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Abstract A combined data-assimilation and linear mean-flow analysis approach
is developed to estimate coherent flow fluctuations from limited mean-flow mea-
surements. It also involves Reynolds-Averaged Navier-Stokes (RANS) modelling
to efficiently tackle turbulent flows. Considering time-averaged Particle Velocime-
try Image (PIV) measurements of the near-stall flow past a NACA0012 airfoil
at an angle of attack of 10◦ and in the chord-based Reynolds number range
4.3 · 104 ≤ Re ≤ 6.4 · 104, data assimilation is first employed to correct RANS
equations that are closed by the Spalart-Allmaras model. The outputs of this pro-
cedure are a full mean-flow description that matches the PIV data and a consistent
turbulence model that provides not only a mean eddy-viscosity field but also the
perturbations of the latter with respect to mean-flow modifications. Global stabil-
ity and resolvent analyses are then performed based on the so-obtained mean flow
and model to satisfactorily predict near-stall low-frequency phenomena, as con-
firmed through comparison with the Spectral Proper Orthogonal Decomposition
(SPOD) of the PIV measurements. This comparison also allows to highlight the
benefits in taking into account variations in the turbulent eddy-viscosity over a
frozen approach for the correct estimation of the present coherent low-frequency
oscillations.

1 Introduction

The understanding and modelling of the airfoil stall regime remains an active re-
search area and is of paramount importance in the design of aeronautical systems.
Stall corresponds to significant flow separation and a drop in lift, and thus in
the aerodynamic performances, for angles of attack that are higher than a critical
value that depends on the flow’s and airfoil’s characteristics [31]. Stall may also
be associated to other complex flow phenomena such as hysteresis [56], the emer-
gence of steady three-dimensional patterns [70] or the occurrence of low-frequency
oscillations [73], in particular at relatively low chord-based Reynolds numbers that
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verify 104 ≲ Re ≲ 3 · 105, which correspond to typical values for unmanned aerial
vehicles and low-pressure turbines, among other applications.

In this context, and as further elaborated below, the aim of the present study
is to contribute to the development of affordable numerical approaches for the ac-
curate prediction of airfoil stall and related phenomena. This will be here achieved
through a two-step procedure, which will first consist in inferring a mean-flow de-
scription and associated model from experimental results. In a second step, linear
analyses will be employed to estimate dynamical flow features.

In the range 104 ≲ Re ≲ 3 ·105, the flow may exhibit separation of the laminar
boundary layer at the suction side of the airfoil close to the leading edge, which then
experiences transition to turbulence, possibly followed by its reattachment further
downstream on the suction side, therefore forming a so-called laminar-separation
bubble [65]. This latter flow structure appears to play a key role in stall and in
the appearance of some of the above-mentioned phenomena, in particular that
of low-frequency flow oscillations, which will be particularly investigated in the
present study. Such low-frequency phenomena were first identified experimentally
[73,8,49,64] and then further investigated numerically [53,50,1,15]. They occur at
frequencies that are at least one order of magnitude lower than those associated
to vortex-shedding phenomena and correspond to large-scale velocity fluctuations
over the whole suction side that are essentially two-dimensional, making the flow
alternate between more attached states and detached ones, which are associated
to higher and lower lifts, respectively.

The above-mentioned characteristics of such oscillations and the turbulent na-
ture of the present flows of interest make the latter difficult to fully and accurately
capture through experiments or high-fidelity simulations. On the one hand, they
involve small-scale and high-frequency phenomena such as laminar separation at
the leading edge of the airfoil and the development of Kelvin-Helmholtz insta-
bilities in the separated shear layer, requiring high spatio-temporal resolution to
depict. On the other hand, the presence of low-frequency and large-scale oscilla-
tions in the flow imposes sufficiently large field of view and acquisition/simulation
time to be correctly captured. Such considerations motivate the development of
alternative approaches to investigate the physics of near-stall airfoil flows. In this
study, we will rely on a reduced-order modelling approach that is based on a linear
framework, namely resolvent analysis.

Resolvent analysis [32,6], which may also be referred to as input-output anal-
ysis in the literature, relies on the linearization of governing equations around a
time-averaged mean flow. In this framework, omitted nonlinearities are treated as
a harmonic forcing to such linear equations, which form the so-called resolvent
operator, and flow fluctuations at a given frequency are estimated through the
identification of the most amplified forcing distributions by the resolvent oper-
ator. Application of resolvent analysis to the characterization of fluctuations in
airfoil flows, focusing on vortex-shedding and/or Kelvin-Helmholtz phenomena,
may be found in [66,67,72,63,71,29], among others.

It is first worth mentioning that all the mentioned studies relied on the laminar
Navier-Stokes equations to build the resolvent operator, i.e. performed the lin-
earization of the momentum equations around the investigated mean flows while
considering only a kinematic viscosity (referred to as ν-model in [39]). However, an
increasing body of literature on wall-bounded [39,62] and jet flows [47,25] clearly
supports the use of eddy-viscosity models in resolvent analysis for a better identi-
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fication of coherent fluctuations, which are considered distinct from turbulent ones
according to a triple decomposition of the flow [23]. Beyond the utility of turbu-
lence modelling, a more open question concerns the necessity or not to take into
account perturbations in the turbulent eddy-viscosity with respect to mean-flow
modifications when linearizing the mean-flow governing equations to derive the re-
solvent operator. In the vast majority of resolvent analysis studies, with very few
exceptions [54,52], such perturbations in the turbulent eddy-viscosity are omitted,
which is referred to as the frozen eddy-viscosity approach in the following, while
they were taken into account in a number of global stability analyses as performed
in [13,33,54,10], which will be referred to as the perturbed eddy-viscosity approach
in the following. In these latter studies, the perturbations in the turbulent eddy-
viscosity were evaluated through the one-equation Spalart-Allmaras model [59],
which is particularly appropriate for aerodynamic applications.

Aside from modelling aspects, another key ingredient in resolvent analysis is
the mean flow around which the analysis is performed. In most above-mentioned
studies, such a mean flow is obtained from either high-fidelity simulations or well-
resolved experiments, which, as detailed above, are challenging to perform for
near-stall airfoil flows. An alternative approach may consist in relying on Reynolds-
Averaged Navier-Stokes (RANS) simulations to get the required mean flow, as in
the above-mentioned stability analysis studies. However, near-stall flows are known
to be challenging for RANS models, in particular in the considered transitional
regime (104 ≲ Re ≲ 3 · 105). A more original strategy may rely on limited data,
as provided by experiments, and employ data assimilation techniques [28,21] to
infer a full mean-flow description from the latter. This was notably performed in
the context of resolvent analysis in [63], where Particle Image Velocimetry (PIV)
measurements of the flow around a NACA0018 airfoil at Re ≃ 104 were assimi-
lated in conjunction with the steady laminar Navier-Stokes equations through the
optimization of a forcing term in the momentum equations that accounts for the
full Reynolds stress tensor, following [16,61].

Compared to this latter work, we here propose to rely on turbulence modelling,
still employing data assimilation to allow the consideration of limited mean-flow
measurements as a basis for linear mean-flow analyses. The use of RANS models
greatly facilitates the numerical handling of higher Reynolds flows compared to
the use of the steady laminar Navier-Stokes equations, and, as mentioned above,
enables the introduction of a distinction between coherent and turbulent fluctu-
ations in mean-flow analyses. In the present study, we consider as configuration
the near-stall flow past a NACA0012 airfoil at an angle of attack of 10◦ in the
Reynolds number range 4.3 · 104 ≤ Re ≤ 6.4 · 104. Time-averaged PIV measure-
ments, which do not provide alone a full description of the mean-velocity field,
are available for this configuration. As a first step, full mean flows are obtained
from these measurements based on a data assimilation procedure that consists in
correcting the RANS equations closed by the Spalart-Allmaras model. The latter
model, in its baseline form, does not allow to correctly capture the present near-
stall flows. The turbulence-modelling correction is determined so that the output
of the RANS computations matches the PIV data in a least-square sense, sim-
ilarly as in [57,17,5,11]. This naturally provides a turbulent eddy-viscosity field
that is consistent with the solved mean flow, following the terminology in [47,52].
In a second step, the so-obtained mean flow and calibrated RANS model are em-
ployed in a resolvent analysis for the identification of coherent fluctuations, where
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perturbations in the turbulent eddy-viscosity may be taken into account through
the data-assimilation corrected Spalart-Allmaras model. The present approach is
validated through comparison of the resolvent analysis results with the Spectral
Proper Orthogonal Decomposition (SPOD) [68] of the PIV measurements, which
allows to assess the benefits of the perturbed eddy-viscosity approach over the
frozen one, focusing on the correct estimation of near-stall low-frequency phenom-
ena.

The paper is organized as follows. §2 introduces the present framework of data
assimilation and resolvent analysis for the estimation of coherent fluctuations. The
flow configuration, PIV measurements and numerical methods are then described
in §3. Data assimilation and linear mean-flow analyses results are discussed in §4.
Finally, conclusions and perspectives are drawn in §5.

