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ABSTRACT 

 

Wavefront sensors have now become core components in the fields of metrology of optical systems, 
biomedical optics, and adaptive optics systems for astronomy. However, none of the designs used or 
proposed so far achieve simultaneously a high spatial resolution at the pupil of the tested optics and absolute 
measurement accuracy comparable to those of modern laser-interferometers. This paper presents an 
improved wavefront sensor concept that reaches both previous goals. This device named Crossed-sine phase 
sensor (CSPS) is based on a fully transparent gradient phase filter (GPF) placed at an intermediate location 
between the virtual pupil and image planes of the tested optics. The theoretical principle of the sensor is 
described in Fourier optics formalism. Numerical simulations confirm that a measurement accuracy of 
/100 RMS is achievable. The CSPS also offers the advantages of being quasi-achromatic and working on 
spatially or spectrally extended, natural or artificial light sources. 
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1 INTRODUCTION   

 

Throughout the years, Adaptive optics (AO) systems have become essential for various applications such as 
the metrology of optical components or systems [1-3], biomedical optics and ophthalmology for cornea or 
retinal diagnostics [4-5], astronomical observations [6], and characterization of laser beams [7]. The core 
element of these systems is undoubtedly the Wavefront sensor (WFS) measuring an incoming distorted 
wavefront in real time and sending this information to a deformable mirror compensating for the input 
Wavefront errors (WFEs). Nowadays the most popular WFS are the Shack-Hartmann (SH) based on a 
micro-lens array placed at the pupil of the tested optical system [8] and the Pyramid sensor (PS) that 
combines four pupil images seen through a faceted prism located at the focus of the system [9]. Less known 
are the Optical differentiation sensor (ODS) making use of a Gradient density filter (GDF) located in the 



image plane of the tested optical system [10] and the Multi-wave lateral shearing interferometer [11] based 
on the implementation of a chessboard phase grating [12]. All these concepts present some drawbacks. For 
example, the SH WFS is limited in terms of WFE measurement accuracy and spatial resolution due to the 
pitch of its micro-lenses array. Conversely, the PS can achieve a high spatial resolution that is only limited 
by the pixels number of the detector array recording the pupil images. Its main disadvantage is the need to 
modulate the acquired signals, thus moving the pyramid prism continuously and leading to technical 
difficulties. Because the ODS makes use of a Gradient density filter (GDF, it is not well suited to 
astronomical observations [13-15]. Recently, its original concept was improved by replacing the usual 
on-axis light source with four off-axis ones whose images are acquired simultaneously, thus giving a 
multiplex advantage. This concept allows reaching measurement accuracy comparable to those of Fizeau 
laser-interferometers [16-17]. However this design named Crossed-sine sensor (CSS) still makes use of a 
GDF, thus implying throughput losses. 

In this paper the GDF is replaced with a Gradient phase filter (GPF) ensuring maximal luminosity of the acquired pupil images. 
Referring to the CSS, this new concept was renamed as the Crossed-sine phase sensor (CSPS). It is insensitive to disturbances 
generated by the environment such as micro vibrations and atmospheric turbulence, only requires standard optical components, and 
is applicable to natural or artificial light sources, being spatially and spectrally extended or not. The paper presents the optical 
concept and design of the CSPS. The experimental validation of this concept will be the subject of a future paper. It is firstly 
described in section 2, including the GPF and two possible optical schemes. Section 3 explains its theoretical principle in the 
framework of Fourier optics as well as the derived data processing algorithm. The achievable measurement accuracy is evaluated 
with the support of numerical simulations presented in section 4. The general properties of the CSPS are summarized in the 
concluding section 5. 

 

2 THE CROSSED-SINE PHASE SENSOR: CONCEPT AND DESIGN 

The CSPS concept makes use of a gradient phase filter (GPF) to modulate the complex electric field sliced 
by a lenslet behind an image plane. The CSPS takes its inspiration from the reverse Hartmann test [2, 18] 
and from optical differentiation sensors [10]. These sensors make use of a real or virtual diffraction grating 
located between the exit pupil of the tested optics and its real image plane. This diffraction grating can either 
be a classical one or a volume phase holographic grating (VPHG) appended to it. This grating generates a 
series of ghost images of the exit pupil in which the input wavefront is coded into varying intensities. The 
case of the phase grating described in this paper, however, involves infinite series of Bessel functions, thus 
adding not negligible complexity to the previous concepts. To support the reader in concept understanding, 
we report in Section  3.1.2 a simplified graphical interpretation. Nevertheless, the data reduction process 
presented in section 3.2 allows solving this difficulty. 
 
