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Abstract

In recent years, heterogeneous SoCs—comprised of multiple processor
cores and programmable logic—have greatly progressed both complexity
and performance. From a security point of view, this leads to an expan-
sion of the attack surface exposed to adversaries. To address this issue,
in this article, we propose a novel heterogeneous SoC architecture called
RTrustSoC. Our proposal includes an innovative fully-reconfigurable post-
deployment strategy for partitioning the SoC architecture into multiple
exclusion levels—worlds—with customizable degrees of privilege. We aim
to provide SoC designers with fine control over the security of the system
by segregating trusted hardware components from third-party IPs with
“on-demand” hardware isolation. Therefore, we expect that an RTrust-
SoC instance could evolve from a multi-world SoC to a fully trusted plat-
form as IPs progressively develop. RTrustSoC also proposes a dynamic
reconfigurable penalty system to monitor the third-party IPs and take
measures in case of a detected abnormal behavior. Our experimental test-
ing on an AMD-Xilinx Zynq-7000 SoC-FPGA showed the penalty of the
proposed isolation strategy to be small, up to 1% in LUT and 0.7% Flip
Flop utilization, thus enabling to an efficient security solution. RTrust-
SoC introduces a novel design paradigm, evolving from the binary no-
tion of security—trusted vs untrusted—into a flexible set of worlds that
can be adapted to any scenario. We demonstrate a real case scenario of
RTrustSoC use on time-based cache memory attacks with implementation
results.
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journal = {IEEE Trans. Circuits Syst. I Regul. Pap.},
pages = {497--509},
volume = {72},
number = {2},
year = {2024},
doi = {10.1109/TCSI.2024.3413364}

1



1 Introduction

Heterogeneous System-on-a-Chip (SoC) platforms are found in multiple appli-
cation domains thanks to their high performance and flexibility. Their use cases
range from general-purpose to critical military applications: high-frequency
trading, cloud services, telecommunications, among others. To adapt to an even
wider range of environments, the number and variety of components inside the
SoC are constantly increasing. Today, typical heterogeneous SoCs embed one
or several general-purpose processor cores, one or several application-specific
processor cores, several hardware accelerators (which may be reconfigurable
or not), large memories, power management units, communication interfaces,
analog components, and so on. SoC-FPGAs are among the more complex het-
erogeneous SoCs. Contemporary examples include the Intel Agilex FPGA·SoC,
and the AMD-Xilinx Zynq UltraScale+ MPSoC. Although this paper focuses on
this generation of devices, our work can be extrapolated to other SoC platforms.

The increasingly complex design of SoCs poses a greater challenge for secu-
rity auditors. The attack surface available for a malicious entity expands with
the continuous inclusion of additional components in the device creating mul-
tiple and varied risks. As the market pushes for seemingly yearly technology
releases [Lan23], manufacturers are hard pressed to meet such deadlines. This
leads designers to reuse hardware descriptions and software libraries with the
aim of reducing development time. Quite often, these modules are created by
third parties and then licensed to be used in the SoC. If even a single com-
ponent of the SoC is not designed in-house, the chain-of-trust may be broken.
This is usually not an issue as long as the third parties are reliable. However,
by chance, their intentions are not legitimate, the consequences can be severe
[Li+21; RR21; Gre23].

This paper addresses these security issues by presenting a novel lightweight
solution for securing heterogeneous SoCs we named RTrustSoC. We introduce
an innovative way of segregating the heterogeneous SoC resources into multi-
ple levels, or worlds, with varying degrees of privilege. This novel approach
was inspired by the ARM TrustZone technology [AF04]. In TrustZone, the
components of the system can be declared as “trusted” or “untrusted.” The
trusted modules have full access to the platform while untrusted components
have restricted access. A secure monitor is responsible for performing the con-
text switches. TrustZone effectively performs spatial partitioning of the device
into two regions. However, a binary system of classes is too coarse to classify
all the components of modern SoCs. To overcome the problem, RTrustSoC pro-
vides a customizable number of worlds that can have an equally large set of
customizable privileges.

This idea relies on configurable small reconfigurable security monitors that
“wrap” each component and audit its interaction with the SoC bus. These
security wrappers enforce the on-demand hardware isolation required by each
world via security policies to prevent any unauthorized behaviors and restrict
unauthorized accesses to other resources. They can even disable the ability of
a component (a hardware IP or a software application) to make communica-
tion requests via a reconfigurable penalty system. Another limitation of ARM’s
TrustZone is that it offers support for generic SoC architectures, which reduces
its usefulness in systems with custom hardware accelerators. AMD-Xilinx ad-
dressed this issue by proposing a TrustZone extension that can also isolate the
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IPs in the FPGA through the AXI bus. However, the approach has been shown
to be vulnerable to elementary physical attacks [BBA19]. To solve this issue,
RTrustSoC also extends the notion of secure worlds to hardware accelerators:
co-processors or FPGA. As the multi-world partition is enforced by individual
security monitors, this explicitly improves the “poor man’s security” approach
of AMD-Xilinx.

RTrustSoC can be fully integrated into contemporary heterogeneous SoCs
that feature ARM cores as well as in novel platforms that intend to use those
architectures. In this work, we use the former approach: we implement an
RTrustSoC prototype in heterogeneous SoC. We use an AMD-Xilinx Zynq-7000
SoC-FPGA (XC7Z010-1CLG400C) as testing platform to conduct experiments
and test for performance. Our findings show that RTrustSoC has a minimal
resource overhead, with up to 1% LUT resource utilization and up to 0.7% FF
utilization for the fully trusted communication system.

