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Efficiency and Application Fees in School Choice∗

Cyril Rouault†

Abstract

This paper examines the impact of application fees on student strategies within
the deferred acceptance mechanism. We demonstrate that these fees can lead to
Pareto-efficient allocations. However, they may also inhibit the existence of Nash
equilibria that would result in assignments Pareto-dominating the student-optimal
stable assignment. This issue always arises when application fees are positive for all
students at a given school.
JEL Classification: C78, D47, D82.
Keywords: Matching; Application Fees; Efficiency; Stability; Nash Equilibrium

1 Introduction

Since Gale and Shapley’s (1962) seminal paper, matching theory has influenced the
design of college admission systems (Roth and Sotomayor 1990; Abdulkadiroğlu and
Sönmez 2003). A commonly used mechanism is the student-proposing deferred accep-
tance mechanism (DA). DA leads to the stable assignment preferred by students and
is strategy-proof for students (Roth, 1982). In DA, schools must rank students by re-
viewing applications, a process that incurs costs. To cover part of these costs or to limit
the number of applicants, application fees are often introduced. This paper studies the
impact of implementing these application fees on student strategies.
In this context, we consider lexicographic preferences on the outcomes of DA, where
students prioritize assignments first and consider application fees second. This assump-
tion is justified by the relatively low application fees, as students typically prefer being
assigned to a better school even if it involves paying a fee. Empirical evidence from He
and Magnac (2022) supports this.
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Implementing constraints on students impacts their strategies.1 Although application
fees are low, they constrain students in their choice of schools to which they apply. We
examine application fee profiles that ensure the existence of a Nash equilibrium resulting
in an assignment that Pareto-dominates the student-optimal stable assignment (Exam-
ple 1).2 Our main result identifies the conditions on application fee profiles that prevent
a Nash equilibrium. Specifically, if a student faces a positive application fee for the
school obtained in the student-optimal stable assignment, no Nash equilibrium results
in a Pareto-dominating assignment that the student prefers.
To prove this result, we show that in a Nash equilibrium, students apply to a school with
an application fee only if they are assigned to it. If a student does not apply to the school
obtained in the student-optimal stable assignment, another student has a profitable de-
viation, contradicting the existence of a Nash equilibrium. Therefore, if all students face
a positive application fee for a school, no Nash equilibrium under DA improves their
assignment, implying that uniform application fees hinder assignment efficiency.

2 Model

A school choice problem with application fees is a tuple π = (I, S, P, ≻, q, C). I and S

denote the finite sets of students and schools, respectively. For each i ∈ I, Pi is a strict
preference ordering over S ∪ {i}, where i denotes the outside option. Let P ≡ (Pi)i∈I .
For each s ∈ S, ≻s is a strict priority ordering over the set of students, and qs is the
capacity of school s. q ≡ (qs)s∈S denotes the capacity vector and ≻≡ (≻s)s∈S . The ap-
plication fees profile is a |I| × |S|-dimensional matrix C, where each element ci,s ∈ {0, 1}
represents the application fee of student i to school s: ci,s = 0 the application fee for
student i to school s is zero, ci,s = 1 the fee is positive. Let C0 denote a null-application
fees profile such that for each i ∈ I and s ∈ S, ci,s = 0. Let Π be the set of all problems.
Throughout I, S, ≻, and q are fixed, then we denote a problem by (P, C).

An assignment is a mapping µ : I ∪ S → I ∪ S such that for each i ∈ I, µ(i) ∈ S ∪ {i},
for each s ∈ S, µ(s) ∈ 2I with |µ(s)| ≤ qs, and for each i ∈ I, µ(i) = s if and only if
i ∈ µ(s). If µ(i) = i, we say that i is unassigned at µ. i’s prefences Pi over schools
implicitly define a preference relation Ri over assignments as follows: µ(i)Riµ

′(i) if and
only if µ(i)Piµ

′(i) or µ(i) = µ′(i).
1See Haeringer and Klijn (2009) for capacity constraints and Chade et al. (2014) for application fees.
2Bando (2014), Dur and Morrill (2020), and Rouault (2023) study Nash equilibria achieving assign-

ments that Pareto-dominate the student-optimal stable assignment without application fees.
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An assignment µ is stable if:
• µ is individually rational, i.e., for each i ∈ I, µ(i)Rii,
• µ is non-wasteful, i.e., for each i ∈ I and each s ∈ S, sPiµ(i) implies |µ(s)| = qs,
• there is no justified envy, i.e., for each i, j ∈ I with µ(j) = s, sPiµ(i) implies j ≻s i.

Let S(P, C) denote the set of stable assignments in problem (P, C). An assignment µ

Pareto-dominates an assignment µ′ if for each i ∈ I, µ(i)Riµ
′(i) and there exists at least

one i such that µ(i)Piµ
′(i). An assignment is efficient if it is not Pareto-dominated by

any other assignment. Let µI be the student-optimal stable assignment.

