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A NONLOCAL REGULARIZATION OF A GENERALIZED
BUSENBERG–TRAVIS CROSS-DIFFUSION SYSTEM

ANSGAR JÜNGEL, MARTIN VETTER, AND ANTOINE ZUREK

Abstract. A cross-diffusion system with Lotka–Volterra reaction terms in a bounded
domain with no-flux boundary conditions is analyzed. The system is a nonlocal regular-
ization of a generalized Busenberg–Travis model, which describes segregating population
species with local averaging. The partial velocities are the solutions of an elliptic regu-
larization of Darcy’s law, which can be interpreted as a Brinkman’s law. The following
results are proved: the existence of global weak solutions; localization limit; bounded-
ness and uniqueness of weak solutions (in one space dimension); exponential decay of
the solutions. Moreover, the weak–strong uniqueness property for the limiting system is
shown.

1. Introduction

Multi-species segregating populations can be modeled by cross-diffusion systems, which
are derived from interacting particle systems in the diffusion limit [7]. Such a model was
suggested and analyzed by Busenberg and Travis [6]. Their system consists of mass balance
equations with velocities that are given by Darcy’s law with density-dependent pressure
functions. Grindrod [16] has replaced Darcy’s law by Brinkman’s law to average the velocity
locally, and he has added Lotka–Volterra reaction terms. This leads to nonlocal reaction-
cross-diffusion systems. While there are some works on the single-species nonlocal problem
(see, e.g., [25]), only spatial pattern and traveling-wave solutions have been studied for the
nonlocal multi-species model [22, 23, 28]. In this paper, we contribute to the mathematical
analysis of the nonlocal multi-species system by proving global existence and uniqueness
results and by investigating the qualitative behavior of the solutions.

1.1. Model setting. The evolution equations for the population densities ui = ui(x, t)
read as

∂tui − σ∆ui + div(uivi) = uifi(u),(1)

−ε∆vi + vi = −∇pi(u) in Ω, t > 0, i = 1, . . . , n,(2)
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where u = (u1, . . . , un), supplemented with the initial, no-flux, and homogeneous Dirichlet
boundary conditions

ui(0) = u0i in Ω, (σ∇ui + uivi) · ν = 0, vi = 0 on ∂Ω, t > 0,(3)

where i = 1, . . . , n and ν is the exterior unit normal vector to ∂Ω. The source terms in (1)
are of Lotka–Volterra form with

fi(u) = bi0 −
n∑

j=1

bijuj, i = 1, . . . , n,(4)

where bi0, bij ≥ 0, and the partial pressure functions pi are given by

pi(u) =
n∑

j=1

aijuj, i = 1, . . . , n,(5)

where the matrix (aij) is assumed to be positive definite. Besides the nonlocal coupling,
a further difficulty of system (1) is that the diffusion matrix (uiaij) is generally neither
symmetric nor positive (semi-)definite. This difficulty can be overcome by exploiting the
underlying entropy structure, as detailed below.

Introducing the self-adjoint solution operator Lε : H
1(Ω)′ → H1(Ω)′ by Lε(g) = v, where

v ∈ H1
0 (Ω) is the unique solution to

−ε∆v + v = g in Ω, v = 0 on ∂Ω,

we can formulate system (1)–(2) via vi = −Lε(∇pi(u)) as
∂tui = σ∆ui + div

(
uiLε(∇pi(u))

)
+ uifi(u) in Ω, t > 0.

We have chosen Dirichlet boundary conditions for v to obtain bounded weak solutions
to (1)–(5) in one space dimension, which is needed to derive L∞(Ω) regularity for the
solutions to the nonlocal problem (1)–(5); see Theorem 2 and the following commentary.
Other boundary conditions such as Neumann conditions are also possible.

In the case ε = 0, we recover a generalized Busenberg–Travis model,

∂tui − σ∆ui + div(uivi) = uifi(u), vi = −∇pi(u) = −
n∑

j=1

aij∇uj.(6)

Observe that the velocity is defined by Darcy’s law, vi = −∇pi(u). More precisely, system
(6) was proposed by Busenberg and Travis with pi(u) = ki

∑n
j=1 uj, where ki > 0. Since

the matrix with entries aij = ki is of rank one only, system (6) turns out to be of mixed
hyperbolic–parabolic type [13]. We consider in this paper positive definite matrices (aij)
and call the corresponding equations a generalized Busenberg–Travis system.

Grindrod suggested to smooth sharp spatial variations in ∇pi(u), leading to equation
(2) with ε > 0. This equation can be interpreted as Brinkman’s law, originally proposed in
[4] to define the viscous force exerted on porous media flow. This law corresponds to the
incompressible Navier–Stokes equations if the inertial terms are neglected and a relaxation
term is added, where ε represents the viscosity of the fluid. With Brinkman’s law, system
(1)–(2) becomes nonlocal.
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Equations (1)–(2) have been investigated in the literature only regarding its linear stabil-
ity [23], spatiotemporal pattern [28], and traveling-wave solutions [22]. In the single-species
case n = 1 and in one space dimension, the limit σ → 0 of vanishing self-diffusion was
performed rigorously in [25]. The two-species case was analyzed in [24], with the right-
hand side of (2) replaced by F (ui,∇ui), where F is some bounded function. This system is
different from our problem, since the coupling in [24] is weaker than in our case. The work
[12] studies equations (1) for n = 2 with vi = ∇Wi ∗ ui, where Wi are smooth interaction
kernels. In [10, 11], the velocity is assumed to be a gradient, vi = ∇wi, where wi solves
an elliptic problem. Thus, up to our knowledge, the existence analysis for system (1)–(2)
seems to be new.

1.2. Mathematical tools. Our most important mathematical tool is the entropy method.
Using the Boltzmann–Shannon entropy

H1(u) =
n∑

i=1

∫
Ω

ui(log ui − 1)dx,

a formal computation, made rigorous on an approximate level in Section 2, shows that

dH1

dt
(u) + 4σ

n∑
i=1

∫
Ω

|∇
√
ui|2dx+

n∑
i,j=1

∫
Ω

aijKε(∇ui) ·Kε(∇uj)dx(7)

+
n∑

i=1

∫
Ω

biiu
2
i log uidx =

n∑
i=1

∫
Ω

ui(fi(u)− biiui) log uidx,

where Kε is the square root operator associated to Lε, i.e. Kε ◦Kε = Lε. Assuming that
(aij) is positive definite, the third term on the left-hand side is nonnegative. If bii > 0, the
fourth term on the left-hand side provides an L1(Ω) bound for u2i log ui, which is needed to
prove the strong convergence of a sequence of approximating solutions in L2(Ω). The right-
hand side of (7) is bounded by H1(u), up to a factor, such that we can apply Gronwall’s
lemma to obtain a priori bounds and estimates uniform in ε.

Like its local counterpart [21], system (1)–(2) possesses a second entropy, the nonlocal
Rao entropy

H2(u) =
n∑

i,j=1

∫
Ω

aijKε(ui)Kε(uj)dx.

Notice that in the limit ε→ 0, Kε converges formally to the unit operator on H1(Ω)′ such
that H2(u) becomes in that limit the (local) Rao entropy

∑n
i,j=1

∫
Ω
aijuiujdx. Thus, the

nonlocal Rao entropy does not provide better bounds than in L2(Ω). Unfortunately, the
(formal) entropy identity

dH2

dt
(u) + σ

n∑
i,j=1

∫
Ω

Kε(∇ui) ·Kε(∇uj)dx+
n∑

i=1

∫
Ω

ui|∇Lε(ui)|2dx
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=
n∑

i=1

∫
Ω

uifi(u)Lε(ui)dx,

does not provide useful additional estimates. However, we can still use it to show the
uniqueness of bounded weak solutions. In this case, we work with the relative nonlocal
Rao entropy

H2(u|ū) =
n∑

i,j=1

∫
Ω

aijKε(ui − ūi)Kε(uj − ūj)dx,(8)

where u and ū are two (bounded weak) solutions to (1)–(5). The idea is to show that
(dH2/dt)(u|ū) ≤ CH2(u|ū) for t > 0 and to apply Gronwall’s inequality as well as the
positive definiteness of (aij) to conclude that u = ū.
The boundedness assumption for the uniqueness result cannot be easily dropped. A

possible strategy, due to Fischer [15], is to work with the approximate relative Boltzmann–
Shannon entropy

HL(u|ū) =
n∑

i=1

∫
Ω

(
ui log ui − ϕL(u)ui log ūi − (ui − ūi)

)
dx,

where ϕL is a suitable cutoff function. Then HL(u|ū) is bounded from below by the L2(Ω)
norm of (u − ū)1{U≤L}, where U :=

∑n
i=1 ui is the total density, which allows for the

estimate dHL/dt ≤ CHL for some constant C > 0, and Gronwall’s lemma yields u = ū.
Unfortunately, this procedure breaks down in the nonlocal case.

1.3. Main results. We impose the following assumptions:

(A1) Domain: Ω ⊂ Rd (d ≥ 1) is a bounded Lipschitz domain and T > 0. We set
ΩT = Ω× (0, T ).

(A2) Parameters: (aij) is symmetric and positive definite with smallest eigenvalue α > 0,
bi0, bij ≥ 0 for i ̸= j, bii > 0 for i = 1, . . . , n, σ > 0, and ε > 0.

(A3) Initial data: u0i ∈ L1(Ω) satisfies u0i ≥ 0 in Ω and u0i log u
0
i ∈ L1(Ω) for i = 1, . . . , n.

Our first result is the global existence of weak solutions.

Theorem 1 (Existence of solutions). Let Assumptions (A1)–(A3) hold. Then there exists
a weak solution u = (u1, . . . , un) to (1)–(5) satisfying

ui ∈ L2(ΩT ) ∩ L4/3(0, T ;W 1,4/3(Ω)), ∂tui ∈ L1(0, T ;Hm′
(Ω)′),

for i = 1, . . . , n, where m′ > d/2 + 1, the entropy inequality

n∑
i=1

(
sup

0<t<T

∫
Ω

ui(log ui − 1)dx+ 4σ

∫ T

0

∫
Ω

|∇
√
ui|2dxdt+ C

∫ T

0

∫
Ω

|Kε(∇ui)|2dxdt(9)

+ bii

∫ T

0

∫
Ω

u2i log uidxdt

)
≤ C(T ),



A NONLOCAL REGULARIZATION 5

where C(T ) > 0 also depends on the L1(Ω) norm of u0j log u
0
j for j = 1, . . . , n, and the

following regularity holds:

vi = −Lε(∇pi(u)) ∈ L2(0, T ;H1
0 (Ω)).