2.1 Design description 

The CSPS design essentially comprises two elements: an optical measurement head and a calculation unit 
(Figure 1):  
- The optical measurement head simultaneously acquires several greyscale images of the pupil plane. It is 

composed of the GPF and of an optical re-imaging system that includes a lenslet array. 
- The calculation unit is used for digital reconstruction of the WFE from the acquired images. 

These two elements are described in detail in the next sections. 
 
2.1.1 Coordinate systems and scientific notations 

In this section we describe the employed Cartesian coordinate depicted in Figure 2. 
- The OXYZ reference frame is attached to the exit pupil of the tested optical system. The point O is 

located at the pupil centre and OZ is the optical axis of the system. Points P in the pupil plane OXY are 
denoted by their Cartesian coordinates (x,y) and the WFE to be measured is noted (x,y). 



- The O’X’Y’Z reference frame is attached to the focal plane of the tested optics. Point O’ is the nominal 
focus located at a distance f’ = OO’ from the pupil, with f the focal length of the system. Points M’ located 
in the O’X’Y’ plane are denoted by their Cartesian coordinates (x’,y’). 

- The O”X”Y”Z reference frame is attached to the plane of the detector array where the pupil images are 
formed. Points P” located in the O”X”Y” plane are denoted by their Cartesian coordinates (x”, y”). Since 
they are strictly homothetic to the coordinates (x,y), they will be replaced in the remainder of the texts. 

 
Moreover, two additional coordinate systems are attached to the GPF and to its virtual image through the 
optics (see Figure 2): 
- The FXFYFZ reference frame at the location of the real, physical GPF with Cartesian coordinates (xF,yF). 
- The F’X’VY’VZ reference frame at the location of its virtual image between the OXY and O’X’Y’ planes, 

with Cartesian coordinates (x’V,y’V). 
 

2.2 Gradient Phase Filter (GPF) 

The GPF constitutes the essential element of the CSPS and it is located inside the optical measurement head. 
Its transmission is expressed by a complex function defined mathematically as the product of two sinusoidal 
phase functions: 

        pyxpyxjyxT FFFFFFF   2sin2sin2exp, 0            (1) 

that also writes as: 

       pxpyjyxT FFFFF  22cos22cosexp, 0                        (2) 

where j is the complex root of –1,  the operating wavelength, 0 the amplitude of the phase gradient, and p 
the spatial period of the filter assumed to be identical in both directions XF and YF. It should be noted that 
this component belongs to the family of VPHGs, which are commonly used in the fields of spectroscopy and 
astronomy [19-20]. Thus they are inexpensive and available from many suppliers. 

The function  FFF yxT ,  is illustrated with false colors in Figure 3. It shows the locations of the 

observation points Fi (1  i  9) at the GPF plane. They are denoted by the vectors FFi and are defined as 
follows: 

- They can be located along the XF and YF axes as indicated by light blue dots in Figure 3 (i = 2, 4, 6 and 8), 

- Their locations can be rotated by an angle of 45 degrees with respect to the XF and YF axes as indicated by 
dark blue dots in Figure3 (i = 1, 3, 7 and 9),  

- It must be noted that any combination of these points is possible, thus involving 4, 5, 8 or 9 different 
observation points. A central observation point noted F5 coincides with point F and may be used for 
radiometric calibration purpose. 

 

2.3 Optical schemes  

The main functions of the tentative optical layouts described below are as follows: 

- Creating a virtual image of the GPF located in front or behind the exit pupil of the tested optics, 

- Ensuring the capture of different pupil images seen from the observation points L'i located in the image 
plane O’X’Y’ (1  i  9), 

- Preventing any pupil images overlap in the plane of the detector array. 



Two different optical schemes denoted V1 and V2 are depicted in Figure 2. They show the distances 
between the main optical components, including the lenslet array and the real GPF and its virtual image. The 
nomenclature of these parameters is given in Table 1. They are of two different kinds: basic parameters of 
the experiment, such as the wavelength of the incoming radiation and the numerical aperture of the tested 
optics, and free parameters to be optimized in order to improving the WFE measurement accuracy. These 
are marked with asterisks in Table 1. They include the spatial period p of the GPF, the amplitude 0 
expressed as a -fraction and the distance z’ from its virtual image to the image plane O’X’Y’. 

