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Abstract

Outlier detection holds significant importance in the realm of data mining, particularly with the
growing pervasiveness of data acquisition methods. The ability to identify outliers in data streams
is essential for maintaining data quality and detecting faults. However, dealing with data streams
presents challenges due to the non-stationary nature of distributions and the ever-increasing data
volume. While numerous methods have been proposed to tackle this challenge, a common drawback
is the lack of straightforward parameterization in many of them. This article introduces two novel
methods: DyCF and DyCG. DyCF leverages the Christoffel function from the theory of approximation
and orthogonal polynomials. Conversely, DyCG capitalizes on the growth properties of the Christoffel
function, eliminating the need for tuning parameters. Both approaches are firmly rooted in a well-
defined algebraic framework, meeting crucial demands for data stream processing, with a specific
focus on addressing low-dimensional aspects and maintaining data history without memory cost. A
comprehensive comparison between DyCF, DyCG, and state-of-the-art methods is presented, using
both synthetic and real industrial data streams. The results show that DyCF outperforms fine-tuning
methods, offering superior performance in terms of execution time and memory usage. DyCG performs
less well, but has the considerable advantage of requiring no tuning at all.

Keywords: Anomaly detection, Unsupervised learning, Christoffel-Darboux kernel, Data mining, Statistics

1 Introduction

The identification and examination of uncommon
observations play a crucial role in data mining,
as they may signal data corruption or faulty
behavior. Such unusual observations can be cate-
gorized as outliers, anomalies, out-of-distribution

samples, or novelties. We specifically adopt the
term ”outlier” along with Hawkins’ definition [15]
of “an observation which deviates so much from
the other observations as to arouse suspicions
that it was generated by a different mechanism”.
Outliers carry valuable information about under-
lying processes, making them especially relevant
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in applications like network traffic analysis [47],
medical diagnosis [7], and fraud detection [27],
where detecting abnormal behavior is crucial. Fur-
thermore, outliers can significantly disrupt various
machine learning methods employed in tasks such
as prediction or decision-making, necessitating
their removal to ensure the accuracy of the results
obtained.

In the contemporary landscape, various data
sources such as wireless sensor networks, social
networks, medical systems, web traffic, and online
transactions continuously generate data. The
resulting datasets exhibit characteristics of uncer-
tainty and continuous evolution, posing significant
challenges for outlier detection in this dynamic
environment. Traditional methods designed for
batch datasets typically seek a mapping function
that assigns an outlierness score to new samples
based on the observation of an entire set of histor-
ical samples. In some cases, only these historical
samples can receive an outlierness score, leaving
new, unseen samples unassessed. In other scenar-
ios, methods may categorize new samples as inliers
or outliers, but the mapping function remains
static and does not adapt over time. However, for
effective outlier detection in data streams, meth-
ods must actively seek a mapping function that
adjusts to new samples and grapple with data
streams of infinite length.

In the context of outlier detection, labels are
frequently unavailable [13], making it uncertain
whether historical samples are genuinely outliers.
While batch scenarios allow for preprocessing to
label data and satisfy supervised learning condi-
tions, obtaining a reliable set of normal samples
or choosing known outliers can facilitate semi-
supervised tasks. However, in the realm of data
streams, the continuous evolution of data distribu-
tion renders labeling impractical and it can swiftly
become outdated. Consequently, outlier detection
methods must operate in an unsupervised manner.
The absence of labels also introduces challenges
in fine-tuning these methods, as evaluating their
performance becomes arduous without labeled
data.

This paper focuses on unsupervised outlier
detection for low-dimensional data streams. We
highlight the applicability of the Christoffel func-
tion (CF), a well-established concept in the theory
of approximation and orthogonal polynomials,
in addressing this challenge. Our contributions

encompass (1) adapting the CF to assess out-
liers in data streams, resulting in the Dynamic
Christoffel Function (DyCF) method, (2) intro-
ducing a tuning-free approach called Dynamic
Christoffel Growth (DyCG), capitalizing on the
asymptotic growth properties of the CF, and (3)
conducting comparisons with several state-of-the-
art methods using synthetic and real industrial
data streams.

The structure of this paper is as follows. In
Section 3, we offer an overview of outlier detec-
tion in data streams, delving into the current state
of the art. Section 4 introduces the Christoffel
function (CF), illustrating its ability to effec-
tively capture the support of a theoretical measure
from a set of samples. Additionally, we compare
it with the closely related method, Kernel Den-
sity Estimation (KDE). In Section 5, we present
DyCF, an adaptation of the CF for handling data
streams along with its tuning-free enhancement,
DyCG. Section 6 provides the results of DyCF
and DyCG, comparing them with state-of-the-art
methods. Finally, Section 7 concludes the paper
by discussing the results and suggesting poten-
tial enhancements for DyCF and DyCG, outlining
avenues for future research.

2 Problem formulation

The problem that we consider is embedded unsu-
pervised outlier detection in low dimensional
data streams issued from low capacity sensoring
devices.

The peculiarities of data streams that require
consideration include [35]:

• Transiency : the significance of each data point
diminishes over time; therefore, it should be
processed promptly upon measurement.

• Time dependency : each data point is linked to
a timestamp, which must be taken into account
either as an attribute or in the order of arrival.
In both scenarios, a data point is assessed in
comparison to other points within the same
temporal context.

• Infinity : as measurements are continuously gen-
erated, data streams constitute theoretically
infinite sequences of samples and, therefore,
cannot be stored in memory entirely, partic-
ularly in low memory sensors. Thus methods
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should opt for a summary of the dataset rather
than attempting to store the entire sequence.

• Arrival rate: the arrival rate may vary over
time, but it is imperative to process points
immediately upon measurement. Therefore, the
algorithm’s execution time must be sufficiently
brief. In the event of a variable arrival rate, it
might be necessary to adapt the process and be
willing to compromise on accuracy.

• Concept drift : in many cases, data distribu-
tion is non-stationary1 making outlier detec-
tion methods that assume a fixed distribution
unsuitable.

• Uncertainty : In various application scenarios,
measurements can be influenced by environ-
mental disturbances. This justifies the use of
outlier detection methods.

• Multi-dimensionality : while not exclusive to
data streams, some challenges are associated
with high dimensionality. In our work, we con-
centrate on problems that are low-dimensional
yet multi-dimensional.

