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Predictive ability of multi-population 
genomic prediction methods of phenotypes 
for reproduction traits in Chinese and Austrian 
pigs
Xue Wang1, Zipeng Zhang1, Hehe Du1, Christina Pfeiffer2, Gábor Mészáros2 and Xiangdong Ding1*   

Abstract 

Background Multi-population genomic prediction can rapidly expand the size of the reference population 
and improve genomic prediction ability. Machine learning (ML) algorithms have shown advantages in single-pop-
ulation genomic prediction of phenotypes. However, few studies have explored the effectiveness of ML methods 
for multi-population genomic prediction.

Results In this study, 3720 Yorkshire pigs from Austria and four breeding farms in China were used, and single-trait 
genomic best linear unbiased prediction (ST-GBLUP), multitrait GBLUP (MT-GBLUP), Bayesian Horseshoe (BayesHE), 
and three ML methods (support vector regression (SVR), kernel ridge regression (KRR) and AdaBoost.R2) were com-
pared to explore the optimal method for joint genomic prediction of phenotypes of Chinese and Austrian pigs 
through 10 replicates of fivefold cross-validation. In this study, we tested the performance of different methods in two 
scenarios: (i) including only one Austrian population and one Chinese pig population that were genetically linked 
based on principal component analysis (PCA) (designated as the “two-population scenario”) and (ii) adding reference 
populations that are unrelated based on PCA to the above two populations (designated as the “multi-population 
scenario”). Our results show that, the use of MT-GBLUP in the two-population scenario resulted in an improvement 
of 7.1% in predictive ability compared to ST-GBLUP, while the use of SVR and KKR yielded improvements in predic-
tive ability of 4.5 and 5.3%, respectively, compared to MT-GBLUP. SVR and KRR also yielded lower mean square errors 
(MSE) in most population and trait combinations. In the multi-population scenario, improvements in predictive ability 
of 29.7, 24.4 and 11.1% were obtained compared to ST-GBLUP when using, respectively, SVR, KRR, and AdaBoost.R2. 
However, compared to MT-GBLUP, the potential of ML methods to improve predictive ability was not demonstrated.

Conclusions Our study demonstrates that ML algorithms can achieve better prediction performance than multitrait 
GBLUP models in multi-population genomic prediction of phenotypes when the populations have similar genetic 
backgrounds; however, when reference populations that are unrelated based on PCA are added, the ML methods 
did not show a benefit. When the number of populations increased, only MT-GBLUP improved predictive ability 
in both validation populations, while the other methods showed improvement in only one population.
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Background
Today, genomic prediction [1] is widely accepted and 
has been successfully implemented in animal and plant 
breeding schemes [2–4]. However, a large reference pop-
ulation size is key to accurate genomic prediction [5, 6]. 
For small reference populations, e.g., breeds or strains 
of livestock with small populations, it is rather difficult 
to obtain a sufficiently large reference population, which 
limits the predictive ability of genomic prediction. A 
potential option is to combine multiple populations to 
construct a large reference population, i.e., multi-popula-
tion genomic prediction, such as for Holstein populations 
in the EuroGenomics [7] and North American consortia 
[6]. The advantages of multi-population genomic predic-
tion have been widely verified and results in dairy cattle 
suggest that this cost-effective strategy can significantly 
improve the predictive ability of genomic prediction for 
numerically small breeds if the reference population is 
made up of individuals from closely-related breeds [7, 8]. 
Similarly, studies in pigs have also indicated that, com-
pared with a single reference population, joint reference 
populations with different genetic backgrounds can fur-
ther improve the predictive ability of genomic prediction 
and reduce prediction bias, especially for the prediction 
of reproductive traits with a low heritability [9]. Likewise, 
in beef cattle, Bonifazi et al. [10] combined age-adjusted 
weaning weight phenotypes and genomic data from five 
Limousin populations using a single-step approach and 
demonstrated the advantage of using a combined refer-
ence population. Cardoso et al. [11] evaluated the poten-
tial of improving tick resistance in beef cattle breeds from 
seven countries through multitrait genomic selection and 
also demonstrated the benefits of combining data from 
different breeds.