2 Data-consistent modelling and linear mean-flow analyses

2.1 Triple decomposition and closed equations for the coherent flow

We consider unsteady incompressible Newtonian flows. Following [23], flow vari-
ables such as the non-dimensional velocity field u are decomposed according to
the following triple decomposition

u(x, t) = ⟨u⟩ (x, t) + u′′(x, t), ⟨u⟩ (x, t) = ū(x) + u′(x, t), (1)

where < ◦ > refers to a phase- or an ensemble-average that allows to extract the
coherent part of the flow, while ◦′′ denotes the remaining incoherent, turbulent
part. The coherent component may be further decomposed as the sum of a steady
contribution, which corresponds to the time-average of the flow, denoted by ◦̄, and
a purely fluctuating part ◦′. The exact non-dimensional governing equations for
the coherent part of the flow are

∂ ⟨u⟩
∂t

+∇ ·
(
⟨u⟩ ⊗ ⟨u⟩+

〈
u′′ ⊗ u′′〉)+∇⟨p⟩ −Re−1∆ ⟨u⟩ = 0, ∇ · ⟨u⟩ = 0, (2)

where p refers to the pressure field, while the definition of the Reynolds number
Re for the present near-stall airfoil flows will be given in §3.1. The Reynolds-stress
term < u′′ ⊗ u′′ > is closed based on the following Boussinesq approximation〈

u′′ ⊗ u′′〉− 2

3
kI = −2νtS(⟨u⟩), (3)

where k and νt refer to turbulent kinetic energy and eddy-viscosity, respectively,
while S(◦) = 1

2 (∇ ◦ +(∇◦)T). The turbulent eddy-viscosity νt is here obtained
through the Spalart-Allmaras model [59], which is generally considered as partic-
ularly appropriate for aerodynamic applications. This model provides a governing
equation for a pseudo-eddy viscosity variable ⟨ν̃⟩ from which is deduced νt through
an algebraic relationship. This governing equation for ⟨ν̃⟩ may be written as

∂ ⟨ν̃⟩
∂t

+ (⟨u⟩ · ∇) ⟨ν̃⟩ − ∇ · (η(⟨ν̃⟩)∇⟨ν̃⟩)− s(⟨u⟩ , ⟨ν̃⟩) = fν̃(⟨ν̃⟩), (4)

where η is a diffusion coefficient and s = Pν̃ +Dν̃ + Cν̃ is the sum of production,
destruction and cross-diffusion terms [59]. In order to take into account finite-
Reynolds number and transition effects in the considered flow configuration, the
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modification in [60] and the algebraic transition model proposed in [41] are em-
ployed. The detailed expression of these terms is provided in appendix A. Equation
(4) also involves a corrective field fν̃ , which has been here introduced to address
the limitations of the Spalart-Allmaras model in correctly predicting the mean
flows of interest, the baseline model corresponding to fν̃ = 0. The determination
of this correction is the subject of §2.2. Equations (2)-(4) may be written in the
following compact form

B
∂ ⟨q⟩
∂t

+R(⟨q⟩) = 0, ⟨q⟩ =
(
⟨u⟩T , ⟨Π⟩ , ⟨ν̃⟩

)T

, B =

I 0 0
0 0 0
0 0 1

 , (5)

where the modified pressure ⟨Π⟩ includes the contribution 2
3k and the non-linear

operator R is defined through

R(⟨q⟩) =

 ∇ ·
(
⟨u⟩ ⊗ ⟨u⟩ − 2(Re−1 + νt(⟨ν̃⟩))S(⟨u⟩)

)
+∇⟨Π⟩

∇ · ⟨u⟩
(⟨u⟩ · ∇) ⟨ν̃⟩ − ∇ · (η(⟨ν̃⟩)∇⟨ν̃⟩)− s(⟨u⟩ , ⟨ν̃⟩)− fν̃(⟨ν̃⟩)

 . (6)

Instead of directly solving for (5) to determine the coherent flow ⟨q⟩ = q̄ + q′,
we here rely on a more computationally tractable approach that consists in two
main steps. First, the mean flow q̄ and consistent turbulent modelling are obtained
through the data assimilation approach that is discussed in §2.2. In a second step,
coherent fluctuations q′ are estimated from linear analyses around the so-obtained
mean flow, as detailed in §2.3.

2.2 Data-consistent mean flow and turbulence modelling

2.2.1 Mean-flow governing equations

As a first step of the above-mentioned procedure, we focus in this section on
the determination of an appropriate mean flow q̄. The governing equations for
the latter may be obtained through time-average of (5). Throughout this study,
we rely on the hypothesis that coherent fluctuations q′ are considered as small
perturbations to the mean flow. Accordingly, contributions that originate from
non-linear terms in the model operator R and that involve products of coherent
fluctuations (e.g. u′ ⊗ u′) are considered as second- or higher-order contributions
compared to other ones that depend on the mean flow only, and are therefore
neglected. The mean flow should thus verify

R(q̄) = 0, q̄ =
(
ūT, Π̄, ¯̃ν

)T

. (7)

Equation (7) will be referred to as the Reynolds-Averaged Navier-Stokes (RANS)
equations.
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2.2.2 Variational data assimilation approach

As will be illustrated in the following, solving (7) with the baseline Spalart-
Allmaras model does not provide accurate mean flows in the present near-stall
configuration. This here motivates the use of variational data assimilation [26] to
correct the latter turbulence model through the field fν̃ that was introduced in
(4), following [57,17,5,11]. Before proceeding further, a functional form is speci-
fied for fν̃ . While various proposals may be found in the latter-mentioned studies,
the present choice was guided by the two following considerations. Firstly, as a
turbulence-modelling correction, we want the latter to be restricted to turbulent
regions and not to directly affect laminar ones that coexist in the present tran-
sitional flows. Secondly, as the identified correction will be then employed in the
linear mean-flow analyses that are described in §2.3 to characterize coherent fluc-
tuations, we want to avoid the model correction to be large in regions with high
structural sensitivity [19] in order not to directly impact the output of such linear
analyses and to easily get converged results. This led us to the following choice

fν̃(¯̃ν) = g(x)¯̃ν2, (8)

where the multiplicative field g(x) remains to be determined, and the factor ¯̃ν2

allows to address the two above considerations. This choice is further discussed in
appendix B.

Considering time-averaged measurements m̄ of the flow of interest, the data
assimilation problem is formulated as identifying the unknown field g in order to
minimize the discrepancies between the computed mean flow q̄ and the measure-
ments m̄. In a least-square framework, this leads to consider the following cost
function J

J = Jm + Jp, Jm =
1

2
∥Hq̄ − m̄∥2M , (9)

where Jm quantifies the deviations between modelled and experimental quantities.
The operator H allows to map the model space to the measurement one M, whose
associated scalar product is denoted by ⟨◦, ◦⟩M. The corresponding definitions will
be provided in §3.1 after having specified the nature of the present experimental
data. The contribution Jp in (9) corresponds to a penalization term, whose role
is to compensate for the limited character of the measurements and to ensure the
well-posedness of the data assimilation problem. It is chosen as the squared L2(Ω)
norm of g, where Ω refers to the flow domain, namely

Jp =
β

2

∫
Ω

g2 dΩ, (10)

where β is a weighting parameter to adjust the intensity of the penalization.

The minimization of the cost function J is performed through an iterative
gradient-based descent approach. In order to take into account the equality con-
straint that is formed by the RANS equations in such an optimization procedure,
we rely on the introduction of Lagrange multipliers, or adjoint state q̄†, which is
solution of

L†q̄† = H†(Hq̄ − m̄), q̄† =
(
ū†T, Π̄†, ¯̃ν†

)T

, (11)
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where H† refers to the adjoint of the observation operator, while L† is the adjoint
operator that is associated to L, which refers to the linearized counterpart of R
around the current estimation of the mean flow. L may be expressed as

L =

Luu ∇◦ Luν̃

∇ · ◦ 0 0
Lν̃u 0 Lν̃ν̃

 , (12)

with

Luu = ∇ ·
(
ū⊗ ◦+ ◦ ⊗ ū− 2(Re−1 + νt)S(◦)

)
, Luν̃ = ∇ ·

(
−2 ◦ ∂νt

∂ ¯̃ν
S(ū)

)
, (13)

Lν̃u = (◦·∇)ν̄− ∂s

∂ū
·◦, Lν̃ν̃ = (ū ·∇)◦−∇·(η∇◦)−∇·(◦∂η

∂ ¯̃ν
∇¯̃ν)− ∂s

∂ ¯̃ν
◦−∂fν̃

∂ ¯̃ν
◦ . (14)

From the adjoint state q̄† , the gradient of the cost function J with respect to the
control vector g may be computed according to

dJ

dg
= ¯̃ν† ¯̃ν2 + βg. (15)

2.2.3 Summary of the minimization procedure

The iterative data assimilation procedure may be summarized as follows. Start-
ing with a first-guess for g, which corresponds to the baseline Spalart-Allmaras
model, i.e. g = fν̃ = 0, the RANS equations (7) have first to be solved to get
the corresponding mean flow q̄. This allows to solve the adjoint problem (11) and
obtain the adjoint state q̄†. From the latter, the gradient of J with respect to
g is evaluated according to (15). This gradient is then used to update the es-
timation of g according to the low-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method [42]. A new iteration of the optimization procedure may then
be performed, starting with the computation of q̄, until convergence is reached.
More details may be found in [17,37,38]. The output of such a procedure will be
referred to as the assimilated flow in the following.

The determination of an appropriate value for the weighting coefficient β in
front of the penalization term in (10) is achieved through the L-curve technique
[20] with an accuracy of half a decade (on a logarithmic scale), typically spanning
half a dozen values around a first-guess value that is based on a preliminary data-
assimilation procedure.

2.3 Linear approaches for the identification of coherent fluctuations

2.3.1 Governing equations for coherent fluctuations: perturbed and frozen

eddy-viscosity approaches

Based on the mean flow and corrected RANS equations that are obtained through
the above data assimilation procedure, the characterization of coherent fluctua-
tions is now addressed through linear mean-flow analyses, thus still relying on
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the hypothesis of small fluctuations q′ compared to the mean flow q̄. In a first
approach, the governing equations for q′ may be obtained through a full lineariza-
tion of those for the coherent flow in (5) [13,33], including perturbations in the
turbulent eddy-viscosity [69,52], which will be referred to as the perturbed eddy-
viscosity approach in the following. In this case, the equations for q′ may be written
as

B
∂q′

∂t
+ Lq′ = Pf ′, q′ =

(
u′T, Π ′, ν̃′

)T

, P = (I 0 0)T , (16)

where the operator L is given in (12). Equation (16) involves a forcing f ′ in the
momentum equations, which is considered in resolvent analysis as detailed in the
following and may be interpreted as omitted nonlinear terms.