• Embeddedness: an additional consideration is
related to the concept of edge computing. In
various samples, especially within wireless sen-
sor networks, computing capabilities are inte-
grated into objects with limited capacities,
including memory and CPU.

In this context, there is a demand for
approaches that exhibit the following characteris-
tics, such as DyCF and DyCG proposed in this
paper :

• frugality allowing to embed outlier detection
models in devices,

• fast update to match incoming measurement
frequency,

• little or no fine-tuning to meet automation and
generalization needs,

• explainability and interpretability so that
human operators understand the results easily.

This being said, these properties exclude deep
learning methods.

1Non-stationary distributions have means, variances, and
covariances that change over time. Non-stationary behaviors
can be trends, cycles, random walks, or combinations of the
three.

3 Related Work

Outlier detection has been a research subject for
a long time in different communities, starting
with statisticians and the works of Edgeworth
in the end of the 19th century [11]. With more
than a century of interest in outlier detection, a
lot of different methods have been proposed and
a significant number of surveys tackle the task
of listing, describing, categorizing and comparing
these methods, e.g., [4, 6, 34, 44].

Depending on the context, outlier detection
methods are usually separated into three groups:
1) supervised models that rely on the availability
of datasets labeled with the outlierness status of
samples, 2) semi-supervised methods that rely on
datasets in which only normal samples are labeled,
3) unsupervised methods that can accept datasets
without any information on outlierness. Unsuper-
vised methods are recognized to be less precise
than supervised methods due to the absence of
information. However, as mentioned earlier, a lim-
itation of supervised methods in the case of data
streams is the potential obsolescence of labels
resulting from distribution changes. Consequently,
unsupervised methods become the sole option
when dealing with data streams. For this reason,
extensive research has been conducted on outlier
detection methods for data streams. The reader
can refer to surveys that concentrate on specific
techniques [36, 41, 42], or those that survey the
advancements of the field [40, 44, 46].

Initially considered, it seems interesting to
adapt time series methods [10], for example
ARIMA models [2], prediction models based on
exponential smoothing [17] and LSTM (Long
Short-Term Memory) [26]. These methods employ
trends and seasonal patterns to forecast future
data points from past observations. Anomaly
detection can then be based on comparing fore-
casted points to actual measurements. However,
these methods are not suitable for data streams
because the learned model fails to evolve with
new incoming measurements. While trend and
seasonality can bring about alterations in the dis-
tribution, these changes must follow a regular
pattern for models to make accurate predictions,
and this regularity is not guaranteed in the context
of data streams.

The three main families of outlier detection
methods for data streams are methods based
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on dynamic clustering, those relying on nearest
neighbors (kNN) logic, and statistical methods.
A common strategy for making the two latter
methods applicable to data streams involves the
utilization of windowing techniques. Data win-
dows retain a constant number of points, captur-
ing the current temporal context and distribution.
This effectively addresses the necessities for tran-
siency, infinity, and concept drift. Four windowing
techniques are known [36]:

• Landmark windows set a point as a landmark
and process data between this point and the
current data point.

• Sliding windows process the last W data points,
W being the size of the window.

• Damped windows consider all the points but
each point is assigned a diminishing weight
corresponding to its age.

• Adaptive windows are like sliding windows but
their size varies with the speed evolution of
points; the faster the distribution changes, the
smaller the window.

Note that simply combining static methods
with windowing techniques often proves ineffi-
cient. Many methods encounter challenges when
dealing with swift model updates because they
often require large window sizes to achieve sat-
isfying results. This goes hand in hand with the
fact that they are not engineered to be updated,
necessitating the computation of a new model for
each subsequent window, a process that can be
time-consuming.

Dynamic clustering

Clustering methods group samples in space
according to some similarity criterion and have
been used to detect outliers based on one of the
following assumptions [6]:

• “normal samples belong to clusters while out-
liers do not” in the case where the method
includes a rejection mechanism,

• “normal samples are close to their closest cen-
tröıd (center of cluster) while outliers are far” in
the case where the method assigns all samples
to clusters,

• “dense clusters are normal and sparse clusters
are outlying”.

To adapt to data streams, dynamic clustering
methods make statistical properties of clusters or
micro-clusters to evolve through time [1, 33, 48].
Their main advantage is that they tackle the
notion of infinity since it is not necessary to keep
all the dataset in memory. However, they are
often criticized because they have not been devel-
oped for outlier detection purposes but mainly for
clustering [41].

Methods relying on kNN

Many methods for data streams consider outliers
through the k nearest neighbors (kNN) principle.
These methods can be divided into two groups:

• Methods for detecting outliers define an out-
lier as a sample with at most a proportion r of
points within a certain distanceD, which can be
thought of as having at most k neighbors within
a distance d or being no farther than d from
the k-th nearest neighbor [20]. These meth-
ods employ windowing techniques to reduce the
number of samples stored in memory and use
specialized data structures for efficient addition,
removal, and kNN searches. Among these meth-
ods, a study by [42] finds that MCOD [21] is
the most efficient, although it has a limitation
related to window size dependency.

• Methods adapting the well-known LocalOut-
lierFactor (LOF) algorithm [5]. The LOF is
a measure of how local density of a sample
compares to local density of its neighbors. On
the addition of a new sample, the incremen-
tal LOF (iLOF) uses the fact that only a
fixed number of samples need to be updated to
reduce the computational complexity [32]. How-
ever, the required search for kNN and reversed
kNN remains costly, which explains that sev-
eral methods have proposed to approximate the
LOF measure [16, 18, 29, 37].

Statistical methods

Statistical methods make the hypothesis that data
samples are generated by a statistical distribution
and that outliers belong to areas of low probability
[46].

Parametric methods are unsuitable to non
stationary distributions for they make the hypoth-
esis of a predefined distribution and estimate its
parameters. However, the method SmartSifter [45]
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is worth mentioning as a statistical method offer-
ing both parametric and non-parametric solutions,
showing better results with its parametric ver-
sion. Its main advantage is that it is able to deal
with categorical and continuous variables. The
parametric version of SmartSifter uses Gaussian
Mixture Models (GMM).

On the non parametric side, histogram con-
struction is a candidate in univariate settings. The
number of elements falling in a cell of the his-
togram reflects the probability of a sample falling
into this cell. An evident benefit is the ease with
which new data points can be seamlessly incorpo-
rated into the model. Quantile sketches are also
worth mentioning as an optimal solution for the
resolution of this problem in the context of data
streams [19, 49]. Interestingly, quantile sketches
can be approximated based on moments [12],
which, as we will see, are also at the heart of the
proposed methods.