A mechanism φ selects an outcome φ(P, C) = (µ, cP ) for each problem (P, C) and
φ(P, C)(i) = (µ(i), cPi) the outcome for i. φ defines a game in which students are the
players. Let the strategy Qi be an ordered list of schools corresponding to the reported
preferences of student i over schools. We denote by A(Qi) the set of schools reported by
student i under strategy Qi. Given C, let cQi = ∑

s∈A(Qi) ci,s be the number of school
with a positive application fee under strategy Qi. Let Q ≡ (Qi)i∈I be a strategy pro-
file of students and cQ ≡ (cQi)i∈I . We consider lexicographic preference over outcomes,
such that (µ(i), cQi)⋗i (µ′(i), c′

Qi
) if and only if µ(i)Piµ

′(i) or µ(i) = µ′(i) and cQi < c′
Qi

.

A strategy profile Q is a Nash equilibrium under φ if for each i ∈ I, there is no strategy Q′
i

such that Q′
i ̸= Qi, and φ((Q′

i, Q−i), C)(i) ⋗i φ(Q, C)(i). Let DA(P, C) denote the out-
come of the deferred acceptance mechanism (DA) for problem (P, C) and NE(DA(P, C))
the set of strategy profiles Q that are Nash equilibria under DA for problem (P, C).

We now introduce an example to illustrate our model and analysis.

Example 1. Consider a problem π = (I, S, P, ≻, q, C0) such that I = {i1, i2, i3}, S =
{s1, s2, s3}, for each s ∈ S, qs = 1. Preferences and priorities are given in the following
tables, and (·) indicates that priorities are irrelevant to the problem:

≻s1 ≻s2 ≻s3

i3 i1 ·
i1 i2 ·
i2 i3 ·

Pi1 Pi2 Pi3

s1
∗ s1 s2

∗

s2 s2 s1
s3 s3

∗ s3

µI is underlined in students’ preferences and µ∗ is denoted by a star (∗). It is clear that
µ∗ is the only assignment that Pareto-dominates µI and µ∗ is efficient. From the liter-
ature, we know that DA(P, C0) ∈ NE(DA(P, C0)) (Gale and Shapley, 1962). Consider
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now C, such that ci2,s2 = 1 and 0 for other elements. There exists Qi2 : s1, s3, i2, s2

such that DA((Qi2 , P−i2), C)(i2)⋗i2 DA(P, C)(i2) and DA(P, C) /∈ NE(DA(P, C)). By
implementing the application fee profile C, there exists a profitable deviation for i2,
which is to not apply to s2. Considering the strategy P−i2 , it is straightforward that
i2 is indifferent between applying to s2 or not. Following i2’s deviation, the student
assignment is Pareto improved. For each i ∈ I, DA((Qi2 , P−i2), C)(i) = (µ∗(i), 0).

3 Results

In this section, we introduce the reasoning to prove our main result with Proposition 1.
Proposition 1 implies that for all Nash equilibria, students apply to at most one school
with a positive application fee.

Proposition 1. For any problem (P, C) if Q ∈ NE(DA(P, C)) with DA(Q, C) =
(µ, cQ), then for each i ∈ I, cQi ≤ 1.

Proof. By contradiction, suppose there exists Q ∈ NE(DA(P, C)) such that there ex-
ists i ∈ I, with DA(Q, C)(i) = (µ(i), t) with t > 1. Consider Q′

i : µ(i), i, such that
DA((Q′

i, Q−i), C)(i) = (µ′(i), t′). We need to show that (µ′(i), t′) ⋗ (µ(i), t). Suppose
(µ(i), t) ⋗ (µ′(i), t′). This implies either µ(i)Piµ

′(i) or µ(i) = µ′(i) and t′ > t > 1. Since
|A(Q′

i)| = 1, we have t > t′, meaning there exists s ∈ A(Qi) such that s ̸= µ(i) ̸= µ′(i).
However, i has been rejected from s, and by the construction of DA, this leads to a
contradiction. Hence, µ(i) = µ′(i) and Q is not a Nash equilibrium. ■

The intuition of Proposition 1 is that students do not pay application fees for schools
to which they are not assigned. When students’ strategies include more than one school
with a positive application fee, and considering the strategies of other students as fixed,
they have a profitable deviation by removing schools from their strategies.
Theorem 1 states that if for i, the application fee for µI(i) is positive, then there is no
Nash equilibrium with C such that the assignment obtained µ Pareto-dominates µI , and
i prefers µ(i) to µI(i).

Theorem 1. Consider a problem (P, C) and i ∈ I such that ci,µI(i) = 1. Then, there is
no Q ∈ NE(DA(P, C)) such that DA(Q, C) = (µ, cQ) and µ Pareto-dominates µI with
µ(i)PiµI(i).