A second approach, which is commonly used in the recent literature [39,47,25,
62], consists in neglecting perturbations in the turbulent eddy-viscosity νt due to
coherent fluctuations, avoiding the need of a turbulence model. In this so-called
frozen eddy-viscosity approach, (16) is therefore simplified according to

Bf

∂q′f
∂t

+ Lfq
′
f = Pff

′, q′f =
(
u′T, Π ′

)T

, (17)

with

Lf =

(
Luu ∇◦
∇ · ◦ 0

)
, Bf =

(
I 0
0 0

)
, Pf = (I 0)T , (18)

where Luu is defined in (13). In this study, the use of the perturbed and frozen
eddy-viscosity approaches (16) and (17) in the following linear analyses will be
compared to assess the importance of the turbulence model in the correct estima-
tion of coherent fluctuations.

2.3.2 Global stability analysis

Based on unforced (f ′ = 0) equations (16) or (17), a first approach for character-
izing coherent fluctuations may consist in performing global mean-flow stability
analysis [4,58]. Considering the perturbed eddy-viscosity case (16), this amounts
to investigate complex fluctuations q′ of the form

q′(x, t) = q̂(x)eµt, µ = σ + iω, (19)

where q̂ may be referred to as global mode, while σ and ω correspond to the growth
rate and angular frequency of the mode, respectively. The mode q̂ is solution of
the eigenvalue problem

−Lq̂ = µBq̂. (20)

Very similarly, considering the frozen eddy-viscosity case amounts to solve the
eigenvalue problem −Lf q̂f = µBf q̂f .
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Fig. 1: (a) Schematic of the experimental and numerical setups for the flow around
a NACA0012 airfoil at angle of attack α = 10◦. The inner domain that is delin-
eated by full lines corresponds to the region where planar PIV measurements are
performed. The PIV measurement plane is further illustrated in (b), reporting an
instantaneous snapshot of the streamwise velocity at Re = 5.4 · 104. All quantities
are already non-dimensionalized based on the airfoil chord length c and the incom-
ing velocity Ub in (b), the white area corresponds to locations where no data are
available. The outer domain that is delineated by dashed lines in (a) refers to the
numerical domain. Still in (a), the proportions of the PIV measurement domain
with respect to c are correct, while those of the numerical domain are not.

2.3.3 Resolvent analysis

As an alternative to mean-flow stability analysis, one may consider resolvent anal-
ysis [32,6], where we study the response to harmonic forcing in (16) or (17). Con-
sidering the perturbed eddy-viscosity case, f ′ and the flow state for coherent fluc-
tuations q′ are expressed for angular frequency ω as

f ′(x, t) = f̂(x)eiωt, q′(x, t) = q̂(x)eiωt. (21)

Focusing on velocity fluctuation modes û, the latter are related to forcing modes
according to

û = Rf̂ , R = PT (iωB+ L)−1
P, (22)

where R corresponds to the resolvent operator. Of interest for the characterization
of coherent fluctuations is the computation of forcing modes f̂ that induce the
largest responses û. This may be formulated as the maximization of the gain
λ2 = ∥û∥2/∥f̂∥2 with respect to f̂ . Choosing the norm ∥ ◦ ∥ as based on the usual
L2(Ω) scalar product, this amounts to solving for the following eigenvalue problem

R†Rf̂ = λ2f̂ , (23)

where R† is the adjoint of R. In the frozen eddy-viscosity case, one considers the

resolvent operator Rf = PT
f

(
iωBf + Lf

)−1
Pf instead of R.

3 Experimental and numerical setups

3.1 Flow configuration, experimental setup and PIV measurements

We consider the experimental flow around a NACA0012 airfoil in a low-speed hy-
drodynamic tunnel at ONERA’s Lille center. The length of the test section is 1m,
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(a) (b)

Fig. 2: Mean (a) streamwise and (b) cross-stream velocities from PIV at Re =
5.4·104. The dashed line delineates the measurement subdomain that is considered
in the data-assimilation procedure in figure 10.

and its cross-section is a square of size 0.3m. The NACA0012 airfoil, whose chord
length is c = 0.075m, is positioned over the entire width of the test section with
an angle of attack of α = 10◦. The incoming velocity upstream of the airfoil Ub is
varied between 0.57m ·s−1 and 0.85m ·s−1, which leads to a chord-based Reynolds
number Re = Ubc/ν, where ν refers to water kinematic viscosity, between 4.3 · 104
and 6.4 · 104. In previous section, as in the following, all non-dimensional quan-
tities are non-dimensionalized based on Ub and c. In particular, we will consider
non-dimensional frequencies that are defined as St = fc/Ub (where f refers to a
dimensional frequency).

Double-frame (thus non-time-resolved) planar PIV measurements are acquired
in a longitudinal plane at mid-span of the airfoil, which is illustrated in figure 1.
They are performed thanks to two Phantom V710 cameras. The flow is illuminated
with a Quantronix Darwin-Duo Nd:YLF pulsed laser from above of the suction side
of the airfoil. Particle image doublets are acquired at a frequency rate of 100Hz
during 50 s (the frequency between the two pulses to acquire an image doublet is
1 kHz). 5000 image doublets are thus obtained, in a single run, for each investigated
value of Ub. The time resolution of the present PIV measurements corresponds to
a maximal acquirable non-dimensional frequency that verifies 4.4 ≤ Stmax ≤ 6.6
according to Nyquist criterion for the present range of investigated Ub, while the
total duration of the PIV acquisition corresponds to a minimum frequency that
lies in the range 1.8 · 10−3 ≤ Stmin ≤ 2.6 · 10−3. PIV vector fields are obtained
from the particle image doublets based on ONERA’s software FOLKI-SPIV. The
later relies on a multi-resolution approach where a Lucas-Kanade algorithm [2] is
employed to sequentially compute displacements from progressively less low-pass
filtered versions of the original images. More details may be found in [12]. We rely
on square interrogation windows with a size of 15 pixels. As a uniform weighting
is employed in the interrogation windows, PIV processing can be considered at
first approximation as a top hat filtering of the true flow in the latter. With a
camera calibration of 8 pixels·mm−1, the size of the interrogation windows, and
thus that associated to the PIV filtering effect, corresponds to a non-dimensional
length of 0.025. Finally, it may be mentioned that the airfoil and the calibration
plate for the PIV system were mounted on the same support, allowing to identify
the physical location of the airfoil in the PIV fields.

An instantaneous PIV snapshot at Re = 5.4 · 104 and the mean flow that is
obtained through time-average of such snapshots are illustrated in figures 1b and
2, respectively. The white area in the figures corresponds to regions where no
data are available due to the local average cross-correlation coefficient between
matched image intensity values [48] being less than 0.33 in average, a value that
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has been chosen as relevant for the present signal-to-noise conditions. In particular,
no information is available on the pressure side of the airfoil, nor on the suction
side close to the leading edge. Note that these unavailable zones partly correspond
to the presence of intense flow gradients, but also to laser light reflections or
background perturbations, which remain in the images. In the present processing,
these difficulties have already been addressed using a traditional pre-processing
step of background subtraction. More advanced approaches, such as POD-based
filtering [34], could possibly help in further mitigating these effects; their evaluation
is the purpose of future work on the data. In the end, the mean velocity field as
reported in figure 2 thus remains inaccessible over a large part of the airfoil through
PIV in the present case. This prevents from relying on such an experimental mean
flow to directly perform linear mean-flow analyses, which is expected to be a
common situation in the case of turbulent flows in the presence of wall boundaries.

Such a time-averaged experimental velocity field forms the measurements m̄

in the data assimilation procedure of §2.2. The associated observation operator H

may be decomposed as

H = FPT, (24)

where the application of PT (see (16)) to a full mean flow q̄ allows to extract its
velocity components (i.e. PTq̄ = ū), while F applies the above-described filtering
operation that mimics PIV processing, namely top-hat filtering with a square sup-
port of size 0.025. After spatial discretization (see §3.2), the discrete counterpart
of F will be a matrix whose elements correspond to the filter kernel, taking into
account quadrature weights. The scalar product for the measurement space that
is involved in the measurement term Jm of the cost function in (9) corresponds to
the standard L2(Ωm) one, where Ωm refers to either the full PIV plane or only the
subdomain that is delineated by dashed lines in figure 2. The measurement term
Jm may therefore be expressed as

Jm =

∫
Ωm

(Fū− m̄)T(Fū− m̄) dΩm. (25)

3.2 Numerical implementation and RANS results

The spatial discretization of the RANS operator R in (6) and of its linearized
counterparts in (12) and (18) is performed with the finite-element method as im-
plemented in the software FreeFEM [22]. Second-order polynomial elements are
employed for velocity components, while pressure and eddy-viscosity variables are
discretized with piecewise-linear functions. Streamline-upwind Petrov–Galerkin
(SUPG) [9] and grad–div [44] stabilizations are employed to tackle the considered
relatively high-Reynolds-number flows. The two-dimensional rectangular compu-
tational domain is chosen to have similar extents to that of the hydrodynamic tun-
nel, namely [−7, 14]× [−2, 2], as reported in figure 1a. This domain is discretized
through an unstructured mesh that is formed of around 5 ·104 triangles whose dis-
tribution is obtained by an automatic adaptation procedure based on the Hessian
of the velocity, pressure and eddy-viscosity fields, and also of the sensitivity fields
that are discussed in §4.2, ensuring the mesh-convergence of the data-assimilation
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(a) (b)

(c) (d)

Fig. 3: Baseline RANS results at Re = 5.4 ·104: mean (a) streamwise and (b) cross-
stream velocities, (c) error field em in (26) and (d) turbulent eddy-viscosity field
νt multiplied by Re. Black lines in (a,b,d) correspond to streamlines that delineate
the recirculation region.

results and of those of the linear mean-flow analyses. Such a mesh adaption pro-
cedure also minimizes the importance of the SUPG and grad-div stabilizations in
important flow regions, as the (local) stabilization parameters scale quadratically
with the size of the elements, which is automatically reduced in high-gradient re-
gions through the mesh adaption. As such, stabilization mainly acts in freestream
regions, where relatively large elements may be employed. The nonlinearity of the
RANS equations in (7) is tackled through the Newton method, which involves the
inversion of their linearized counterpart L in (12). Boundary conditions for the
RANS equations are as follows. At the inlet, streamwise and cross-stream velocity
components are set to ū = 1 and v̄ = 0, respectively, while ¯̃ν = 0.02Re−1 is imposed
[41]. No-slip conditions ū = 0 are enforced at the airfoil surface in conjunction with
¯̃ν = 0. Symmetry conditions are imposed at top and bottom boundaries, namely
∂ū
∂y = ∂ ¯̃ν

∂y = v̄ = 0. Finally, ∂ ¯̃ν
∂x = 0 and 2(Re−1 + νt)S(ū) · n− Π̄n = 0 are used at

the outlet, where n denotes the normal vector. Adjoint operators, such as involved
in (11), are derived following a discrete approach [46]. Namely, as an example, the
adjoint RANS operator L† is obtained by taking the transpose of the discretized
counterpart of L. For the same reasons as outlined above, the employed stabiliza-
tions schemes do not significantly affect the adjoint operator in important flow
regions. Both direct and adjoint problems are solved in a parallel way relying on
the PETSc library [3], more details about its interface with FreeFEM may be
found in [40]. Eigenvalue problems as involved in (20) and (23) are solved based
on the software ARPACK [27] as interfaced with FreeFEM.