To address multivariate scenarios, it’s a com-
mon practice to construct individual histograms
for each variable and subsequently compute a
score by aggregating the scores from these sepa-
rate histograms, a technique employed by HBOS
(Histogram-based Outlier Score) as described in
Goldstein’s work [14]. However, this approach
encounters limitations in high-dimensional con-
texts, as it fails to consider the interdependencies
between variables.

A more advanced solution is given by Kernel
Density Estimation (KDE) methods, also known
as Parzen-Rosenblatt methods [31]. KDE (Ker-
nel Density Estimation) shares similarities with
histogram construction but incorporates a con-
cept of continuity, offering an approximation of
the probability density function (pdf). In the uni-
variate case [31], the estimator of the density
function f of n samples X = {xi, i = 1, . . . , n}
issued from the theoretical measure µ is f̃h(x) =
1
n

∑n
i=1 Kh(x− xi), where Kh(u) = 1

hK(uh ), K
being the kernel function 2 and h being the band-
width parameter that affects the influence area of
each sample, or in other words, the smoothness of
the function. Multivariate KDE (KDE) uses mul-

tivariate kernels KH(u) = |H|−1/2
K(H−1/2u),

where H is a symmetric positive definite p × p
bandwidth matrix [23, §2.3.1]. KDE methods give

2The kernel function is often chosen as Gaussian or as the
Epanechnikov one.

a better approximation than histograms and are
able to deal with multivariate cases although
their complexity raises quickly with the amount
of variables. The KDE based method proposed
in [22] applies to data streams, as well as the
non-parametric version of SmartSifter [45].

Contributions of the proposed CF based
methods

The methods that we propose in this paper,
namely DyCF and DyCG, can be positioned
as statistical methods. The CF indeed captures
the statistics of the dataset. Among the meth-
ods discussed in this section, KDE methods are
undoubtedly the most closely related. However,
the CF introduces a distinct perspective compared
to KDE, as it identifies the theoretical probability
measure of a set of samples using the statistical
moments.

DyCF and DyCG advance the state of the art
and bring contributions in three directions:

• they are based on solid theoretical foundations
as they inherit the proven properties of the CF,

• they satisfy all data stream requirements, in
particular they achieve fast model update on the
arrival of new samples while retaining memory
of past data,

• they require very little tuning, i.e. only one
hyperparameter for DyCF, or no tuning at
all for DyCG, hence avoiding the painful and
tedious tuning phase required by the state of
the art methods.

4 The Christoffel function for
outlier detection

Prior to this section, we provide, in Table 1, a list
of mathematical notations used for characterizing
the Christoffel function.

4.1 Main properties of the
Christoffel function

The Christoffel-Darboux Kernel (CD-Kernel) and
the associated Christoffel function (CF) are well-
known tools from the theory of approximation and
orthogonal polynomials. Although they have been
largely ignored in analysis of discrete data, recent
results show that some peculiar properties of the
CF can be valuable [24, 25].
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Notation Description

µ A measure with support Ω ⊂ Rp

Ω Support of µ
p Dimension of the support Ω
d Parameter of the Christoffel function
Λµ
d Christoffel function with degree d

Qµ,d Scoring function based on Λµ
d

Ωγ Level set Ωγ := {x : Λµ
d (x)

−1 ≤ γ}
γd,p Define a level set Ωγd,p with γd,p = d3p/2

vd(X) Vector of monomials of degree less than d

sp(d) Size of vd(X), equals to
(p+d

d

)
yα(µ) Moment α of µ
Md(µ) Matrix of moments of size sp(d)× sp(d)
X Set of n observations from µ
µn The empirical measure supported by X

Table 1: Table of notations

The CD-Kernel and the CF are associated
with a measure µ with support Ω ⊂ Rp, usually
compact with nonempty interior, empirically rep-
resented by the set of available p-variate points.
They also depend on a parameter d defining
the highest degree of monomials that index the
moment matrix of the measure µ and is involved
in the definition of the CF.

The CF is hence denoted Λµ
d , parameterized

by the measure µ and by the degree d. One of its
main and salient features is its ability to encode
the support Ω. In particular, for dimensions p = 2
or p = 3, one observes that the level set Ωγ := {x :
Λµ
d (x)

−1 ≤ γ}, defined for some γ ∈ R+, captures
the geometric shape of Ω quite accurately, even
for low degrees d. Used as a tuning parameter, the
integer d gives a trade off between regularity (with
small values of d) and fitness (with higher values)
of the shape.

As presented formally in section 4.2 and given
a measure µ, the associated CF is obtained from
the moment matrix of µ. Now, moments serve
to quantify three essential parameters of distribu-
tions: location, shape and scale. The location of
a distribution pertains to the position of its cen-
ter of mass. Scale, on the other hand, denotes the
extent to which a distribution is spread out, with
the scale factor influencing the stretching or com-
pression of the distribution. Lastly, the shape of
a distribution encompasses its overall geometry,
including characteristics such as bimodality, asym-
metry, and heavy-tailedness. Consequently, the
first moment delineates a distribution’s location,
the second moment characterizes its scale, and
higher moments collectively elucidate its shape.

The CF inherits this knowledge through the
moment matrix, which intuitively explains why it
can be a powerful tool for data analysis.

Previous works [24, 25] have shown how some
of the CF’s key properties can be helpful to
address important problems like density approx-
imation, support inference and outlier detection,
where the measure of interest is now a discrete
measure µn whose support is a finite set (or
“cloud”) of n data points (or samples) sampled
from µ.

When going from µ on Ω to the empirical
measure µn on the data set of n samples, it is
important to relate n and d so that the empir-
ical Christoffel function Λµn

d captures essential
features of the population. For fixed d, the fact
that Λµn

d and Λµ
d share the same properties is

essentially dictated by the Strong Law of Large
Numbers; see e.g. [25] (§6.2), and so it is suffi-
cient that n is large enough compared to d, which
is often the case in practice for small d. When d
increases, the condition relating the sample size
n and the degree d for Λµn

d to be close to Λµ
d is

proven in [25] (§6.3). In [43] and [25] (Corollary
6.3.2), one can find a recipe to choose n and d in
an appropriate manner.

On top of that, note that having n large
enough is not an issue regarding computational
complexity since the empirical CF, as defined later
in equations (5-7), does not depend on the size of
the dataset but solely on the number of variables
p and the degree d.