Each of these optical schemes has its own advantages and drawbacks. The V1 scheme presents the best 
radiometric transmission. In return, it uses an unconventional lenslet array where the optical axes of the mini 
lenses are shifted laterally with respect to their contours. The V2 scheme only makes use of conventional 
optical components (the lenslet array and a telecentric lens). Conversely, its radiometric transmission is 
slightly lower. 

It should be noted that two other options were envisaged: the first one consists in inverting the locations of 
the lenslet array and the telecentric lens, and the second in replacing that lens with a second lenslet array. 
None of them exhibited better performance or simpler optical design, thus they are not presented here. We 
finally selected the V2 optical scheme as the reference, which is studied in the remainder of the text. 

Table 1: Nomenclature and numerical values of the parameters used in numerical simulations. 

 Symbol Value Unit 

Wavelength of incoming electromagnetic radiation  0.5 micron 

Wavenumber of incoming electromagnetic radiation k = 2/ 20000 cm-1 

GPF spatial period (*) p 1 mm 
GPF phase amplitude (*) 0   rad 

Focal length of tested optical system  f 500 mm 
Aperture number of tested optical system N 20 - 
Lenslet array dimensions lM x hM 1 x 1 mm 
Focal length of lenslet array (*) fM 28.5 mm 
Distance from image plane O’X’Y’ to lenslet array (*) zM 1 mm 
Distance from lenslet array to GPF zF 31.5 mm 
Distance from image plane O’X’Y’ to virtual GPF (*) z’ -200 mm 
Distance from GPF to second lens z2 23.3 mm 
Distance from second lens to detector array z” 37 mm 

(*) Optimized parameters 

 

3 THEORETICAL ANALYSIS 

3.1 Fresnel diffraction analysis 

Finding analytical expressions of the pupil images I”i(x”,y”) formed on the detector array (with 1  i  9) is 
not very difficult but long and cumbersome. They are obtained from a Fresnel diffraction analysis that was 
described in Ref. [18] and is summarized blow. It makes use of mathematical and condensed notations 
defined in Table 2. 

 



 

Table 2: Nomenclature of mathematical symbols and their condensed notations. 

Symbol Mathematical 
notation 

Condensed 
notation 

Pupil transmission map in the exit pupil plane OXY of the tested optics. It is defined to be a 
pillbox function equal to unity inside a disk of diameter D and to zero outside of it  yxBD ,  DB  

Wavefront error (WFE) to be measured   yx  ,    

WFE slopes along X-axis    xyx  ,  X  

WFE slopes along Y-axis    yyx  ,  Y  

Bessel functions of the first kind at the mth order   0mJ  mJ  

Phase-shifts of off-axis images from the O’X’Y plane   = /2 – 

 

3.1.1 On-axis observation point 

In Fresnel diffraction theory, the complex amplitude diffracted in the plane of the virtual GPF can be 
expressed as [21]: 

              dxdydyxikdyyxxikikBdyxikdik
d

i
yxA

yx

VVDVVVVV 


  2expexpexp2expexp, 22

,

22


 (3) 

where zfd   is the Fresnel diffraction distance from the pupil to the virtual filter plane F’X’VY’V. 

Similarly, a reversed Fresnel diffraction operation allows expressing the complex amplitude  yxA  ,  

formed in the plane of the detector array, which is optically conjugated with the exit pupil of the tested 
optics:  
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,
                   (4) 

 
where the multiplying phase terms are omitted because they will disappear when computing the image 

intensity, and  VVV yxT  ,  is the complex transmission of the virtual GPF derived from Equation 2: 

       VVVVVVV pxpyjyxT   22cos22cosexp, 0                         (5)
 

 
Referring to the V2 optical scheme in Figure 2, the spatial period of the virtual GPF is equal to 

   FV zfzfpp  . This expression of  VVV yxT  ,  can be developed into a series of Bessel 

functions by use of the Jacobi-Anger expansion, stating that for any z and   parameters [22]: 

    mzJzJzj m
m

m cos)()1(2)(cosexp
1

0 




 ,                           (6) 

where )(zJm  are Bessel functions of the first kind at the mth order. Using the condensed notations in Table 

