predict the number of burners. This same 

problem was addressed using Support Vector 

Machine in its classical approach, and the 

performance of these two methods was compared. 

The results obtained are shown in Table 3. 

Table 3: QML and CML test definition. 

Tests 

Feature 

Reduction 

(PCA) 

Number 

of 

features 

Number of 

Instances 
Training 

Testing 

dataset 

Test 1 Yes 3 100 0.7 0.3 

Test 2 Yes 3 3000 0.7 0.3 

Test 3 Yes 7 3000 0.7 0.3 

 

After deploying the QSVM model, the result obtained 

is not only promising for deploying quantum 

infrastructure solutions, but it is already a reality, as 

we can see in Table 4.  

Table 4: QML and CML accuracy and running time results. 

 Test 1 Test 2 Test 3 

Approach Accuracy 
Time 

(s) 
Accuracy 

Time 

(s) 
Accuracy 

Time 

(s) 

QSVM 0.98 48.00 - - - - 

CSVM 0.73 0.001 0.77 0.08 0.99 0.1 

 

We obtained extraordinary results, as in the first 

test, training the model only with a tiny part of the 

dataset; we were able to obtain an accuracy of one 

hundred per cent after being evaluated while its 

counterpart provides less efficient performance. The 

classical model must be trained with the complete 

dataset to provide similar results as the quantum 

model. It can be concluded that the quantum 

properties speed up pattern recognition on little data 

and are highly efficient compared to their traditional 

counterpart. 

However, when it came to testing two and three, 

with more extensive input variables, the quantum 

computing provided by IBM did not process it, due to 

the resource limit offered to users. It is known that 

today, leading companies continue to develop 

quantum infrastructure with larger processing units. 

The statement above positions the classical 

method as the primary solution to address binary and 

non-binary problems within an Industry 4.0 

framework. However, the latter will be a prosperous 



approach when quantum computers reach "quantum 

supremacy" in the coming years. 

5 CONCLUSIONS AND 

PERSPECTIVES 

In this paper, we have proposed a generic iPaaS 

architecture fully composed of open-source solutions. 

This shows that this solution can work at very low 

cost even if some tasks will be a bit heavier to 

manage. All technologies used could, of course, be 

replaced by proprietary solutions. We could see that 

the architecture allows to satisfy the requirements of 

integrability, interoperability and extensibility. 

To optimize the complex regression case results, 

it’s essential to increase the data preprocessing 

methods to achieve formidable performance for 

diverse problems. Therefore, some robust techniques 

will be introduced to the system for this purpose, e.g., 

data imputation using linear regression. Second, it 

will be fundamental to optimize the hyperparameters 

of the algorithms to obtain desired results, this last 

will be possible by implementing the Grid-Search 

technique. 

Moreover, this work presents an alternative to the 

existing options reviewed throughout state of the art, 

including machine learning methods in its quantum 

version to address binary classification tasks. The 

latter approach was possible to deploy by using IBM 

quantum resources. Moreover, the properties of 

entanglement and superposition provided a speedup 

to determine the number of burners needed to dry a 

production batch, with exceptional accuracy and 

minimal training. 

This architecture allows for a simple integration 

of the DDDSS which makes it adaptive and that will 

clean and standardize the data and define the most 

suitable decision models. The models will be able to 

be evaluated, adjusted and used simultaneously to 

support the decision-making process or to make it 

directly while providing auditable results. The 

objective is to acquire as much knowledge as possible 

to compensate for the retirement of experts who are 

not necessarily replaced and are becoming 

increasingly rare, particularly in certain fields such as 

grain drying and agriculture in general. The 

collaboration of these models will bring a strong 

adaptability and robustness to future CPS. The 

integration of quantum decision models is also not to 

be excluded in the coming years. Finally, in the 

future, an evaluation of the scalability and elasticity 

of the solution will be performed in a multi-tenant 

scenarios context. 
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