4.2 Formal definition of the
Christoffel function

Let X = (X1, X2, ..., Xp) ∈ Rp and let α =
(αi)i=1...p ∈ Np be the vector of exponents
(degrees) associated to each variable for the
monomial Xα := Xα1

1 Xα2
2 ...X

αp
p of total degree∑p

i=1 αi. Let vd(X) be the vector of all monomi-
als of degree less than or equal to d in the graded
lexicographic order3. The size of the vector vd(X),
denoted sp(d), depends on p and d and is equal to(
p+d
d

)
.

As defined in [25], given a finite Borel proba-
bility measure µ on a compact set Ω ⊂ Rp with

3Graded lexicographic order means: 1) ordered according to
ascending monomial degree and then 2) using lexicographic
order on variables considering X1 = a, X2 = b, etc.
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nonempty interior, its moment matrix Md(µ) is
a real symmetric matrix with rows and columns
indexed by the monomials of vd(X). More pre-
cisely, letting

yα(µ) :=

∫
Rp

xαdµ(x) (1)

be the moment α of µ, this means that the ele-
ment of the matrix, at row indexed by α =
(αi)i=1...p and column indexed by β = (βi)i=1...p,
is yα+β(µ) =

∫
Rp x

α+βdµ(x) with the notation
(α+ β) = (αi + βi)i=1...p. For sample, in the case
of p = 2 and d = 2 and denoting yα = yα(µ), the
moment matrix is given by

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y1,0 y0,1 y2,0 y1,1 y0,2
X1 y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
X2 y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
X2

1 y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
X1X2 y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
X2

2 y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

Md(µ) can also be written as

Md(µ) =

∫
Rp

vd(x)
Tvd(x)dµ(x), (2)

where the integral is understood elementwise.
Note that Md(µ) is positive definite for any d,
i.e., pTMd(µ)p > 0 for every 0 ̸= p ∈ Rp, and
therefore Md(µ) is non singular.

The CD-Kernel Kµ
d associated with µ is

defined by

(x,y) 7→ Kµ
d (x,y) := vd(x)

TMd(µ)
−1vd(y) ,

(3)
while the polynomial Qµ,d reads

Qµ,d(x) := Kµ
d (x,x) = vd(x)

TMd(µ)
−1vd(x),

x ∈ Rn . (4)

Qµ,d is a sum-of-squares polynomial of degree
2d and the CF Λµ

d (x) is then defined by

x 7→ Λµ
d (x)

−1 := Qµ,d(x) , ∀x ∈ Rn . (5)

4.3 Outlier scoring with the
Christoffel Function

In practical applications of outlier detection, only
an empirical moment matrix is available, associ-
ated with a discrete measure µn whose support
is a set of n observations X = {xi, i = 1, . . . , n}
sampled from a theoretical distribution µ. In this
case, the empirical version of equations (1) and (2)
respectively read

yα(µn) =
1

n

∑
x∈X

xα , (6)

and

Md(µn) =
1

n

∑
x∈X

vd(x)
Tvd(x) . (7)

Note that, considering X as a dataset, Md(µn)
can be seen as a summary or an encoding of this
dataset. This property is very interesting because
it avoids keeping in memory all the samples, which
is definitively unacceptable when dealing with
data streams (see the “Infinity” peculiarity of data
streams in Section 3).

Given a cloud of points (xi)i≤n sampled from
a theoretical measure µ, the ability to capture the
geometric shape of the support of the empirical
measure µn comes with one valuable property of
Λµ
d (x)

−1. It has indeed been shown that, under
some assumptions, the samples belonging to the
support are confined by a specific level set Ωγd,p

,

where γd,p = Cd3p/2 and C is a problem-related
constant [25](Theorem 7.3.3). This level set will
be used in the following sections, setting C = 1.

As a matter of fact, the level sets of Λµ
d (x)

−1

match the density variations of the cloud of points
(xi)i≤n, as shown in the illustrative example
below, making of Λµ

d (x)
−1 a good scoring function

for outlier detection.
Additionally, the model is contained in the

moments matrix Md(µn) of size sp(d)×sp(d), that
does not depend on n, thereby fixing the memory
size. The computational complexity is also limited
since Λµ

d (x)
−1 only requires computing vd(x), a

vector of size sp(d), and vd(x)
TMd(µn)

−1vd(x).
This being, this implies that the complexity and
memory size growths are essentially exponen-
tial with d or p, limiting the application to low
dimensions and low degrees.

Illustrative example – In order to illustrate
the behavior of the scoring function obtained,
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Figure 1 compares scores from the CF with d=6
(Figure 1(a)) and scores obtained with KDE using
the multivariate gaussian kernel (Figure 1(b)) on a
dataset characterized by multiple densities. It con-
sists of two clusters with different distributions;
one is dense with 5000 samples circumscribed in
a small circle and the other is sparse with 1000
samples circumscribed in a larger circle. On top
of that, 50 points acting like outliers are sam-
pled from a uniform distribution with its support
around the two disks.

Fig. 1 clearly shows firsthand that the level sets
generated by CF smoothly surround the cloud of
points and some nicely capture the two clusters.
On the other hand, the level sets generated by
KDE do not capture precisely the dense cluster.
In addition, the level set that captures at best this
cluster rejects entirely the sparse cluster.

For a more rational evaluation, Table 2 con-
siders the metrics AUROC, i.e., sensitivity (True
Positive rate) versus specificity (False Positive
Rate), and AP (Average Precision) approximat-
ing AUPRC, i.e., precision versus recall, that are
recommended by [34] (section VII.B) for evaluat-
ing classification methods globally, independently
of their tuning. Both scores are higher for CF. The
results hence reinforce what is suggested by visual
inspection of Fig. 1, i.e., that CF is better at cap-
turing the support of the cloud of points for this
multi-density dataset.

Finally, note that the red thicker level set
of CF, which nicely capture the support of the
measure, corresponds to Ωγd,p

with γd,p = d3p/2

dictated by the CF theory.

Method AUROC AP

CF 0.9644 0.7250
KDE 0.9372 0.6042

Table 2: AUROC and AP results obtained for CF
and KDE on the two disks dataset

5 Adapting the Christoffel
Function to data streams

5.1 Fast Model Update

Most of the peculiarities of data streams listed in
Section 3, like transiency, infinity, arrival rate, and

embeddedness, boil down to requiring an efficient
low computation and low memory incremental
method.