The theorem is shown by using the Leray–Schauder fixed-point theorem for an approx-
imate problem, introducing some cutoff in the nonlinearities and regularizing the nonlocal
operator by some operator Lη

ε with parameter η > 0. This regularization ensures that
the approximate velocities are bounded. The compactness of the fixed-point operator is
obtained from an approximate entropy inequality similar to (7). The first difficulty of the
existence proof is to show that the cutoff in the nonlinear terms can be removed. For
this, we exploit the fact that the operator Lη

ε maps W−1,1(Ω) to L∞(Ω), where we define
W−1,1(Ω) := {g + div h ∈ D′(Ω) : g ∈ L1(Ω), h ∈ L1(Ω;Rd)}. As shown in Theorem 2,
this property allows us to prove that the regularized densities are bounded such that we
can get rid of the cutoff functions. The other technical difficulty comes from the deregular-
ization limit η → 0, since the time derivative ∂tui is an element of the nonreflexive space
L1(0, T ;W 1,∞(Ω)′) only such that we cannot extract a converging subsequence. The idea
is to prove a limit in the larger space of functions of bounded variation by using a variant
of Helly’s selection theorem (see Theorem 14 in Appendix A).

As previously explained, the existence proof relies strongly on the fact that the regular-
ization operator Lη

ε mapsW−1,1(Ω) to L∞(Ω) in any space dimension. Thus, it is natural to
study if this property holds when η → 0. We are able to show that Lε : W

−1,1(Ω) → L∞(Ω)
but only in one space dimension; see Lemma 15 in Appendix A. Then, our second main
result states that the weak solution constructed in Theorem 1 turns out to be bounded at
least if d = 1.

Theorem 2 (Boundedness of solutions). Let Assumptions (A1)–(A2) hold and let u0 ∈
L∞(Ω;Rn) be nonnegative componentwise. Furthermore, let Lε map from W−1,1(Ω) to
L∞(Ω) (this holds true if d = 1). Then the solution u to (1)–(5) constructed in Theorem
1 satisfies ui ∈ L∞(0, T ; L∞(Ω)), i = 1, . . . , n.

The proof of Theorem 2 is based on an Alikakos-type iteration procedure. Indeed,
estimating the nonlinearities by the Gagliardo–Nirenberg inequality, the aim is to verify
that

aγ+1 ≤ C(u0) + (γ + 1)d+2a2(γ+1)/2, where aγ+1 = ∥ui∥γ+1
L∞(0,T ;Lγ+1(Ω)).

This iteration can be solved explicitly, giving an estimate for ui in L∞(0, T ;Lγ+1(Ω))
uniformly in γ. The limit γ → ∞ then concludes the proof.

In our third result, we prove the uniqueness of bounded weak solutions to (1)–(5).

Theorem 3 (Uniqueness of weak solutions). Let Assumptions (A1)–(A2) hold, u0 ∈
H1(Ω)′, and let u and ū be two nonnegative weak solutions such that ui, ūi ∈ L∞(0, T ;
L∞(Ω)). Then ui = ūi in ΩT .

By Theorem 2, the boundedness property holds in one space dimension. Therefore, we
obtain the uniqueness of weak solutions to (1)–(5) if d = 1. The proof of Theorem 3 relies
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on the relative entropy method, using the relative nonlocal Rao entropy (8). Differentiating
this functional with respect to time and estimating Lε(∇(u− v)) in terms of Kε(∇(u− v))
yields for any δ > 0,

dH2

dt
(u|ū) + σα∥Kε(∇(u− v))∥2L2(Ω) ≤ δ∥Kε(∇(u− v))∥2L2(Ω) + C(δ)∥Kε(u− v)∥2L2(Ω),

where α > 0 is the smallest eigenvalue of (aij). We choose δ < σα and apply Gronwall’s
lemma to infer that H2(u(t)|ū(t)) = 0 and hence u(t) = ū(t) for t > 0.
The fourth result is the so-called localization limit ε→ 0, based on the bounds uniform

in ε from the entropy inequality. The main difficulty is the proof that Lε(∇uεi ) → ∇ui in
the space of distributions D′(Ω) as ε → 0, which is shown by using the self-adjointness of
Lε and the uniform bounds from (2).

Theorem 4 (Localization limit ε → 0). Let Assumptions (A1)–(A3) hold and let uε be
a weak solution to (1)–(5) constructed in Theorem 1. Then, as ε → 0, there exists a
subsequence (not relabeled) such that uε → u strongly in L2(ΩT ;Rn), and u = (u1, . . . , un)
is a weak solution to (3), (6) satisfying ui ≥ 0 in ΩT and, for i = 1, . . . , n,

ui log ui ∈ L∞(0, T ;L1(Ω)), u2i log ui ∈ L1(ΩT ),

∇ui ∈ L4/3(ΩT ), ∂tui ∈ L1(0, T ;W 1,∞(Ω)′).

The initial condition holds in the sense of W 1,∞(Ω)′, since ui ∈ W 1,1(0, T ;W 1,∞(Ω)′) ↪→
C0([0, T ];W 1,∞(Ω)′).

Now, let b = (b10, . . . , bn0), B = (bij)
n
i,j=1, and set u∞ = B−1b⊤. Then fi(u

∞) = 0 and
the relative Boltzmann–Shannon entropy is defined by

H1(u|u∞) =
n∑

i=1

∫
Ω

(
ui log

ui
u∞i

− (ui − u∞i )

)
dx.(10)

Our last result states that, under some assumptions, the solution converges exponentially
fast to the constant steady state u∞.

Theorem 5 (Large-time behavior of the nonlocal system). Let Assumptions (A1)–(A3)
hold. Assume that (bij) is positive definite with smallest eigenvalue β > 0 and that u∞i ≥
µ > 0 for all i = 1, . . . , n for some µ > 0. If furthermore ui ≥ µ > 0 and fi(u) ≤ 0 in ΩT

for i = 1, . . . , n, then

H1(u(t)|u∞) ≤ H1(u
0|u∞)e−2βµt for t > 0.

The result follows from the inequality

dH1

dt
(u|u∞) + α

n∑
i=1

∫
Ω

|Kε(∇ui)|2dx ≤
n∑

i=1

∫
Ω

uifi(u) log
ui
u∞i

dx,

and an estimate of the Lotka–Volterra terms on the right-hand side, using the assumptions
of the theorem, leading to (dH1/dt)(u|u∞) ≤ −2βµH1(u|u∞). The exponential decay of
Theorem 5 is originating from the Lotka–Volterra terms, which explains the conditions
β > 0 and µ > 0. In particular, the diffusion term σ∆ui is not needed. We present
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in Section 1.4 an example where µ = 0 is admissible and the exponential decay is a
consequence of the diffusion with σ > 0.

Remark 6. Let us emphasis the fact that, under similar assumptions, the statement of
Theorem 5 also holds in the local case, i.e. when ε = 0. This implies that the steady states
of the nonlocal and local systems are the same. This is quite different from previous works,
see for instance [17, 19], where the steady states observed in the nonlocal and local case
are distinct. However, in these systems the nonlocal terms are given by some convolution
kernels, while here, the nonlocality originates from the inverse of an elliptic operator. □

1.4. Discussion. The positive definiteness of the matrix (aij) in Assumption (A2) can be
replaced by the positive stability of (aij) (all eigenvalues are positive) and the detailed-
balance condition (there exist π1, . . . , πn > 0 such that πiaij = πjaji for all i, j = 1, . . . , n;
see [9]). Then, defining the new variables wi = πiui, equations (1) become

∂twi − σ∆wi + div(wivi) = wifi(u), −ε∆vi + vi = −
n∑

j=1

aij
πj

∇wj.

The new matrix (aij/πj) is symmetric and has only positive eigenvalues. It follows that
(aij/πj) is positive definite. The positivity of σ is needed to derive gradient estimates;
see (7). This assumption is not needed in the local system, since the positive definiteness
of (aij) allow for some gradient estimates. Thus, this condition is due to the nonlocal
character of the equations (and the properties of Kε).

Most of our results can be generalized for general operators Lε, in particular those relying
on estimates from the Boltzmann–Shannon entropy. A simple example is the operator
(−ε div(A∇·+1))−1 with Dirichlet or Neumann boundary conditions, where A is a constant
positive definite matrix. Similarly, the existence, localization, boundedness, and time asym-
ptotics results hold for higher-order operators, like the regularized operator Lη

ε introduced
in Section 2. However, the bound Kε(∇ui) ∈ L2(ΩT ) from the entropy inequality would
provide less regularity for ui in the higher-order case. Notice that the papers [10, 11] use

the lower-order regularization L̃ε = ∇(−ε∆+ 1)−1 in Rd.
Finally, we discuss the large-time behavior result (Theorem 5). Results in the literature

often concern diffusive Lotka–Volterra systems (without cross-diffusion). For instance,
the work [5, Theorem 3.3] gives conditions under which a critical point with all species
coexisting is globally asymptotically stable. Under the condition

∑n
i=1 fi(u) ≥ 0, the

authors of [27] derived a further entropy identity for a reaction–diffusion system, namely
H0(u) =

∑n
i=1

∫
Ω
(− log ui)dx. Unfortunately, the cross-diffusion terms prevent H0(u) to

be a Lyapunov functional.
If the matrix (bij) is not of full rank, the associated ODE system may admit infinitely

many equilibria, which makes the large-time analysis intricate; see, e.g., [1, 26]. The
positive definiteness condition of (bij) guarantees the uniqueness of the steady state. If
b = 0, the steady state equals u∞ = 0 such that the Boltzmann–Shannon entropy cannot
be used to show the asymptotic stability of u∞.
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The assumption ui ≥ µ > 0 is not necessary. For instance, we can achieve exponential
convergence in the case bij = 0 for all i ̸= j ∈ {1, . . . , n} and bi0, bii > 0 for i = 1, . . . , n,
assuming σ > 0. The following argument is generalizing the idea in [8, Sec. 4]. We have
u∞i = bi0/bii and, differentiating the relative entropy H1(u|u∞) (see Section 5.2 for details),

dH1

dt
(u|u∞) + 4σ

n∑
i=1

∫
Ω

|∇
√
ui|2dx ≤

n∑
i=1

∫
Ω

uifi(u) log
ui
u∞i

dx

=
n∑

i=1

∫
Ω

ui(bi0 − biiui) log
ui
u∞i

dx

=
n∑

i=1

∫
Ω

uibii(u
∞
i − ui)(log ui − log u∞i )dx ≤ 0.