The rest of the paper is organized as follows. Section 2 presents the secu-
rity context, related work and a comparison with the state of the art. Section
3 describes the threat model. Section 4 presents RTrustSoC: the lightweight
heterogeneous SoC architecture secure-by-design. Section 5 provides the esti-
mated costs of the approach with the relevant implementation results. Section
6 presents the application of RTrustSoC to a time-based cache memory attack
scenario. Section 7 concludes the paper.

2 State of the Art

2.1 Security Overview

The literature contains multiple reports of vulnerabilities on SoC platforms.
Most are discovered and reported by security researchers and have no signif-
icant impact for the end users. But in other cases, manufacturers have been
requested to redesign their products [Gro+22]. When looking at these records,
we identified common failure points. For example, the SoC communication bus
is a particularly important source of weakness in the security of the system. In
[BB18; BBA19], the authors showed how to perform privilege escalation attacks
by targeting a single bit of the bus. Another popular point of attack is the
device’s power distribution network (PDN). Works like [Gna+21] and [BL23]
have demonstrated the feasibility of leveraging the shared power or clock trees
of commercial heterogeneous SoCs as intrinsic channels for bypassing isolation
policies. The memory architecture of SoCs also tends to be vulnerable. It has
been shown that shared DDR can be exploited to cause faults in the system
[Eln+22]. Cache memories can leak side-channel information concerning the
operation of the platform [YF14] and also enable the covert communication of
data [BB21]. In heterogeneous SoCs, the FPGA itself represents a major liabil-
ity. Many authors have demonstrated how to leverage the reconfigurable fab-
ric to cause faults in the system [Wei+20], transfer data covertly [BL23], and
implement remote monitoring schemes that provide high quality side-channel
information [ZS18; Sch+21].

Another relevant part of the literature focuses on countermeasures against
the aforementioned attacks. Some works like [Nas+21; Bah+21; And+23] pro-
pose different approaches to secure a SoC through its communication bus. How-
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ever, these solutions focus on processor architectures that are not native to
commercial heterogeneous SoCs. Indeed, most of these platforms feature an
array of ARM processors. This is consistent with current trends, as ARM is the
leader in the smartphone processor market [Fit23]. The solutions available in
the literature also fail to consider the heterogeneous SoC as a whole, i.e. they
do not provide security protections for all the heterogeneous SoC components.
Lastly, they require major modifications of the architecture to prevent most
vulnerabilities. This means their ideas are worth exploring for applications in
future SoC designs, but they fail to address the challenges of platforms that are
already in use.

Given that SoCs may be used to handle sensitive data, they have become
prime targets for malicious attackers. The main aims of attacks on SoCs range
from stealing sensitive data to creating a denial-of-service. These attacks are
mainly software-based and target the processing system of the SoCs. They are
partially possible because some SoC resources are shared between applications.
To give an example, in some recent multi-processor SoC architectures the last
level of cache is shared by different cores. Depending on the cache memory
access time, a malware can leverage this characteristic to determine whether
or not the target application has accessed the data [OST05]. This provides
the adversary with helpful information concerning the target application. This
attack is also feasible on heterogeneous SoCs [BB21].

2.2 Protected SoC architectures

The best known strategy for protecting heterogeneous SoCs is ARM TrustZone
[AF04]. The ARM TrustZone technology is available for heterogeneous SoCs
with ARM processors such as the AMD-Xilinx SoC-FPGAs. This technology
splits the resources of the processing system into two different worlds: secure
and non-secure. Partitioning is then extended to the rest of the SoC: peripherals
and memories, and in the case of AMD-Xilinx SoC-FPGAs also to the recon-
figurable fabric [AMD14]. Figure 1 is a didactic example of this technology
applied to a heterogeneous SoC: the red blocks represent the non-secure world
and the green blocks the secure one. This protection strategy is applied to the
processing system (called PS in Fig. 1), to the memory resources, and also to
the programmable logic (called PL in Fig. 1). The ARM TrustZone technol-
ogy allows each CPU core to execute software applications in one of the two
worlds, whereas with the extension proposed in the AMD-Xilinx SoC-FPGAs,
each hardware IP embedded in the programmable logic is linked to one of the
two worlds.

TrustZone enforces the policies in the SoC with an identifier called “NS bit”
and some controllers. To do so, TrustZone uses the bus communication bus
as shown in Fig. 1. Indeed, communications within a SoC pass through sys-
tem buses like the Advanced Microcontroller Bus Architecture (AMBA). This
technology is available for ARM cores, and both AMD-Xilinx and Intel SoC-
FPGA use ARM cores. The Advanced eXtensible Interface bus (AXI) [ARM20]
is the main communication channel between the processing system and the pro-
grammable logic in the case of AMD-Xilinx SoC-FPGA. In these platforms, a
proprietary IP (the AXI interconnect) acts as a translator between the ARM
AXI and AMD-Xilinx’ own specification: the AXI4 bus. In this type of commu-
nication bus system, the NS bit is sent on the AMBA buses and an AXI4 bus to
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Figure 1: An example of heterogeneous SoC architecture using ARM-TrustZone
technology. The red blocks represent the non-secure world and the green blocks
represent the secure world.

allow the programmable logic to be aware of the world (secure/non-secure) in
which the software application is running at any time. This prevents non-secure
resources (in the processing system, programmable logic and memories) from
accessing secure ones. The code and data within the secure world are assumed
to be protected from intruders.

