
HAL Id: hal-04630568
https://hal.science/hal-04630568v1

Submitted on 1 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software in science is ubiquitous yet overlooked
Alexandre Hocquet, Frédéric Wieber, Gabriele Gramelsberger, Konrad

Hinsen, Markus Diesmann, Fernando Pasquini Santos, Catharina Landström,
Benjamin Peters, Dawid Kasprowicz, Arianna Borrelli, et al.

To cite this version:
Alexandre Hocquet, Frédéric Wieber, Gabriele Gramelsberger, Konrad Hinsen, Markus Diesmann,
et al.. Software in science is ubiquitous yet overlooked. Nature Computational Science, 2024, 4,
pp.465-468. �10.1038/s43588-024-00651-2�. �hal-04630568�

https://hal.science/hal-04630568v1
https://hal.archives-ouvertes.fr


Software in science is ubiquitous yet overlooked
Authors: Alexandre Hocquet (1, 2), Frédéric Wieber (1), Gabriele Gramelsberger
(2), Konrad Hinsen (3, 4), Markus Diesmann (5), Fernando Pasquini Santos
(2, 6), Catharina Landström (2, 7), Benjamin Peters (2, 8), Dawid Kasprowicz
(2), Arianna Borrelli (2, 9), Phillip Roth (2), Clarissa Ai Ling Lee (2, 10), Alin
Olteanu (2), Stefan Böschen (2)

All authors contributed equally. The authors declare no competing interests.

Correspondence to Alexandre Hocquet.

Affiliations: (1) Archives Poincaré, Université de Lorraine, Nancy, France (2)
Käte Hamburger Kolleg, Cultures of Research, RWTH, Aachen, Germany (3)
Centre de Biophysique Moléculaire, CNRS, Orléans, France (4) Synchrotron
SOLEIL, Saint Aubin, France (5) Institute for Advanced Simulation (IAS-
6), Forschungszentrum Jülich, Jülich, Germany (6) Department of Computer
Science, Calvin University, Grand Rapids, MI, USA (7) Science, Technology
and Society Division, Chalmers University of Technology, (Gothenburg) Sweden
(8) Department of Media Studies, The University of Tulsa, Tulsa, OK, USA
(9) History of Science Institute, TU Berlin, Berlin, Germany (10) Center for
Interactive Media, Multimedia University, Cyberjaya, Selangor, Malaysia

Software is much more than just code. It is time to confront the com-
plexity of licenses, uses, governance, infrastructure and other facets
of software in science. Their influence is ubiquitous yet overlooked.

In March 2020, Neil Ferguson, the scientist whose epidemiology model was
used to justify COVID lockdown policies in the UK and around the world,
was urged to make his model’s source code public. The model received some
criticism on scientific grounds, but the most vocal objections targeted its software
engineering aspects, calling it poorly designed, written and documented [1]. Such
a culture clash is not surprising to some computational scientists, whose daily
routine consists of designing, writing, maintaining, supporting, testing, debugging,
adapting to new hardware, documenting, sharing, licensing and packaging a
piece of software. Both computational researchers and software engineers are
used to interacting with different temporalities, constraints, norms and work
cultures.

In June 2020, in the wake of Ferguson’s controversies, colleagues across the
sciences and humanities published a timely and relevant manifesto in Nature that
proposes “five ways to ensure that models serve society” [2]. Yet the manifesto
does not mention the concept of software in their consideration of models. We
believe this is lacking because models and software are entangled in science, and
software does critical work that models cannot perform on their own.

Software is indeed difficult to define, often being mistaken for code or algorithms.
As historian of computing Thomas Haigh puts it: “Software always involves
packaging disparate elements such as computer code, practices, algorithms,

1

mailto:alexandre.hocquet@univ-lorraine.fr
https://www.tomandmaria.com/Tom/Research


tacit knowledge, and intellectual property rights into an artifact suitable for
dissemination”. Scientific software involves a diversity of practices regarding
programming, governance, licensing, distribution, maintenance and support. It
is developed and used across a myriad of scientific disciplines and programming
traditions. It ranges in size from personal ‘scripts’ to huge projects involving
entire communities and global infrastructure. It encompasses freely shared code
as well as commercial packages.