From the computational point of view, inter-
estingly the CF complexity does not depend on
the number of points but is essentially exponen-
tial in the number of dimensions p and the chosen
degree d. CF is hence expected to be competitive
in low dimensions and for relatively small degrees.

From the memory point of view, the infinity
of data streams is accounted by the use of the
moment matrix Md(µn) which contains the statis-
tics of all the points without need to keep them in
memory.

The capital gain of DyCF is incrementality
and the ability of dealing with concept drift,
i.e., to update the model so that it follows any
change in the distribution. The moment matrix
given by Equation (7) can be rewritten with the
incremental formula

Md(µn+1) =
1

n+ 1
[nMd(µn)

+ vd(xn+1)vd(xn+1)
T ]. (8)

The CF outlier score given by Equations (3)
and (4) requires to invert the moment matrix.
Interestingly, the Sherman-Morrison formula pro-
vides an incremental way to invert a matrix of the
form (8) as follows

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(9)

Considering A = nMd(µn) and u = v =
vd(xn+1), this leads to

((n+ 1)Md(µn+1))
−1 = (nMd(µn))

−1

− (nMd(µn))
−1vd(xn+1)vd(xn+1)

T (nMd(µn))
−1

1 + vd(xn+1)T (nMd(µn))−1vd(xn+1)

(10)

Equation (10) can be used to compute the
inverse CF Λµ

d (x)
−1 in an incremental way, defin-

ing the proposed Dynamic Christoffel Function
method named DyCF.

8
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(b) KDE levelsets

Fig. 1: Level sets obtained for a dataset characterized by two disks and uneven densities with (a) CF
using d = 6 and (b) KDE (graph obtained using Python matplotlib library).

It is important to note that DyCF requires
only one parameter to be chosen, which is the
degree d. The theory then dictates to use the level
set defined by Ωγd,p

. The DyCF scoring function
is hence defined as Λµ

d (x)
−1 normalized by γd,p

Sd,p(x) =
Λµ
d (x)

−1

γd,p
, (11)

from which a point x is defined as an outlier if
Sd,p(x) ≥ 1.

5.2 Tuning Free

Tuning-free is a highly desirable property that can
be considered the holy grail in machine learning.
Yet, as far as we know, it is not achieved by any
outlier detection method. Interestingly, the evolu-
tion of the CF score, obtained for different values
of d, has been theoretically characterized. The pro-
posed Dynamic Chistoffel Growth method, named
DyCG, leverages this property to achieve an effi-
cient tuning-free method.

For x ∈ Rp, fixed, the evolution of Λµ
d (x)

−1 as
d increases depends critically on whether x is in
the support of µ or not. More precisely, for every
x /∈ Ω, the function x 7→ Λµ

d (x)
−1 grows expo-

nentially fast with d, while its growth is at most
polynomial for x ∈ Ω.

The distinguishing property of exponential
growth with d for x outside the support of the
measure is quantified by Theorem 5.2.1.
Theorem 5.2.1. ([25] Lemma 4.3.1 p.50) Let µ
be a positive Borel measure supported on the com-
pact set Ω ⊂ Rp, and let x ̸∈ Ω and δ > 0 be such
that dist(x,Ω) > δ. Then

Λµ
d (x)

−1 ≥ sp(d)2
δd

δ+diam(Ω)
−3 d−p (

p

e
)p e−p2/d .

At the same time, the magnitude of the CF
score for points inside the support is at most poly-
nomial in d for p fixed according to Theorem
5.2.2.
Theorem 5.2.2. ([25] Lemma 4.3.2 p.51) Let µ
be a positive Borel measure supported on the com-
pact set Ω ⊂ Rp, the closure of a bounded domain
U with nice boundary, and let x ∈ U and δ > 0 be
such that dist(x, ∂U) ≥ δ. Then

Λµ
d (x)

−1 ≤ sp(d)
Cp

δp
(1 + p)3 ,

where Cp does not depend on d but only on p.
Based on the asymptotic results of

Theorem 5.2.1 and Theorem 5.2.2, DyCG is
designed to assess the outlierness of a point
based on two DyCF models of degrees dmin and
dmax. dmin is naturally taken equal to 2 and

9



dmax is taken equal to 6 to make the problem
tractable and can be reduced according to the
available memory. The score Sd,p(x) defined in
Section 5.1 is used for both models. This way,
if Λµ

d (x)
−1 follows a growth in d3p/2 at least,

then Sdmax,p(x) ≥ Sdmin,p(x). The DyCG scoring
function is hence defined as

S′
dmax,dmin,p(x) =

Sdmax,p(x)− Sdmin,p(x)

dmax − dmin
,

(12)
and a sample x is considered outlying if
S′
dmax,dmin,p

(x) ≥ 0.
Note that DyCG requires to maintain two

DyCF models simultaneously, which leads to an
increase in memory use. Nevertheless, because
DyCG is based on the evolution of the score, the
value of the degrees dmin and dmax of the two
models can be fixed once and for all, making of
DyCG a tuning-free method.

6 Evaluation

6.1 Process description

To assess the effectiveness of the two proposed
methods, an evaluation procedure is delineated in
this section. This evaluation involves examining
two types of data streams: synthetic data streams
with labeled data, and real-world data streams
without labels. All data streams can be found in
the Git repository featuring our experiments4.

6.1.1 Synthetic data streams

Using Markov chain logic, synthetic data streams
simulating multi-modal behaviors are constructed.
Modes are specified in a configuration file, with
parameters indicating whether they follow a nor-
mal or uniform distribution. Transitions between
modes are then defined, with assigned probabili-
ties and shapes (logarithmic, linear, exponential).
Outliers are generated using a similar process.
Two types of outliers are considered:

• Type-I outliers are random values uniformly
distributed around normal behaviors with a
specified occurrence probability;

4Code available on github [9].

• Type-II outliers are defined as a short off-
set from normal behavior with appearing and
lasting probabilities, enabling their persistence
across successive measurements.

Three setups are employed for generating syn-
thetic data streams. Two of them are bivariate,
showcasing samples illustrated in Figures 2 and
3, while the third is trivariate in order to asses
the effect of dimension on complexity. In each
scenario, a behavioral alteration is introduced.
This approach is intended to evaluate the model’s
capability to accommodate shifts from normal
behavior. The alterations are as follows:

• in the first setup, a change in one mode’s mean
is implemented;

• in the second setup, an offset is applied to all
data points;

• in the third setup, with three dimensions, a new
mode is introduced at some point.