By the logarithmic Sobolev inequality, the second term on the left-hand side is estimated
from below by 4σCSH1(u|u∞) for some CS > 0, and Gronwall’s lemma gives

H1(u(t)|u∞) ≤ H1(u
0|u∞)e−4σCSt, t > 0.

1.5. Outline. The global existence of weak solutions (Theorem 1) is proved in Section 2,
and the boundedness of weak solutions (Theorem 2) is shown in Section 3. In Section 4,
we prove the uniqueness of bounded weak solutions (Theorem 3), while the localization
limit ε → 0 (Theorem 4) and the long-time behavior of weak solutions (Theorem 5) are
proved in Section 5. Finally, we show two auxiliary lemmata in Appendix A.

2. Global existence of solutions

2.1. Preparations. We recall the definition of the solution operator Lε : H1(Ω)′ →
H1(Ω)′, Lε(g) = v, where v ∈ H1(Ω) is the unique solution to

−ε∆v + v = g in Ω, v = 0 in ∂Ω.

Then ∥v∥H1(Ω) ≤ C(ε)∥g∥H1(Ω)′ for some constant C(ε) > 0 and an integration by parts
yields

⟨g, Lε(g)⟩ =
∫
Ω

(ε|∇v|2 + v2)dx for g ∈ H1(Ω)′, v = Lε(g),

where ⟨·, ·⟩ is the dual product in H1(Ω)′×H1(Ω). The operator Lε is symmetric, positive,
and bounded linear. By spectral theory for bounded self-adjoint operators, there exists a
unique square root operator Kε with the same properties. These statements also hold for
vector-valued functions g ∈ H1(Ω;Rm)′ with m > 1.

Lemma 7. It holds for all g ∈ L2(Ω) that

∇Lε(g) = Lε(∇g),(11)

ε∥Lε(∇g)∥2L2(Ω) + ∥Lε(g)∥2L2(Ω) = ∥Kε(g)∥2L2(Ω).(12)

In particular, ∥Lε(g)∥L2(Ω) ≤ ∥Kε(g)∥L2(Ω) for g ∈ H1(Ω)′.
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Proof. Since Lε is a linear solution operator, it commutes with the gradient, which shows
(11). Next, setting v = Lε(g), we estimate

ε∥Lε(∇g)∥2L2(Ω) + ∥Lε(g)∥2L2(Ω) = ε∥∇Lε(g)∥2L2(Ω) + ∥Lε(g)∥2L2(Ω) =

∫
Ω

(
ε|∇v|2 + |v|2

)
dx

= ⟨g, Lε(g)⟩ = ⟨Kε(g), Kε(g)⟩ = ∥Kε(g)∥2L2(Ω).

This proves (12). The final statement is a consequence of this inequality and a density
argument. □

We proceed to the proof of Theorem 1, which is split into several steps.

2.2. Definition of the approximate problem. Let η > 0 andm ∈ N withm > d/2. We
need the higher-order regularization Lη

ε : H1(Ω;Rn)′ → Hm(Ω;Rn), defined by Lη
ε(g) = v,

where v ∈ Hm(Ω;Rn) ∩H1
0 (Ω;Rn) is the unique solution to

η

∫
Ω

∑
|α|=m

Dαv ·Dαϕdx+

∫
Ω

(
ε∇v : ∇ϕdx+ v · ϕ

)
dx = ⟨g, ϕ⟩

for all ϕ ∈ Hm(Ω;Rn)∩H1
0 (Ω;Rn), where α ∈ Nn

0 is a multiindex, Dα is a partial derivative
of order |α| = m, ⟨·, ·⟩ is the dual product in H1(Ω;Rn)′ × H1(Ω;Rn), and “:” denotes
the Frobenius matrix product. The choice of m implies that Hm(Ω) ↪→ L∞(Ω). As the
regularized operator Lη

ε is still symmetric, positive, and linear bounded, there exists a
unique square root operator Kη

ε on H1(Ω;Rn)′. The following inequality holds:

Lemma 8. It holds for all g ∈ L2(Ω;Rn) that

ε∥Lη
ε(∇g)∥2L2(Ω) + ∥Lη

ε(g)∥2L2(Ω) ≤ ∥Kη
ε (g)∥2L2(Ω).

Proof. We estimate similarly as in the proof of Lemma 7. Let v = Lη
ε(g) ∈ H1

0 (Ω;Rn).
Then

ε∥Lη
ε(∇g)∥2L2(Ω) + ∥Lη

ε(g)∥2L2(Ω) = ε∥∇Lη
ε(g)∥2L2(Ω) + ∥Lη

ε(g)∥2L2(Ω)

= ε∥∇v∥2L2(Ω) + ∥v∥2L2(Ω) ≤ η

∫
Ω

∑
|α|=m

|Dαv|2dx+
∫
Ω

(ε|∇v|2 + |v|2)dx = ⟨g, v⟩

= ⟨g, Lη
ε(g)⟩ = ∥Kη

ε (g)∥2L2(Ω),

finishing the proof. □

Let ρ ∈ [0, 1], N ≥ e2, and set (z)N+ := max{0,min{N, z}} for z ∈ R. We assume that

the initial data satisfies u0i ∈ L∞(Ω), for instance by using an L∞(Ω) regularization u0,ηi of
the initial data. We wish to solve the approximate nonlinear problem∫ T

0

⟨∂tui, ϕi⟩dt+ σ

∫ T

0

∫
Ω

∇ui · ∇ϕidxdt(13)

= ρ

∫ T

0

∫
Ω

(
(ui)

N
+ vi · ∇ϕi + (ui)

N
+fi(u)ϕi

)
dxdt, i = 1, . . . , n,



10 A. JÜNGEL, M. VETTER, AND A. ZUREK

for ϕi ∈ H1(Ω) and ui(0) = u0i in Ω, where v = (v1, . . . , vn) and vi := −Lη
ε(∇pi(u)). If

u ∈ L2(ΩT ;Rn), we have v ∈ L2(0, T ; Hm(Ω;Rn)) ⊂ L2(0, T ;L∞(Ω;Rn)).

2.3. Linearized system. Given ūi ∈ L2(ΩT ), we consider first the linearized system∫ T

0

⟨∂tui, ϕi⟩dt+ σ

∫ T

0

∫
Ω

∇ui · ∇ϕidxdt(14)

= ρ

∫ T

0

∫
Ω

(
(ūi)

N
+ v̄i · ∇ϕi + (ūi)

N
+fi(ū)ϕi

)
dxdt, i = 1, . . . , n,

for ϕi ∈ H1(Ω) and ui(0) = ρu0i in Ω, where v̄i := −Lη
ε(∇pi(ū)) ∈ L2(0, T ;Hm(Ω;Rn)).

The right-hand side defines a linear form which is an element of L2(0, T ;H1(Ω)′). By
[29, Theorem 23.A], there exists a unique solution ui ∈ L2(0, T ;H1(Ω)) such that ∂tui ∈
L2(0, T ;H1(Ω)′).

2.4. Leray–Schauder fixed-point argument. We define the fixed-point operator Q :
L2(ΩT ) × [0, 1] → L2(ΩT ) by Q(ū, ρ) = u as the unique solution to (14) for given (ū, ρ).
It holds that Q(ū, 0) = 0. The continuity of Q follows from standard arguments and
its compactness is a consequence of the Aubin–Lions lemma, since L2(0, T ;H1(Ω)) ∩
H1(0, T ;H1(Ω)′) embeddes compactly into L2(ΩT ). It remains to establish uniform a
priori bounds for all fixed points of Q.

Let (u, ρ) be such a fixed point. We first notice, using min{0, ui} as a test function in
the weak formulation of (13), that ui ≥ 0 in ΩT for i = 1, . . . , n. Besides, the constant test
function ϕi = 1 in (13) yields

d

dt

∫
Ω

uidx = ρ

∫
Ω

(ui)
N
+fi(u)dx ≤ bi0

∫
Ω

(ui)
N
+dx ≤ C

∫
Ω

uidx,(15)

which gives a uniform bound for ui in L∞(0, T ;L1(Ω)). Now, in order to derive more
uniform bounds, we intend to use log ui as a test function. Since this function is not
admissible, we need to regularize. For this, we introduce the auxiliary functions

S0
N(z) :=

∫ z

1

1

(s)N+
ds =

{
log z if 0 ≤ z ≤ N,

logN + z−N
N

if z ≥ N,

S
1/2
N (z) :=

∫ z

0

1√
(s)N+

ds =

{
2
√
z if 0 ≤ z ≤ N,

2
√
N + z−N√

N
if z ≥ N.

