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Abstract
The Likelihood Ratio (LR) is fundamental in presenting foren-
sic speaker recognition (FSR) results. Despite its theoretical
benefits, conventional LR estimation lacks transparency, imped-
ing courtroom reliability assessment. In response, the Binary-
Attribute-based Likelihood Ratio (BA-LR) framework models
speech extracts based on the presence or absence of a set of
speaker-specific attributes. It estimates the LR as a function
of attribute-based LRs. Previous works demonstrated BA-LR’s
three levels of interpretability: explicit computation of attribute-
based LRs, explicit contribution of these LRs to the final LR and
phonetic description of the attributes, promising a fully trans-
parent FSR solution. This work adds an examination of LR cal-
ibration using a forensically realistic database. Logistic regres-
sion is used for calibration purposes, as well as for a regularized
fusion of attribute-Log LRs. Results highlight robustness and
generalization ability of BA-LR, particularly in forensics.
Index Terms: Forensic Speaker Recognition, Interpretability,
Calibration, Fusion, Likelihood ratio.

1. Introduction
Forensic speaker recognition (FSR) aims to automatically de-
termine whether two voice recordings originate from the same
speaker. This determination is quantified through the Likeli-
hood Ratio (LR), commonly used to evaluate the strength of
evidence [1]. The LR represents the ratio between two like-
lihoods corresponding to two opposing hypotheses. The first
hypothesis, referred to as the prosecution hypothesis Hp, posits
that the two voice samples were spoken by the same individual.
Conversely, the defense hypothesis Hd assumes that each voice
sample was spoken by a different person. The predominant
approach for estimating LR is score-based approach[2, 3, 4],
which converts a similarity score obtained from a DNN-based
speaker recognition model into LR.

Even though the LR is meaningful and self-sufficient by
nature [1], the lack of explainability and transparency linked
to presenting a single number as the output of an automatic
system is becoming a serious weakness with respect to regu-
latory compliance and ethical considerations [5]. This is par-
ticularly pronounced in high-risk fields such as forensics [6, 7].
To overcome this lack of explainability in FSR systems while
retaining the LR paradigm, [8] recently introduced a novel
interpretable and explainable framework for FSR, known as
Binary-Attribute-based Likelihood Ratio (BA-LR). This frame-
work represents a speech excerpt by a binary vector, thanks to
a deep neural network model. Each coefficient i in this vector,
denoted as BAi, signifies the presence or absence of a specific
speech attribute in the speech extract. For each attribute, an

Attribute-LR is estimated in a forensically interpretable man-
ner under prosecution and defence hypotheses as inspired from
forensic DNA identification [8]. This estimation process is only
based on both the presence/absence of the attribute in the two
speech extracts and the pre-trained behavior of this attribute, de-
fined by three explicit parameters. The final LR is therefore cal-
culated as the product of attribute-LRs, assuming independence
between them. Augmented with a description of attributes in
terms of phonetic information as proposed in [9], this approach
establishes a broadly interpretable framework for FSR. With
these advantages, it can become a useful tool for forensic practi-
tioners to better understand how a FSR system work and where
its outputs come from. At the end of the process, it can grandly
aid the court in decision-making.

In this work, we aim to better evaluate the potential of BA-
LR in the forensic context. For that, we apply the BA-LR frame-
work on a forensically realistic database, NFI-FRIDA issued
from Netherlands Forensic Institute (NFI) [10, 11]. In foren-
sic context, using a calibration step is essential [3] to handle
the mismatch between the training conditions and a real-world
scenarios. Previous work [8] neglected calibration, prompting
its integration into this work. The traditional approach to cali-
bration involves employing a linear function with trainable pa-
rameters [12, 13]. Logistic Regression is frequently employed
for calibration in speaker recognition [14, 12, 13, 15, 3] and we
selected it for this work. This method presents an affine trans-
formation, shifting and scaling non-calibrated scores to obtain
well-calibrated LLRs.

Through the application of BA-LR framework on NFI-
FRIDA dataset, we aim to achieve four main objectives:

• Propose a more interpretable version of attribute-LRs es-
timation, well suited to FSR.

• Assess the generalization capability, in terms of lan-
guage, recording conditions and linguistic content, and
the robustness of BA-LR in a forensic context.