TrustZone was originally conceived as an efficient, holistic security approach,
but despite its popularity, it has been shown to have many vulnerabilities
that can be exploited to perform attacks and corrupt the security partitioning
[BBA19; BB18; Gro+22]. In [BBA19], the authors target the communication
bus of the SoC-FPGA, and they show that a hardware Trojan [SA21; SSA21]
can modify the AXI communication signals and force an arbitrary value on the
NS bit. This modification can jeopardize the rest of the system, leading to
privilege escalation or denial-of-service attacks. In addition to this attack, the
work reported in [BB18] uses power management of the heterogeneous SoC to
perform covert transmission of data between secure and non-secure worlds de-
spite TrustZone’s isolation policies. In [Gro+22], the authors used a hardware
Trojan to corrupt the secure boot and break the memory isolation. Modifying
secure boot allows an attacker to change permissions to critical information,
data or instructions, and can lead to privilege escalation. What is more, be-
cause TrustZone is proprietary, i.e. is not open source, it is difficult to improve
its implementation.

In [Bah+21], Bahmani et al. propose an architecture called “CURE” con-
taining three different types of software enclaves at different levels in the SoC:
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user-space, kernel-space and sub-space. The authors modify a RISC-V proces-
sor to support an enclave identifier. The rest of the system is also modified
to support the enclave identifier. This identifier is then used in the rest of the
system, and filtering blocks are installed to check the legitimacy of accesses to
the enclave. A hypervisor (secure monitor) is used to configure the permissions.
CURE also embeds protections against cache side-channel attacks. Policies
are installed to supervise cache partitioning (L1), allocation and eviction. For
each cache line in CURE, the enclave identifier is attached to it, allowing the
hardware-coded arbiters to determine illegitimate accesses and prevent illegal
eviction. The cache system is also flushed whenever there is a context change.
CURE is mostly a software security proposal, as no hardware (logical) resources
are embedded in the SoC. Thus, we consider their solution as unsuitable for
heterogeneous SoCs since a secure architecture must take the whole SoC into
consideration and provide both software and hardware protection.

In [Nas+21], Nasahl et al. present a secure architecture called “Hector-V”.
In their proposal, security is based on differentiating between the processors.
The non-trusted applications operate in a rich execution environment in the ap-
plication processor and the trusted applications operate in a trusted execution
environment in the secure co-processor. To differentiate between illegitimate
and legitimate communications, Hector-V uses identifiers (core ID, process ID
and peripheral ID) and filtering blocks called “wrappers”. The processors are
modified to directly embed the identifiers. Hector-V uses AXI4 as a communi-
cation protocol, so the identifiers are propagated using the AXI4 user signals.
The SoC communication buses are also distinguished into two communication
channels: one for the data and one for the configuration. In Hector-V, the pe-
ripherals are bound to an entity and can only accept requests coming from it.
The configuration channel is used to define the entity for each peripheral. A
secure monitor is responsible for the configuration and for overseeing the op-
eration of the communication between all peripherals and the processors. The
authors argue that duplicating the resources in Hector-V can mitigate micro-
architectural attacks and in part cache side-channel attacks. However, in a real
use case where the constraints on resource use are high, this solution would not
be entirely viable. What is more, their proposal does not allow programmable
hardware resources to be embedded which is an essential part of SoC-FPGAs.
Furthermore, the proposal in Hector-V is only a dual world segregation, similar
to ARM TrustZone.

Hagan et al. [HSS18] propose a hardware-based pro-active policing and pol-
icy architecture. They use hardware modules called “security policy engines” at
the system communication level. These modules act as hardware-coded firewalls
with a list of permissions that actively monitor the AXI4 SoC communication
bus. For every incoming request, the security policy engine uses the read and
write address channels to determine the legitimacy of the transaction. They can
either grant or deny access to the peripheral depending on the policies stored
in a table. The policies are configured by SELinux and can be updated over
time. The system also allows the integration of programmable logic (FPGA).
In case an attack is detected, blocks called “security response engines” can ini-
tiate responses. The responses can go from erasure of secret keys to system
reset. Furthermore, it uses ARM TrustZone to provide the designer with the
possibility of having a secure domain in their architecture. Their architecture
fails to provide several secure software environments to isolate the user trusted
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applications from each other. The active responses are neither very dynamic nor
particularly flexible. Their proposal does not provide solutions against cache-
based side-channel attacks.

In [BBR15], Basak et al. propose a flexible framework to implement security
policies in a SoC based on two types of communication controllers. The first
one is centralized and is a plug-and-play module implementing the SoC poli-
cies called “extended infrastructure IP for security”. It is microcontroller-based
and can be updated via firmware code. The second controllers comprise small
“security wrappers” connected to each IP block. They identify security events
relevant to the security policies they enforce and communicate any violations of
security policies to the centralized controller. Upon detection of a violation, the
system can take action for example, by disabling the IP interface. However, like
in [Nas+21], the authors duplicate the resources with the two types of commu-
nication controllers, meaning this solution would not be entirely feasible on a
system where the constraints on resource utilization are high. Additionally, the
architecture does not provide multiple secure domains nor dynamic responses
to attacks. Their proposal fails to provide solutions against cache-based side-
channel attacks.

In [Sin+24], Singh et al. presented a hardware framework to quantify the
security health value of a device inside a zero-trust network with a trust score.
This is done by hardware-coded blocks that monitor the CPU cores at any time
during execution and log all the operation information. A dedicated secure co-
processor then uses the gathered data and executes a threat estimation model
that computes a trust score. This score evolves over time and the closer it gets
to zero, the more untrustworthy the program it is linked to is considered. The
system can take immediate action according to the value of the trust score and
provides dynamic access policies. However, the proposal is mainly based on
software and the design lacks of programmable resources. This architecture is
designed for network applications which is not our target, plus it uses neural
networks for the computation. This type of calculation is not viable for embed-
ded systems where the constraints on resource use are high. Therefore, in our
opinion, their solution is not suitable for heterogeneous SoCs.