These functions satisfy the chain rules

∇S0
N(f) =

∇f
(f)N+

, ∇S1/2
N (f) =

∇f√
(f)N+

for differentiable functions f . Furthermore, we introduce

R1
N(z) :=

∫ z

e

S0
N(s)ds =

{
z(log z − 1) if 0 ≤ z ≤ N,

N(logN − 1) + (z −N) logN + (z−N)2

2N
if z ≥ N,
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which satisfies the chain rule ∂tR
1
N(f) = S0

N(f)∂tf (again for differentiable functions f).
Let δ > 0. Since ui ≥ 0, the test function S0

N(ui + δ) ∈ L2(0, T ;H1(Ω)) is admissible in
(13), yielding

d

dt

∫
Ω

R1
N(ui + δ)dx+ σ

∫
Ω

|∇ui|2

(ui + δ)N+
dx

= ρ

∫
Ω

(
vi · ∇ui + (ui)

N
+fi(u)S

0
N(ui + δ)

)
dx

= −ρ
n∑

i=1

∫
Ω

aijK
η
ε (∇ui) ·Kη

ε (∇uj)dx+ ρ

∫
Ω

(ui)
N
+fi(u)S

0
N(ui + δ)dx,

where the last step follows from vi = Lη
ε(∇pi(u)) =

∑n
j=1 aij(K

η
ε )

2(∇uj). By dominated
convergence, we can pass to the limit δ → 0 in the last integral on the right-hand side and
in the first integral on the left-hand side (in the time-integrated version). By monotone
convergence, we can pass to the limit δ → 0 in the second term on the left-hand side.
Thus, together with the positive definiteness of (aij) (with smallest eigenvalue α > 0) and
definition (4) of fi(u), we find, after integration over time, that∫

Ω

R1
N(ui(t))dx+ σ

∫ t

0

∥∇S1/2
N (ui)∥2L2(Ω) ds+ αρ

∫ t

0

∥Kη
ε (∇ui)∥2L2(Ω) ds(16)

≤
∫
Ω

R1
N(u

0
i ) dx+ bi0

∫ t

0

∫
Ω

(ui)
N
+S

0
N(ui)dxds−

n∑
j=1

bij

∫ t

0

∫
Ω

(ui)
N
+ujS

0
N(ui)dxds

≤
∫
Ω

R1
N(u

0
i ) dx+ bi0

∫ t

0

∫
Ω

(ui)
N
+S

0
N(ui)dxds.

Here, we use the nonnegativity conditions bi0, bij ≥ 0 from Assumption (A2). Straightfor-
ward computations show that for any z ∈ R and N ≥ e,

(z)N+S
0
N(z) ≤ R1

N(z) + (z)N+

This yields the following estimate on the second term in the right-hand side of (16):

bi0

∫ t

0

∫
Ω

(ui)
N
+S

0
N(ui)dx ≤ bi0

∫ t

0

∫
Ω

RN
1 (ui) dxds+ bi0 T ∥ui∥L∞(0,T ;L1(Ω)),

which allows us to estimate the right-hand side of (16), and it follows from Gronwall’s
inequality, estimate (15) and the fact that R1

N(u
0
i ) can be controlled by the L2(Ω) norm of

u0i that

∥R1
N(ui)∥L∞(0,T ;L1(Ω)) + σ∥∇S1/2

N (ui)∥L2(ΩT ) ≤ C(T ).

Together with the uniform bound for ∇ui = [(ui)
N
+ ]

1/2∇S1/2
N (ui) in L

2(ΩT ) (for fixed N),
we infer that

∥ui∥L∞(0,T ;L1(Ω)) + ∥ui∥L2(0,T ;H1(Ω)) ≤ C(N).(17)



12 A. JÜNGEL, M. VETTER, AND A. ZUREK

These bounds are sufficient to apply the Leray–Schauder fixed-point theorem, which yields
the existence of a solution u = (u1, . . . , un) to (13) with initial condition u(0) = u0 in Ω
satisfying (17) and ∥ui∥H1(0,T ;H1(Ω)′) ≤ C(N).

2.5. Limit N → ∞. For fixed η > 0, the operator Lη
ε maps H1(Ω)′ to Hm(Ω) ↪→ L∞(Ω).

Then we can prove L∞(Ω) bounds uniform in N for ui.

Lemma 9 (L∞(Ω) bounds). Let η > 0, N ≥ e2, and u0 ∈ L∞(Ω;Rn). Then

∥ui∥L∞(ΩT ) ≤ C(η),

where C(η) > 0 depends on η but not N .

The lemma is proved in Section 3. We deduce from (16) with ρ = 1 that

d

dt

∫
Ω

R1
N(u

N
i )dx+ σ∥∇S1/2

N (uNi )∥2L2(Ω) + α∥Kη
ε (∇uNi )∥2L2(ΩT )

≤ bi0

∫
Ω

(uNi )
N
+S

0
N(u

N
i )dx ≤ C(∥uNi ∥L∞(ΩT )) ≤ C(η),

where the last step is a consequence of Lemma 9. This estimate for∇S1/2
N (uNi ) together with

Lemma 9 provide an N -independent bound for ∇uNi = [(uNi )
N
+ ]

1/2∇S1/2
N (uNi ) in L2(ΩT ).

Moreover, we obtain a bound for Kη
ε (∇uNi ) in L2(ΩT ) uniformly in N . Then (12) yields

an L2(ΩT ) estimate for Lη
ε(∇uNi ) and consequently for vNi = Lη

ε(∇pi(uN)) in L2(ΩT ). It
follows that ∂tu

N
i is uniformly bounded in L2(0, T ;H1(Ω)′).

These bounds allow us to perform the limit N → ∞. By the Aubin–Lions compactness
lemma, there exists a subsequence of (uNi ) (not relabeled) such that uNi → ui strongly in
L2(ΩT ) as N → ∞. Then the uniform L∞(ΩT ) bound for uNi shows that

uNi → ui strongly in Lp(ΩT ) for all p <∞,

uNi ⇀∗ ui weakly* in L∞(ΩT ).

Moreover, we have

∇uNi ⇀ ∇ui weakly in L2(ΩT ),

∂tu
N
i ⇀ ∂tui weakly in L2(0, T ;H1(Ω)′),

vNi ⇀ vi weakly in L2(ΩT ).

The limit vi can be identified with −Lη
ε(∇pi(u)) since, for ϕ ∈ C∞

0 (ΩT ),

⟨vNi , ϕ⟩ = −⟨Lη
ε(∇pi(uN)), ϕ⟩ = −⟨∇pi(uN), Lη

ε(ϕ)⟩
→ −⟨∇pi(u), Lη

ε(ϕ)⟩ = −⟨Lη
ε(∇pi(u)), ϕ⟩.

The dominated convergence theorem allows us to treat the cutoff functions. We conclude
that ui with vi = −Lη

ε(∇pi(u)) solves∫ T

0

⟨∂tui, ϕ⟩dt+ σ

∫ T

0

∫
Ω

∇ui · ∇ϕidxdt =

∫ T

0

∫
Ω

(
uivi · ∇ϕi + uifi(u)ϕi

)
dxdt(18)
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for ϕ ∈ L2(0, T ;H1(Ω)) with initial data ui(0) = u0i in Ω. We remark that vi still depends
on η via vi = −Lη

ε(∇pi(u)).

2.6. Estimates uniform in η. Let uηi := ui and vηi := vi. We prove some estimates
uniform in η.

Lemma 10. There exists a constant C > 0, which is independent of η, such that for
i = 1, . . . , n,

∥uηi log u
η
i ∥L∞(0,T ;L1(Ω)) + ∥(uηi )2 log u

η
i ∥L1(ΩT ) + ∥∇uηi ∥L4/3(ΩT ) ≤ C,

∥(uηi )1/2∥L2(0,T ;H1(Ω)) + ∥Kη
ε (∇u

η
i )∥L2(ΩT ) + ∥∂tui∥L1(0,T ;W 1,∞(Ω)′) ≤ C.

Proof. We use the admissible test function log(uηi + δ) with δ > 0 in (18) and integrate
over (0, t) for 0 < t < T :∫

Ω

(ui(t) + δ)
(
log(uηi (t) + δ)− 1

)
dx+ 4σ

∫ t

0

∫
Ω

|∇(uηi + δ)1/2|2dxds

=

∫
Ω

(u0i + δ)
(
log(u0i + δ)− 1

)
dx+

∫ t

0

∫
Ω

uηi
uηi + δ

vηi · ∇u
η
i dxds

+

∫ t

0

∫
Ω

uηi fi(u
η) log(uηi + δ)dxds.

We infer from dominated convergence (applied to the first integral on the left-hand side
and the integrals on the right-hand side) and monotone convergence (applied to the second
integral on the left-hand side) that, in the limit δ → 0 and after summation over i =
1, . . . , n,

n∑
i=1

∫
Ω

uηi (t)
(
log uηi (t)− 1

)
dx+ 4σ

n∑
i=1

∫ t

0

∫
Ω

|∇(uηi )
1/2|2dxds(19)

=
n∑

i=1

∫
Ω

u0i (log u
0
i − 1)dx+

n∑
i=1

∫ t

0

∫
Ω

vηi · ∇u
η
i dxds

+
n∑

i=1

∫ t

0

∫
Ω

uηi fi(u
η) log uηi dxds.

The second term on the right-hand side can be rewritten as

n∑
i=1

∫ t

0

∫
Ω

vηi · ∇u
η
i dxds = −

n∑
i,j=1

aij

∫ t

0

∫
Ω

Lη
ε(∇u

η
j ) · ∇u

η
i dxds

= −
n∑

i,j=1

aij

∫ t

0

∫
Ω

Kη
ε (∇u

η
j ) ·Kη

ε (∇u
η
i )dxds ≤ −α

n∑
i=1

∫ t

0

∫
Ω

|Kη
ε (∇u

η
i )|2dxds.
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The last term on the right-hand side of (19) becomes
n∑

i=1

∫ t

0

∫
Ω

uηi fi(u
η) log uηi dxds = −

n∑
i=1

bii

∫ t

0

∫
Ω

(uηi )
2 log uηi dxds

+
n∑

i=1

bi0

∫ t

0

∫
Ω

uηi log u
η
i dxds−

∑
i ̸=j

bij

∫ t

0

(∫
{0≤uη

i ≤1}
+

∫
{uη

i >1}

)
uηi u

η
j log u

η
i dxds.