The mean velocity field that is solution of the baseline RANS equations is il-
lustrated in figures 3a-3b for Re = 5.4 ·104. It appears significantly more detached
than the PIV field in figure 2 with a large recirculation region. The significant dis-
crepancies between the PIV and RANS mean-velocity fields are further illustrated
through figure 3c, which reports the error field em defined as

em(x) =
(
(Fū− m̄)T(Fū− m̄)

) 1
2
. (26)

It may noted that e2m corresponds to the integrand in the measurement term Jm
in (25). This field takes values that are close to 1, i.e. of the same order of mag-
nitude as the incoming velocity, in a significant part of the measurement domain,
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Fig. 4: Cost function J in (9) normalized by its initial value J0 (dashed lines) versus
the iteration i of the data assimilation procedure when considering the PIV mean-
velocity field at Re = 5.4 · 104 (a) in the full measurement plane or (b) only in the
subdomain that is delineated in dashed lines in figure 2. The contributions from the
measurement term Jm/J0 (full lines) and penalization term Jp/J0 (dotted lines)
are also reported. In (b), the discrepancies with respect to the full measurements
(same definition as Jm/J0 in (a)) are also reported through the dashed-dotted line.

confirming the large deficiencies in the employed turbulence model in correctly
predicting the considered near-stall flow, as further discussed in the following.

4 Results

4.1 Data assimilation

Neither the PIV measurements nor the RANS predictions of §3 can directly be
employed to characterize coherent fluctuations through the linear methodologies
in §2.3 due to their incomplete character for the former and their lack of fidelity
for the latter. In this section, we apply the data assimilation procedure of §2.2
to correct the Spalart-Allmaras model (4) in order to get a full mean flow that
is as close as possible to the mean PIV measurements. Still considering the case
Re = 5.4 · 104, we first perform data assimilation relying on the full PIV mean-
velocity field in figure 2, thus evaluating the measurement term Jm in (25) with
Ωm corresponding to the full PIV plane. The corresponding evolution of the cost
function J defined in (9) along the iteration of the data assimilation procedure is
reported in figure 4a with the dashed line. The contributions from the measurement
term Jm and the penalization one Jp are reported with solid and dotted lines,
respectively. Results are normalized with the value of J at the beginning of the
data assimilation procedure, which is denoted by J0 and thus corresponds to the
evaluation of J for baseline RANS. The convergence of data assimilation is reached
in 15 iterations, which remains moderate for such a procedure. It appears that
the value of the measurement term Jm has been divided by a factor of roughly 5,
indicating a significant improvement in the assimilated RANS mean flow compared
to the baseline one.

The mean velocity field for the corresponding assimilated RANS solution,
which is illustrated in figures 5a-5b, is significantly altered from the baseline solu-
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(a) (b)

(c) (d)

Fig. 5: Assimilated RANS results at Re = 5.4 · 104 based on the full PIV mean-
velocity field: mean (a) streamwise and (b) cross-stream velocities, (c) error field
em in (26) and (d) turbulent eddy-viscosity field νt multiplied by Re.
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Fig. 6: (a) Skin friction and (b) pressure coefficients at the suction side for baseline
(grey lines) and assimilated (black lines) RANS at Re = 5.4 · 104 (based on the
full PIV mean-velocity field).

tion (figures 3a-3b). Instead of the large recirculation region, a thinner recirculation
region is visible on the suction side of the airfoil. It is composed of a leading-edge
recirculation region and a trailing-edge one that are connected. The assimilated
velocity field appears significantly closer to the PIV field (figure 2), as confirmed by
the low level of remaining discrepancies that are reported in figure 5c (to compare
with figure 3c). The largest remaining errors concentrate close to the airfoil and at
the boundaries of the measurement domain where the cross-correlation coefficient
between intensity images (see §3.1), and thus the confidence in the PIV data, is
lower than in the rest of the domain. From the comparison between figures 3d and
5d, it appears that the decrease in the size of the recirculation region is associated
to a lower turbulent viscosity νt for the assimilated solution, at least downstream
of the airfoil. This is further discussed in the following. The skin-friction and pres-
sure coefficients at the suction side of the airfoil are reported in figure 6a and 6b,
respectively, to better illustrate the near-wall behavior of the mean-velocity field.
The skin-friction of the assimilated solution (black curve) is negative everywhere
except close to the leading-edge of the airfoil, indicating that the assimilated flow
is still fully detached. The plateau in the Cp distribution, which is far more pro-



Data assimilation and linear analysis with turbulence modelling 15
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Fig. 7: (a) Model correction fν̃ = g¯̃ν2, (b) production term Pν̄ and (c) turbulent
eddy-viscosity field νat for assimilated RANS at Re = 5.4 · 104 (based on the full
PIV mean-velocity field); (d) variation (νat − νbt ) in the turbulent eddy-viscosity
between assimilated and baseline (νbt ) RANS. All quantities are multiplied by Re.

nounced in the assimilated flow compared to the baseline one, is characteristic of
the leading-edge recirculation region.

The correction of the Spalart-Allmaras model in (4) through the data assimila-
tion procedure is further investigated through figure 7. The assimilated turbulent
eddy-viscosity field, which is reproduced in figure 7c with a zoomed view on the
suction side, starts to be significant in the middle of the leading-edge recirculation
region. The laminar/turbulent transition thus occurs in this leading-edge recircu-
lation region, which is thus commonly referred to as laminar-separation bubble.
The corrective field fν̃ is overall positive (figure 7a), thus acting as a source of
turbulent eddy-viscosity. It concentrates over the leading-edge laminar-separation
bubble at locations where the production term Pν̃ in the Spalart-Allmaras model
takes relatively high values (figure 7b). Such a correction is consistent with find-
ings in previous studies [7] that identified the need of enhancing production in
RANS models to account for strong non-equilibrium effects (production of tur-
bulent kinetic energy largely exceeding dissipation) that occur in the transitional
flow region over laminar-separation bubbles. Compared to the baseline RANS so-
lution, figure 7d indicates that this supplementary production effect has induced
a significant increase in the turbulent eddy-viscosity close to the wall (red region).
This increase in eddy-viscosity contributes to (partially) reattach the turbulent
separated shear layer. The latter partial reattachment induces a significant de-
crease in the production of eddy-viscosity outside of the boundary layer region,
which corresponds to the blue region in figure 7d. This reduction in the turbulent
eddy-viscosity in the assimilated solution compared to the baseline one persists
downstream of the airfoil, as mentioned above and illustrated through figures 3d
and 5d.

The Reynolds stress tensors as evaluated from PIV and modelled in the assim-
ilated RANS solution are then compared through figure 8. In the case of PIV, the
Reynolds stresses are estimated from the experimental flow fluctuations, namely
the PIV snapshots from which the time-averaged mean has been subtracted. Such
fluctuations correspond to measurements of ũ = u′ + u′′, namely include both
the coherent u′ and turbulent u′′ fluctuations. The experimental normal stresses
ũũ and ṽṽ are first reported in figures 8a and 8b, respectively. Both stresses, and
therefore also the kinetic energy k̃ = 1

2 (ũũ+ ṽṽ), are mostly concentrated over the
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Fig. 8: (a-d) Reynolds stresses from PIV at Re = 5.4 · 104: normal stresses (a)

ũũ and (b) ṽṽ, (c) deviatoric stress ũũ
d
and (d) shear stress ũṽ. (e-f) Reynolds

stresses for the assimilated RANS solution (based on the full PIV mean-velocity

field): (e) deviatoric stress u′′u′′
d
and (f) shear stress u′′v′′.

first half of the suction side. The deviatoric stress ũũ
d
= ũũ − k̃ along with the

shear stress ũṽ (which is equal to its deviatoric counterpart) are also displayed

in figures 8c and 8d, respectively. ũũ
d
is overall positive, as the normal stress ũũ

is significantly larger than ṽṽ in a large part of the flow domain (figures 8a-8b).

Conversely, the deviatoric stress ṽṽ
d
= −ũũ

d
is overall negative. In the assimilated

RANS results, it is worth reminding that the modelled Reynolds stress tensor is
supposed to account for turbulent fluctuations u′′ only. In addition, the Boussi-
nesq hypothesis only gives access to the deviatoric part of this tensor according to

u′′ ⊗ u′′d = −2νtS(ū). The corresponding components u′′u′′
d
and u′′v′′ are illus-

trated in figures 8e and 8f, respectively, which may be compared with their PIV
counterparts in figures 8c and 8d, respectively. The modelled shear stress u′′v′′

(figure 8f) appears in relatively good agreement with the measured stress ũṽ (fig-

ure 8d). On the other hand, the modelled stress u′′u′′
d
is negative (figure 8e) while

the measured one ũũ
d
is positive and of much larger amplitude (figure 8c). Such

discrepancies may suggest deficiencies in the Boussinesq hypothesis and possibly
in the Spalart-Allmaras model for the correct representation of the Reynolds stress
tensor in the present case. However, one has to keep in mind that the experimen-
tal Reynolds stresses include contributions from coherent fluctuations, while the
latter are not supposed to be modelled by the Boussinesq hypothesis but rather
resolved, as performed in the following through linear analyses.