In this Comment, we emphasize the complexity of scientific software as a multi-
faceted socio-technical (and historically grown) system. We describe facets of
software that we define as vantage points from which the different dimensions
of software can be understood. The multifaceted nature of software implies
that the work done by software has technical, legal, sociological and epistemic
consequences. Models and software are entangled in computational science, and
much remains to be done to comprehend these consequences. We also point out
the diversity of situations involving software in computational science, which
further complicates how to approach software facets. We highlight a few case
studies, with the hope that this starting conversation about software will be
enriched by further input.

Engineering
Ferguson’s story reveals something important and widespread [1] about a culture
clash between science and software engineering. Some software professionals
may regard scientists as end-user programmers, yet scientists do not necessarily
share the same norms, aims and practices as software engineers.

For example, given that validation and verification are often intertwined, test
suites designed by scientists may focus more on the stability and reproducibility
of simulation results than on the efficiency of the code or the structure of the
program. In some scientific projects, risk-averse approaches oppose agile methods
[3]. Software longevity may not be understood in the same way; whereas software
engineers consider adaptation to new hardware, operating systems or platforms
to be essential, backward compatibility, stability and replicability are more
important for scientists.

Also, software engineers may tend to account for diverse potential users, whereas
scientists sometimes devise software for the exclusive use of their close collabora-
tors. Therefore, standards pertaining to portability or the user-friendliness of
interface design may differ substantially. Tasks such as software maintenance or
bug fixes might be idiosyncratic and have temporalities of their own.

To manage the unmanageable in increasing software complexity and in the
labyrinth of available libraries, communities develop guidelines on how to use
and improve scientific software in alignment with scientific research norms. In
doing so, the field of research software engineering has emerged, aiming to
bridge both cultures. The growing importance of research software engineering
underlines the need to study the diversity of working cultures in scientific software.

2



To this end, the FAIR (findable, accessible, interoperable and reusable) principles
for research software [4] and similar initiatives should be assessed and compared
to established practices in open source communities. Moreover, the issue of
recognition or credit for engineering work in science is also pressing.

Governance
Governance — that is, the social structure of a software project — is an important
facet of software that has more than one author. The way software development
and maintenance are collectively organized affects the science that relies on it.

In the computational chemistry project Q-Chem, a professional workforce ded-
icated to development and maintenance is financed by software package sales.
The project is thus commercial, centralized and proprietary, which is supposed
to ensure its stability [5]. Open source would arguably be a better way forward
for transparency, but it does not solve the problem of who is able to commit
what (and themselves) to a project. The SciPy community consists of scientist-
developers with diverse interests, both in terms of numerical techniques and
scientific disciplines, and different computational needs. Even though the SciPy
libraries are open source, development choices tied to hierarchies in governance
or the representation of scientific disciplines in the community influence how
practical their use can be in different communities. Forking can mitigate the
diversity issue but is not always an effective solution, because it tends to fragment
or even divide open source communities.

Users and funders are sometimes not aware of governance issues. To understand
a software project, one should situate it within diverse types of social structure
[6]. Moreover, governance should include both developer and user communities,
because their perspectives and priorities often differ considerably.

Licensing
Beyond governance, software is also concerned with the administration of its
uses. Licenses are the contracts that software authors and users must abide by.
Although definitely entangled with governance, licensing takes a legal rather
than a social perspective, translating intellectual property rights into the world
of software.

For example, licensing may differ for academic and industrial users. The Macro-
Model licensing policy distinguishes between discounted academic licenses that
forbid tinkering with certain model parameters, and industrial licenses that do
allow such tinkering. Some scientists have argued that academic licenses restrain
scientific potentialities while the industrial ones raise reproducibility issues linked
to uncertain versioning [7].