Currently, the prevailing methods for comput-
ing genomic estimated breeding values (GEBV) are 
the genomic best linear unbiased prediction (GBLUP) 
method, which is implemented by estimating the vari-
ance components and solving the mixed model equations 
of Henderson [12], and Bayesian methods with differ-
ent priors using a Markov chain Monte Carlo (MCMC) 
methods to estimate the required (genetic) parameters 
[13–15]. Multitrait models are often used for multi-pop-
ulation genomic prediction, which treat the same trait in 
different populations as different traits and can be used 
to capture genotype-by-environment (G × E) interac-
tions between populations. However, these models have 
limitations when there are many environments, as more 
genetic parameters need to be estimated and model con-
vergence may be difficult to achieve. Thus, it remains 
difficult to find a method that can perform well when 
multiple populations with different genetic backgrounds 
are combined for genomic prediction.

Recently, machine learning (ML) algorithms have 
been widely and successfully used in gene screening, 
genotype imputation, genomic prediction, and protein 
structure and function prediction [16–20]. For genomic 
prediction, ML algorithms differ from conventional 
methods in that, as nonparametric methods, they are 
able to flexibly capture hidden relationships between 
genotype and phenotype in an adaptive manner, while 
making few or no specific distributional assumptions 
for predictors [21]. Accordingly, ML is potentially 
attractive for handling higher-order nonlinear relation-
ships in high-dimensional genomic data (e.g., epista-
sis, dominance, or G × E interactions), which are more 
likely to exist in multi-population genomic prediction. 
Several studies have shown that ML algorithms, such 
as support vector machine regression (SVR), kernel 
ridge regression (KRR), and the AdaBoost ensemble 
algorithm, have advantages over GBLUP and Bayes B in 
predicting genomic-enabled prediction values [18, 22, 
23].

In spite of growing interest, little research has 
explored the effectiveness of ML methods for multi-
population genomic prediction. Faville et al. [24] com-
pared the prediction performance of GBLUP, kinship 
using genotyping-by-sequencing (GBS) with depth 
adjustment (KGD), random forest, and ridge regres-
sion models for genomic prediction in five perennial 
ryegrass populations and found that the predictive abil-
ity of KGD and GBLUP were marginally superior or 
equal to that of ridge regression (RR) and random for-
est (RF) computational approaches. Moreover, the use 
of multiple populations without constructing a joint 
genomic relationship matrix is also challenging for ML 
methods. Therefore, it is necessary to further explore 
the feasibility of ML methods for multi-population 
genomic prediction of phenotypes. In this study, a joint 
reference population comprised of Chinese and Aus-
trian pig populations was established and the perfor-
mances of ML methods and of single- and multi-trait 
GBLUP and Bayesian methods were evaluated in these 
two populations with similar genetic backgrounds to 
determine the optimal methods to improve the pre-
dictive ability for phenotypes of reproduction traits in 
Chinese and Austrian pigs.

Methods
Ethics statement
The entire procedure for blood sample collection was car-
ried out in strict accordance with the protocol approved 
by the Animal Care and Use Committee of China Agri-
cultural University (Permit Number: DK996) and Aus-
trian Pig Breeders Association.
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Population and phenotypes
In this study, five Yorkshire pig populations were used. 
One was provided by the Austria Pig Breeding Associa-
tion, referred to as ’Austria’, and the others were sourced 
from four breeding farms in China, identified as A, B, C, 
and D (Table 1). Two reproduction traits, i.e. total num-
ber of piglets born (TNB) and number of piglets born 
alive (NBA), were studied. In the "two-population sce-
nario", we used the Austrian population and Chinese 
pig population A, which were shown to be genetically 
linked based on principal component analysis (PCA) of 
genotypes, for joint genomic prediction. In the “multi-
population scenario”, we added data from the other three 
Chinese populations, which had more dispersed genetic 
backgrounds, to the Austrian and A populations to assess 
the impact of expanding the reference population size on 
the predictive ability for the Austrian and the A popula-
tion. This scenario was termed the “multi-population sce-
nario”. Because the main aim of this study was to explore 
whether adding unrelated populations could improve the 
prediction ability for two genetically connected popula-
tions, we did not make predictions for the other popula-
tions in the multi-population scenario.