What ultimately matters in the correct estimation of the mean-velocity field is
the functional aspect of the turbulence model in the momentum equations (bor-
rowing a concept in [51]), namely the divergence of the modelled Reynolds stress
tensor, and more specifically the solenoidal part of this quantity [16]. Accordingly,
we compute the vectors −∇·(ũ⊗ ũ) and ∇·(2νtS(ū)) from the PIV and assimilated
RANS results, respectively, and extract their solenoidal components following [16],
which are denoted by f̄m and f̄a, respectively. The latter quantities are displayed
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(a) (b)

(c) (d)

Fig. 9: Solenoidal contributions of (a,b) −∇· (ũ⊗ ũ) from the PIV results at Re =
5.4 · 104 and of (c,d) ∇ · (2νtS(ū)) from assimilated RANS (based on the full PIV
mean-velocity field). Both (a,c) streamwise and (b,d) cross-stream components of
these contributions are reported.

(a) (b)

(c) (d)

(e) (f)

Fig. 10: Assimilated RANS results at Re = 5.4 · 104 based on PIV mean-velocity
data in the subdomain that is delineated by dashed lines in (c) and in figure 2:
mean (a) streamwise and (b) cross-stream velocities, (c) error field em in (26), (d)
turbulent eddy-viscosity field νt, (e) model correction fν̃ = g¯̃ν2 and (f) streamwise
component of the solenoidal part of ∇ · (2νtS(ū)).

in figure 9. The streamwise components of f̄m (figure 9a) and f̄a (figure 9c) are
very similar. Comparing their cross-stream components is more difficult as they
are of smaller amplitude and the experimental estimate is thus relatively more
affected by the non-smooth character of the PIV data (figure 9b). Besides, the
cross-stream component of f̄a mostly concentrates in regions that are inaccessible
in the PIV measurements close to the leading and trailing edges (figure 9d). Still,
figure 9 confirms the ability of the data assimilation procedure in correctly adjust-
ing the turbulence model to reproduce the action of the Reynolds stress tensor in
the momentum equations.

Finally in this section, we investigate the possibility in relying on very limited
data to infer a reliable mean-flow description. Figures 4b and 10 report data-
assimilation results when considering the PIV mean-velocity field only in the sub-
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domain that is delineated by dashed lines in figures 2 and 10c. The domain Ωm

that is involved in the evaluation of the measurement term Jm in (25) thus corre-
sponds to this subdomain in the present case. The corresponding convergence of
the data-assimilation procedure is illustrated in figure 4b. It is achieved as quickly
as in the full measurement case (figure 4a). The measurement term Jm and the
full cost function J reach here lower values, which may be attributed not only to
the lower dimension of the measurement space in this case but also to the location
of this measurement subdomain in a flow region relatively far from the airfoil’s
wall where the PIV data are more trustworthy. This was quantified through higher
values of the cross-correlation coefficient between matched image intensities in the
considered measurement subdomain compared to locations that are closer to the
airfoil’s wall. The discrepancies with respect to the full PIV mean-velocity field are
quantified through (25) with Ωm chosen as the full PIV plane, which corresponds to
the same definition as for the measurement term Jm in the full measurement case
(full line in figure 4a). They are reported through the dashed-dotted line in figure
4b. Remarkably, the discrepancies with respect to the full PIV field are almost re-
duced as much in the present case as when these full measurements are used in the
data-assimilation procedure. This is further illustrated by the high degree of simi-
larity between the assimilated mean flows in the present partial measurement case
(figure 10) and in the full measurement one (figures 5, 7a and 9c). In particular,
it is striking that the data assimilation procedure has identified a similar model
correction that concentrates over the leading-edge laminar-separation bubble in
the partial measurement case (figure 10e). Only small differences between the two
assimilated mean-velocity fields may be identified close to the trailing edge, trans-
lating into slightly larger errors compared the PIV data in this region in the partial
measurement case (figure 10c) compared to the full measurement one (figure 5c).
The present results therefore support the robustness of the data-assimilation pro-
cedure with respect to the sparse character of the considered measurements, which
may be encouraging for the application of the present methodology to other con-
figurations. In the following, we will only rely on the assimilated solution that has
been obtained based on the full PIV mean-velocity field for the application of the
linear methodologies in §2.3.

4.2 Global stability analysis

As a first step to characterize coherent fluctuations relying on the previously-
obtained assimilated RANS solution (based on the full PIV mean-velocity field),
we perform mean-flow stability analysis as described in §2.3.2. The eigenvalue spec-
tra that are obtained with the perturbed and frozen eddy-viscosity approaches (see
§2.3.1) are displayed in figures 11a-11b through black and grey circles, respectively.
It appears that taking into account or not perturbations in the turbulent eddy-
viscosity has a significant impact on stability results at low frequencies St (figure
11b). In the frozen eddy-viscosity approach, a steady mode (St = 0), which is
highlighted with the open red circle, is found unstable (σ > 0). The corresponding
spatial structure is reported in figure 11c. It may be noted that this mode is real as
the associated frequency is 0. In the perturbed eddy-viscosity approach, all modes
are stable but the least stable mode (denoted with a red filled circle, and its com-
plex conjugate) is now unsteady and associated to the non-dimensional frequency
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Fig. 11: First row: (a) eigenvalue µ = σ + i2πSt spectrum for the assimilated flow
at Re = 5.4·104 in the perturbed (filled black circles) or frozen (empty grey circles)
eddy-viscosity approach, (b) zoomed view around small St. The (real) streamwise
velocity component for the unstable mode in the frozen approach (empty red circle
in (a,b)) is reported in (c). The least stable mode in the perturbed approach (full
red circle in (a,b)) is illustrated through the (d) real and (e) imaginary parts of
its streamwise velocity component and (f) the real part of its eddy-viscosity.

St = 0.035. The real and imaginary parts of the streamwise velocity component
for this low-frequency mode are illustrated in figures 11d-11e. They correspond
to large-scale velocity perturbations over the whole suction side. When superim-
posed to the mean-flow, this mode would induce an oscillation between attached
(high lift) and detached (low lift) flow states. The eddy-viscosity component of
this mode, which mostly concentrates downstream of the airfoil and close to the
shear layer that originates from the leading edge, is also reported in figure 11f.
Similar low-frequency modes have been identified by [24] and [10] for airfoils in
near-stall conditions, but in fully turbulent regimes at much higher Reynolds num-
bers (Re > 106). For the lower Reynolds number regime that is investigated in the
present study, these low-frequency modes are identified for the first time through
stability analysis, to the authors’ knowledge. On the other hand, the identified
frequency St = 0.035 is close to that estimated in large-eddy simulations of flows
past NACA0012 airfoils in conditions that are close to the present ones. Among
others, [36] and [15] have reported low-frequency flow oscillations of a similar na-
ture around St = 0.033 and St = 0.045, respectively, at Re = 5 · 104 and for angles
of attack similar or equal to the present one (α = 9.4◦ and α = 10◦, respectively),
and at low but non-zero Mach numbers (Ma = 0.3 and Ma = 0.4, respectively).
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δL LNu LNν̃ LS

δσ/|σ| 2.51 -3.95 0.44
δω/|ω| -0.13 1.38 -0.25

Table 1: Relative contribution of various components δL of the linearized RANS
equations (see (29)) to the growth rate σ and angular frequency ω of the least sta-
ble mode in the perturbed eddy-viscosity approach (figures 11d-11f) as evaluated
through (27).

In order to provide further insight into the above-discussed low-frequency mode
identified in perturbed eddy-viscosity approach and the importance of the turbu-
lence model in its estimation, we perform sensitivity analysis of the stability results
following the endogeneity approach discussed in [30,45]. At first order, the eigen-
value variation δµ associated to any global mode q̂ that is induced by the operator
variation δL in the linearized RANS equations may be evaluated according to

δµ = δσ + iδω =
〈
q̂†,−δLq̂

〉
=

∫
Ω

−q̂†HδLq̂ dΩ, (27)

where ◦H denotes the Hermitian transpose, and q̂† is the associated adjoint mode
that verifies

−L†q̂† = µHBq̂†,
〈
q̂†,Bq̂

〉
= 1. (28)

Considering δL = L in (27) leads to δµ = µ, so that the integrand −q̂†HLq̂ may
be interpreted as the local contribution of L to the eigenvalue µ [30]. A deeper
analysis may consist in choosing δL as components of L in order to disentangle
their respective importance in the stability results. Accordingly, we consider the
following possibilities for δL

LNu =

Luu ∇◦ 0
∇ · ◦ 0 0
0 0 0

 , LNν̃ =

0 0 Luν̃

0 0 0
0 0 0

 , LS =

 0 0 0
0 0 0

Lν̃u 0 Lν̃ν̃

 . (29)

The first two choices allow to assess the contribution of the momentum and con-
tinuity equations in the eigenvalue µ, distinguishing between contributions that
account for velocity and pressure fluctuations only (δL = LNu), similarly as in
the frozen eddy-viscosity approach, and the contribution from varying turbulent
eddy-viscosity in the momentum equations (δL = LNν̃). The third choice allows
to identify the direct influence of the linearized Spalart-Allmaras equation on the
stability results (δL = LS). It may be noted that L = LNu + LNν̃ + LS. There-
fore, when evaluating (27) for the three above choices of δL, and summing the
results, one recovers µ. Table 1 reports such an analysis for the above-discussed
low-frequency mode. This table first shows that the direct impact of the linearized
Spalart-Allmaras equation (column LS) on the growth rate and frequency of this
mode is of secondary importance. On the other hand, the values that are reported
in the column LNν̃ show not only the stabilizing effect of taking into account per-
turbations of the turbulent eddy-viscosity in the momentum equations, but also
the primary importance of the latter in the value of the frequency. These results
appear in line with the previous comparison between the frozen and perturbed
eddy-viscosity approaches.
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(a) (b)

Fig. 12: Local contribution to the (a) growth rate σ and (b) angular frequency ω of
the least stable mode in the perturbed eddy-viscosity approach (figures 11d-11f)
from momentum and continuity equations (integrand in (27) with δL = LNu +
LNν̃).