• Propose a calibration step of the final LLR using logistic
regression.

• Extend this calibration process by incorporating a fusion
approach of attribute-LLRs to compute the final LLR,
with the goal of enhancing both performance and cali-
bration.

This paper is organized as follows; Section 2 provides a
brief description of BA-LR framework. Section 3 proposes an
improved version of attribute-LR estimation. Next, Section 4
defines the calibration approach, along with a fusion proposal of
attribute-LLRs that improves performance and calibration. Sub-
sequently, a description of the experimental protocol, including



the NFI-FRIDA dataset as well as the applied methodology is
outlined in Section 5. Section 6 presents the results in terms of
SR performance and calibration. Finally, some conclusions and
description of future work are summarized in section 7.

2. BA-LR framework
This section is devoted to the description of BA-LR framework
introduced in [8]. Given a comparison pair (X1, X2), this
framework involves three phases to report the final LR value,
as illustrated in Figure 1. Here, we provide an overview of the
three phases and propose a new version for the third phase in
the next section.

Figure 1: Overview of BA-LR framework

1. In BA-LR, the two speech extracts are represented by
binary attribute vectors denoted as BA-vectors, as illus-
trated in Figure 1. Each dimension in the vector indicates
whether an assumed attribute is present (i.e. 1) or absent
(i.e. 0) in the utterance. This vector is inspired from
work [16, 17, 18] on binary representations for speech
and speaker recognition. The BA-vectors are extracted
using a BA-extractor optimized towards generating bi-
nary representations.

2. The behavior of an attribute, BAi, is described by three
parameters, as shown in Figure 1, estimated on a train set
representing the reference population [8]. Ti represents
the typicality of the attribute, or how frequently it occurs
among speakers (i.e., its discriminative power). Douti,
namely Drop-out,is the probability that an attribute is ab-
sent from a speech extract while present in other extracts
of the same speaker. Dini, namely Drop-in, is the prob-
ability of falsely detecting an attribute in an extract, due
to noise, for example. Dini is computed as the product
of a fixed factor Din, and Ti. This represents the idea
that a drop-in occurs in an attribute along with its pres-
ence frequency. We refer to [8] for a proposed estimation
of Ti and Dout.

3. During a test comparison of a given pair (X1, X2), an
attribute-LR is computed separately for each attribute
BAi, using both its behavioral parameters (i.e., Ti,
Douti, Dini) and its value in X1 and X2. Based on
binary values of BAi, four cases are considered: 00, 11,
01, 10. Equation (1) expresses the attribute-LR of a BAi

under prosecution and defence hypotheses. A detailed
estimation of these cases is provided in the next section.

LR
i
X1i,X2i

=
P (X1i,X2i|Hp)

P (X1i,X2i|Hd)
(1)

3. New speech-oriented attribute-LR
estimation

The initial formulation of attribute-LR in [8]1 draws inspiration
from the context of forensic DNA identification. However, deal-
ing with trace and suspect samples in DNA analysis is asym-
metrical since a complete DNA profile, treated as the ground
truth, is readily available for the suspect. This results in distinct
estimations of attribute-LR for cases 01 and 10. For a speech
comparison, both samples are subject to errors or gaps, as the
corresponding ground truth for a suspect is not available or does
not exist. In response, we propose a more suitable adaptation
for FSR by refining the LR estimation method introduced in
[8]. This refined version considers the following assumptions:

• Drop-out and drop-in phenomena could occur in both,
X1 and X2 recordings.

• The event of an occurring phenomenon in X1 is inde-
pendent of its happening in X2.

• Din indicates absence of drop-in, whereas Douti means
the absence of drop-out.

• (X1i,X2i) is represented by an observed state in the
time of comparison, and an actual state without any mis-
leading phenomenon.

The forensic hypothetical rationale for formulating the
attribute-LR in the four cases, is described in the follow-
ing. Equation (2) presents these interpretations mathematically,
based on Equation (1).

• X1: (BAi=0) , X2: (BAi=0): The observed state is
(0, 0). Under Hp, the prosecution considers two pos-
sibilities: either the true state is also (0, 0), or it’s (1, 1)
but with drop-out on both sides resulting in (0, 0). Un-
der Hd, the defense presents various scenarios. He ar-
gues that the true state could be either (0, 1) or (1, 0), but
with drop-out on one side, leading to (0, 0). Thus, this
possibility is counted twice. Moreover, it is possible that
with drop-out on both sides, (0, 0) is observed from the
true state (1, 1). Additionally, if there are no drop-ins on
either side, (0, 0) is obtained from the true state (0, 0).