Derivation of corrected phenotypes
To avoid double-counting parental information, cor-
rected phenotypic values ( yc ) derived from pedigree-
based estimated breeding values (EBV) were used as 
response variables in all genomic prediction analyses 
[25]. For this purpose, single-trait repeatability mod-
els were used to estimate EBV for TNB and NBA and 
genetic parameters, separately for each population. In 
the model, the fixed effect was herd-year-season, and 
the random effects were additive genetics ( a ), perma-
nent environment ( pe ), and residuals ( e ). The random 
effects were assumed to have the following distributions: 

a ∼ N (0,Aσ2a) , pe ∼ N (0, Iσ2pe) , and e ∼ N (0, Iσ2e ) , where 
A is the pedigree-based relationship matrix, I is the iden-
tity matrix, and σ2a , σ2pe , and σ2e are the variances of addi-
tive genetic effects, permanent environment effects of 
sows, and residuals, respectively. The A matrix for each 
population was constructed separately using the pedigree 
of each population, and a total of 14,118 animals were 
traced across the five populations. The number of genera-
tions and full-sib and half-sib families for each popula-
tion are listed in Additional file 1: Table S1. The estimated 
genetic parameters are in Table  1. EBV were calculated 
using the DMUAI procedure in the DMU software [26]. 
The yc values were calculated as the EBV plus the average 
estimated residuals for multiple parities of a sow follow-
ing Song et al. [27].

Genotype data and imputation
In this study, the Austrian pigs were genotyped using a 
customized 50 K SNP panel (59,319 SNPs, Austria 50 K), 
while all Chinese populations were genotyped using the 
PorcineSNP50 BeadChip (Illumina, CA, USA) (50,697 
SNPs, PorcineSNP50) and population A was also geno-
typed using the GenoBaits Porcine SNP 50 K panel (Mol-
breeding, China) (52,000 SNPs, GBTS50K). As shown in 
Fig.  1a, 31,062 SNPs were shared between the Austria 
50  K and PorcineSNP50 panels, 33,192 SNPs between 
the Austria 50 K and GBTS50K panels, and 30,998 SNPs 
between the PorcineSNP50 and GBTS50K panels. In 
total, 3720 individuals were genotyped, and the number 
of genotyped individuals in each population is in Table 1. 
The individuals genotyped with the Austria 50  K and 
PorcineSNP50 panels were imputed to GBTS50K using 
the Beagle 5.0 software [28], with the reference popula-
tion for imputation comprising 4839 Yorkshire pigs from 
multiple farms in China (including the four farms in this 
study). The theoretical imputation accuracy was assessed 

Table 1 Summary of the five Yorkshire populations, number of genotyped individuals and heritability estimates  (h2)

a TNB total number of piglets born, NBA number of piglets born alive, SE standard error

SNP panels Population Traita σ2
a σ2

e h2(SE) Number of 
records

Birth year Genotyped 
animals

Austria 50K Austria TNB 0.71 6.69 0.09 (0.03) 3713 2006–2017 591

NBA 0.49 5.71 0.08 (0.03)

PorcineSNP50 BeadChip; 
GenoBaits Porcine SNP 50 K

A TNB 1.26 8.95 0.12 (0.03) 2841 2016–2020 742

NBA 0.99 7.49 0.11 (0.03)

PorcineSNP50 BeadChip C TNB 1.62 11.46 0.12 (0.02) 4144 2015–2018 1153

NBA 1.55 11.45 0.12 (0.02)

B TNB 0.59 7.77 0.07 (0.01) 2209 2015–2018 550

NBA 0.37 6.73 0.05 (0.01)

D TNB 1.05 11.53 0.08 (0.03) 1209 2018–2019 684

NBA 0.58 10.96 0.05 (0.02)
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by the dosage R-squared  (DR2), which is the estimated 
squared correlation between the estimated allele dose 
and the true allele dose that is calculated in Beagle 5.0 
[28].

No common individuals were genotyped by both the 
Austria 50  K and the other two SNP panels. Thus, to 
further evaluate the practical effect of genotype imputa-
tion, first, all the non-missing SNPs (1112 SNPs) among 
the SNPs shared between the Austria 50 K and GBTS50K 
panels were set as missing. In addition, 2000 SNPs were 
randomly selected from the 29,488 shared non-missing 
SNPs of the PorcineSNP50 and GBTS50K panels and set 
as missing; then, Beagle 5.0 was used for re-imputation 
and the genotype concordance rate (CR) was calculated 
to evaluate imputation accuracy. After imputation, the 
PLINK software [29] was used to remove SNPs with a 
minor allele frequency (MAF) lower than 0.05 and a 
call rate less than 0.90 and animals with a call rate less 
than 0.90. After genotype quality control, all remaining 
individuals (3720) and 47,734 SNPs on autosomes were 
retained for further analysis.