As mentioned above, the endogeneity analysis also allows to identify flow re-
gions that strongly contribute to the growth rate and frequency of an eigenmode by
examining the integrand of (27). By specifically considering the operator variation
δL = LNu + LNν̃ , we identify the (prevailing) local contribution of the momen-
tum and continuity equations to the eigenvalue µ. This is illustrated in figure 12
for the present low-frequency mode, distinguishing between contributions to the
growth rate and angular frequency. In both cases, the corresponding fields are
highly concentrated in the upstream part of the leading-edge laminar-separation
bubble, highlighting the crucial role of the latter in the considered low-frequency
phenomena. It may be noted that the flow is laminar in this region as the latter is
associated to small values for the turbulent eddy-viscosity field (figure 7c), while
the present assimilated turbulence-modelling correction acts downstream of this
sensitive region (figure 7a). This makes stability results robust with respect to
small changes in the identified correction, which is not the case for other choices
of model correction, as detailed in appendix B.

4.3 Resolvent analysis and comparison with SPOD results

As the above-discussed assimilated mean-flow is stable, at least in the perturbed
eddy-viscosity approach, it is worth performing resolvent analysis as described
in §2.3.3 to investigate how exogenous forcing may sustain the identified low-
frequency flow oscillations. Moreover, in both perturbed and frozen eddy-viscosity
approaches, the present global stability analysis results do not allow to easily
identify any coherent fluctuations that may arise at higher frequencies, such as
vortex-shedding or Kelvin-Helmholtz phenomena, since all these frequencies are
strongly stable. This also motivates the use of resolvent analysis to characterize
such phenomena, as performed in [66,67,72,63,71,29] based on the linearization of
the (laminar) Navier-Stokes equations, while we here thus rely on RANS modelling
to introduce a distinction between turbulent and coherent scales.

Resolvent analysis results are first illustrated through figure 13a, which re-
ports the first and second largest gains λ2 as functions of the non-dimensional
frequency St as obtained in the perturbed (black curves) and frozen (grey curves)
eddy-viscosity approaches. It may be noted that the subdominant gains (reported
through dash-dotted lines) in the perturbed and frozen approaches are nearly iden-
tical, so that the corresponding curves overlap. Starting by considering the low-
frequency range St ≲ 0.1, no particular amplification is predicted in the frozen
eddy-viscosity approach, as first and second gains are of the same magnitude.
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Fig. 13: (a) First (full lines) and second (dash-dotted lines) largest resolvent gains
λ2 at frequency St for the assimilated flow at Re = 5.4 · 104 in the perturbed
(black lines) or frozen (grey lines) eddy-viscosity approach. (b)-(e) Real part of the
streamwise velocity component of the dominant resolvent mode in the perturbed
approach at (b) low-frequency St = 0.035, intermediate frequencies (c) St = 0.36
and (d) St = 1.3 and high-frequency (e) St = 24. The vertical dashed red and
blue lines emphasize the low (St ≃ 0.035) and intermediate (St ≃ 1.3) frequencies,
respectively, at which comparisons with the PIV results will be performed.

This range of frequencies is significantly more amplified according to the per-
turbed eddy-viscosity approach, with a clear distinction between first and second
gains, and a peak around St = 0.035 which corresponds to the frequency of the
above-discussed least stable eigenmode. The spatial structure of the associated
dominant resolvent mode, which is shown in figure 13b, is very similar to that of
this eigenmode (figure 11d). In the range of intermediate frequencies 0.1 ≲ St ≲ 3,
amplification is more pronounced in the frozen eddy-viscosity approach, which
suggests that the perturbed eddy-viscosity approach effectively increases diffusion
in this range, while two peaks are still identifiable at St = 0.36 and St = 1.3 in
this latter approach. The spatial structure of the corresponding resolvent modes
is illustrated in figures 13c and 13d, respectively. The resolvent mode at St = 1.3
is related to vortex-shedding phenomena, as the associated non-dimensional fre-
quency that includes the angle of incidence is Stα = fc sin(α)/Ub = 0.22. Finally,
in both approaches, the largest amplifications are obtained at higher frequencies
(St > 10), with a maximum amplification around St = 24. As illustrated in figure
13e, this frequency is associated to the development of Kelvin-Helmholtz insta-
bilities in the shear layer of the leading-edge recirculation region. In this region,
the base turbulent eddy-viscosity is of the order of the kinematic viscosity, thus
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Fig. 14: First (full lines) and second (dash-dotted lines) largest eingenvalues λ2
m at

frequency St from the SPOD analysis of the PIV measurements at Re = 5.4 · 104
with (a) 5 and (b) 39 blocks. The vertical dashed red and blue lines emphasize the
same low (St ≃ 0.035) and intermediate (St ≃ 1.3) frequencies, respectively, as in
the resolvent analysis results in figure 13a.

explaining the very large amplification of these small-scale structures in a very
small region of space. Differences between frozen and perturbed eddy-viscosity
approaches appear limited at such high frequencies. Amplification is still slightly
larger in the perturbed eddy-viscosity approach.

The outputs of the above resolvent analyses are now compared to the Spectral
Proper Orthogonal Decomposition (SPOD) [68] of the PIV measurements. This
consists in evaluating a cross-spectral density tensor from the PIV snapshots and
computing its eigenvalues and corresponding eigenmodes, which are denoted by
λ2
m and ûm, respectively. SPOD modes may be interpreted as coherent fluctua-

tions at a given frequency, and may be equivalent to resolvent modes under certain
conditions. Following Welch’s method and relying on the implementation in [35],
two SPOD are performed, focusing on the characterization of low and interme-
diate frequencies, respectively. In the first SPOD treatment, the PIV snapshots
are divided in 5 blocks with an overlap of 50%, which amounts to 1666 snapshots
per block. The minimum frequency that may be captured, which also corresponds
to the frequency resolution ∆St, corresponds to Stmin = ∆St = 6.2 · 10−3. This
value appears as an upper bound for the identification of the above-discussed low-
frequency phenomena. The first and second largest eigenvalues λ2

m as functions of
frequency for this SPOD treatment are reported in figure 14a. These eigenvalues
have been normalized by the global kinetic energy of the measured flow fluctua-
tions. The experimental flow clearly exhibits energetic low-frequency phenomena
(St ≲ 0.1) with low-rank dynamics (difference of more than one order of magni-
tude between first and second eigenvalues). Besides, the SPOD spectrum exhibits
a peak at St ≃ 0.035 (the exact identified value in the SPOD results, which is
constrained by the finite frequency resolution ∆St = 6.2 · 10−3, is St = 0.037),
as emphasized by the red dashed line. These findings are in close agreement with
the resolvent analysis in the perturbed eddy-viscosity approach, while no specific
amplification at low-frequencies could be predicted by the frozen one. A peak at
the intermediate frequency St ≃ 1.3 may also be identified in figure 14a (empha-
sized by the blue dashed line), as in the resolvent analyses in both perturbed and
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Fig. 15: Real part of the streamwise velocity component (left column) and kinetic
energy field (right column) for dominant modes at St ≃ 0.035 from the SPOD of
the PIV measurements with 5 blocks (top row) and the resolvent analysis around
the assimilated flow in the perturbed (middle row) and frozen (bottom row) eddy-
viscosity approaches. An animation of the reported modes is provided in Online
Resource 1.

St 0.035 1.3
perturbed frozen perturbed frozen

Mm 0.141 0.195 0.315 0.320
Em 0.209 0.338 0.237 0.241

Table 2: Misalignment coefficient Mm and error Em in (30) between the dominant
SPOD mode and resolvent one in the perturbed or frozen eddy-viscosity approach
at St ≃ 0.035 (see figure 15) and St ≃ 1.3 (see figure 16).

frozen approaches. In order to favor a better characterization of intermediate fre-
quencies, a second SPOD treatment is performed based on 39 blocks, still with
an overlap of 50%, which corresponds to 250 snapshots per block. In this case,
the frequency resolution is ∆St = 0.041. The corresponding eigenvalue spectra are
reported in figure 14b, where the peak at St ≃ 1.3 persists (the exact identified
value in the SPOD results is St = 1.2). Beyond increasing the number of blocks in
Welch’s method, more advanced SPOD approaches, such as based on multitaper
estimation [55], could be considered to possibly refine the present results, which is
left for future work. It may be noted that, as imposed by the acquisition rate of
the PIV measurements (see §3.1), the maximum frequency is Stmax = 5.2 in the
SPOD results. This prevents the latter from identifying the high-frequency Kelvin-
Helmholtz fluctuations whose associated frequency is estimated around St = 24
through resolvent analysis.

The dominant SPOD modes at the above-discussed low (St ≃ 0.035) and in-
termediate (St ≃ 1.3) frequencies are illustrated in figures 15 and 16, respectively,
and are compared with the dominant resolvent modes at the same frequencies
in the perturbed and frozen eddy-visosity approaches. The left column of these
figures reports the real part of the streamwise velocity component for the modes,
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Fig. 16: Real part of the streamwise velocity component (left column) and kinetic
energy field (right column) for dominant modes at St ≃ 1.3 from the SPOD of
the PIV measurements with 39 blocks (top row) and the resolvent analysis around
the assimilated flow in the perturbed (middle row) and frozen (bottom row) eddy-
viscosity approaches. An animation of the reported modes is provided in Online
Resource 2.

noticing that all SPOD and resolvent modes, which are denoted by ûm and û,
respectively, have been normalized such that ∥ûm∥M = ∥û∥M = 1, i.e. based
on their L2-norm over the (full) measurement domain. In addition, modes have
been multiplied by phase terms according to eiφm ûm and eiφû such that the re-
ported fields reach their maximum values at (x, y) = (1,−0.1). The right column
illustrates the corresponding kinetic energy k̂m = 1

2 û
H
mûm or k̂ = 1

2 û
Hû.