• X1: (BAi=1) , X2: (BAi=1): Under Hp, there is a
100% match. Alternatively, if the true state is (0, 0) but
experiences drop-in on both sides, this would lead to ob-
serve (1, 1). Under Hd, the true state could be either
(0, 1) or (1, 0), but with a drop-in on one side or the
other, resulting in (1, 1). Additionally, it’s possible that
with a drop-in on both sides, we observe (1, 1) from the
true state (0, 0). Furthermore, there may be no drop-outs
on either side.

• X1: (BAi=1|0) , X2: (BAi=0|1): Under Hp, the ob-
served state is (1, 0) or (0, 1), but they should belong to
the same speaker. Thus, it is possible that the true state
was (0, 0), experiencing a drop-in on one side but not
the other. Alternatively, the true state could be (1, 1),
but a drop-out occurred on only one side, not the other.
Under Hd, since both samples belong to different speak-
ers, it’s conceivable that the true state is (0, 1) or (1, 0).
There could be a drop-in on one side and not the other.
A dropout on one side but not the other. A simultaneous
drop-in on one side and a dropout on the other side.

1As underscored by the authors, this inspiration is tied to the esti-
mation method rather than the identification media. Consequently, it
should be approached with considerable caution.
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1 + Dout2i
Ti · (2 · Douti · Din + Dout2i + Din2)

if (0, 0)

1 + (Din · Ti)
2

Ti · (2 · Din · Ti · Douti + (Din · Ti)2 + Douti
2
)

if (1, 1)

Din · Din · Ti + Douti · Douti
Ti · (1 + Din · Din · Ti + Douti · Douti + Din · Ti · Douti)

Otherwise

(2)
The final LR is calculated as the product of the m attribute-LRs
following Equation (3) and assuming independence between at-
tributes.

LR =

n∏
i=1

LR
i
X1i,X2i (3)

4. Calibration and fusion
In this section, we firstly define the calibration approach applied
on the final LLR values. Then, we introduce a fusion approach
that extends this calibration to efficiently combine attribute-
LLRs.

4.1. Global calibration

Several factors could lead to the miscalibration of LLRs in eval-
uation datasets, including:

• The attribute behavioral parameters used in attribute-
LR computation are estimated based on the train dataset
population.

• Dutch language usage is limited in the train recordings.

• The forensic conditions of the evaluation dataset differ
significantly in terms of quality and environment.

• The independence assumption is hard to fully achieve.

To address this mismatch, we employ a logistic regression
model mathematically defined as follows.

Let’s consider a dataset {Si, Yi}Ni=1, where Si =
(s1, s2, . . . , sn) is a n-dimensional variable, and the target vari-
able Yi is a binary variable, being 0 or 1. The general logistic
regression model is as follows:

log(
P (yi = 1|si)

1 − P (yi = 1|si)
) = α +

n∑
j=1

βj · sij (4)

Where P (yi = 1|si) is the probability of Y . α represents the
intercept. β = (β1, . . . , βn)

T is the regression coefficient vec-
tor. The logarithmic likelihood function is therefore expressed
as follows:

l(β, α) =

n∑
i=1

[yi · (α +

n∑
j=1

βj · sij) − log(1 + exp(α +

n∑
j=1

βj · sij))]

(5)
Given a set of N comparison pairs (X1i, X2i) where i =
1...N , Si is a 1-dimensional variable representing the final
LLRX1i,X2i scores, and Yi represents the ground truth of
scores being target (i.e 1) or non-target (i.e. 0). The logistic
regression model for global calibration is a univariate model
with n = 1. The obtained LLR′

X1i,X2i
represents therefore

the calibrated LLR expressed as follows:

LLR
′
Xi,X2i

= αG + βG ∗ LLRX1i,X2i (6)

Where αG and βG are scalars.