Principal component analysis and linkage disequilibrium
To analyse the population structure of the five popula-
tions, PCA was performed on the SNP genotypes using 
the GCTA software [30] and a matrix of eigenvectors, in 
descending order, representing the principal components 
(PC), with PC1 having the largest eigenvalue, was cre-
ated. The LD between each pair of SNPs was measured as 
rLD and r2LD (i.e. the square of rLD ) [31], using

 where f(AB) , f(A) , f(B) , f(a) , and f(b) are the observed 
frequencies of haplotype AB and alleles A, B, a, and b, 
respectively. The average r2LD across all chromosomes was 
calculated for each population, and the consistency of LD 
between the Austria and A populations and with other 
populations was measured using the correlation of rLD 
values of pairs of adjacent SNPs on each autosome.

Statistical models
Single-trait GBLUP (ST-GBLUP), multitrait GBLUP 
(MT-GBLUP), BayesHE, and three ML methods (SVR, 
KRR and Adaboost.R2) were evaluated. For all methods, 
the response variables were the corrected phenotypes yc 
and the independent variables for the three ML methods 
were the vectors of SNP genotypes, encoded as 0, 1, and 
2.

Single‑trait GBLUP (ST‑GBLUP)
The model used for ST-GBLUP was:

where yc is the vector of corrected phenotypes of geno-
typed individuals; µ is the overall mean, and 1 is a vec-
tor of ones; a is the vector of additive genetic effects, 
assumed distributed N (0,Gσ 2

a ) , where σ 2
a  is the addi-

tive genetic variance and G is the genomic relationship 
matrix; Z is the incidence matrix allocating records to 
a ; e is the vector of random errors, assumed distributed 

rLD =
f(AB)− f(A)f(B)
√
f(A)f(a)f(B)f(b)

,

yc = 1µ+ Za + e,

Fig. 1 Venn diagram of the number of shared SNPs between panels (a) and principal component analysis of the Austrian and Chinese Yorkshire 
populations (b). PC1 first principal component, PC2 second principal component
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N (0, Iσ 2
e ) , where I is the identity matrix and σ 2

e  is the 
residual variance. The G matrix was constructed follow-
ing the first method proposed by VanRaden [32]. The 
ST-GBLUP model was fitted using the DMU software 
[26] and the variance components were estimated using 
the average information restricted maximum likeli-
hood (AI-REML) algorithm implemented of the DMUAI 
procedure.

Multitrait GBLUP (MT‑GBLUP)
For the two-population scenario, the MT-GBLUP model 
was:

where 
[
yc1
yc2

]
 are the vectors of corrected phenotypes for 

trait 1 and trait 2 (the same trait in the A and Austrian 

populations); 
[
µ1

µ2

]
 is the vector of overall means for trait 

1 and trait 2; 
[
a1
a2

]
 are the vectors of additive genetic 

effects of the two traits, assumed distributed N (0,M⊗G) , 

where M =

[
σ 2
a1 σa12

σa12 σ 2
a2

]
 represents the genetic variance 

and covariance matrix of the two traits; Z1 and Z2 are the 
incidence matrices allocating records to a1 anda2 , respec-

tively ;
[
e1
e2

]
 are the vectors of random residual errors, 

assumed to be normally distributed N (0,R⊗I) , where I is 

the identity matrix and R =

[
σ 2
e1 σe12

σe12 σ 2
e2

]
 is the residual 

variance and covariance matrix.
For the multi-population scenario, the MT-GBLUP 

model can be expressed as:

where [yc1, yc2, yc3, yc4, yc5]T are the vectors of corrected 
phenotypes for traits 1 to 5 (the same trait in the five 
populations); [µ1,µ2,µ3,µ4,µ5]

T are the vectors of over-
all means for traits 1 to 5; [a1, a2, a3, a4, a5]T are the vec-
tors of additive genetic effects of the five traits, assumed 
distributed N (0,M⊗G) , where