2, Equation 6 can be rewritten as: 
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With: 
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Inserting this last expression of  VVV yxT  ,  into Equation 4, then reducing the arguments of the complex 

exponentials and reordering the summation operators leads to the mathematical development that is 
described into the Appendix 1. Then the expression of the complex amplitude distribution in the O”X”Y” 

 yxA  ,  can be written as: 
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(8) 

 

It is now possible to calculate the image intensity of the central image  yxI  ,  by taking the square 

modulus of the complex amplitude  yxA  , . This mathematical development is not extremely difficult 

but very long and cumbersome. It will be found that  yxI  ,  is composed of quasi-infinite series of 

cosine terms proportional to fourth-order coefficients with respect to 0J , mJ  and nJ , i.e. 
2

0
2

0
2
0

3
0

3
0

4
0 ,,,,, nmnmnmnm JJJJJJJJJJJJJJ  and 22

nm JJ . Instead of giving a complete expression of 

 yxI  ,  here, we should firstly simplify it with the help of a graphical interpretation that is described 

below. 
 

3.1.2 Graphical interpretation 

Figure 4 shows different histograms of the Bessel function products for the cases when 0 = /2 (Figure 
4-a), 0 =  (Figure 4-b) and 0 = 3/2 (Figure 4-c). Figure 4-d demonstrates that the most powerful 
component is observed in the range 0  [0.5 - 0.6], and that high order terms become negligible when 0 

>.  A Taylor expansion of Equation 8 at the fourth order with respect to 1J  only leads to the following 

analytical approximation:  



The complex amplitude  yxA  ,  formed on-axis: 
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and the resulting on-axis intensity writes as: 
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with: 
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3.1.3 Off-axis observation points 

The coordinates of the observation points Li (1  i  9), into the image plane O’X’Y’ are defined in Figure 2 
by the vectors O’L’I whose coordinates are defined as:  
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for points located along the XF and YF axes (i = 2, 4, 6, 8) 
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for points located at 45 degrees from these axes (i = 1, 3, 7, 9) 
 
 

 

 

(11) 

where m and n are non-zero integers and G is defined as the gain factor of the CSPS. Given the optical layout 
V2 described in Figure 2-V2 and the analytic notations in Table 1 it is equal to: 

zp

zf
zG F 


 22 .                                                              (12) 

It may be noted that when projected into the virtual GPF plane F’X’VY’V the points Li correspond to the 
offset red points Fi linked with a vectorial relation:  

ii LOFF 


f

zf F .                                                              (13) 

From the off-axis observation points the WFE to be measured includes additional tilt terms writing as: 

   
f

yxyxW
sL'O' i 

 .
,,                                                         (14) 

with 1 ≤ i ≤ 9, s is a vector of coordinates  yx , , and the coordinates of vectors iL'O'  are those defined 

by Equations 11. They are defined so to generate phase-shifts equal to  = /2 with respect to the central 
image, i.e.  

 = /2 along X–axis for images numbers 4 and 6, 

 = /2 along Y–axis for images numbers 2 and 8  ̧

 = /2  along both X and Y axes for images numbers 1, 3, 7 and 9. 
 



 
Therefore some cosine terms in Equation 10 will turn into sine functions and the expressions of the intensity 
distributions observed at the pupil plane from the off-axis observation points are given into Appendix 2. 

In principle, combining the previous expressions of  yxI ki  ,  with 1  i  9 allows determining all their 

sine terms, and then their arguments that are proportional to the searched WFE slopes X  and Y . 
Practically speaking however, such analytical expressions are approximate, thus an alternative way to 
extract more precise data is described in the next subsection. 
 

3.2 Data reduction process 

Here we make use of a double Fourier transformation algorithm that was developed previously in the 
framework of reverse Hartmann wavefront sensing [18]. It consists in projecting the complex amplitude 
from the exit pupil plane of the tested optics to the virtual GPF via a Fresnel transform, multiplying it with 
the GPF transmission, and returning into the pupil plane via a reverse Fresnel transform to get the final 
images. The data reduction process is described below and illustrated in Figure 5. 