In addition to these works, we can find other solutions, hardware or software,
to secure the cache memory against time-based side-channel attacks. However,
we are not going to cite them in our comparison since these works only focus
on the cache memory, whereas we target the full architecture of the SoC. In
[PSG09], the authors present a multi-compartment solution applied to an em-
bedded system and more precisely to the cache memory. Similarly to CURE,
each cache line is assigned an identifier and with the help of hardware-coded
firewalls a logic check of access rights is performed preventing any illegitimate
access or modification. Only cache lines belonging to a certain identifier are
flushed when needed and not the entire cache memory. This allows a perfor-
mance gain. In [Cop+09], the authors concentrate on the software with the
proposition of automated compiling techniques that eliminate key-dependent
conditional instructions. Another possibility is to use constant-time techniques
such as [Bri+06], so the adversary is not able to observe cache access behavior
during the execution. The attacker is not able to recover any sensitive infor-
mation. The downside of the software-based solutions to mitigate side-channel
attacks on the cache memory is the loss of performance of the system. Nonethe-
less, they are easier to implement than hardware-based propositions.
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Table 1 provides a qualitative comparison of the state of the art solutions
that are the most relevant to this work. Note that the TrustSoC [Mil+23]
listed in Table 1 is a first initial version of RTrustSoC with less protections and
flexibility features than the most recent version. We consider solutions that use
ARM cores to be more viable because they are native to most heterogeneous
SoCs available on the market today and therefore easier to integrate unlike
RISC-V processors. Most of the solutions embed bus protections and cache
memory protections, but not many consider the programmable logic, and even
fewer propose a concept of trusted hardware IPs. Some works include protection
against DoS attacks, but only one instance [Sin+24] proposes a penalty system
where the penalization parameters are reconfigurable at runtime. None of the
solutions in the literature propose a multi-world-based system. CURE [Bah+21]
proposes different types of enclaves but limited to only three, and the remainder
propose either no secure domain at all, or just one, whereas we propose up to
N with different levels of privileges (the number is only limited by the resources
of the system).

This paper aims to extend the distributed hardware monitoring to cover
the heterogeneous SoCs as a whole, while accounting for both factors: software
(processing system, operating system, boot, etc.) and hardware (programmable
logic, bus, hardware IP, etc.). It also offers the designer more flexibility via a
multi-world on-demand segregating method with more than one secure world.
RTrustSoC extends the notion of trusted applications to the programmable logic
with trusted hardware IPs. We also propose a dynamic penalty reconfigurable
system that can respond in case of a detected attack performed by a third party.
We target threats introduced during the SoC design which are detailed in the
following threat model.

3 Threat model

In this paper, we consider several threats from remote software along with hard-
ware attacks. We called our proposal RTrustSoC. We consider threats that are
relevant to the SoC design process [Hu+21], in particular with the reuse of
hardware IP blocks or software applications. Indeed, as time-to-market tends
to progressively shorten, designers do not have the time to develop every soft-
ware or hardware component, and consequently use third-party blocks. These
components may contain malicious routines or circuits that can be used to per-
form an attack on the system. These malicious entities can affect the system
in various ways. They can be passive, i.e. collect secret information that is
meant for another hardware IP or software application. They can also interfere
more deeply with the system by changing the contents of communications or
by taking control of a communication that is not intended for them. This can
cause severe damage to the system. For these reasons, RTrustSoC considers
malicious hardware IPs or software applications that are introduced during the
design stage. These malicious entities can perform the attacks cited above such
as: illegitimate accesses, modifications of the memory contents, modifications
of the communication contents [BBA19] or take control of the power supply to
perform covert channels [BB18]. RTrustSoC considers time-based cache mem-
ory side-channel attacks. The attack can be performed by malicious third-party
hardware IPs targeting a trusted software application running in a secure world

9
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Figure 2: Example of the proposed RTrustSoC architecture

[BB21]. The malicious IP can modify the contents of the cache memory contents
and access secure regions.

Unlike TrustSoC [Mil+23], RTrustSoC also covers denial-of-service attacks.
The goal of these attacks is to prevent legitimate users from using the system
resources. In the case of RTrustSoC, we consider a malicious entity flooding the
SoC communication bus with illegitimate requests thereby preventing legitimate
users from using a resource.

The threats we consider are relevant and correspond to the process of hetero-
geneous SoC design. RTrustSoC mitigates these threats by introducing minimal
additional components for each hardware IPs enforcing policy to guarantee that
no abnormal behavior can take place in the architecture such as illegal accesses,
modifications of the memory contents, changes in privileges, etc.

We assume that the CAD toolchain is trusted and cannot be used to perform
illegal modifications of the design. The synthesis tool is responsible for the
components added to each hardware IPs. The additional components are trusted
and cannot be modified by the synthesis tool. We also assume that the SoC and
the founder are trusted. No physical modification can be made to the circuit.
Attacks that require physical access to the architecture are beyond the scope of
this paper.