The first term on the right-hand side is bounded from above. The second term can be
estimated by the elementary inequality z log z ≤ 2z(log z− 1)+ e for z ≥ 0 and Gronwall’s
inequality. Taking into account that uηi log u

η
i > 0 if uηi > 1 and −1/e ≤ uηi log u

η
i ≤ 0 if

0 ≤ uηi ≤ 1, we find for the third term on the right-hand side that

−
∑
i ̸=j

bij

∫ t

0

(∫
{0≤uη

i ≤1}
+

∫
{uη

i >1}

)
uηi u

η
j log u

η
i dxds ≤

1

e

∑
i ̸=j

∫ t

0

∫
{0≤uη

i ≤1}
uηjdx

≤ 1

e

n∑
j=1

∫ t

0

∫
Ω

uηjdxds ≤
1

e

n∑
i=1

∫ t

0

∫
Ω

uηi (log u
η
i − 1)dxds+ C,

and the last step follows from the inequality z ≤ z(log z−1)+e for z ≥ 0, where C = n|Ω|T .
Inserting these estimates into (19) and applying Gronwall’s inequality leads to

n∑
i=1

∫
Ω

uηi (t)
(
log uηi (t)− 1

)
dx+ 4σ

n∑
i=1

∫ t

0

∫
Ω

|∇(uηi )
1/2|2dxds(20)

+ α
n∑

i=1

∫ t

0

∫
Ω

|Kη
ε (∇u

η
i )|2dxds+

n∑
i=1

bii

∫ t

0

∫
Ω

(uηi )
2 log uηi dxds ≤ C(u0, T ).

It remains to derive the bound for the time derivative of uηi . The uniform bound for
Kη

ε (∇u
η
i ) in L

2(ΩT ) and estimate (12) show that Lη
ε(∇u

η
i ) is uniformly bounded in L2(ΩT ).

Thus, (uηi v
η
i ) is bounded in L1(ΩT ). (Note that the L∞(ΩT ) bound for uηi in Lemma 9 is

not uniform in η.) This shows that div(uηi v
η
i ) ∈ L1(0, T ;W 1,∞(Ω)′). It follows from the

previous estimates that (uηi )
2 log uηi ∈ L1(ΩT ), so that uηi is uniformly bounded in L2(ΩT ).

Thus, thanks to the equality ∇uηi = 2(uηi )
1/2∇(uηi )

1/2 ∈ L4/3(ΩT ) and the Hölder inequality
(with exponents 3 and 3/2), we have∫ T

0

∫
Ω

|∇uηi |4/3dxdt ≤ 24/3∥uηi ∥
2/3

L2(ΩT )∥∇(uηi )
1/2∥4/3L2(ΩT ).

We deduce from Lemma 10 that ∇uηi ∈ L4/3(ΩT ) (uniformly in η) and hence ∆uηi ∈
L4/3(0, T ;W 1,4(Ω)′) as well as uηi fi(u

η) ∈ L1(0, T ;L1(Ω)) uniformly in η. We conclude that
(∂tu

η
i ) is bounded in L1(0, T ;W 1,∞(Ω)′), which finishes the proof. □

2.7. Limit η → 0. We infer from the gradient bound of Lemma 10 in L4/3(ΩT ) that, up
to a subsequence, as η → 0,

∇uηi ⇀ ∇ui weakly in L4/3(ΩT ).
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By the estimates from Lemma 10, the Aubin–Lions compactness lemma shows the existence
of a subsequence (not relabeled) such that uηi → ui strongly in L

4/3(ΩT ) and a.e. We deduce
from the L1(ΩT ) bound for (uηi )

2 log uηi and the de la Vallée–Poussin theorem that

uηi → ui strongly in L2(ΩT ),

which is sufficient to conclude that uηi fi(u
η) → uifi(u) strongly in L1(ΩT ).

Since L1(0, T ;W 1,∞(Ω)′) is not reflexive, we cannot extract a converging subsequence of
∂tu

η
i in that space. However, a limit in the larger space of functions of bounded variation in

time can be proved. For this, let m′ ∈ N be such that the embedding Hm′
(Ω) ↪→ W 1,∞(Ω)

is continuous and dense (choose m′ > d/2 + 1). Then W 1,∞(Ω)′ ↪→ Hm′
(Ω)′ is continuous.

It follows from a variant of Helly’s selection theorem (see Theorem 14 in Appendix A) that
uηi ⇀ ui weakly in BV ([0, T ];Hm′

(Ω)′), in particular,

∂tu
η
i ⇀ ∂tui weakly in M([0, T ];Hm′

(Ω)′),

where M denotes the space of Radon measures with the total variation norm (we refer
the reader to Appendix A for details). Note that the embedding W 1,∞(Ω)′ ↪→ Hm′

(Ω)′ is
needed to ensure measurability (Hm′

(Ω)′ should be separable) and to characterize exactly
the dual spaces for weak convergence (Hm′

(Ω)′ should have the Radon–Nikodým property,
e.g., being reflexive).

By Lemma 8, the uniform bound for Kη
ε (∇u

η
i ) in L2(ΩT ) implies the same bound for

Lη
ε(∇u

η
i ) and consequently for Lη

ε(∇pi(uη)). Then, up to a subsequence, −Lη
ε(∇pi(uη))⇀ v

weakly in L2(ΩT ) for some v ∈ L2(ΩT ). We want to identify v with −Lε(∇pi(u)). This
follows as in the proof of Lemma 9 from pi(u

η) → pi(u) strongly in L2(ΩT ) and

⟨Lη
ε(∇pi(uη)), ϕ⟩ = −⟨pi(uη), divLη

ε(ϕ)⟩ → −⟨pi(u), divLε(ϕ)⟩ = ⟨Lε(∇pi(u)), ϕ⟩,

if Lη
ε(ϕ) ⇀ Lε(ϕ) weakly in L2(0, T ;H1(Ω)) holds for any fixed test function ϕ; see the

following lemma.

Lemma 11. Let ϕ ∈ L2(0, T ;H1(Ω)′). Then Lη
ε(ϕ)⇀ Lε(ϕ) weakly in L2(0, T ;H1(Ω)).

Proof. We set wη := Lη
ε(ϕ). It is sufficient to show that wη ⇀ Lε(ϕ) weakly in L2(ΩT ). We

use ψ = wη in the weak formulation of Lη
ε(ϕ) = wη,

η

∫
Ω

∑
|α|=m

Dαwη ·Dαψdx+

∫
Ω

(
ε∇wη : ∇ψ + wη · ψ

)
dx = ⟨ϕ, ψ⟩.(21)

Then an application of Young’s inequality yields

η
∑
|α|=m

∥Dαwη∥2L2(Ω) + ε∥∇wη∥2L2(Ω) + ∥wη∥2L2(Ω) = |⟨ϕ,wη⟩| ≤ 1

2
∥ϕ∥2L2(Ω) +

1

2
∥wη∥2L2(Ω).

Absorbing the last term by the left-hand side, it follows that (wη) is bounded in L2(0, T ;
H1(Ω)) and (

√
ηDαwη) is bounded in L2(ΩT ) for any |α| = m. Thus, for some wi ∈

L2(0, T ;H1(Ω)) and up to subsequences,

wη
i ⇀ wi weakly in L2(0, T ;H1(Ω)),
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ηDαwη
i → 0 strongly in L2(ΩT ), |α| = m, i = 1, . . . , n.

The limit η → 0 in (21) shows that w solves∫
Ω

(
ε∇w : ∇ψdx+ w · ψ

)
dx = ⟨ϕ, ψ⟩.

By density, this equation holds for all ψ ∈ L2(0, T ;H1(Ω)). Hence, w = Lε(ϕ). Since the
limit is unique, we infer that the entire sequence converges, wη ⇀ Lε(ϕ) in L

2(0, T ;H1(Ω)).
This proves the lemma. □

We have assumed in Lemma 9 that the initial datum satisfies u0 ∈ L∞(Ω;Rn). We may
reduce this regularity to u0i log u

0
i ∈ L1(Ω) by approximating u0i by a function u0,ηi ∈ L∞(Ω)

(using for instance a cutoff at level 1/η). Then the above proof still works, since the uniform
bounds depend on u0i only via the L1(Ω) norm of u0i log u

0
i , and the initial datum converges

to u0i .
Similarly as in the proof of Lη

ε(∇u
η
i ) ⇀ Lε(∇ui) weakly in L2(ΩT ), we show the weak

limit Kη
ε (∇u

η
i )⇀ Kε(∇ui) in L2(ΩT ). In particular, because of the weak lower semiconti-

nuity of the norm,∫ T

0

∫
Ω

|Kε(∇ui)|2dxdt ≤ lim inf
η→0

∫ T

0

∫
Ω

|Kη
ε (∇u

η
i )|2dxdt.

The a.e. convergence of (uηi ) and the bounds from (20) allow us to apply Fatou’s lemma
to conclude that ui(log ui − 1) ∈ L∞(0, T ;L1(Ω)) and u2i log ui ∈ L2(ΩT ), which proves the
entropy inequality (9) and concludes the proof of Theorem 1.

3. Boundedness

To complete the proof of Theorem 1, it remains to show Lemma 9. It is shown by using
the Alikakos method as in [18]. Since the proof is rather technical, we sketch the proof
first before presenting the rigorous proof.

3.1. Formal argument. The idea is to use uγi for γ ≥ 1 as a test function in the approx-
imate problem (13), which leads to

1

γ + 1

d

dt

∫
Ω

uγ+1
i dx+

4γσ

(γ + 1)2

∫
Ω

|∇u(γ+1)/2
i |2dx(22)

=
2γ

γ + 1

∫
Ω

u
(γ+1)/2
i vi · ∇u(γ+1)/2

i dx+

∫
Ω

uγ+1
i fi(u)dx

≤ 2γ

γ + 1
∥u(γ+1)/2

i ∥L2(Ω)∥vi∥L∞(Ω)∥∇u(γ+1)/2
i ∥L2(Ω) + bi0

∫
Ω

(u
(γ+1)/2
i )2dx,

where vi = −Lε(∇pi(u)) and we have applied Hölder’s inequality in the last step. By
assumption on the solution operator Lε, the norm ∥vi∥L∞(Ω) is bounded uniformly in ε if
ui is uniformly bounded in L∞(0, T ;L1(Ω)), and this bound is obtained by using ϕ = 1 as
a test function in (13). A naive application of Young’s and Gronwall’s inequalities would
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lead to bounds that tend to infinity as γ → ∞. Thus, we need a more careful treatment
based on the Gagliardo–Nirenberg inequality and an iteration argument.