4.2. Fusion of attribute-LLRs

In the BA-LR framework, the LLR of a comparison pair is
calculated by summing attribute-LLRs, assuming independence
between attributes. Figure 2 illustrates the distribution of Pear-
son correlation values among the dimensions of BA-vectors be-
fore binarization. The relatively low correlation between at-
tributes ensures, to some extent, the decomposition of the LLR
into a direct sum of attribute-LLRs. However, any remaining
correlation could still lead to an overestimation of the final LR.

Figure 2: Pearson correlation values between attributes before
binarization

To address this, we propose a fusion approach of attribute-
LLRs. Logistic regression fusion is a process widely used
to combine parallel sets of scores from different SR sys-
tems, yielding into more accurate and well calibrated LLRs
[3, 4, 12, 14, 19, 20, 21]. Fusion could be applied between
LLRs issued from an automatic FSR system with those derived
from a semi-automatic FSR system [22], or between systems
that use diverse signal processing and modelling techniques,
or even distinct acoustic-phonetic systems where each system
tackle information from a phonetic unit within the same data
[4]. A regularization of logistic regression is often employed
to enhance the robustness of the calibration model and mitigate
the risk of overfitting [23, 13, 24]. It consists in incorporating
a term into the objective function, penalizing the distance from
the estimated parameters to a default set of parameters. In the
following, we introduce a weighted fusion of attribute-LLRs,
instead of a straightforward sum of all attribute-LLRs. This fu-
sion incorporates a sparsity regularization to retain only relevant
attributes while discarding irrelevant ones.

4.2.1. Logistic regression fusion

In BA-LR context, each attribute is considered as a sub-system
that outputs a score, namely an attribute-LLR. We represent
each comparison pair by n-dimensional variable S, which com-
prises n attribute-LLRs. As illustrated in Equation 7, lo-
gistic regression is then modeled to obtain a well-calibrated
LLR′′

X1i,X2i
.

LLR
′′
X1i,X2i

= α +
n∑

j=1

βj ∗ LLR
j
X1i,X2i

(7)

4.2.2. Regularization and selection of attributes

In order to push the logistic regression fusion to select the best
subset of attribute-LLRs in terms of interpretation (but able to
help also for performance), a L1 regularization term [25] is
added to the log-likelihood function of the logistic model as
expressed in Equation.8. This regularization encourages spar-
sity and compression [26, 27, 24], pushing the weights of some
attributes to be exactly zero. The regularization parameter λ
controls the strength of the penalty applied to the coefficients.



By increasing the value of λ, the penalty on large coefficients
becomes stronger.

(β̂, α̂) = argmin
β,α

(
−l(β, α)

n
+ λ

m∑
j=1

|βj |) (8)

5. Experimental protocol
This section outlines the experimental protocol. Firstly some
details about the NFI-FRIDA database are provided. Subse-
quently, the experimental setup for BA-LR application is de-
scribed.

5.1. NFI-FRIDA description

NFI-Forensically Realistic Inter-Device Audio (NFI-FRIDA)
[10, 11] is a Dutch database comprising of 302 male speakers
representing a specific reference population. In the following,
we describe the database in terms of recording devices and ses-
sions.

5.1.1. Recording devices

The speech was simultaneously recorded with 3 devices,
namely 1, 4 and 5 [10], in each session type. These devices
are chosen to reflect conditions encountered in NFI casework.
The description of these devices is provided in Table 1 and is as
follows:

• Recording device 1 (d1): a headset microphone that ex-
hibits a high quality recording.

• Recording device 4 (d4): Recordings contain consider-
able reverberation and have a higher noise level. It rep-
resents low quality police interview recordings.

• The intercepted telephone recordings (d5): Extracted
through a police telephone interception system that is
used in actual criminal investigations. Either an iPhone
4 or a Nokia 1280 telephone was used as shown in Table
2, according to the session.

Table 1: Recording devices description

Recording device Session
Device 1 Shure WH20 HQ Headset 1,2,3,4,5,6,7,8
Device 4 Shure SM58 far 1,2,3,4
Device 5 Intercepted telephone 1,2,3,4,5,6,7,8

5.1.2. Sessions

Speakers were recorded in 16 sessions, spread across two days,
with a minimum interval of one week between the two days.
Each day comprised eight sessions recorded in diverse loca-
tions, using different telephones, and varying in environmental
noise, as detailed in Table 2. Each session lasts approximately
5 minutes, featuring telephone conversations between partici-
pants. In indoor sessions, a noisy environment included static
radio noise, while outdoor sessions alternated between quiet and
noisy street locations.