Given that the license defines what the user is entitled to do, the actionability of
a model embedded in a piece of software follows directly from licensing policies.
Yet such end-user license agreements are notoriously seldom taken into account

3

https://hidden-ref.org/
https://www.q-chem.com/
https://blog.khinsen.net/posts/2017/11/22/stability-in-the-scipy-ecosystem-a-summary-of-the-discussion.html
https://www.schrodinger.com/platform/products/macromodel/
https://www.schrodinger.com/platform/products/macromodel/


by users. Indeed, much scientific software lacks any licensing policy at all. Even
within open source projects, license differences affect the possibilities for the
reuse and combination of software [8]. For example, ‘Permissive’ licenses such
as MIT, Apache or BSD differ from ‘copyleft’ licenses such as GPL or LGPL.
Better literacy regarding licensing issues is desirable, as these issues illustrate
a tension: scientific software is at once a valuable technical artifact subject to
intellectual property, and an expression of models and methods whose scientific
value comes from disclosure and sharing.

Circulation
According to Haigh [9], software is only as useful as it is “suitable for dissem-
ination”, but what this means depends on the context. As soon as exchange
is envisioned for a computational project, software is what enables code to be
packaged for traveling through space (that is, across different communities or
userbases), time (because of maintenance and support), pieces of hardware (for
instance, for portability), and software environments (for backwards compatibil-
ity).

For example, the history of the Gaussian computational chemistry package is
a decades-long story of strategic changes. Gaussian began as a freely available
source code, and eventually a company was founded to distribute and sell
Gaussian as a software suite. The Gaussian story, however, is not merely one
of software commodification. For Gaussian, maintaining control over official
versions is key for the accountability and durability of the software project in the
context of diverse hardware and portability initiatives. That is why the source
code of Gaussian is provided, as a warrant for transparency, but many corporate
actions forbid users to modify it, to avoid proliferation of uncontrolled and
inconsistent versions of the program [7]. The history of distribution strategies
of the Gaussian package over decades sheds light on different strategic choices
regarding reproducibility. Nowadays, it is the evolution of software rather than
hardware environments that needs to be taken into account.

Software environments can be stored and transferred, which is the role of
container technologies such as Docker. These have become popular in scientific
computing, alongside version control systems that permit source code changes to
be tracked. The missing link between version control and executable containers
is a record of the transformation process from source code to executable. This
task is performed by compilers and related tools and orchestrated by package
managers. However, some package managers do not keep track of the versions of
compilation tools, which are subject to change as well. A different compiler can
cause unpredictable changes in the results of calculations. Software management
tools such as Nix or Guix ensure full provenance tracking, but their use is still
far from widespread.

4

https://gaussian.com/
https://gaussian.com/i70/
https://www.docker.com/
https://nixos.org/
https://guix.gnu.org/


Infrastructure
Infrastructure studies have revealed issues of long-term development, scale and
the interplay of technical and organizational structures, as well as tensions
between what is planned and what emerges. Infrastructure constitutes a software
facet of its own, especially when software projects involve or support entire
communities [10].

Nowadays, platforms as infrastructure are becoming increasingly detached from
their hardware support. In science, this means that the portability of models to
a variety of competing hardware is less of an issue than it was a few decades
ago, whereas software infrastructure is nowadays more fragile, described by
historian Paul Edwards as “flammable” [10]. Large scientific instruments such as
telescopes are now well established elements of scientific infrastructure, and have
corresponding funding models, but the same cannot yet be said for software,
which has a similarly fundamental role.

For example, the field of computational neuroscience is striving to separate the
formal specification of concrete neural network models from generic simulation
engines, which can run a variety of models from different research groups. This
kind of generic engine rests on software infrastructure suffering from distinctive
long-term development and maintenance issues [11]. With many research groups
depending on the continued usability of the shared engine, its maintenance must
be governed and funded collegially and on a timescale extending far beyond that
of a typical research grant [12].