Proof. By contradiction, suppose there exists Q ∈ NE(DA(P, C)) with DA(Q, C) =
(µ, cQ) and µ Pareto-dominates µI with µ(i)PiµI(i). This implies that µI is not efficient.
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• If ci,µ(i) = 1, then cQi > 1. By Proposition 1, we know that Q is not a Nash
equilibrium.

• If ci,µ(i) = 0, following the argument of the proof of Proposition 1, we know that
µI(i) /∈ A(Qi). We need to show that if µI(i) /∈ A(Qi), then Q is not a Nash
equilibrium.

Since µI in stable and µ Pareto-dominates µI , we have µ(i) ̸= i because µI(i) is individ-
ually rational and µ(i)PiµI(i)Rii. Thus, there exists i′ ∈ I, i ̸= i′, µI(i′) = µ(i) such that
i′ ≻µI(i′) i. By the construction of DA, i was rejected from µI(i′) in a chain of rejections
initiated by some i∗ ∈ I.

• Case 1: If i∗ = i, then i generates a chain of rejections and is rejected from µI(i′).
According to Kesten (2010), i is an interrupter. Proposition 3 of Kesten (2010)
states that i is indifferent between applying to µI(i′) or not, hence i cannot be
assigned to µI(i′) in DA(Q, C).

• Case 2: If i∗ = i′, then according to cycle-solving methods (Dur et al., 2019), no
improvement is possible, and µ does not Pareto-dominate µI , which contradicts
our assumption.

• Case 3: If i∗ ̸= i and i∗ ̸= i′. i∗ generates a chain of rejections and is rejected from
µI(i′) at a later step of DA. Therefore, µI(i′)Pi′′µI(i′′) and i′ ≻µI(i′) i′′ ≻µI(i′) i.
After being rejected from µI(i′), i applies to µI(i), rejects a student, which in turn
will lead to the rejection of i′ who will apply to µI(i′), and reject i∗. Thus, when
µI(i) /∈ A(Qi), the chain of rejection cannot occur, and i∗ can reject i without
subsequently being rejected. Since I is finite the reasoning continues until i is
rejected from µI(i′).

Therefore, when µI(i) /∈ A(Qi), at least one student has a profitable deviation, and Q is
not a Nash equilibrium. ■

Theorem 1 can be illustrated in Example 1. As mentioned, if an application fee profile is
such that ci2,s2 = 1 is introduced, then i2 does not apply to s2. Suppose ci3,s1 = 1. Given
Qi1 = Pi1 and Qi2 , i3 has a profitable deviation: s1 /∈ A(Q′

i3). Let Q′
i3 : s2, s3, i3, s1

denote the new strategy of i3. Then DA((Q′
i3 , Q−i3), C)(i3) ⋗i3 DA((Pi3 , Q−i3), C)(i3)

with DA((Q′
i3 , Q−i3), C)(i3) = (s2, 0). However, i2 has a profitable deviation. By ap-

plying to s2, i2 will reject i3, who will be assigned to s3.
In practice, application fees for a given school are uniform for all students. Following
Theorem 1 if the application fee for a given school s is positive for all i, then there is
no Nash equilibrium leading to µ that Pareto-dominates µI and students µI(s) prefer
µ to µI . Hence, application fees shrink the set of Nash equilibria and prevent Pareto
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improvement for some students.
When all schools implement positive application fees for all students, Proposition 1 im-
plies that students apply to at most one school in each Nash equilibrium. Proposition
2 completes Theorem 1 by stating that C shrinks the set of Nash equilibria and only
stable assignments can be obtained.

Proposition 2. Consider a problem (P, C). If for each i ∈ I, s ∈ S, ci,s = 1, then for
each Q ∈ NE(DA(P, C)) with DA(Q, C) = (µ, cQ), we have µ ∈ S(P, C).

Proof. From Proposition 1, we know that for each Q ∈ NE(DA(P, C)), for each i, |A(Qi)| ≤
1. Then, by Theorem 2 of Gale and Sotomayor (1985) and Theorem 5.3. of Haeringer
and Klijn (2009), it directly follows that only stable assignments can be obtained at
Nash equilibrium when students apply to at most one school. ■

4 Conclusion

In this paper, we show that application fees can restrict the set of Nash equilibria under
DA. Furthermore, Nash equilibria eliminated by these fees result in assignments that
Pareto-dominate the student-optimal stable assignment.
This paper highlights the importance of the design of application fee profiles and college
admission mechanisms. A natural follow-up research is to explore mechanisms that
offer free applications to students. These could allow students to apply to schools to
which they are assigned in the student-optimal stable assignment, thereby preserving the
Nash equilibrium. Moreover, laboratory experiments could complement these theoretical
studies.
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