We first consider results at the low frequency St ≃ 0.035. In both SPOD results
obtained with 5 blocks (figures 15a-15b) and those from the resolvent analysis in
the perturbed eddy-viscosity approach (figures 15c-15d), the kinetic energy of the
reported mode highly concentrates over the upstream half of the suction side, and
in particular over the leading-edge laminar-separation bubble as may be identified
from the numerical results. These two modes appear to be in good agreement.
On the contrary, the resolvent mode in the frozen-eddy viscosity approach (figures
15e-15f) is more spread over the downstream half of the suction side and beyond,
with a vanishing kinetic energy close to the leading edge, and therefore significantly
differs from the two above modes. The agreement between SPOD and resolvent
modes may be assessed on a more quantitative basis through the two following
quantities

Mm = 1−
∣∣⟨ûm, û⟩M

∣∣ , Em =

∫
Ωm

|k̂m − k̂| dΩm. (30)

The first one, Mm, quantifies the misalignment between a SPOD mode ûm and
a resolvent one û in the perturbed or frozen-eddy viscosity approach. The second
quantity, Em, measures the discrepancies in the spatial distribution of kinetic
energy of the modes, and forms a possibly more stringent criterion. As modes are
normalized such that ∥ûm∥M = ∥û∥M = 1, perfect agreement between SPOD and
resolvent modes entails Mm = Em = 0, while maximum deviation corresponds
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to Mm = Em = 1, noting that Em ≤
∫
Ωm

k̂m dΩm +
∫
Ωm

k̂ dΩm = 0.5(∥ûm∥2M +

∥û∥2M) = 1. The evaluation of these quantities for the above-discussed dominant
modes at St ≃ 0.035 is reported in table 2, which confirms the better agreement
between SPOD and resolvent analysis in the perturbed eddy-viscosity approach
compared to the frozen one in this case. In particular, the error Em is more than
50% larger in the frozen approach compared to the perturbed one.

We now examine SPOD and resolvent modes at the intermediate frequency
St ≃ 1.3 in figure 16. At this frequency, resolvent analysis modes in the perturbed
(figures 16c-16d) and frozen (figures 16e-16f) eddy-viscosity approaches appear
very similar, putting aside a slightly higher kinetic energy above the leading-edge
laminar-separation bubble in the perturbed approach compared to the frozen one.
Both modes provide a correct estimation of the SPOD mode computed with 39
blocks (figures 16a-16b). These findings may be confirmed through the inspection
of table 2. Differences between the SPOD and resolvent modes may still be spotted
through figure 16, in particular around the shear layer that originates from the
leading edge when comparing the streamwise velocity components (left column),
and around the shear layer that originates from the trailing edge when inspect-
ing the kinetic energy fields (right column). Besides, the misalignment coefficient
Mm is higher than at low frequency. The value of the error Em is also higher,
although to a lesser extent, compared to that in the perturbed eddy-viscosity ap-
proach at low frequency. All these findings suggest that intermediate frequencies
are less accurately estimated than lower ones through resolvent analysis (even in
the perturbed eddy-viscosity approach) in the present case. Aside from various fac-
tors ranging from modelling limitations to difficulties in having access to accurate
intermediate- (and high-) frequency content through experiments for explaining
these discrepancies, one could wonder whether intermediate frequencies are signifi-
cantly modulated by the dominant low-frequency oscillations. If so, the quasi-static
resolvent and SPOD approaches developed in [18] could be more appropriate to
investigate intermediate and higher frequencies, which is left for future studies.

In summary, in the present flow configuration, resolvent analysis based on the
perturbed eddy-viscosity approach provides a significantly more accurate insight
into low-frequency oscillations compared to the frozen approach. First, it allows to
identify a peak of amplification at a low frequency that is close to that observed in
the PIV data, while no particular amplification is predicted in the frozen approach.
In addition, the resolvent mode that is predicted in the perturbed eddy-viscosity
approach is in good agreement with the experimental SPOD mode at the corre-
sponding frequency, which is not the case in the frozen approach. On the other
hand, at intermediate frequencies, while relying or not on the perturbed approach
still has an impact on the value of the resolvent gains, the shape of the associated
modes appears relatively unaffected by this modelling choice.

4.4 Variation in Reynolds number

The present combination of PIV-data assimilation for improving a RANS-based
mean-flow estimation followed by resolvent analysis around the latter is further ap-
plied at other Reynolds numbers in the range 4.3 ·104 ≤ Re ≤ 6.4 ·104. The results
of the data assimilation step (based on the full PIV mean-velocity fields) are first
illustrated in figure 17, which reports the streamwise velocity of the assimilated
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Fig. 17: Mean streamwise velocity for assimilated RANS solution at (a) Re =
4.3 · 104, (b) Re = 5.1 · 104, (c) Re = 5.3 · 104 and (d) Re = 6.4 · 104, respectively.
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Fig. 18: (a) Lift coefficient for baseline (open triangles) and assimilated (full circles)
RANS. Experimental results from [43] are also reported (empty squares). (b) Pres-
sure coefficient at the suction side for assimilated RANS at 4.3·104 ≤ Re ≤ 6.4·104.

mean flow for some representative cases. For Re < 5 · 104, the mean flow is mas-
sively separated on the suction side of the airfoil with a large recirculation region
extending from the leading-edge to the trailing-edge, as illustrated in figure 17a.
When increasing the Reynolds number, the size of the recirculation region pro-
gressively shrinks while two connected leading-edge and trailing-edge recirculation
regions appear (figure 17c), similarly as in the above-discussed case Re = 5.4 ·104.
For the largest Reynolds number that is investigated here (Re = 6.4 · 104, figure
17d), the flow is close to fully reattach after the leading-edge laminar-separation
bubble and thus corresponds to almost pre-stall conditions.

The reconstructed lift coefficient and pressure distribution over the suction
side for all available cases are illustrated through figure 18. We should recall that
none of these quantities would have been accessible without data assimilation
since the present experimental campaign was restricted to PIV measurements.
Figure 18a confirms the significant alteration of the lift coefficient through the
data-assimilation procedure between the baseline solution (open triangles) and
the assimilated one (full circles), in particular for Re ≥ 5 · 104. The lift coefficient
of the baseline RANS solution barely changes with the Reynolds number. Its low
value CL ∼ 0.6 corresponds to that of a fully detached solution (see figure 3a). The
baseline model is thus not able to capture the flow reattachment that comes along
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with an increase of the lift, as observed for the assimilated solution. For the sake
of validation, experimental results that were obtained in [43] for the same flow
configuration as the present one (NACA0012 airfoil at an incidence of 10◦) are
also shown in figure 18a with square symbols. They favorably compare to the lift
coefficient of the assimilated RANS solutions, confirming the quality of the latter.
Figure 18b allows to assess the development of a plateau in the Cp distribution in
the assimilated RANS results for increasing Reynolds number which is linked to
the appearance of the laminar-separation bubble close to the leading edge.

Resolvent analysis in the perturbed eddy-viscosity approach is then performed
around the various assimilated flows. The dominant resolvent gain is reported in
figure 19a as a function of the non-dimensional frequency for all investigated values
of Re. As already evidenced for Re = 5.4 · 104 (figure 13), different peaks may be
identified at low, intermediate and high frequency. The associated frequencies are
denoted as StL, StI and StH , respectively, and are associated with the red, blue
and green colors, respectively, throughout figure 19. They are emphasized through
vertical dotted and dashed lines in figure 19a for the lowest (Re = 4.3 · 104) and
highest (Re = 6.4 · 104) investigated values of Re, respectively. The evolution of
these frequencies with respect to Re is further illustrated through figures 19b-19d,
while the values of the corresponding gains is reported in figure 19e. This latter
figure may help in distinguishing between two regimes in the present results. Be-
low a threshold value that is approximated as Re ≃ 5.2 · 104 (and emphasized
through dashed vertical lines in figures 19b-19e), the low-frequency peak is actu-
ally not-well pronounced, and both intermediate and high frequencies are more
amplified. On the contrary, above this threshold, the low-frequency peak becomes
well pronounced and dominates over intermediate frequencies. This qualitative
change seems to coincide with the formation of two connected leading-edge and
trailing-edge recirculation regions, as previously discussed based on figure 17.

Finally, we examine in more detail the characteristics of the frequency peaks.
Above the threshold Re ≃ 5.2 · 104, the low frequency StL appears weakly sensi-
tive with respect to Re in the investigated range (figure 19b). It may be noted in
figure 19e that the value of the corresponding gain, after an increase in Re from
Re ≃ 5.2 ·104, seems to saturate and even slightly decrease after Re ≃ 6 ·104. Data
at higher Re would be required to confirm this trend. Concerning the intermediate-
frequency peak, the associated gain monotonically decreases over the full range of
investigated Re values (figure 19e). StI increases sightly with Re, with a relatively
abrupt change around Re ≃ 6 · 104 (figure 19c). Above this latter Re value, the
peak at StI , which should correspond to vortex-shedding phenomena, actually
becomes less pronounced than another intermediate peak around St ≃ 0.36 (al-
ready identified in figure 13), as may be inferred from figure 19a. High-frequencies
that are related to the development of Kelvin-Helmholtz instabilities remain the
most amplified frequencies at all Re (figure 19e). The associated frequency StH
monotonically and significantly increases with Re (figure 19d). Such an evolution
is likely related to the decrease in the characteristic length scale that is associated
to this frequency, namely the shear layer thickness at the leading edge.