4 RTrustSoC

This section describes the secure-by-design heterogeneous SoC architecture we
named RTrustSoC. It is based on a multi-world segregating method: from one
non-secure world up to N secure worlds with the possibility of having different
privilege levels (N chosen by the designer and only limited by the resources in
the system). The idea behind RTrustSoC is to extend the notion of trusted
applications and their trusted environments available in ARM TrustZone in
the CPU to the whole SoC and to be able to multiply these environments to
suit the designer’s needs. We want to provide designers with isolated, safe and
trusted environments in the programmable logic so they have hardware IPs
they can trust. Trusted IPs have the same guarantees as trusted applications,
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i.e. confidentiality of their design and data, privacy, integrity and control over
access. Their design and data are isolated from the non-secure world and the
segregation, and access controls are added. The security of the SoC modules is
enforced by on-demand hardware isolation and control.

RTrustSoC is a flexible and scalable architecture that can be adjusted to
the designer’s requirements. Figure 2 presents the RTrustSoC concept. The
processing system includes k cores but could be extended to support different
architectures. RTrustSoC also embeds a programmable logic region with m
hardware enclaves, a communication bus, several peripherals and shared mem-
ories. Each core has a non-secure world, shown in red, and N secure worlds,
shown in green. Finally, RTrustSoC embeds tiny, distributed communication
controllers called “s wrapper”, for security wrappers, to enforce RTrustSoC’s
security policies. These policies allow the security wrappers to distinguish be-
tween legitimate and illegal access with the help of hardware-coded identifiers.
With the extension of the security wrappers, RTrustSoC can also take immedi-
ate action when an attack is detected. It does so through a system of dynamic
penalties that prevent DoS attacks on the system. The security wrappers enforce
the isolation, the integrity and the safe environments required by the trusted
hardware IPs and trusted applications. However, to propose a secure-by-design
architecture, we must provide a set of essential security features. We present
our security features in the following subsection.

4.1 RTrustSoC security features

SF.1: Operating rules: RTrustSoC comes with a set of operating rules that
must be enforced as policies to prevent any unwanted behavior and create trust
between the components during operation.

SF.2: Extended secure multi-worlds: RTrustSoC provides segregated
on-demand multiple secure domains with the possibility of having different priv-
ilege levels to allow designers more flexibility for their design. In contrast to
ARM TrustZone technology, RTrustSoC allows the designers to choose the num-
ber of secure worlds they want in their design. This extends the notion of trusted
execution environments to the rest of the SoC, not only to the software appli-
cations but also to the hardware IPs.

SF.3: Programmable logic in the security resources: RTrustSoC fully
integrates the programmable logic in the security resources by using a unique
identifier for each hardware IP, again offering a secure environment during exe-
cution.

SF.4: Trusted communications inside the SoC: RTrustSoC establishes
secure communications between hardware IPs and software applications inside
the heterogeneous SoC. Thanks to this security functionality, RTrustSoC does
not have to rely on a third-party’s security features and guarantees that the
IPs introduced are operating as intended. RTrustSoC also guarantees that no
malicious entity can take control of the SoC communications: change commu-
nications or monopolize the SoC communication bus.

SF.5: Side-channel cache time-based attack resistance: RTrustSoC
embeds protections against remote time-based side-channel attacks targeting
the cache memory by restricting access to the cache either from the processing
system or the programmable logic. This is done with the use of identifiers and
by creating different isolated cache partitions for each world. The isolation is
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also enforced with the communication controls that prevent any illegal accesses.
The operating rules of RTrustSoC also stipulate flushing the sensitive cache
partitions at each context switch or at the end of the use of the cache memory
by a given sensitive application. Even if flushing cache memory partitions leads
to performance loss, it will enhance the security.

4.2 RTrustSoC security wrappers

The RTrustSoC prototype proposed in this paper embeds ARM Cortex proces-
sors. This choice is motivated by the fact that ARM has a strong presence in
the SoC and heterogeneous SoC markets. ARM processors can be found in the
main heterogeneous AMD-Xilinx and Intel SoCs.

RTrustSoC uses small, distributed hardware-coded security wrappers to cre-
ate trusted communications between the hardware accelerators, peripherals and
applications. The security wrappers aim to distinguish between illegal and legit-
imate transactions. To establish this secure communication, RTrustSoC assigns
an IP identifier and a world identifier to each hardware resource in the SoC.
These identifiers are different, unique and hardware-coded. They are assigned
prior to synthesis and cannot subsequently be changed. Each security wrapper
comes with a set of permissions that specifies the access rights of each hardware
resource to the underlying component. The security wrapper is then able to per-
form the control access to the underlying resource and guarantee the on-demand
hardware isolation.

The module identifiers are transported through the communication bus,
which is an AXI4 in the prototype presented in this work. AXI4 is a slave/master
protocol [ARM20]. It has five separate channels: write address (AWADDR),
write data (WDATA), write response (BRESP), read address (ARADDR), read
data (RDATA) and the optional read response (RRESP). The AXI protocol op-
erates on handshake mechanisms with Xready and Xvalid signals for each chan-
nel (X represents the channel). The response channels (BRESP and RRESP)
indicate the state of the transaction to the master: OKAY if the transaction
is successful, SLVERR or DECERR when an error occurs. A transaction can
only be initiated by a master interface and only occurs if the channel handshake
signals are high at the same time.

In addition, the AXI4 protocol makes it possible to use user signals to
transport extra information up to 1024 bits with no overhead. We leverage
this feature in RTrustSoC: each request submitted to the SoC communica-
tion bus has its IP identifier and its world identifier added through the AXI4
user signals. The width of the identifiers depends on the number of compo-
nents and worlds in the SoC. For the hardware identifiers, encoding is given by
⌈log2(max(components))⌉ bits, excluding the zero. Similarly, for the identifier
of the worlds, we use ⌈log2(max(worlds))⌉ bits. The world identifier essentially
extends the NS bit of the ARM TrustZone. Since it is hardware-coded and we
assume that the CAD toolchain is trusted the world ID cannot be changed,
hence preventing attacks described in [BBA19].