�� � � �� ��
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���������������

Fig. 2: Samples issued from the first synthetic
data stream setup. Blue dots represent normal
behavior, orange dots are type-I outliers, green
dots are type-II outliers.

6.1.2 Real-world data streams

The real-world data streams originate from sen-
sors installed on actual industrial luggage con-
veyor systems. The sensors specifically capture
two physical variables: the speed of the conveyor
belt and the intensity of the engine.

These data streams exhibit distinct charac-
teristics, consisting of three primary operational
modes with nonlinear transitions between them

10
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Fig. 3: Samples issued from second synthetic data
stream setup. Blue dots represent normal behav-
ior, orange dots are type-I outliers, green dots are
type-II outliers.

(whose rationale guided the design of the afore
mentioned synthetic datasets). The ”stop” mode
predominates, indicating the conveyor halted with
both speed and intensity registering at zero. The
”standard” mode reflects typical conveyor opera-
tion with nominal speed and intensity. An infre-
quent ”heavy load” mode is also discernible, char-
acterized by reduced speed and increased inten-
sity to accommodate heavy luggage. Furthermore,
transitions occur between the three operational
modes, such as an intensity peak followed by a
speed increase at the conveyor’s start, and a fast
decrease in intensity compared to speed when the
conveyor stops. Visual representations of the data
acquired for the various modes are provided in
Figure 4.

Five conveyors are considered with similar
behaviors. All of them are working for seven
successive days, with measurements issued every
second (86400 samples per day). However, the
data is sourced from wireless sensor networks and
transmitted via radio transmissions with an unsta-
ble transmission frequency and potential packet
losses. In this case, it is not critical as the exact
measurement date is not considered (only the
order of measurements is used). The packet loss
rates during the measurement periods used for the
five conveyors are respectively 11%, 2%, 3%, 5%,
and 3%.
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Stopped

Standard

Heavy load?
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Fig. 4: Representation of a luggage conveyor data
stream. Operating modes and transitions are vis-
ible. (graph obtained using Python matplotlib
library and annotated manually)

6.1.3 Evaluation process

The whole evaluation process is described in
Figure 5. Data streams are organized in sub-data
streams issued from different sources (different
setups for the synthetic data streams and different
conveyors for the real-world ones).

Synthetic data streams are composed of 200k
points divided in 10 sub-data streams while con-
veyor data streams are each divided in 7 working
days.

The process used to evaluate the perfor-
mance of the methods on all sub-data streams
is described in Figure 6. Sub-data streams are
divided in an initialization set used to initialize
models and an inference set used for evaluation.
The initialization phase is described in Figure 7
while the inference phase is described in Figure 8.

Mean and standard deviation of all metrics are
computed for each method and each data stream.

6.1.4 Evaluation metrics

Different metrics are used depending on the avail-
ability of labels:

• in the synthetic cases, labels are available and
it is possible to use popular metrics such as
AUROC and AP, already used in the illustra-
tion example of Section 4.3,
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• for conveyor cases, where no labels are available,
AUROC and AP cannot be used. Instead, unsu-
pervised metrics EM and MV [13], using the
Excess-Mass and Mass-Volume curves respec-
tively, are used.

No considered metric is threshold-sensitive,
meaning that the choice of the threshold param-
eters does not impact the obtained score. Higher

values of AUROC, AP, and EM are preferred,
whereas lower values are sought for MV. It is
important to note that EM and MV evaluate the
extent to which a scoring function aligns with the
statistical distribution of samples, which is not
suitable for evaluating certain methods.

Finally, the average processing duration of a
data point (computation of its outlierness score
and model update) is computed to assess the speed
of the methods, a characteristic highly esteemed
in data stream contexts

6.2 Competing methods

The selected methods for comparison with DyCF
and DyCG are all renowned outlier detection
techniques for data streams. Each method has
been re-implemented by us5, with the excep-
tion of SmartSifter, which relies on the Python

5Code available on github [9].
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Fig. 8: Graph describing the inference phase of a
model.

implementation found in [39]. Intensive param-
eter combinations have been tested to get the
best out of the tuning for the comparison. The
retained parameters are given in Table 3, outlin-
ing the number of parameters that need to be
tuned for each method and pointing out the ease
of use of DyCF and DyCG. Competing methods
are commented below:

• Kernel Density Estimation (KDE) has
been presented in Section 3 and illustrated in
the example of Section 4.3 and in Fig. 1. In
order to be applicable to data streams, a sliding
window of the last arriving points is used. This
approach aims to mitigate time complexity and
memory usage. Because the bandwidth param-
eter H is set from the Scott’s rule of thumb of
[30, 38], there are only two parameters to tune,
which are the size of the sliding window W (the
number of points contained in the window) and
the threshold on the score (or density estimate).

• SmartSifter is selected in its parametric ver-
sion as presented in [45] and briefly in Section 3.
In our experiments, likelihood was used as a
scoring function. The different parameters to be
tuned are the threshold on the score, the num-
ber k of gaussians in the GMM, a discounting
parameter r and a stability parameter α.

• Distance-based outliers using KDE
(DBOKDE) is derived from the kNN prin-
ciple described in Section 3. To reduce the
complexity of counting the elements in a neigh-
borhood, the number of neighbors is estimated
using kernel density estimation. This method
has been proposed in [30].

• Incremental Local Outlier Factor (iLOF)
as presented in Section 3, is implemented with
R*-Trees [3] to reduce the kNN search complex-
ity, as recommended in [32].6

Method Parameters Values

KDE

Threshold Meaningless
Window size 1000

Kernel Gaussian
Bandwidth Scott’s rule

SmartSifter

Threshold Meaningless
Nb components 12

Discounting parameter 1e-3
Stability parameter 1.5

DBOKDE

Nb neighbors Meaningless
Search radius 0.1
Window size 1000

Kernel Epanechnikov
Bandwidth Scott’s rule

ILOF

Threshold Meaningless
Nb neighbors 10
Window size 1000
Min children 3
Max children 12

Reinsertion strategy close
Reinsertion tolerance 4

DyCF
Degree 6

C (threshold-like) Meaningless

DyCG Degrees (2, 6)

Table 3: Table of parameters used in the experi-
ments.