Table 2: Sessions description

Session Location Environment Telephone
1&2 Inside Silent Nokia 1280 & iPhone 4
3&4 Inside Noisy Nokia 1280 & iPhone 4
5&6 Outside Calm Nokia 1280 & iPhone 4
7&8 Outside Busy street Nokia 1280 & iPhone 4

5.2. Experimental setup

This section is dedicated to the experimental setup.

5.2.1. BA-LR framework setting

The application of the BA-LR framework2 requires the extrac-
tion of BA-vectors and the computation of attribute behavioral
parameters. Both aspects are executed as follows:

• BA-vectors extraction: BA-vectors are derived from a
ResNet speaker embedding extractor [28], where the last
layer is replaced by a Softplus activation to dynamically
force negative neurons to be deactivated (i.e. 0). This
extractor is trained on VoxCeleb2 [29] of ∼6000 speak-
ers. During inference, a sparse embedding is extracted
and transformed into a binary vector, by simply replac-
ing non-zero values by 1 (values < 10−4 are considered
as 0). During this process, we remove BAs with zero ac-
tivity resulting in BA-vectors of 205 BAs retained out of
the 256.

• Estimation of behavioral parameters: The attribute be-
havioral parameters, namely Ti, Douti and Din factor,
are all estimated on VoxCeleb2. Ti, Douti are com-
puted following [8]. Din factor is estimated by com-
posing a set of comparison pairs of VoxCeleb2, calculat-
ing the LRs with BA-LR, and searching for the optimal
factor that yields the best performance and calibration.
This search is described in Figure 3. The convergence
is quite regular, with an optimum in a flat region around
[0.24,0.27], giving an optimum value for Din of ∼0.26.

Figure 3: Estimation of the optimal value of Din

5.2.2. Data preparation

In this experiment, we combine for the same device, the data
of two sessions sharing the same location and environment into
one session.Table 3 provides details on the number of utterances
and speakers used in each experiment 3. All experiments use
raw speech recordings under real conditions.

5.2.3. Protocol description

To apply the calibration and fusion approaches on NFI-FRIDA
data, we establish the protocol illustrated in Figure 4. For a
given devicei-sessionj , Dev and Test sets of utterances are se-
lected and defined with 15-fold cross-validation. In each fold,
utterances are randomly selected for the Dev and Test sets, en-
suring that speakers are randomly assigned to each set with no
overlap between them. For Dev and Test sets, the BA-vectors
are firstly extracted. Then target (tar) and non-target (non) com-
parison pairs are composed using all data of speakers. The BA-
LR framework is thus applied on these pairs to compute the

2https://github.com/LIAvignon/BA-LR
3Contrary to [10], no editing is applied.



Figure 4: Description of experimental protocol using calibration and fusion approaches on BA-LR

Table 3: Experiment data description

Device-Sessions #Utterances #Speakers
d1-1&2 1,190 302
d1-5&6 1,186 302
d1-3&4 1,187 302
d1-7&8 1,184 302
d4-1&2 1,190 302
d4-3&4 1,183 302
d5-1&2 772 202
d5-5&6 766 203
d5-3&4 765 203
d5-7&8 768 204

Table 4: Description of Dev set composed of 150 speakers and
Test sets of the best accurate fold

Device Dev Test
#speakers #tar/non #speakers #tar/non

d1 150 ∼870/ 30K 152 ∼884/ 30K
d4 150 ∼860/ 30K 152 ∼890/ 30K
d5 150 ∼550/ 30K ∼53 ∼550/ 30K

attribute-LLRs and the global LLR. The Dev pairs are employed
for training the logistic regression models, while the Test pairs
are utilized for evaluation of SR performance and calibration.
Details are provided in Figure 4 and as follows:

• Training phase: In the global LLR calibration, the Dev
global LLRs are employed to train the logistic regression
model, determining the optimal shifting and scaling pa-
rameters, αG and βG. In the selective fusion, the Dev
attribute-LLRs are firstly standardized, then used to train
sparse logistic regression model, finding the intercept
α and the optimal fusion coefficients of attribute-LLRs
{βj}m−1

j=0 . During the training of the latter, a grid search
is conducted to identify the optimal sparsity parameter λ
for each best fold, ensuring the best discrimination and
calibration on Dev set.