Figure 3 shows how the security wrappers operate. When a security wrap-
per receives a request, it compares the IP and world identifiers with its list of
access policies (read/write). RTrustSoC allows the access rights to be changed
at boot time via a software secure configuration. This secure configuration gives
the designer more flexibility. After the secure boot configuration, the policies
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Figure 3: Flow chart of how the RTrustSoC security wrappers operate.

are set and can subsequently not be changed. The reconfiguration of security
policies during runtime is excluded. After comparison, if a request conveys the
correct hardware and world identifiers, plus if it follows the security policies,
it is forwarded to the underlying component. If an anomaly is detected, the
wrapper discards the data, sends a null response, and signals an error via the
AXI bus using the response XRESP signals. The distributed security wrappers
also embed simple security policies to oversee the operation of the IP. For exam-
ple, there is a reset after every use of the component to prevent reuse of data.
As these hardware-coded identifiers and access rights cannot be modified by
an attacker to perform an attack (illegal accesses, change in communications,
etc.), they therefore confirm the SF.4 security feature. Likewise, the secure
boot configuration makes it possible to change the access rights thereby giving
the designer more flexibility.
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Figure 4: Modes of operation of RTrustSoC architectures in (a) the non-secure
world, (b) in one of the secure worlds (#sec world 1)

4.3 RTrustSoC penalty system for trusted communica-
tions

Figure 3 also shows how a security wrapper behaves when it is attached to
a malicious entity performing unauthorized communications. This is a new
security feature of RTrustSoC that is not available in TrustSoC [Mil+23]. The
security wrapper has a counter that is incremented each time the IP makes
an illegal request over a specified period of time. To determine if a request is
illegal, the security wrapper analyzes the XRESP signals of the AXI bus, if an
error is detected the illegal request counter is incremented. When the value
of the illegal request counter exceeds a given threshold called Max, then the
ability of the IP to communicate is disabled for a specified period of time, called
Tblock. Max and Tblock are initialized during the secure boot configuration
and then become dynamic during execution. They follow a penalty system.
They start at the values fixed during configuration and then the higher the
frequency of attempts by the IP underneath the security wrapper to perform
illegal requests, the more the Tblock time value is incremented and the threshold
Max is decremented. So, the more malicious behavior is pursued by the IP, the
more it will be penalized, whereas, if the IP behaves the way it is supposed
to, no penalties will be applied. This system provides more flexibility while
nevertheless enforcing SF.1 and SF.4 security features.

4.4 RTrustSoC multi-world partitioning

Figure 4 illustrates the operation of RTrustSoC applied to any design. The
non-secure world is shown in red. There can be up to N secure worlds, which
are identified in green. Figure 4 illustrates the state of the system when it is
operating in the non-secure world (Fig. 4 (a)) and in one of the secure worlds
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(Fig. 4 (b)). Figure 4 (a) shows which resources of the system are accessible to
the non-secure world when it is operating. None of the secure world resources,
encoded world ID = “secure world 1” (#sec world 1) to world ID = “secure
world N” (#sec world N), are accessible to the non-secure world. No hardware
IP is directly connected to the system communication bus because a security
wrapper is placed between the component and the bus. The security wrapper
prevents any unauthorized communication between hardware and software com-
ponents in the system. It also prevents the occurrence of covert channels since
each action must be authorized by the communication controllers. Additionally,
the components cannot access or modify a memory partition without authoriza-
tion. This applies to all operations in the different worlds. The authorizations
are enforced by the distributed security wrappers and their policies.

The non-secure world components cannot access resources in the secure
worlds, but the restriction does not apply to the secure worlds. For exam-
ple, an application running in a secure world could delegate some computations
to a non-secure hardware accelerator. In this case, when processing is complete,
the IP is automatically reset by its security wrapper to prevent the misuse of
sensitive data. This rule also applies to cache partitions which are flushed when
switching from one world to another. This reduces overall performance but pro-
vides a better level of security and contributes to the SF.5 security feature. Our
trusted communication system and operating rules address the vulnerabilities
of the basic ARM TrustZone technology. The on-demand isolation we provide
between the worlds makes it impossible for a malicious entity to obtain infor-
mation on a victim that resides in one of the secure worlds. Neither could a
potential attacker modify the identifiers needed to illegally access a world where
it does not belong.

4.5 RTrustSoC memory protection and cache memory pro-
tection

One interesting feature of RTrustSoC is its ability to protect memory resources
from illegitimate access and isolate the different world memory partitions from
each other. This is enabled by security wrappers that are placed between the
AXI4 communication bus and the memories. Each request originated from the
bus is verified by the security wrapper to be sure it complies with the secu-
rity policies. The security wrappers compare the identifiers of the transaction
sender and the access rights table that belongs to the memory. If the rights are
confirmed, the security wrappers accept and forward the transaction, otherwise
they discard the data and raise an error on the bus through the SLVERR signal.
With the security wrapper controls, it is impossible for a malicious entity to il-
legally access the memory (cache and external memories). RTrustSoC’s rules
stipulate that the different world cache memory partitions are isolated from each
other. However, RTrustSoC allows a secure world to have access to non-secure
external memory (FLASH, ROM, RAM) partitions for performance purposes.
For example, if the secure world needs to use of an accelerator to speed up a
calculation. We discuss the cache memory issue with a real use case scenario in
another Section 6.
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5 Prototyping and testing