1) Start with one of the acquired images  yxI i  ,  with 1  I  9, 

2) Calculate the Fourier transformation of  yxI i  , , 

3) As illustrated in Figure 5, isolate the first satellite peak of this Fourier transform, which is located 
along the horizontal axis U at the spatial frequency u = G/2d", 

4) Recentre this peak on the origin of the UV plane, 

5) Calculate the inverse Fourier transform of the re-centered peak. The result is a complex function 
spanning into the O”X”Y” plane, 

6) Extract the phase of this complex function, which is equal to –j G X /2, 

7) Repeat step 3 by isolating the first satellite peak along the vertical axis V at the spatial frequency v = 
G/2d", 

8) Repeat steps 4 to 6. The phase of the complex function is now equal to –j G Y /2, 

9) Repeat all operations 1 to 8 for all the acquired images  yxI i  ,  with 1  i  9. 

Let us note that some preliminary processing of the acquired images  yxI i  ,  is needed, such as: 

- Correction of the background and spatial non-uniformity of the detector matrix (dark noise and flat field), 

- Separation of the sub-images  yxI i  ,  that are stored into different arrays, 

- Re-centring these sub-images on point O” (registration). 

Finally, the WFE  yx  ,  can be reconstructed from its slopes  yxX  ,  and  yxY  ,  by use of 
some classical algorithms such as Zernike modal fitting [23] or iterative Fourier transforms [24]. Here the 
second WFE reconstruction procedure is selected in view of its shorter computation time. Numerical 
simulations were carried out following that procedure, and the results are summarized in the next section. 

 

 

 



 

4 NUMERICAL SIMULATIONS 

 

The numerical simulations presented here make use of a complex amplitude propagation model of Fresnel 
diffraction that was described in Ref. [19]. They were made in the absence of detector which will be 
included in a future work. They are limited to the four “diagonal” images  yxI  ,1 ,  yxI  ,3 ,  yxI  ,7  

and  yxI  ,9  that are depicted in Figure 6. It has been checked that similar results are obtained with the 

“horizontal” and “vertical” images  yxI  ,2 ,  yxI  ,4 ,  yxI  ,6  and  yxI  ,8 . The simulation results 

are summarized in Table 3 and Table 4 for the cases of low and mid-order Zernike polynomials, 
respectively. The tables show the Peak-to-Valley (PTV) values and the RMS standard deviations of the 
achieved measurement accuracy. These results are illustrated in Figure 7 and Figure 8 which show false 
color views of the WFE slopes along the X” and Y” axes, the reconstructed WFE, and their differences with 
respect to the reference case. They were built from randomly defined coefficients of the first 16 Zernike 
polynomials (low-order case) and 48 Zernike polynomials (mid-order case). Their PTV and RMS values are 
equal to 0.114 PTV and to 0.016 RMS, and to 0.438 PTV and 0.054 RMS respectively. This type of 
wavefront errors is characteristic of optical aberrations or of mechanical deformation modes of mirrors or 
lenses. It also stands for differential errors between the science and metrology channels of an AO system. 

The numerical simulations with low-order Zernike polynomials show that the absolute measurement error is 
about  /120 RMS, which corresponds to relative errors of 5% RMS. A slightly worse performance is 
detected in measuring higher order Zernike polynomials. These figures are comparable to the precision 
achieved by laser-interferometers. One may also note in Figure 7 that the largest errors are located near to 
the pupil rim, meaning that better values are achievable over slightly reduced measurement areas (typically 
by 5% of the pupil diameter). 

 

Table 3: Numerical results of the CSPS simulations with low-order Zernike polynomials  16. 

Error type Reference Measured Difference 
Relative 

Difference (%) 
  

130 137 39 30 PV X-slopes (µrad) 
25 25 4 17 RMS 

151 157 51 34 PV 
Y-slopes (µrad) 

30 30 7 23 RMS 

0.787 0.785 0.057 7 PV 
Wavefront Error (waves) 

0.162 0.162 0.008 5 RMS 

 



 

Table 4: Numerical results of the CSPS with mid-order Zernike polynomials  48. 

Error type Reference Measured Difference 
Relative 

Difference (%) 
  

190 180 75 30 
PV X-slopes (µrad) 

39 39 11 28 RMS 

273 233 101 37 
PV 

Y-slopes (µrad) 
48 49 14 29 RMS 

1,013 0,979 0,219 22 
PV 

Wavefront Error (waves) 
0,216 0,214 0,027 13 RMS 

 

5 CONCLUSION AND FUTURE WORK 

 

This paper presents the design of a crossed-sine phase wavefront sensor which is based on a fully 
transparent gradient phase filter located between the virtual pupil and image planes of the tested optical 
system. It allows measuring and controlling the optical wavefronts on spatially or spectrally extended 
objects, either of the natural or artificial types. Its main features are as follows: 

- It makes it possible to achieve measurement accuracy comparable to that of laser-interferometers, i.e. one 
hundredth of the measurement wavelength typically, 

- It provides access to very high spatial resolution equivalent to several million pixels on the surface of the 
tested optical system, 

- It allows measurements to be carried out in a short time period (typically < 0.01 second) to overcome 
disturbances generated by the environment in the field of ophthalmology or astronomical applications,  

- Finally, it comes under the form of a small measurement head (maximum length  50 mm) that can easily 
be integrated into optical systems. 