• Testing phase: In evaluation, we use the learned param-
eters αG, βG and we apply global calibration on LLRs
as in Equation (6). For a more calibrated LLR and more
accurate fusion of attribute-LLRs, we use the learned pa-
rameters α and βj as in Equation (7).

These experiments finally yield, for each approach, into 4
models for d1, 2 models for d4 and 4 models for d5. Details
about the Dev and Test sets are provided in Table 4.

5.2.4. Baseline

[10] proposed to assess NFI-FRIDA data for a FSR task using
the VOCALISE [30]. As we don’t have access to this software,
we use in this work the modified ResNet x-vector system pre-
sented in [9].

6. Calibration and speaker recognition
performance

In this section, we present the experimental results in terms
of calibration and speaker recognition error rates. Due to
the 15-fold protocol, we have 15 sets of results for each (de-
vice,sessions pairs). As the only parameters tuned on the dev
data are the calibration/fusion’s ones, we present the results ob-
tained on the best fold only, for each couple (device,sessions
pairs)4.

6.1. BA-LR generalisation ability

Table 5 presents the EER of the application of BA-LR on Test
sets, before and after fusion approach. Before applying the
fusion, the overall performance of BA-LR in all experiments
proves its discrimination capability and its generalization abil-
ity to the Dutch data. The superior discrimination performance
observed on d1 data, in contrast to d4 and d5, can be explained
by the higher quality of recordings in d1. Furthermore, d4 and
d5 represent forensic conditions and telephone intercepts, re-
spectively, which are not covered in neither the training data of
the BA-extractor nor the attribute behavioral parameters used in
BA-LR framework.

6.2. BA-LR Vs. baseline X-vector

For comparison reasons, results from the x-vector baseline are
also presented in Table 55. Before fusion calibration, BA-LR
exhibits a marginal decline in performance for d1, particularly
more pronounced for d4 and d5, when compared with x-vectors.
This loss, though indicative, is believed to be compensated by
two key factors: the dimensionality reduction of BA-vectors by
≈40 times, and the interpretability aspect inherent in the LR
computation offered by BA-LR, which is highly appreciated in
a forensic context.

4The complete results are available on demand, but not add use-
ful information, except the variability due to random selection of target
pairs inside a quite limited cohort.

5The results of the baseline X-vector are calculated using all the
data, thus breaking the k-fold protocol. Care should therefore be taken
when comparing results.



Table 5: Speaker recognition performance of BA-LR on Test set
before and after fusion, for the best fold. X-vector performance
is also provided for comparison.

Device-Sessions BA-vectors X-vectors1

BA-LR BA-LR Fusion Cosine
EER (205 BAs) EER #BAs EER

d1-1&2 1.0% 1.87% 132 1.02%
d1-5&6 0.96% 1.2% 139 0.85%
d1-3&4 1.22% 1.83% 149 0.74%
d1-7&8 0.43% 0.5% 159 0.28%
d4-1&2 2.07% 2.37% 119 1.59%
d4-3&4 4.27% 2.82% 144 1.43%
d5-1&2 10.05% 7.31% 101 8.16%
d5-5&6 11.2% 7.84% 128 9.53%
d5-3&4 10.72% 7.18% 127 9.7%
d5-7&8 12.61% 7.59% 124 11.1%

1 These results are indicative only, as they are calculated based on all
comparison pairs corresponding to each device-session.

Table 6: Cllrmin/act computed with BA-LR before (Non-
Calibrated) and after (Calibrated) applying calibration and fu-
sion approaches (results for the best fold)

Device-Sessions Non-Calibrated Calibrated
Global Fusion

Cllrmin Cllract Cllrmin Cllract Cllrmin Cllract
d1-1&2 0.04 0.60 0.04 0.08 0.07 0.10
d1-5&6 0.04 0.64 0.04 0.06 0.05 0.078
d1-3&4 0.04 0.64 0.04 0.06 0.07 0.08
d1-7&8 0.01 0.59 0.01 0.03 0.02 0.02
d4-1&2 0.08 1.71 0.08 0.10 0.10 0.10
d4-3&4 0.16 8.26 0.16 0.16 0.1 0.12
d5-1&2 0.35 8.78 0.36 0.38 0.26 0.30
d5-5&6 0.41 10.2 0.41 0.45 0.28 0.30
d5-3&4 0.35 10.0 0.35 0.38 0.26 0.27
d5-7&8 0.42 10.1 0.42 0.43 0.27 0.28