In this section, we provide the results of the implementation on an AMD-
Xilinx Zynq-7000 SoC-FPGA (XC7Z010-1CLG400C). We used the Xilinx Vi-
vado 2020.2 toolchain to implement the RTrustSoC prototype. The distributed
security wrappers presented in subsection 4.2 were described in VHDL. We used
these distributed wrappers to protect five different IPs from cryptographic and
signal processing applications: Sobel filter, ASCON, Karatsuba-128, AES-128
and Montgomery-128. We also prototyped the security wrappers that enforce
the penalty system presented in subsection 4.3. The results of the implemen-
tation are shown in Fig. 5. Both slave and master implementations were done
for a small system (small number of worlds and components) to give the logic
costs. Then we implemented a security wrapper protecting a BRAM memory
to explore the costs of our solution for bigger systems, the results are shown in
Table 2.

5.1 Evaluation of the RTrustSoC security wrappers

The size of the hardware IPs ranges from 2,747 to 4,875 LUTs. All the hardware
IPs we used are open source and found in online repositories. We evaluated our
hardware implementations with and without the security wrapper, using the
hardware utilization in LUTs, FFs, and the maximum frequency achievable by
the design as metrics. As shown in Fig. 5, the resources overhead caused by
the security wrapper in number of LUTs is very small, at most 2.54% and in
number of registers, at most 0.54% compared to the baseline implementation
costs of the IPs. This resource overhead can be explained by the logic we
add to each IP in order to implement our distributed security wrappers. In
our experiment, we were limited by the size of the fabric in the AMD-Xilinx
Zynq-7000. For example, the largest multiplier instances we were able to fit
in this board used 128-bit operands. However, for cryptography applications
one would expect to use up to 512-bits operands. Such larger instances would
obviously dwarf the hardware costs of the security wrapper in comparison. The
overhead in terms of maximum frequencies of operation as shown in Fig. 5 is
not significant. Indeed, the security wrapper does not affect the critical path of
the hardware accelerators and hence does not affect the maximum achievable
frequencies. We suspect that the fluctuations that appear in Fig. 5 are due
to the non-deterministic nature of the synthesis process. In conclusion, the
resources and performance overhead incurred by security wrapper presented in
RTrustSoC is negligible compared with a significant improvement in security.
Indeed, RTrustSoC and its security wrappers mitigate the threats induced by the
use of third-party hardware IPs or software applications while simultaneously
offering the designer more flexibility.

5.2 Evaluation of the RTrustSoC’s penalty system

We have implemented a security wrapper that enforces the penalty system pre-
sented in subsection 4.3. We evaluated the security wrapper using the hardware
utilization in LUTs, FFs, and the maximum frequency achievable by the design
as metrics. We developed several implementations with and without the penalty
system, with and without the secure boot reconfiguration. The results are pre-
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Figure 5: Results of implementation of a RTrustSoC security wrapper for five
different hardware IPs from an AMD-Xilinx Zynq-7000 SoC-FPGA.

sented in Fig. 6 and shown in the following order: (Unp.) unprotected, (FPT)
fixed permission tables, (RPT) reconfigurable permission tables, (FPS) fixed
penalty system, (DPS) dynamic penalty system and (RDPS) reconfigurable dy-
namic penalty system. The resources overheads incurred by the security wrap-
per in number of LUTs and FFs seem very high. The security wrapper can
take a lot more resources with the dynamic penalty system, but the baseline for
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Figure 6: Results of the implementation of a RTrustSoC security wrapper con-
nected to a master interface (Unp. for Unprotected, FPT for fixed permission
table, RPT for reconfigured permission table, FPS for fixed penalty system with
fixed Max and Tblock, DPS for dynamic penalty system and fixed Max and
Tblock, RDPS for dynamic penalty system and reconfigured Max and Tblock
values) from an AMD-Xilinx Zynq-7000 SoC-FPGA.

comparison is very small so the implementation costs appear to be really high
although in reality they are not. If we were to compare with the total resources
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Table 2: Results of implementation of a security wrapper attached to a BRAM
in LUTs from an AMD-Xilinx Zynq-7000 SoC-FPGA.

Components

Worlds
2 4 8 16

2 7 11 20 29

4 9 15 28 50

8 15 17 48 83

16 23 29 77 152

32 53 89 157 291

64 92 160 296 1112

available in the AMD-Xilinx Zynq-7000 SoC-FPGA, our mean LUT implemen-
tation result is 100 LUTs which represents only 0.57 % of the total LUTs, our
mean FF result is 189 which represents only 0.54 % of the total FFs. So, our
penalty system has a very small overhead compared to the confidence it adds
to the architecture. For the first evaluation, the security wrapper with fixed
permission tables, we have results that are inferiors to the unprotected version,
this is due to the use of constants in the implementations which then induced
optimizations from the CAD toolchain. The overhead in terms of maximum
achievable frequency of operation is shown in Fig. 6, the dynamic penalties
impact the system because of the use of a counter to block the communications
for a period defined by the parameter Tblock. To improve our results, we could
use another type of counter like the Johnson counter.