We use the Gagliardo–Nirenberg inequality with θ = d/(d+ 2) < 1 to find that

∥u(γ+1)/2
i ∥L2(Ω) ≤ C∥∇u(γ+1)/2

i ∥θL2(Ω)∥u
(γ+1)/2
i ∥1−θ

L1(Ω) + C∥u(γ+1)/2
i ∥L1(Ω).

Inserting this expression into (22), applying the Young inequality ab ≤ δap+ δ−p′/pbp
′
with

p = 2/(1+ θ), p′ = 2/(1− θ), and δ = σ/γ (which yields δ−p′/p = (γ/σ)d+1), and absorbing
the gradient term by the left-hand side of (22) gives, after some computations detailed
below,

1

γ + 1

d

dt
∥ui∥γ+1

Lγ+1(Ω) ≤ C(γ + 1)d+1∥ui∥γ+1

L(γ+1)/2(Ω)
.

It follows after an integration in time and taking the supremum that

∥ui∥γ+1
L∞(0,T ;Lγ+1(Ω)) ≤ ∥u0i ∥

γ+1
Lγ+1(Ω) + C(T )(γ + 1)d+2

(
∥ui∥(γ+1)/2

L∞(0,T ;L(γ+1)/2(Ω))

)2
.

Then ak := ∥ui∥2
k

L∞(0,T ;L2k (Ω))
+∥u0i ∥2

k

L∞(Ω) gives the recursion ak ≤ αka2k−1 for some constant

α > 0 independent of k. Solving the recursion yields

∥ui∥L∞(0,T ;L2k (Ω))
≤ a2

−k

k ≤ C
(
∥ui∥L∞(0,T ;L1(Ω)) + ∥u0i ∥L∞(Ω)

)
,

and the limit k → ∞ gives the result, since the right-hand side is independent of k.

3.2. Derivation of the recursion. Since the test function uγi may be not admissible,
we need to use a suitable cutoff to make the above argument rigorous. Let N > e2. We
introduce

Sγ
N(z) =

∫ z

0

((s)N+ )
γ−1ds, Rγ+1

N (z) =

∫ z

0

Sγ
N(s)ds,

recalling that (z)N+ = max{0,min{N, z}}. Then the chain rules ∇Sγ
N(ui) = [(ui)

N
+ ]

γ−1∇ui
and ∇Rγ+1

N (ui) = Sγ
N(ui)∇ui hold.

Lemma 12. The functions Sγ
N and Rγ

N satisfy the following inequalities:

(z)N+S
γ
N(z) ≤

1

γ

(
γ + 1

2

)2

S
(γ+1)/2
N (z)2, [(z)N+ ]

(γ+1)/2 ≤ γ + 1

2
S
(γ+1)/2
N (z) for γ > 0,(23)

Rγ
N(z) ≥

1

γ − 1
Sγ
N(z), R2γ

N (z) ≤ γ(γ − 1)2

2(2γ − 1)
Rγ

N(z)
2 for γ > 1.(24)

Proof. The inequalities are verified by elementary computations similar to the proof of [20,
Lemma 6]. Notice that inequalities (23)–(24) reflect the fact that γSγ

N(z) and γ(γ−1)Rγ
N(z)

are two different approximations of zγ. □

For any γ ≥ 1, the test function Sγ
N(ui) is admissible in (13), and we find that

d

dt

∫
Ω

Rγ+1
N (ui)dx+ σ

∫
Ω

|∇S(γ+1)/2
N (ui)|2dx
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=

∫
Ω

(ui)
N
+ [(ui)

N
+ ]

(γ−1)/2vi · ∇S(γ+1)/2
N (ui)dx+

∫
Ω

(ui)
N
+S

γ
N(ui)fi(u)dx

≤
∫
Ω

(ui)
N
+ [(ui)

N
+ ]

(γ−1)/2vi · ∇S(γ+1)/2
N (ui)dx+ C

∫
Ω

(ui)
N
+S

γ
N(ui)dx,

recalling that vi = −Lε(∇pi(u)). We know already that ui is bounded in L∞(0, T ;L1(Ω))
uniformly in N (use the test function ϕi = 1 in (13)). Then, by assumption, vi is uniformly
bounded in L∞(ΩT ) and

d

dt

∫
Ω

Rγ+1
N (ui)dx+ σ

∫
Ω

|∇S(γ+1)/2
N (ui)|2dx

≤ ∥vi∥L∞(ΩT )

∫
Ω

[(ui)
N
+ ]

(γ+1)/2|∇S(γ+1)/2
N |dx+ C

∫
Ω

(ui)
N
+S

γ
N(ui)dx,

Properties (23) and Young’s inequality yield

d

dt

∫
Ω

Rγ+1
N (ui)dx+ σ

∫
Ω

|∇S(γ+1)/2
N (ui)|2dx(25)

≤ C∥[(ui)N+ ](γ+1)/2∥L2(Ω)∥∇S(γ+1)/2
N ∥L2(Ω) + C

∫
Ω

(ui)
N
+S

γ
N(ui)dx

≤ C(γ + 1)∥S(γ+1)/2
N (ui)∥L2(Ω)∥∇S(γ+1)/2

N ∥L2(Ω) + C(γ + 1)2∥S(γ+1)/2
N (ui)∥2L2(Ω)

≤ σ

4
∥∇S(γ+1)/2

N ∥2L2(Ω) + C(σ)(γ + 1)2∥S(γ+1)/2
N (ui)∥2L2(Ω).

The first term on the right-hand side is absorbed by the left-hand side, while the remaining
term on the right-hand side is estimated by the Gagliardo–Nirenberg inequality with θ =
d/(d+ 2):

∥S(γ+1)/2
N (ui)∥L2(Ω) ≤ C∥∇S(γ+1)/2

N (ui)∥θL2(Ω)∥S
(γ+1)/2
N (ui)∥1−θ

L1(Ω) + C∥S(γ+1)/2
N (ui)∥L1(Ω).

Consequently, by Young’s inequality,

C(γ + 1)2∥S(γ+1)/2
N (ui)∥2L2(Ω)

≤ C(γ + 1)2∥∇S(γ+1)/2
N (ui)∥2θL2(Ω)∥S

(γ+1)/2
N (ui)∥2(1−θ)

L1(Ω) + C(γ + 1)2∥S(γ+1)/2
N (ui)∥2L1(Ω)

≤ σ

4
∥∇S(γ+1)/2

N (ui)∥2L2(Ω) + C(σ)(γ + 1)d+2∥S(γ+1)/2
N (ui)∥2L1(Ω).

We insert this estimate into (25):

d

dt

∫
Ω

Rγ+1
N (ui)dx+

σ

2

∫
Ω

|∇S(γ+1)/2
N (ui)|2dx ≤ C(γ + 1)d+2∥S(γ+1)/2

N (ui)∥2L1(Ω).

An integration in time yields

∥Rγ+1
N (ui(t))∥L1(Ω) ≤ ∥Rγ+1

N (u0i )∥L1(Ω) + C(γ + 1)d+2

∫ t

0

∥S(γ+1)/2
N (ui)∥2L1(Ω)ds

≤ C∥Rγ+1
N (u0i )∥L∞(Ω) + CT (γ + 1)d+2∥S(γ+1)/2

N (ui)∥2L∞(0,T ;L1(Ω)).
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Finally, we take the supremum over time:

∥Rγ+1
N (ui)∥L∞(0,T ;L1(Ω)) ≤ C∥Rγ+1

N (u0i )∥L∞(Ω)(26)

+ CT (γ + 1)d+2∥S(γ+1)/2
N (ui)∥2L∞(0,T ;L1(Ω)).

We obtain in the particular case γ = 1:

∥ui∥2L∞(0,T ;L2(Ω)) = 2∥R2
N(ui)∥L∞(Ω);L1(Ω))(27)

≤ 2C∥R2
N(u

0
i )∥L∞(Ω) + 2CT2d+2∥S1

N(ui)∥2L∞(0,T ;L1(Ω))

= C∥u0i ∥2L∞(Ω) + 2CT2d+2∥ui∥2L∞(0,T ;L1(Ω)) ≤ C.

For γ > 1, we use the first property in (24) to infer from (26) that

∥Sγ+1
N (ui)∥L∞(0,T ;L1(Ω)) ≤ Cγ∥Rγ+1

N (u0i )∥L∞(Ω)(28)

+ CTγ(γ + 1)d+2∥S(γ+1)/2
N (ui)∥2L∞(0,T ;L1(Ω)).

Setting 2k = γ + 1 for k ∈ N with k ≥ 1 and

ak = ∥R2k

N (u0i )∥L∞(Ω) + ∥S2k

N (ui)∥L∞(0,T ;L1(Ω)),

we obtain thanks to (28):

ak ≤ ∥R2k

N (u0i )∥L∞(Ω) + C(2k − 1)∥R2k

N (u0i )∥L∞(Ω)

+ CT (2k − 1)2k(d+2)∥S2k−1

N (ui)∥2L∞(0,T ;L1(Ω)).

Using the second property in (24), this inequality becomes

ak ≤
(
1 + C(2k − 1)

)
∥R2k

N (u0i )∥L∞(Ω) + CT (2k − 1)2k(d+2)∥S2k−1

N (ui)∥2L∞(0,T ;L1(Ω))

≤
(
1 + C(2k − 1)

)2k−1(2k−1 − 1)2

2(2k − 1)
∥R2k−1

N (u0i )∥2L∞(Ω)

+ CT (2k − 1)2k(d+2)∥S2k−1

N (ui)∥2L∞(0,T ;L1(Ω))

≤ max

{
(1 + C(2k − 1))

2k(2k − 2)2

16(2k − 1)
, CT (2k − 1)2k(d+2)

}
a2k−1 ≤ αka2k−1,

where α = C(T )2d+3 and C(T ) does not depend on k.

3.3. Solution of the recursion. The recursion can be solved explicitly by setting bk =
αk+2ak, leading to bk ≤ b2k−1 and eventually to ak ≤ α3·2k−1−k−2a2

k−1

1 or

∥S2k

N (ui)∥L∞(0,T ;L1(Ω)) ≤ ak(29)

≤ α3·2k−1−k−2
(
∥S2

N(ui)∥L∞(0,T ;L1(Ω)) + ∥R2
N(u

0
i )∥L∞(Ω)

)2k−1

.