[
yc1
yc2

]
=

[
1 0
0 1

][
µ1

µ2

]
+

[
Z1 0
0 Z2

][
a1
a2

]
+

[
e1
e2

]
,





yc1
yc2
yc3
yc4
yc5




=





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









µ1
µ2
µ3
µ4
µ5




+





Z1 0 0 0 0
0 Z2 0 0 0
0 0 Z3 0 0
0 0 0 Z4 0
0 0 0 0 Z5









a1
a2
a3
a4
a5




+





e1
e2
e3
e4
e5




,

is the genetic variance and covariance matrix of the 
five traits; Z1 to Z5 are the incidence matrices allocating 
records to a1 to a5 , respectively; [e1, e2, e3, e4, e5]T are the 
vectors of random residual errors, assumed distributed 
N (0,R⊗I) , where

represents the residual variance and covariance matrix.
For the MT-GBLUP methods, the G matrix was also 

constructed according to the first method proposed by 
VanRaden [32], and the variance components were calcu-
lated using the DMU software [26]. For the multi-popula-
tion scenario, (co)variance component parameters were 
estimated using bivariate analyses for each pair of popu-
lations with the AI-REML algorithm of the DMU soft-
ware [26], and the (co)variance matrix was converted into 
a positive definite matrix using a bending procedure [33]. 
The R package mbend was used to implement 
unweighted bending of variance components [34], with 
the other parameters set to default values (i.e. max.iter, 
small.positive and method were 10000, 0.0001 and “hj”, 
respectively). Given that the variance components in 
both scenarios were estimated using the complete data-
set, we calculated the genetic correlation for each trait 
among the five populations based on the variance com-

ponent results of MT-GBLUP in the multi-population 
scenario. The estimated values of genetic (co)variance 
and genetic correlation between pairs of the five popula-
tions are in Additional file  1: Table  S2. Genetic correla-
tions were calculated as σa12√

σ 2
a1σ

2
a2

.

M =





σ 2
a1 σa12 σa13 σa14 σa15

σa12 σ 2
a2 σa23 σa24 σa25

σa13 σa23 σ 2
a3 σa34 σa35

σa14 σa24 σa34 σ 2
a4 σa45

σa15 σa25 σa35 σa45 σ 2
a5





R =





σ 2
e1 σe12 σe13 σe14 σe15

σe12 σ 2
e2 σe23 σe24 σe25

σe13 σe23 σ 2
e3 σe34 σe35

σe14 σe24 σe34 σ 2
e4 σe45

σe15 σe25 σe35 σe45 σ 2
e5
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Bayes Horseshoe
Bayes horseshoe (Bayes HE), developed by Shi et al. [35], 
is a Bayesian model based on global–local priors (i.e., 
the global parameter shrinks the marker effects to zero, 
whereas the local parameter allows a marker to escape 
from shrinkage) to increase the flexibility and adaptabil-
ity of hyperparameter estimation. BayesHE exhibited the 
highest or second highest predictive ability compared 
with traditional Bayesian methods such as BayesA and 
BayesB [35]. The model fitted for Bayes HE was:

where yc is the vector of corrected phenotypes of geno-
typed animals, µ is the overall mean, xk is the geno-
type vector of the k-th marker, and m is the number of 
markers; βk is the allele substitution effect of the k-th 
marker, assumed to be distributed as βk ∼ N (0, �2kτ

2) , 
where the local parameter �k follows a half-t distribu-
tion of �k ∼ half− t+(υ, 1) ( υ ∼ G(a, c) ) and the global 
parameter τ follows a positive half-Cauchy distribution 
of τ ∼ C+(0,N−1) ; e is the vector of random residuals, 
assumed distributed as N (0, Iσ2e ) . In this study, the first 
form of BayesHE (BayesHE1) was used, in which a is 
equal to 4 and c is equal to 1 [35]. Using in-house scripts 
written in Fortran 95 [35], the Markov chain Monte Carlo 
(MCMC) chain was run for 50,000 cycles, with the first 
20,000 cycles discarded as burn-in, and every 50th sam-
ple of the remaining 30,000 iterations was saved for infer-
ring posterior statistics.