5.3 Evaluation of the RTrustSoC’s memory protection

We implemented a security wrapper attached to a BRAM in order to demon-
strate how our system works and the costs of world partitioning on a memory
block. We implemented the BRAM security wrapper and tested it with a vary-
ing number of worlds (2, 4, 8, 16) as well as a varying number of IPs that
require access to the memory (2, 4, 8, 16, 32, 64). Table 2 shows the results
of our implementations. This prototype allowed us to explore the costs and
scalability of our proposal. The overhead in resources is due to the size of the
access rights table that evolves quadratically in large systems (16 worlds and
64 components). In addition, in larger systems, the AXI logic increases with
the extension of the USER signal width. This explains the higher overhead for
the larger number of worlds with the most hardware identifiers. Currently our
implementation uses LUTRAMS, but it is also possible to use BRAMS, which
would enable a dramatic reduction in the overhead in terms of the number of
LUTs. The results of the timing criteria are not shown since the variation is
negligible. From the results in Table 2, we can conclude that the costs of the
security wrapper and world partitioning lead to a small resource overhead on
the protected system, which is more than acceptable given the high degree of
protection provided by the proposed solution. The security wrappers prevent
any malicious entity from illegally accessing memory.
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Table 3: Implementation costs for the scenario proposed in Fig. 7 from an
AMD-Xilinx Zynq-7000 SoC-FPGA.

LUT FF Fmax (MHz)

Cache security wrapper 63 116 212

Utilization (%) 0.36 0.33 –

6 Use Case Scenario

In this section, we present one use case scenario for RTrustSoC. More concretely,
we demonstrate how RTrustSoC can be used to secure the cache memory from
malicious hardware IPs embedded inside the programmable logic. In this ex-
ample, we use the threat model presented in [BB21]. It targets a heterogeneous
SoC architecture where the TrustZone technology is enabled. It consists of a
software application inside the CPU that runs a vulnerable to time-based cache
attack AES-128 T-table implementation. The software application is linked to
the secure world. Then, a malicious hardware IP belonging to the non-secure
world is embedded inside the FPGA. The malicious logic tries via the cache
coherency port to access the cache memory and perform time-based cache at-
tacks to recover the encryption key. The authors in [BB21] use Flush+Reload
and Evict+Time attacks. This attack is made possible in most systems due
to the fact that slave processing system interfaces are often not configured to
deny access to secure regions in TrustZone-enabled SoC architectures. The au-
thors leverage this particular feature to run the attack from the PL to the cache
memory.

In Fig. 7, we show this scenario applied to a RTrustSoC-enabled architecture.
The software implementation of the vulnerable AES-128 T-table is inside the
CPU and belongs to one of the secure worlds identified in dark green. The
malicious hardware IP is embedded inside the FPGA inside the non-secure world
identified in red. The malicious hardware IP is then connected to the snoop
control unit (SCU) via the ACP port. The SCU connects the processor cores,
and the ACP PL interfaces to the cache memory and offers support to the
cache coherency. Since it is not possible to modify inside the ARM CPU to
add our hardware-coded monitor for the cache memory, we placed it inside
the PL to the ACP connection for our demonstration. Both Flush+Reload
and Evict+Time attacks are based on the ability of the master interface to be
able to evict a cache line. However, with RTrustSoC and its enhanced control,
this is not possible. The permission tables are set to make it impossible for a
non-secure resource to access secure cache memory partitions. The permission
tables also cannot be changed since they are only managed by the security
wrapper which is trustworthy. We implemented the cache memory security
wrapper with its permission table according to the scenario (Fig. 7: 2 worlds
and 2 components) on an AMD-Xilinx Zynq-7000 SoC-FPGA. There is only
one secure world in this scenario, but it could be easily extended to match a
multi-world SoC architecture. The overheads of our implementation are shown
in Table 3. The security wrapper utilizes 0.36 % of LUT and 0.33 % of Flip
Flop resources of the SoC-FPGA.
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implemented on an AMD-Xilinx Zynq-7000 SoC-FPGA.

7 Conclusion

In this work, we propose a reconfigurable on-demand multi-world-based parti-
tioning system on heterogeneous SoCs. As RTrustSoC partitioning is flexible,
the designer can choose the number of secure worlds. Our trusted communica-
tion system, which is based on hardware-coded operating rules, identifiers and
security wrappers, enforces strict separation inside the heterogeneous SoC be-
tween the different secure domains proposed by RTrustSoC. The security wrap-
pers make it impossible for a malicious entity to get information concerning a
victim that may reside in one of the secure worlds. Neither could a potential
attacker modify the identifiers to gain illegal access to a world where it does not
belong. The dedicated security wrappers control all accesses to the memories,
thus also making it impossible for a malicious entity to illegally access mem-
ory. When a malicious activity is detected, the dedicated security wrappers
can also take proactive measures using a penalty system. The parameters of
this penalty system are configurable through a secure boot configuration and
evolve over time depending on the behavior of the entity. With these secu-
rity features, RTrustSoC transposes the concept of trusted applications inside
the processing system to trusted hardware IPs inside the programmable logic.
The security wrappers guarantee privacy, confidentiality, integrity and access
control, services required by the trusted components.

The proposed architecture has been prototyped on an AMD-Xilinx Zynq-
7000 SoC-FPGA. Our experiment demonstrated that the hardware overheads
of the communication monitoring and the dynamic penalty system are small in
relation to the size of the targeted domains of application. The operating fre-
quency of the system would not be affected, and only a small latency overhead
is incurred for a slave interface which is not the case for a master interface, but
this can be mitigated by using a Johnson counter. Concerning memory protec-
tions, we have shown that there is a lineal relationship between the hardware
overhead, and the number of secure worlds and the components considered in
the system. This can be mitigated by using the dedicated memories available in
most modern platforms. Finally, we have demonstrated with a real case scenario
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of time-based attack on the cache memory, the interest of using RTrustSoC in
heterogeneous SoC architectures.
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