Since S2
N(ui) is controlled uniformly by u2i , the first norm on the right-hand side is bounded

uniformly in N because of (27). The second norm is bounded by assumption, noting that
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R2
N(u

0
i ) = (u0i )

2/2. Furthermore, the left-hand side is estimated from below according to

∥Sγ
N(ui)∥L1(Ω) =

∫
Ω

{
uγi
γ
1{ui≤N} +

(
Nγ

γ
+Nγ−1(ui −N)

)
1{ui>N}

}
dx

≥ 1

γ

∫
Ω

uγi 1{ui≤N}dx.

By monotone convergence, we infer from (29) that

2−k∥ui∥2
k

L∞(0,T ;L2k (Ω))
≤ lim inf

N→∞
∥S2k

N (ui)∥L∞(0,T ;L1(Ω)) ≤ α3·2k−1−k−2C2k−1

.

Taking the 2kth root gives a uniform bound for the L∞(0, T ;L2k(Ω)) norm of ui, which
allows us to pass to the limit k → ∞ and to conclude the proof.

4. Uniqueness of bounded weak solutions

We prove the uniqueness of bounded weak solutions. According to Theorem 2, such
solutions exist in one space dimension. Recalling definition (8) of the relative nonlocal Rao
entropy and setting vi = −Lε(∇pi(u)), v̄i = −Lε(∇pi(ū)) for two bounded weak solutions
ui and ūi, we compute

1

2

d

dt
H2(u|ū) =

n∑
i,j=1

∫
Ω

aijKε(ui − ūi)∂tKε(uj − ūj)dx(30)

=
n∑

i,j=1

aij⟨∂t(uj − ūj), Lε(ui − ūi)⟩

= I1 + I2 + I3,

where

I1 = −σ
n∑

i,j=1

aij

∫
Ω

∇(ui − ūi) · ∇Lε(uj − ūj)dx,

I2 =
n∑

i,j=1

aij

∫
Ω

(uivi − ūiv̄i) · ∇Lε(uj − ūj)dx,

I3 =
n∑

i,j=1

aij

∫
Ω

(uifi(u)− ūifi(ū))Lε(uj − ūj)dx.

The first and last terms are estimated according to

I1 = −σ
n∑

i,j=1

aij

∫
Ω

Kε(∇(ui − ūi)) ·Kε(∇(uj − ūj))dx ≤ −ασ∥Kε(∇(u− ū))∥2L2(Ω),

I3 =
n∑

i,j=1

aijbi0

∫
Ω

(ui − ūi)Lε(uj − ūj)dx−
n∑

i,j,k=1

aijbik

∫
Ω

(uiuk − ūiūk)Lε(uj − ūj)dx
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≤ C∥Kε(u− ū)∥2L2(Ω) −
n∑

i,j,k=1

aijbik

∫
Ω

(
ui(uk − ūk) + ūk(ui − ūi)

)
Lε(uj − ūj)dx

≤ C∥Kε(u− ū)∥2L2(Ω) + Cmax{∥u∥L∞(Ω), ∥ū∥L∞(Ω)}∥u− ū∥L2(Ω)∥Lε(u− ū)∥L2(Ω),

where we used the notation ∥g∥L2(Ω) = maxi=1,...,n ∥gi∥L2(Ω) for functions g = (g1, . . . , gn) ∈
L2(Ω;Rn). Next, we use ∥Lε(u− ū)∥L2(Ω) ≤ ∥Kε(u− ū)∥L2(Ω) (see (12)) and (for w ∈ L2(Ω)
with Lε(w) = v)

∥w∥2L2(Ω) = ⟨w,w⟩ = ⟨−ε∆Lε(w) + Lε(w), w⟩(31)

= ε⟨∇Lε(w),∇w⟩+ ⟨Lε(w), w⟩ = ε∥Kε(∇w)∥2L2(Ω) + ∥Kε(w)∥2L2(Ω).

Thus, we infer that

∥u−ū∥L2(Ω)∥Lε(u− ū)∥L2(Ω)

≤
(
ε∥Kε(∇(u− ū))∥2L2(Ω) + ∥Kε(u− ū)∥2L2(Ω)

)1/2∥Kε(u− ū)∥L2(Ω)

≤ ασ

4
∥Kε(∇(u− ū))∥2L2(Ω) + C(ε, σ)∥Kε(u− ū)∥2L2(Ω),

and the first term on the right-hand side can be absorbed by I1.
For the term I2, we have

I2 = −
n∑

i=1

∫
Ω

(uivi − ūiv̄i) · (vi − v̄i)dx

= −
n∑

i=1

∫
Ω

ui|vi − v̄i|2 −
n∑

i=1

∫
Ω

(ui − ūi)v̄i · (vi − v̄i)dx

≤ ∥u− ū∥L2(Ω)∥v̄∥L∞(Ω)∥v − v̄∥L2(Ω).

We deduce from equality (12) and the linearity of p that

∥v − v̄∥L2(Ω) = ∥Lε(∇pi(u)−∇pi(ū))∥L2(Ω)

≤ ε−1/2∥Kε(pi(u)− pi(ū))∥L2(Ω) ≤ Cε−1/2∥Kε(u− ū)∥L2(Ω).

Now, we use estimates (12) and (31) as well as Young’s inequality:

I2 ≤ C
(
ε∥Kε(∇(u− ū))∥2L2(Ω) + ∥Kε(u− ū)∥2L2(Ω)

)1/2
ε−1/2∥Kε(u− ū)∥L2(Ω)

≤ ασ

4
∥Kε(∇(u− ū))∥2L2(Ω) + C(ε, σ)∥Kε(u− ū)∥2L2(Ω),

where we have used the fact that by assumption Lε : W−1,1 → L∞(Ω) and that v̄i =
−Lε(∇pi(ū)) for i = 1, . . . , n. Inserting the estimates for I1, I2, and I3 into (30), we infer
from ∥Kε(u− ū)∥2L2(Ω) ≤ α−1H2(u|ū) that

dH2

dt
(u|ū) + ασ

2
∥Kε(∇(u− ū))∥2L2(Ω) ≤ C(α, ε, σ)H2(u|ū).
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Since H2(u(0)|ū(0)) = 0, Gronwall’s inequality shows that H2(u(t)|ū(t)) = 0 and hence
Kε(u(t) − ū(t)) = 0 for t > 0. This implies that Lε(u(t) − ū(t)) = 0 and, by definition of
Lε, u(t) = ū(t) for t > 0, concluding the proof.

5. Asymptotic regimes

In this section we study the behavior of the weak solutions to (1)–(5) when ε → 0
(Theorem 4) as well as when T → ∞ (Theorem 5).

5.1. The localization limit ε → 0. We prove Theorem 4. The bounds provided by the
entropy inequality (9) can be used to perform the limit ε → 0. Indeed, let uε be a weak
solution to (1)–(5) satisfying (9) and set vεi = Lε(∇pi(uε)) for i = 1, . . . , n which is bounded
in L2(ΩT ). We have, similarly as in Section 2.7, up to a subsequence, as ε→ 0,

∇uεi ⇀ ∇ui weakly in L4/3(ΩT ),

uεi → ui strongly in L2(ΩT ) and a.e.,

∂tu
ε
i ⇀ ∂tui weakly in M([0, T ];Hm′

(Ω)′),

vεi ⇀ wi weakly in L2(ΩT ), i = 1, . . . , n,

for some functions wi ∈ L2(ΩT ). We want to identify wi = −∇pi(u). If divLε(ϕ) ⇀ div ϕ
weakly in L2(ΩT ) for test functions ϕ, we have

−⟨Lε(∇pi(uε)), ϕ⟩ = ⟨pi(uε), divLε(ϕ)⟩ → ⟨pi(u), div ϕ⟩ = −⟨∇pi(u), ϕ⟩,

which implies that wi = −∇pi(u). The claimed convergence holds as shown in the following
lemma.

Lemma 13. Let ϕ ∈ L2(ΩT ). Then divLε(ϕ)⇀ div ϕ weakly in L2(ΩT ).

Proof. We infer from the weak formulation of yε = Lε(ϕ),∫
Ω

(ε∇yε · ∇ψ + yεψ)dx = ⟨ϕ, ψ⟩ for ψ ∈ L2(0, T ;H1(Ω)),

that (
√
ε∇yε) and (yε) are bounded in L2(ΩT ) (choose ψ = yε and use Young’s inequality).

Hence, for a subsequence, ε∇yε → 0 strongly in L2(ΩT ) and yε ⇀ y weakly in L2(ΩT ) as
ε→ 0 for some y ∈ L2(ΩT ); and the limit ε→ 0 in the previous weak formulation gives∫

Ω

yψdx = ⟨ϕ, ψ⟩.

It follows that y = ϕ. This proves that Lε(ϕ) = yε ⇀ ϕ weakly in L2(ΩT ) for a subsequence,
and, because of the uniqueness of the limit, also for the whole sequence. □

We have shown that vεi ⇀ −∇pi(u) weakly in L2(ΩT ) and consequently

uεiv
ε
i ⇀ −ui∇pi(u) weakly in L1(ΩT ),

ε∆vεi → 0 in the sense of distributions.
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These convergences allow us to perform the limit ε → 0 in equations (1)–(2), proving
that ui solves (6) with initial and boundary conditions (3). This concludes the proof of
Theorem 4.

5.2. Large-time behavior. Next, we prove Theorem 5. For this, we compute the time
derivative of the relative entropyH1, defined in (10), using the definition pi(u) =

∑n
j=1 aijuj

and the fact that u∞i is constant:

dH1

dt
(u|u∞) =

n∑
i=1

〈
∂tui, log

ui
u∞i

〉
(32)

=
n∑

i=1

∫
Ω

(
−

(
σ∇ui + uiLε(∇pi(u))

)
· ∇ log

ui
u∞i

+ uifi(u) log
ui
u∞i

)
dx

= −4σ
n∑

i=1

∫
Ω

|∇
√
ui|2dx−

n∑
i=1

Lε(∇pi(u)) · ∇ui + uifi(u) log
ui
u∞i

)
dx

= −4σ
n∑

i=1

∫
Ω

|∇
√
ui|2dx−

n∑
i,j=1

∫
Ω

aijKε(∇ui) ·Kε(∇uj)dx

+
n∑

i=1

∫
Ω

uifi(u) log
ui
u∞i

dx.