Budgets for software maintenance must be planned and approved as long-term
investments, just like the budgets for traditional scientific infrastructure such as
particle accelerators. For this to happen, science funding and policy actors need
a better understanding of how software is made usable and for whom.

Embedded theory
In scientific models, software embeds theory, and different versions of a piece of
software entail different versions of a model or its parameters, or even different
underlying theoretical principles. In the context of in silico experiments in
climate modeling [13], changes in the software might imply changes in the models
and theories they are based upon and, thus, correspond to different settings for
such experiments. To ensure consistency, some climate researchers have adopted
methods for comparative assessment of models and parameters that also include
evaluation of the software.

Another example is the effort to standardize mathematical concepts in compu-
tational neuroscience. An analysis of connectivity patterns in neural network
models implemented either in terms of predefined routines of a generic simulator
or as custom code in a general-purpose programming language has unveiled
a diversity of interpretations of its core connectivity concept that challenges
reproducibility [14].

5



The problem is not only one of theoretically diverse conceptions of connectivity,
but also one of the implementation of any of these conceptions across different
software frameworks such as MATLAB, NEURON or NEST. Using different
pieces of software thus means using different connectivity theories. The way
forward lies in developing standardized ontologies of the terms the community
is using, backed up not only by mathematical definitions but also by reference
software implementations.

Users
Because users rarely form a homogeneous group, the potential diversity of
uses accentuates the underlying complexity and diversity of software. As a
medium, software constitutes an interface within and through which users
operate. As such, software sets operational affordances that organize users’
interactions with models. For example, a command-line interface and the use of
scripts may enhance reproducibility because invocations can be recorded [15],
whereas a graphical user-friendly interface might enhance usability. Beyond the
command-line interface versus graphical user-friendly interface debate, users’
interactions with software must be understood as being bound to research
cultures. For example, in protein crystallography, user interfaces shape the
handling of models on the screen, but the interface design itself is influenced by
a common understanding of molecules through physical ball-and-stick models
[16].

The diversity of application scenarios often transcends the scientific context
itself. For instance, in water management, computer models are supposed to be
used by water management professionals. Although such programs are nowadays
published as open source code, they are less frequently used by professionals other
than the scientists involved in their creation, as their design may be somewhat
opaque to non-scientists. For a scientific computer model to become usable
in water management, extensive development effort is required to transform it
into a software package suited to a wider audience. This translation process of
turning models into usable software is pivotal [17].

Even within scientific communities, such as that of functional magnetic resonance
imaging, the engagement and retention of users is challenged by competing
software packages. Usability assessment is crucial because user experience
choices presumably affect the scientific analysis itself [18]. Beyond code, reflexive
studies about scientific software need a broader perspective to encompass the
entire trajectory from the context of development to the context of application.

Conclusion
Our argument is that software influences models and their outputs, just as it
shapes (and is shaped by) scientific practices. That software is multifaceted
implies that the work software performs has not only technical or sociological but
also epistemic consequences. Concerns about software robustness, maintenance

6

https://www.mathworks.com/products/matlab.html
https://www.neuron.yale.edu/neuron/
https://www.nest-simulator.org/


and durability, reproducibility and actionability, dissemination and consistency,
all have epistemic dimensions.

Some of the issues are currently being addressed. To name some initiatives,
Software Heritage endeavors to preserve all available versions of scientific code;
Software Carpentry promotes computational literacy; the Software Sustainability
Institute and the Research Software Alliance work towards better recognition;
the ReScience C journal aims at replicating results.

Nevertheless, more is needed. Coming back to the abovementioned manifesto
about models and society [2], it should now be clear that the entangled epistemic,
social and technical dimensions of software give substance to the issues raised in
said manifesto.