The theoretical principle of the sensor was described in Fourier optics formalism. Numerical simulations 
confirmed that a measurement accuracy of /100 RMS is achievable with spatial resolutions about 1000 x 
1000 or more. This makes the crossed-sine phase sensor a good candidate for optical metrology, 
ophthalmology or astronomical applications in the future. In this prospect the development of a 
demonstrating prototype has been started. 

Further improvement of both the CSPS system and GPF is highly expected in the future, i.e.  a ray-tracing 
model of the measurement head, characterisation of the CSPS system (such as dynamic range, linearity and 
so on) and more precise design of GPF. At a later stage, we will make a CSPS prototype and compare its 
performance with classical SH, pyramid and multi-wave lateral shearing interferometer WFS designs. 

 

 

 

 

 



APPENDIX 1. EXPRESSING THE COMPLEX AMPLITUDE  yxA  ,  ON-AXIS 

 

Inserting the expression of  VVV yxT  ,  in Equation 2 of the main text into relation 4, them reducing the 

arguments of the complex exponentials, and reordering the summation operators leads to: 
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(A1) 

Recognizing the integrals   
vu

dudv
,

 as Fourier transforms of cosine functions, it yields: 
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(A2) 

where  vu,  is the Dirac “delta” function and p” is equal to:
Vpfp  2 . Making use of the Dirac 

function properties, a new expression of  yxA  ,  comes as: 
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(A3) 

Equation A3 also writes as: 
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Assuming that the following approximations are made: 
1. p” is small with respect to the pupil diameter D, thus the transmission map of the pupil function 

 pnypmxBD  ,  reduces to  yxBD  ,  that can be set to unity over the full entrance 

aperture.  
2. The wavefront error terms of the complex exponentials in Equation A4 are developed as function of 

their partial derivatives: 
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whatever are the indices m and n: 

3. Common WFE terms   yxik  ,exp  can be removed from Equation A4 since they should 

disappear when computing the image intensities     2
,, yxAyxI  . 

4. For similar reason, the quadratic phase terms   dyxik  2exp 22  and 

  dpnmik  2exp 222  can be removed from Equation A4.  

 
Then inserting the relation A5 into Equation A4 and using elementary trigonometric formulas Equation A4 
is rewritten with as: 
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which demonstrates the relation 8 in the main text. 

 



 

APPENDIX 2. EXPRESSIONS OF OFF-AXIS INTENSITIES 

 

   yxI ,1
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2sincos

2
cos

 

 

   yxI ,2
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2cossin

2
sin

  

  yxI ,3
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2sincos

2
cos

  

  yxI ,4
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2cos2sinsin

2
sin

  

   yxI ,5
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2cos2coscos

2
cos

 

(A7) 

   yxI ,6
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2cos2sinsin

2
sin

  

   yxI ,7
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2sincos

2
cos

  

   yxI ,8
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2cossin

2
sin

  

   yxI ,9
 












































































 
d

py
pkC

d

px
pkC

d

yx
pkB

d

pyx
pkABA YXYXYX 2sin2sincos

2
cos

  

 
 

 

REFERENCES 

 

[1] D. Malacara, Optical Shop Testing Third Edition, Willey 2007. 
[2] C. R. Forest, C. R. Canizares, “Metrology of thin transparent optics using Shack-Hartmann wavefront sensing,” Optical 

Engineering vol. 43(3) 742–753, p. 1559-1571 (2005). 
[3] C. Pannetier, F. Hénault, “Shack–Hartmann versus reverse Hartmann wavefront sensors: experimental results,” Optics Letters 

vol. 45, p. 1746-1749 (2020). 
[4] J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a 

Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A vol. 11, p. 1949-2685 (1994). 
[5] T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with 

the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A vol. 15, p. 2457-2465 (1998). 
[6] J.W. Hardy, J.E. Lefebvre, C.L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. vol. 67, p. 360-369 

(1977). 
[7] D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two dimensional 

wavefront sensor,” Proc. SPIE vol. 2870, p. 72-82 (1996). 
[8] R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. vol. 61, p. 656 (1971). 
[9] R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” Journal of Modern Optics vol. 43, p. 289-293 (1996). 
[10] J. J. E. Oti, V. F. Canales and M. P. Cagigal, “Analysis of the signal-to-noise ratio in the optical differentiation wavefront 

sensor,” Optics Express vol. 11, p. 2783-2790 (2003). 
[11] J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Applied Optics vol. 44, p. 