Data assimilation and linear analysis with turbulence modelling 29

10−2 10−1 100 101 102

St

102

103

104

105

106

λ
2

Re

Re

StL StI StH

(a)

45000 50000 55000 60000 65000
Re

0.02

0.06

0.1

0.14

S
t L

(b)

45000 50000 55000 60000 65000
Re

1

1.2

1.4

1.6

1.8

S
t I

(c)

45000 50000 55000 60000 65000
Re

10

15

20

25

30

S
t H

(d)

45000 50000 55000 60000 65000
Re

103

104

105

106

λ
2

(e)

Fig. 19: (a) Largest resolvent gain λ2 in the perturbed eddy-viscosity approach at
frequency St for assimilated flows at various Reynolds numbers. Grey lines cor-
respond to 4.3 · 104 ≤ Re ≤ 5.1 · 104, while black ones correspond to 5.3 · 104 ≤
Re ≤ 6.4 · 104. Vertical dotted and dashed lines emphasize, for Re = 4.3 · 104 and
Re = 6.4 · 104 respectively, the frequencies StL (red lines), StI (blue lines) and
StH (green lines) that correspond to peaks of amplification at low, intermediate
and high frequency, respectively. (b-d) Evolution of (b) StL, (c) StI and (d) StH
with Re. (e) Values of the gains that are reached at these frequencies. In (b-e),
red, blue and green circles correspond to the frequencies StL, StI and StH , respec-
tively, while the vertical dashed lines indicate the approximate Reynolds number
Re ≃ 5.2 · 104 above which the low-frequency peak at StL is clearly identified and
dominant compared to that at StI . Grey and black lines in (a) thus correspond to
values of Re that are below and above this threshold, respectively.
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5 Conclusions

The near-stall flow past a NACA0012 airfoil has been investigated through a com-
bination of data assimilation and linear mean-flow analyses in a two-step proce-
dure. Time-averaged PIV measurements have first been assimilated into RANS
simulations based on the Spalart-Allmaras model through the optimization of a
corrective field in the latter. Data assimilation has allowed to considerably improve
the baseline RANS prediction and to reconstruct the flow in regions that were not
accessible in the PIV data. This could be achieved even when relying on data in
a small subdomain. The so-obtained mean-flows and corrected RANS equations
have then been employed in linear mean-flow analyses. Global stability analy-
sis has already allowed to identify near-stall low-frequency modes. This could be
achieved when taking into account perturbations in the turbulent eddy-viscosity
through the linearized corrected Spalart-Allmaras model, but not in a frozen ap-
proach. Resolvent analysis has then been performed, comparing with the SPOD of
the PIV snapshots. Besides of vortex-shedding and Kelvin-Helmholtz phenomena,
resolvent analysis in the perturbed eddy-viscosity approach has also identified the
amplification of low frequencies in accordance with the SPOD results, contrary
to the frozen approach. In addition, the dominant low-frequency resolvent mode
in the perturbed approach has been shown to be close to its SPOD counterpart,
while the mode in the frozen approach exhibited significant discrepancies. Differ-
ences between the perturbed and frozen approaches have appeared to lessen at
higher frequencies, in particular concerning the mode shapes.

In summary, the present study illustrates the potentialities in relying on data
assimilation, RANS modelling and linear analyses for the prediction of coherent
fluctuations in turbulent flows that involve a wide range of dynamic scales from
limited mean-flow measurements. While turbulence modelling and the use of the
perturbed eddy-viscosity approach have been shown to play a determinant role in
the correct estimation of near-stall low-frequency phenomena in the present flow
configuration, the possible generalisation of such findings remains to be done. In-
cidentally, a recent study [14] suggests that a frozen-eddy viscosity approach is
sufficient to estimate the low-frequency dynamics of a pressure-gradient-induced
turbulent separation bubble. Accordingly, the determination of the conditions un-
der which a perturbed eddy-viscosity approach is actually necessary for the correct
prediction of coherent fluctuations could be the subject of future work. A related
open question that is worth further investigation concerns the influence of the
choice of the turbulence model in the perturbed approach.
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Appendix A Details on the employed Spalart-Allmaras model

We here provide the exact version of the Spalart-Allmaras model [59] that is em-
ployed in the present study. The governing equation for the pseudo-eddy viscosity
variable ⟨ν̃⟩ is given in (4). From ⟨ν̃⟩, the actual turbulent eddy-viscosity that is
involved in the momentum equations is obtained from

νt(⟨ν̃⟩) = ⟨ν̃⟩ fv1, fv1 =
χ3

χ3 + c3v1
, χ = ⟨ν̃⟩Re, cv1 = 7.1. (31)

The diffusion coefficient η(⟨ν̃⟩) in (4) is evaluated in a negative continuation form
[41] according to

η =

{
1

Reσ (1 + χ) χ ≥ 0
1

Reσ (1 + χ+ 0.5χ2) χ < 0
, σ =

2

3
. (32)

The source term s(⟨u⟩ , ⟨ν̃⟩) = Pν̃+Dν̃+Cν̃ in (4) includes production, destruction
and cross-diffusion terms. The production one is evaluated as

Pν̃ =

{
γBCcb1Ω̃ ⟨ν̃⟩ χ ≥ 0
γBCcb1Ωu ⟨ν̃⟩ gn χ < 0

, (33)

with

Ω̃ = Ωu +
fv2 ⟨ν̃⟩
κ2d2

, Ωu = ∥∇ × ⟨u⟩ ∥, fv2 = 1− χ

1 + χfv1
, gn = 1− 1000χ2

1 + χ2
,(34)
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where d corresponds to the distance to the walls, ∥ ◦ ∥ here refers to the (local)
Euclidean norm, while cb1 = 0.1355 and κ = 0.41. The production term here
includes the transition model proposed in [41] which is given by

γBC = 1− exp(−
√
τ1 −

√
τ2), τ1 =

max(Reθ −Reθc, 0)

χ1Reθc
, τ2 = max

(
Re νt
χ2

, 0

)
,

(35)
with

Reθ =
Ωud

2Re

2.193
, Reθc = 803.73(Tu∞ + 0.6067)−1.027, (36)

and where we use Tu∞ = 0.01, χ1 = 0.002 and χ2 = 0.02. The cross-diffusion and
destruction terms are evaluated according to

Cν̃ =
cb2
σ

∥∇ ⟨ν̃⟩ ∥, Dν̃ =

{
−cw1fw

⟨ν̃⟩2
d2 χ ≥ 0

cw1
⟨ν̃⟩2
d2 χ < 0

, (37)

with

fw = g

(
1 + c6w3

g6 + c6w3

) 1
6

, g = r + cw2LRe(r
6 − r), cw2LRe = cw4 +

cw5

(1 + χ
40 )

2
, (38)

and

r =

{
10 r′ < 0, r′ > 10
r′ 0 ≤ r′ ≤ 10

, r′ =
⟨ν̃⟩

Ω̃d2κ2
. (39)

It may be emphasized that the low-Reynolds expression cw2LRe proposed in [60]
is here employed (instead of cw2LRe = cw2 being a constant). Constants are given
by cb2 = 0.622, cw1 = cb1

κ2 + 1+cb2
σ , cw3 = 2, cw4 = 0.21 and cw5 = 1.5.

Appendix B On the choice of the turbulence-modelling correction

In this appendix, we discuss the present choice of turbulence-modelling correction
with respect to previous proposals in the literature. It may be first mentioned that
corrections in the momentum equations such as proposed in [17] have been ruled
out in the present study to preserve the full modelling of the Reynolds stress tensor
for turbulent fluctuations. We therefore only compare corrections to the Spalart-
Allmaras equation (4) in this appendix. Figure 20 first reports the turbulent eddy-
viscosity field for the baseline RANS solution at Re = 5.4 · 104 (figure 20a), along

with the field |ˆ̃ν†||q̂| (figure 20b), with |q̂| = (q̂Hq̂)
1
2 , where q̂ and ˆ̃ν† refer to

the least stable (low-frequency) mode and to the eddy-viscosity component of the
associated adjoint mode (see (28)), still for the baseline RANS solution. The field
|ˆ̃ν†||q̂| provides an upper bound for the variation in the associated eigenvalue |δµ|
that is induced by a local and unitary change in the Spalart-Allmaras equation [19].
As mentioned in §2.2.2, a turbulence-modelling correction fν̃ is here considered as
appropriate if it acts in turbulent regions, thus has a strong overlap with νt, and,
on the contrary, vanishes in regions with high structural sensitivity, namely that
correspond to high values for the sensitivity field |ˆ̃ν†||q̂|. Compliance with this
latter criterion prevents small variations in fν̃ from having a large impact on the
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(a) (b)

(c) (d)

(e) (f)

Fig. 20: (a) Turbulent eddy-viscosity field νt for the baseline RANS solution at
Re = 5.4 · 104 and (b) sensitivity field |ˆ̃ν†||q̂| for the least stable mode. (c-f)
Update of the turbulence-modelling correction fν̃ when (c) fν̃ = g, (d) fν̃ = gPν̃ ,
(e) fν̃ = g¯̃ν and (f) fν̃ = g¯̃ν2 (present choice).

stability results and facilitate the convergence in the latter. In the rest of figure 20,
the identified correction fν̃ at the first iteration of the data assimilation procedure
(corresponding to a steepest descent update to the baseline case fν̃ = 0) is reported
for various choices of the functional form for this correction. In all cases, g refers
to the spatially-dependent control vector in the data assimilation procedure. The
direct optimization of fν̃ (fν̃ = g) [17] leads to a correction with a strong overlap
with the sensitivity field (figure 20c). The same applies, albeit to a slightly lesser
extent, when adjusting a multiplicative field in front of the production term, i.e.
when fν̃ = gPν̃ [57] (figure 20d). The consideration of the functional form fν̃ = g¯̃ν
[11] allows to concentrate the correction in more turbulent regions compared to
previous cases, but still does not prevent from significant contributions in the
sensitive region (figure 20e). On the contrary, the present proposal fν̃ = g¯̃ν2 (figure
20f) has a negligible overlap with the sensitivity field and further concentrates in
regions that are associated to high values of νt, which justifies its use in this
study. It may be emphasized that the present choice remains empirical, and is
certainly not unique. Incidentally, other expressions involving higher powers of ¯̃ν
(e.g. fν̃ = g¯̃ν3) were investigated. It appeared in these cases that the correction fν̃
was too much constrained downstream of the leading edge, preventing the data-
assimilation procedure to satisfactorily reconstruct the mean flow. Future work
could be dedicated to the development of a more systematic approach to identify
appropriate functional forms for the modelling correction.
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