6Note that iLOF was improved in [29] with the Density sum-
marizing Incremental LOF (DILOF) that reduces, in theory,
the complexity while maintaining accuracy. Note that this is
only true with really small windows or if the deletion part
of iLOF, that makes the use of sliding windows possible, is
abandoned. Otherwise, DILOF is heavier than iLOF because
of the “density summarizing part” that is executed every W

4
observations, W being the window length. For this reason, the
comparison is done with iLOF solely.
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6.3 Results

6.3.1 Synthetic data streams

The results obtained for the synthetic data
streams are shown in Figures 9, 10 and 11 and val-
ues for each metric are given in Tables 4, 5 and
6.

DyCF demonstrates performance at least on
par (close to the best) with the compared meth-
ods concerning AUROC and AP metrics. Con-
versely, DyCG exhibits slightly lower performance
on AUROC, particularly in the case of three-
dimensional data streams; however, it yields supe-
rior results in terms of AP.

Regarding the time metric, DyCF and DyCG
outperform other methods when handling two-
dimensional data streams, but SmartSifter is bet-
ter with three-dimensional data streams. This is
due to the dependence in p of DyCF and DyCG.

6.3.2 Real world data streams

The results obtained for the conveyor data streams
are shown in Figures 12, 13, 14, 15 and 16 and
values for each metric are given in Tables 7, 8 and
9.

In this case study, DyCF provides by far the
best results in all categories. On the other hand,
DyCG offers significantly lower performances. The
poor performance of DyCG can be explained by
the underlying properties of EM and MV metrics.
As a reminder, these metrics, designed for unsu-
pervised anomaly detection, evaluate the align-
ment of the scoring function with the statistical
distribution of samples, which is not in line with
the transformation used to obtain DyCG’s scoring
function.

Interestingly, despite KDE’s scoring being
based on density estimation, KDE also exhibits
poor performance on both EM and MV metrics.
DBOKDE, which utilizes KDE at its core for
estimating the number of neighbors, outperforms
KDE on EM and MV.

6.3.3 Discussion

On the evaluated data streams, DyCF achieves
state-of-the-art results while being easier to tune
and faster than most methods.

DyCG allows to make tuning even easier but
at great costs on performance. However, it gives
the best results with AP. On top of that, its

scoring function suffers from the underlying con-
cept of EM and MV evaluations, and none of the
employed metrics rewards the fact that DyCG
does not require to set a threshold on the score,
which is obviously a great advantage.

Regarding time complexity, the dependency in
p is noticeable between 2-dimensional datasets and
the third synthetic setup which is 3-dimensional.
To illustrate this further, in Figure 17 we plot two
graphs: (1) the processing duration by DyCF with
d = 6 of 500 data points drawn from uniform dis-
tributions of increasing dimensions p and (2) the
size of the moments matrix, which is sd(p)× sd(p)
as a function of p.

7 Conclusion and future work

The principles on which methods discriminate
normal points from outliers are paramount since
they condition robustness and bias.

In this article, two methods for unsupervised
outlier detection in low dimensional data streams
are proposed. Both leverage the properties of
the Christoffel function and are built on solid
theoretical foundations.

The first method, DyCF, only requires two
parameters to be tuned, while the second, DyCG,
is completely free of tuning requirements. In this
sense, the two methods elegantly remove the
painful step of tuning, which is all the more painful
in the unsupervised case and for typical non-
stationary distributions of data streams. DyCF
and DyCG have also shown great execution time
and memory use performances, which has been
noted of paramount importance. DyCF surpasses
most of the methods it has been compared to,
utilizing both well-established supervised metrics
and lesser-known unsupervised ones.

These promising results encourage us to con-
tinue the work to overcome two limitations that
were identified during this study:

• A numerical instability issue has been observed
for high values of d, i.e. for high degrees
of the monomials that index the moment
matrix. Actually, when the moment matrix has
very small eigenvalues, some numerical insta-
bility occurs for its inversion. Future work will
approach the problem in different ways and
assess the impact on the accuracy of the result-
ing models:
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Fig. 9: Results for the synthetic data stream first setup.

����	
��$#��

���

���

���

���

���

���

��
�%
�

��
��$#��

���

���

���

���

���

���

��
�%
�


%#�$�"!
��$#��

�����

�����

�����

�����

�����

�����

��
�%
�

��$�"�
�
�
� �#$���$�#

���
�
����

&	�

&	

Fig. 10: Results for the synthetic data stream second setup.
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Fig. 11: Results for the synthetic data stream third setup.

��
��! ��

�

�

��

��

��

��

��

��

��
�"

�

��
��! ��

�������

�������

�������

�������

�������

�������

�������

�������

��
�"

�


" �!���
��! ��

����

����

����

����

����

����

��
�"

�

��!���
�
�
��� !���!� 

���
�
����

#	�

#	

Fig. 12: Results for the first conveyor data stream (provided by sensor node MOTE-47).
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Fig. 13: Results for the second conveyor data stream (provided by sensor node MOTE-67).
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Fig. 14: Results for the third conveyor data stream (provided by sensor node MOTE-72).
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Fig. 15: Results for the fourth conveyor data stream (provided by sensor node MOTE-75).
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Fig. 16: Results for the fifth conveyor data stream (provided by sensor node MOTE-78).
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Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Setup 1 0.754 (0.116) 0.920 (0.048) 0.795 (0.136) 0.867 (0.071) 0.921 (0.042) 0.763 (0.128)
Setup 2 0.846 (0.070) 0.890 (0.079) 0.888 (0.025) 0.930 (0.028) 0.879 (0.077) 0.761 (0.161)
Setup 3 0.805 (0.124) 0.815 (0.109) 0.811 (0.151) 0.790 (0.090) 0.821 (0.111) 0.531 (0.143)

Global 0.801 (0.109) 0.875 (0.092) 0.831 (0.111) 0.862 (0.085) 0.874 (0.089) 0.685 (0.178)

Table 4: AUROC mean (standard deviation in brackets) on synthetic data streams. Best value in bold
and second best value in bold italic.

Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Setup 1 0.330 (0.230) 0.473 (0.174) 0.333 (0.214) 0.347 (0.295) 0.507 (0.237) 0.525 (0.234)
Setup 2 0.528 (0.293) 0.543 (0.272) 0.746 (0.338) 0.761 (0.187) 0.696 (0.245) 0.688 (0.253)
Setup 3 0.383 (0.105) 0.383 (0.161) 0.329 (0.169) 0.291 (0.125) 0.430 (0.154) 0.421 (0.154)

Global 0.413 (0.231) 0.466 (0.211) 0.469 (0.300) 0.466 (0.290) 0.544 (0.237) 0.545 (0.238)

Table 5: AP mean (standard deviation in brackets) on synthetic data streams. Best value in bold and
second best value in bold italic.

Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Setup 1 3.60e-3 5.28e-4 9.42e-3 7.53e-3 1.60e-4 2.62e-4
Setup 2 3.57e-3 5.19e-4 9.89e-3 8.286e-3 1.71e-4 2.67e-4
Setup 3 3.59e-3 5.21e-4 1.01e-2 1.28e-2 2.54e-3 2.61e-3

Global 3.59e-3 5.23e-4 9.80e-3 9.52e-3 9.56e-4 1.05e-3

Table 6: Duration (in seconds per point) mean (standard deviation in brackets) on synthetic data streams.
Best value in bold and second best value in bold italic.

Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Conveyor 1 10.1 (1.234) 32.1 (5.551) 21.7 (0.136) 3.56 (0.162) 34.9 (0.224) 8.02 (0.542)
Conveyor 2 12.6 (4.292) 26.9 (1.366) 26.6 (1.477) 26.2 (1.271) 27.5 (1.404) 8.68 (0.641)
Conveyor 3 16.5 (4.455) 13.8 (9.550) 21.7 (0.047) 20.6 (0.148) 21.5 (1.184) 11.3 (2.369)
Conveyor 4 8.11 (4.687) 16.1 (0.458) 16.0 (0.624) 14.6 (1.824) 16.2 (0.441) 5.90 (0.586)
Conveyor 5 11.2 (2.056) 28.2 (1.767) 27.4 (1.489) 22.9 (8.974) 28.7 (1.932) 8.31 (0.656)

Global 11.7 (4.435) 23.4 (8.698) 22.7 (4.328) 17.6 (8.956) 25.8 (6.584) 8.45 (2.088)

Table 7: EM mean (standard deviation in brackets) on conveyor data streams. Best value in bold and
second best value in bold italic.

– slightly perturbing the moment matrix by
adding the identity matrix times a factor
that makes the order of the resulting smallest
eigenvalue reasonable for numerical inversion.
This is known to bring more numerical stabil-
ity as proposed in [28] (Eq. (8), p. 401) under
the name of “Tychonov regularization” .

– replacing monomials by other polynomial
basis. The use of Chebyshev polynomials of
first kind would, in theory, give more numeri-
cal stability to the moment matrix. Typically,
in the basis of monomials, the univariate
moment matrix is Hankel and its multivariate
analogue has a Hankel-like structure. There-
fore for numerical computation, this choice of
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Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Conveyor 1
7.49e-4 3.36e-4 4.54e-4 1.76e-3 7.97e-5 1.17e-3
(9.43e-5) (7.23e-5) (3.33e-5) (6.93e-5) (7.23e-6) (6.06e-5)

Conveyor 2
7.07e-4 2.26e-4 2.71e-4 9.96e-4 3.99e-5 1.14e-3

(1.657e-4) (1.20e-4) (5.17e-5) (6.66e-5) (5.50e-6) (6.33e-5)

Conveyor 3
4.20e-4 1.68e-3 1.67e-4 2.31e-3 2.02e-5 8.47e-4
(1.88e-4) (1.47e-3) (3.26e-5) (8.19e-4) (3.56e-6) (1.54e-4)

Conveyor 4
1.16e-3 2.72e-4 3.91e-4 1.35e-3 6.74e-5 1.62e-3
(4.64e-4) (1.16e-4) (1.60e-4) (6.13e-5) (7.37e-6) (1.23e-4)

Conveyor 5
7.32e-4 1.91e-4 2.71e-4 9.33e-4 5.45e-5 1.09e-3
(9.07e-5) (6.01e-5) (9.55e-5) (3.34e-4) (1.25e-5) (1.29e-4)

Global
7.53e-4 5.41e-4 3.11e-4 1.47e-3 5.23e-5 1.17e-3
(3.30e-4) (8.52e-4) (1.23e-4) (6.28e-4) (2.24e-5) (2.75e-4)

Table 8: MV mean (standard deviation in brackets) on conveyor data streams. Best value in bold and
second best value in bold italic.

Dataset KDE SmartSifter DBOKDE ILOF DyCF DyCG

Conveyor 1 1.25e-2 1.69e-3 5.20e-2 2.73e-2 7.24e-4 9.96e-4
Conveyor 2 1.35e-2 1.60e-3 5.72e-2 3.05e-2 7.56e-4 9.20e-4
Conveyor 3 1.41e-2 1.54e-3 5.02e-2 2.82e-2 6.68e-4 8.76e-4
Conveyor 4 1.42e-2 1.72e-3 5.34e-2 2.85e-2 7.74e-4 1.05e-3
Conveyor 5 1.39e-2 2.15e-3 5.73e-2 3.08e-2 1.06e-3 1.39e-3

Global 1.37e-2 1.74e-3 5.40e-2 2.90e-2 7.97e-4 1.05e-3

Table 9: Duration (in seconds per point) mean (standard deviation in brackets) on conveyor data streams.
Best value in bold and second best value in bold italic.
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Fig. 17: Growth of processing duration compared
to matrix size when dimension p increases

basis is not recommended in general, espe-
cially if the dimension of the matrix is large,
in which case its inversion is severely ill-
conditioned. Using the basis of Chebyshev
polynomials is definitely better, as advocated
(for many other purposes as well) in Chebfun
[8].

The numerical instability issue has been
observed to be reinforced when using the
Sherman-Morrison formula of Equation (9), so
for the evaluation section of this article we used
the incrementation of the moment matrix and
its inversion at each step. Theoretically, solv-
ing the numerical issue would mean being able
to use the Sherman-Morrison formula, which
would further reduce the time complexity of the
two algorithms. Some experiments will be made
in this direction.
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• A scaling up issue stemming from the size of the
moment matrix, which is

(
p+d
d

)
×

(
p+d
d

)
, where

p is just the problem dimension. This is why
DyCF and DyCG are devoted to low dimen-
sional outlier detection problems, as showcased
by Figure 17. Nevertheless, the moment matrix
size could be contained with a workaround
consisting of randomly selecting a subsets of
monomials. Future work will test this idea and
assess its impact on the accuracy of the resulting
models.
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