The diversity of software practices implies that a form of interdisciplinarity is key
to understanding software facets. We should gather perspectives from different
academic (such as computational scientists as well as humanists and social
scientists) and professional backgrounds (such as developers, users, maintainers,
and so on) to reveal the tensions between different meanings of software.

In this spirit, more case studies in various scientific fields and epochs should help
us to understand the entanglement of software and models within their diversity
and different temporalities. We hope this will improve our comprehension of the
situatedness of software and enrich the conversation we are calling for.

Acknowledgements
The joint research was funded by the Käte Hamburger Kolleg Cultures of Research
for Advanced Study in the Humanities with funds from the German Federal
Ministry of Education and Research.

References
1. Thimbleby, H. Computer J. 67, 1381–1404 (2024)
2. Saltelli, A. et al. Nature 582, 482–484 (2020)
3. Kelly, D. J. Syst. Softw. 109, 50–61 (2015)
4. Barker, M. et al. Sci. Data 9, 622 (2022)
5. Hocquet, A. & Wieber, F. Eur. J. Phil. Sci. 11, 38 (2021)
6. Schrape, J.-F. Convergence 25, 409–427 (2017)
7. Hocquet, A. & Wieber, F. IEEE Ann. Hist. Comput. 39, 40–58 (2017)
8. Morin, A. et al. PLOS Computat. Biol. 8, e1002598 (2012)
9. Haigh, T. Commun. ACM 56, 31–34 (2013)
10. Edwards, P. N. Platforms are infrastructures on fire. In Your Computer is

on Fire (eds Mullaney, T. S. et al.) 313–336 (MIT Press, 2021)
11. Einevoll, G. et al. Neuron 102, 735–744 (2019)
12. Knowles, R. et al. Nat. Computat. Sci. 1, 169–171 (2021)
13. Gramelsberger, G. et al. J. Adv. Model. Earth Syst. 12, e2019MS001720

(2019)

7

https://www.softwareheritage.org/
https://software-carpentry.org/
https://www.software.ac.uk/
https://www.researchsoft.org/
http://rescience.github.io/
https://doi.org/10.1093%2Fcomjnl%2Fbxad067
https://doi.org/10.1038%2Fd41586-020-01812-9
https://doi.org/10.1016%2Fj.jss.2015.07.027
https://doi.org/10.1038%2Fs41597-022-01710-x
https://link.springer.com/doi/10.1007/s13194-021-00362-9
https://doi.org/10.1177%2F1354856517735795
https://doi.org/10.1109/MAHC.2018.1221048
https://doi.org/10.1371%2Fjournal.pcbi.1002598
https://doi.org/10.1145%2F2500131
https://doi.org/10.1016%2Fj.neuron.2019.03.027
https://doi.org/10.1038%2Fs43588-021-00048-5
https://doi.org/10.1029%2F2019MS001720
https://doi.org/10.1029%2F2019MS001720


14. Senk, J. et al. PLOS Computat. Biol. 18, e1010086 (2022)
15. Baker, M. Nature 541, 563–565 (2017)
16. Myers, N. Rendering Life Molecular: Models, Modelers, and Excitable

Matter (Duke Univ. Press, 2015).
17. Landström, C. TATuP J. Technol. Assess. Theory Practice 32, 36–42

(2023)
18. Pasquini, F. et al. in Proc. 18th Int. Joint Conf. Computer Vision,

Imaging and Computer Graphics Theory and Applications (VISIGRAPP)
Vol. 2, 63–72 (SCITEPRESS, 2023).

8

https://doi.org/10.1371%2Fjournal.pcbi.1010086
https://doi.org/10.1038%2Fnj7638-563a
https://doi.org/10.14512/tatup.32.1.36
https://doi.org/10.14512/tatup.32.1.36

	Software in science is ubiquitous yet overlooked
	Engineering
	Governance
	Licensing
	Circulation
	Infrastructure
	Embedded theory
	Users
	Conclusion
	Acknowledgements
	References