1559-1571 (2005). 
[12] J. Primot, N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a 

phase chessboard,” Applied Optics vol. 39, p. 5715-5720 (2000). 
[13] F. Hénault, “Wavefront sensor based on varying transmission filters: theory and expected performance,” Journal of Modern 

Optics vol. 52, n° 14, p. 1917-1931 (2005). 
[14] F. Hénault, “Wavefront sensing with varying transmission filters: Past, present and future,” Proceedings of the SPIE vol. 5965, 

p. 339-350 (2005). 
[15] F. Hénault, A. Spang, “Crossed-cosine intensity filter for coronagraphy and low order wavefront sensing,” Optical Engineering 

vol. 48, n° 073608 (2009). 



[16] F. Hénault, A. Spang, Y. Feng, L. Schreiber, “Crossed-sine wavefront sensor for adaptive optics, metrology and ophthalmology 
applications,” Engineering Research Express vol. 2, n° 015042 (2020). 

[17] L. Schreiber, Y. Feng, A. Spang, F. Hénault, J.-J. Correia, E. Stadler, D. Mouillet, “The crossed-sine wavefront sensor: first 
tests and results,” Proceedings of the SPIE vol. 12188, n° 121883I  (2022). 

[18] F. Hénault, “Fresnel diffraction analysis of Ronchi and reverse Hartmann tests,” JOSA A vol. 35, p. 1717-1729 (2018). 
[19] C. Barden, J. A. Arns, W. S. Colburn, “Astronomical Applications of Volume-Phase Holographic Gratings,” Proceedings of 

the SPIE vol. 3749 (1999). 
[20] P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, C. Jamar, “Volume phase holographic gratings: large size and high 

diffraction efficiency, ” Optical Engineering, vol. 43, n°. 11 (2004). 
[21] M. Born, E. Wolf, Principles of Optics, Cambridge University (1999). 
[22] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, Dover Publications, INC., New York (1972). 
[23] W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. Vol. 70, p.998-1006 (1980). 
[24] F. Roddier, C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Applied Optics vol. 30, p 1325-1327 

(1991). 

 



 

FIGURES 

 

Y

XO

Y”

X”

Y”

X”

Exit pupil Tested optical 
system

Extended light 
source

Measurement 
head

Images 
visualization

Images 
processing

 

 

Figure 1: General concept of phase measurements using either GTF or GPF image filters [14]. 
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Figure 2: Two tentative optical designs of the CSPS optical measurement head. 
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Figure 3: Phase map of the GPF in false colour, showing the locations of diffident observation points Fi (1  i  9). 
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Figure 4: Graphical interpretation of Equation 10. 
Histograms of the Bessel function products are illustrated for the cases when 0 = /2 (a), 0 =  (b) and 0 = 3/2 (c).  
Figure 3-d shows their variations over the [0, 2] range. Grey bars in Figure 3-d indicate the best selected range. 
 



V

U

Fourier 
transform

X”

Y”

Image spectrum

V

U

Inverse 
Fourier transformX”

Y”

First-order lobe
recentred

u

 yxI i  ,

Acquired 
image

WFE
X-slopes

 
x

yx

 ,

 
Figure 5: Double Fourier transform algorithm for reconstructing the slopes of the wavefront along X-axis. 
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Figure 6: Simulation of four images acquired from the optical measurement head. Observation points are located at 45 

degrees with respect to the X’ and Y’ axes. The dot effects in these figures result from the presence of the GPF. 
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Figure 7: False colour simulations of the reference and measured wavefronts and of their slopes along the X” and Y” axes. 

Their difference maps are shown on the right column. Case of low order Zernike polynomials  16. 
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Figure 8: Same illustrations as in Figure 7. Case of mid-order Zernike polynomials  48. 

 