6.3. Calibration and fusion results

Table 6 shows the calibration performance of BA-LR scores be-
fore and after calibration in terms of Cllrmin/act. The LLRs ob-
tained with BA-LR are initially miscalibrated, which is particu-
larly noticeable for d4 and d5. After calibration, the global cali-
bration approach effectively converts these miscalibrated LLRs
into well calibrated. Interestingly the selective fusion approach
improves also the overall discrimination performance of BA-
LR, especially on d4 and d5, as shown in Table 5. It also out-
performs the X-vector system, although this comparison is not
completely fair, as the selective fusion takes advantage of in-
domain data when the X-Vector system is strictly trained on
out-of-domain date. Nevertheless, for d1, where the recordings
are of high quality, the fusion approach shows a slight perfor-
mance loss compared to the EER calculated using all BAs. This
might be due to an overfitting of the model.

6.4. EER and Cllr Vs. Number of selected attributes

Using the selective fusion model, each experiment results in
the selection of a subset of attributes, as illustrated in Table 5.
On average, the number of attributes selected represents ∼67%
of the initial set (i.e., 205 BAs), for both d4 and d5 experi-
ments. For more insights into this selection process, Figure 5
illustrates an example of the evolution of both EER and Cllrcal
(i.e., Cllract-Cllrmin) with respect to increasing number of at-
tributes, for the optimal fold. As the values of λ decrease, and
consequently, the number of attributes increases, the EER con-
sistently decreases until reaching a certain number of attributes,
after which it starts to rise again. The Cllrcal exhibits a parallel
behavior to the EER, with the optimal EER aligning with the

Figure 5: An example of EER and Cllrcal evolution using BA-
LR, along with the number of attributes, for fold 8 and d5-5&6

minimum Cllrcal. This observation facilitates the identification
of the optimal number of attributes that ensures both efficient
discrimination and calibration performance.

7. Conclusion
In this article, we set out to bring the BA-LR approach closer to
the needs of forensic applications and to evaluate its capabilities
in this application context. To this end, we focused on a few as-
pects, including LR calculation and calibration, and conducted
validation using the forensically realistic NFI-FRIDA database.
We’ve maintained all other components of our pretrained sys-
tem without any domain tuning or adaptation. We first proposed
a method for calculating the attribute-LLRs that is more rational
and easier to interpret forensically, compared with the original
BA-LR. We then applied a calibration solution for the global
LLRs using logistic regression. Additionally, we proposed an
approach for merging attribute LLRs, also utilizing logistic re-
gression, capable of calibrating the final LLR.

The overall performance obtained on NFI-FRIDA proved
the generalization power of BA-LR, even though the BA-
extractor model and BA-related parameters were trained on a
different language and condition far from the forensic ones.
Compared to baseline x-vector, an average slight increase in
EER of 0.85% for all devices is observed using BA-LR, except
for d4 (1.66% average EER increase). The global Logistic-
Regression based calibration approach showed its abilities to
produce well calibrated LLRs, even when the mismatch with
the training set was particularly large. A potential limitation of
BA-LR lies in assuming independence between the BAs used to
compute the global LLR as a sum of the attribute-LLRs, which
is not theoretically guaranteed and is challenging to achieve in
practice. The fusion approach we proposed enabled us to reg-
ulate the remaining potential correlation between attributes. It
offered significant performance gains in difficult scenarios, oc-
casionally surpassing x-vectors. This was achieved thanks to
its ability to completely eliminate the influence of certain BAs,
particularly affected by domain mismatches. As expected, this
Logistic Regression based fusion also provided a level of cali-
bration equivalent to the global calibration.

However, while these results are indeed promising, it is cru-
cial to approach the forensic application of SR with caution
[31]. Further research is necessary for real-world deployment.
Specifically, our aim is to continue experimenting with larger
and more diverse databases. This will help us understand the
influence of the selected training database’s significance and the
extent to which our findings can be generalized to specific cases
commonly encountered in forensic contexts.
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