The first two terms on the right-hand side are nonpositive, while we rewrite the last term
by using fi(u

∞) = bi0 −
∑n

j=1 biju
∞
j = 0, which follows from the definition Bu∞ = b:

n∑
i=1

∫
Ω

uifi(u) log
ui
u∞i

dx =
n∑

i=1

∫
Ω

(
ui log

ui
u∞i

− (ui − u∞i )

)
fi(u)dx

+
n∑

i=1

∫
Ω

(ui − u∞i )(fi(u)− fi(u
∞))dx.

The first integral is nonpositive, since y log(y/z)− (y− z) ≥ 0 for all y ≥ 0 and z > 0 and
since fi(u) ≤ 0 by assumption. Then, by the positive definiteness of (bij) with smallest
eigenvalue β > 0,

n∑
i=1

∫
Ω

uifi(u) log
ui
u∞i

dx ≤ −
n∑

i,j=1

∫
Ω

bij(ui − u∞i )(uj − u∞j )dx ≤ −β∥u− u∞∥2L2(Ω).

We infer from a Taylor expansion, applied to the convex function x 7→ x log(x/u∞i ), that

ui log
ui
u∞i

− (ui − u∞i ) ≤ (ui − u∞i )2

2min{ui, u∞i }
,

yielding
n∑

i=1

∫
Ω

uifi(u) log
ui
u∞i

dx ≤ −2β
n∑

i=1

∫
Ω

min{ui, u∞i }
(
ui log

ui
u∞i

− (ui − u∞i )

)
dx
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≤ −2βµH1(u|u∞),

recalling that min{ui, u∞i } ≥ µ > 0 by assumption. We conclude from (32) that

dH1

dt
(u|u∞) ≤ −2βµH1(u|u∞), t > 0,

and Gronwall’s inequality ends the proof of Theorem 5.

Appendix A. Auxiliary results

Theorem 14 (Variant of Helly’s selection theorem). Let H be a separable Hilbert space
and let (wn)n∈N ⊂ W 1,1(0, T ;H) be a sequence such that it holds for some C > 0 that
∥wn∥W 1,1(0,T ;H) ≤ C for all n ∈ N. Then there exists a subsequence of (wn) (not relabeled)
and a function w ∈ BV ([0, T ];H) such that for all t ∈ [0, T ],

wn(t)⇀ w(t) weakly in H.

Additionally, up to a subsequence, ∂twn ⇀ ∂tw weakly as vector-valued measures, i.e., for
all ϕ ∈ C0([0, T ]), it holds that1∫ T

0

ϕdwn ⇀

∫ T

0

ϕdw weakly in H.

Proof. The proof follows from Helly’s selection theorem for Hilbert space-valued functions
[2, Theorem 1.126] if (wn) ⊂ BV ([0, T ];H) has the properties

(i) ∥wn(t)∥H ≤ C uniformly in t ∈ [0, T ] and n ∈ N,

(ii) Var(wn; [0, T ]) := sup
P

N−1∑
i=0

∥wn(ti+1)− wn(ti)∥H ≤ C uniformly in n ∈ N,

where P is the set of partitions 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . Indeed, we conclude
from wn ∈ W 1,1(0, T ;H) and [14, Sec. 5.9.2, Theorem 2] that wn ∈ C0([0, T ];H) (possibly
after redefining wn on a set of measure zero) with continuous embedding. This proves (i).
Property (ii) is a consequence of

Var(wn; [0, T ]) = sup
P

N−1∑
i=0

∥∥∥∥∫ ti+1

ti

∂twn(τ)dτ

∥∥∥∥
H

≤ sup
P

N−1∑
i=0

∫ ti+1

ti

∥∂twn(τ)∥Hdτ

=

∫ T

0

∥∂twn(τ)∥Hdτ ≤ ∥wn∥W 1,1(0,T ;H) ≤ C.

This finishes the proof. □

It is well known that elliptic problems with W−1,p(Ω) source have a unique solution in
W 1,p(Ω) with p > 1 [3, Lemma 3.5]. In one space dimension, this result can be extended
to p = 1. Since we have not found a proof in the literature, we present it here.

1Note that since [0, T ] is compact, the space of continuous functions on [0, T ] coincides both with the
spaces of continuous functions with compact support and of continuous functions which vanish at infinity;
see the Riesz–Markov–Kakutani representation theorem.
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Lemma 15 (Elliptic problem with W−1,1(Ω) source). Let Ω = (−1, 1) and u ∈ L1(Ω).
Then the elliptic problem

−εv′′ + v = u′ in Ω, v(−1) = v(1) = 0,

has a unique distributional solution satisfying v ∈ W 1,1
0 (−1, 1) ↪→ C0([−1, 1]) ↪→ L∞(−1, 1).

Proof. The result follows from the explicit formula

v(x) =

∫ 1

−1

u(s)
∂Uε

∂s
(x, s)ds, x ∈ (−1, 1),

where

Uε(x, s) =
1√

ε sinh( 2√
ε
)
·

{
− sinh(1+x√

ε
) sinh(1−s√

ε
) for x ≤ s,

− sinh(1−x√
ε
) sinh(1+s√

ε
) for x > s,

such that

∂Uε

∂s
(x, s) =

1

ε sinh( 2√
ε
)
·

{
sinh(1+x√

ε
) cosh(1−s√

ε
) for x ≤ s,

− sinh(1−x√
ε
) cosh(1+s√

ε
) for x > s.

The function Uε is the fundamental solution of v 7→ −εv′′ + v. Indeed, let ϕ ∈ D(−1, 1) be
a test function. We integrate by parts twice and use an addition formula for the hyperbolic
sine to find that

−ε
〈
∂3Uε

∂x2∂s
, ϕ

〉
= −ε

〈
∂Uε

∂s
, ϕ′′

〉
= − 1

sinh( 2√
ε
)

∫ s

−1

sinh

(
1 + x√

ε

)
cosh

(
1− s√

ε

)
ϕ′′(x)dx

+
1

sinh( 2√
ε
)

∫ 1

s

sinh

(
1− x√

ε

)
cosh

(
1 + s√
ε

)
ϕ′′(x)dx

= − 1

ε sinh( 2√
ε
)

∫ s

−1

sinh

(
1 + x√

ε

)
cosh

(
1− s√

ε

)
ϕ(x)dx

+
1

ε sinh( 2√
ε
)

∫ 1

s

sinh

(
1− x√

ε

)
cosh

(
1 + s√
ε

)
ϕ(x)dx

− ϕ′(s)

sinh( 2√
ε
)

(
sinh

(
1 + s√
ε

)
cosh

(
1− s√

ε

)
+ sinh

(
1− s√

ε

)
cosh

(
1 + s√
ε

))
= −

〈
∂Uε

∂s
, ϕ

〉
− ϕ′(s).

This gives

⟨−εv′′ + v, ϕ⟩ =
∫ 1

−1

u(s)

〈
− ε

∂3Uε

∂x2∂s
+
∂Uε

∂s
, ϕ

〉
ds = −

∫ 1

−1

u(s)ϕ′(s)ds = ⟨u′, ϕ⟩.
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Furthermore, v satisfies the boundary conditions since (∂Uε/∂s)(±1, s) = 0.
Next, we compute, setting ε = 1 to simplify the presentation,

⟨v′, ϕ⟩ = −
∫ 1

−1

u(s)

〈
∂U1

∂s
, ϕ′

〉
ds

= − 1

sinh 2

∫ 1

−1

u(s)

(∫ s

−1

sinh(1 + x) cosh(1− s)ϕ′(x)dx

−
∫ 1

s

sinh(1− x) cosh(1 + s)ϕ′(x)dx

)
= − 1

sinh 2

∫ 1

−1

u(s)

{
ϕ(s)

(
sinh(1 + s) cosh(1− s) + sinh(1− s) cosh(1 + s)

)
− 1

sinh 2

∫ s

−1

cosh(1 + x) cosh(1− s)ϕ(x)dx

− 1

sinh 2

∫ 1

s

cosh(1− x) cosh(1 + s)ϕ(x)dx

}
ds.

Introducing the continuous function

F (x, s) =
1

sinh 2
·

{
cosh(1 + x) cosh(1− s) for x ≤ s,

cosh(1− x) cosh(1 + s) for x > s,

it follows from an addition formula for the hyperbolic functions and Fubini’s theorem that

⟨v′, ϕ⟩ = −
∫ 1

−1

(
u(s)ϕ(s)− u(s)

∫ 1

−1

F (x, s)ϕ(x)dx

)
ds

= −⟨u, ϕ⟩+
∫ 1

−1

∫ 1

−1

u(s)F (x, s)ϕ(x)dsdx =

〈
− u+

∫ 1

−1

u(s)F (·, s)ds, ϕ
〉

and consequently, v′ = −u +
∫ 1

−1
u(s)F (·, s)ds. The boundedness of F is sufficient to

conclude the W 1,1(Ω) regularity of v:

∥v′∥L1(−1,1) ≤ ∥u∥L1(−1,1) +

∫ 1

−1

∥u∥L1(−1,1)∥F (x, ·)∥L∞(−1,1)dx

= ∥u∥L1(−1,1)

(
1 +

1

sinh 2

∫ 1

−1

cosh(1 + x) cosh(1− x)dx

)
= ∥u∥L1(−1,1)

(
3

2
+ coth 2

)
.

Finally, if v1 and v2 are two solutions in the sense of distributions, the difference satisfies
the classical differential equation −ε(v1− v2)

′′+(v1− v2) = 0 in (−1, 1) with homogeneous
boundary conditions. The unique solution even in the space of distributions is v1− v2 = 0,
which proves the uniqueness of solutions to the original elliptic problem. □
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