Support vector regression
SVR is a classic algorithm for dealing with regression 
problems in machine learning. It can use the nonlinear 
kernel function (e.g. radial basis function (RBF) kernel) 
to map the input data of the original space into the high-
dimensional kernel space and model and predict in the 
high-dimensional kernel space [36]. Therefore, we can 
construct linear models in the feature space to address 
regression problems. SVR was fitted using the following 
model:

where f(x) is the predicted value, h(x)T denotes the ker-
nel function, representing a nonlinear transformation of 
the predictor variables in x (i.e., genotype vector), w is 
the vector of weights, and b is the intercept. In the con-
text of ’ε-insensitive’ SVM regression, the loss was cal-
culated only when the absolute value of the discrepancy 
between f(xi) and yi exceeded some constant ( ε ). The SVR 
problem can be formalized as [36]:

yc = 1µ+
∑m

k=1 xkβk + e,

f(x) = b+ h(x)Tw,

where Vε(z) =

{
0, if |z| < ε;

|z| − ε, otherwise.
,

with C being the regularization constant, yc the vec-
tor of corrected phenotypes, ||·|| is the norm in Hilbert 
space, n is the sample size, z is the error (i.e., yci − f(xi) ), 
and Vε is the ‘ε-insensitive’ loss. After optimization, SVR 
can be expressed as:

where âi and ai denote positive weights assigned to each 
observation and estimated from the data, and K(x, xi) 
represents the inner product of x (a new input data 
point) and xi (the i-th data point in the training dataset) 
after being mapped to a high-dimensional space through 
a kernel function (i.e. K(x, xi) = h(x) · h(xi)

T ). A grid 
search was used to identify the optimal kernel function 
and the hyperparameters for C and gamma (the param-
eter controlling kernel width in the RBF kernel).

Kernel ridge regression
Kernel ridge regression (KRR), as a nonlinear regression 
method, can be used to effectively mine the nonlinear 
structure of data [37]. Like SVR, KRR uses a nonlinear 
kernel function ( φ(xi) ) to map the original data into a 
high-dimensional feature space and then builds a ridge 
regression model in the feature space for prediction. The 
linear regression model is expressed as yi = βTφ(xi) , 
where β denotes the weight vector. KRR employs regu-
larized least squares to ascertain the weight vector β by 
minimizing the following objective function [37]:

where � is the regularization constant. By computing the 
derivative of LKRR with respect to β and setting the result-
ing equations to zero, the resultant weight vector β is 
determined as follows:

where φ contains the mapped samples φ(xi) in its rows. 
In other words, φ(xi) represents the vector obtained by 
applying the feature mapping to a single data point xi , 
while φ represents the feature matrix of the entire data-
set. I is the identity matrix. Using the representer’s theo-
rem, β can be expressed in relation to the dual weights α 
as:

min
w,b

1

2
�w�2 + C

∑n

i=1
Vε

(
yci − f(xi)

)
,

f(x) =
∑n

i=1

(
âi − ai

)
K(x, xi)+ b,

minLKRR =
1

2
�β�2 +

1

2�

∑n

i=1
(yci − βTφ(xi))

2
,

β = (φTφ+ �I)
−1

φTyc,



Page 7 of 17Wang et al. Genetics Selection Evolution           (2024) 56:49  

Hence, the closed-form solution for the dual weight α is 
obtained as follows:

where K is the kernel matrix (i.e., Gram matrix), and 
Kij = K

(
xi, xj

)
= φ(xi) · φ(xj)

T . If the number of training 
samples is n, the kernel matrix can be expressed as:

Ultimately, given a new test sample xi (i.e. the genotype 
vector of individual i), the predicted output is derived 
using dual weights, and the similarity between the test 
sample xi and all training samples is employed for predic-
tion. Thus, the expression of KRR is:

where y(xi) is the predicted value of sample xi , 
k
′

= K(xi, xj) ( j = 1,2,3,…,n), and the expanded form of 
k
′ is:

Like SVR, a grid search was used to find the optimal 
kernel function, �, and the RBF kernel parameter gamma.

AdaBoost.R2
The expression for AdaBoost.R2 can be written as [38]:

where f(x) is the final predicted value and ft(x) is the 
predicted value of the t-th weak learner; εt is the error 
rate ( εt = Lt/

(
1− Lt

)
 ); Lt is the average loss, and 

Lt =
∑m

i=1 Lt(i)Dt(i) , where Lt(i) is the error between the 
predicted value and the true value (i.e. corrected pheno-
type) of the i-th individual, and Dt(i) is the distribution 

of weights and Dt+1(i) =
Dt (i)β

(1−Lt (i))
t
Zt

 , where Zt is the 

normalization factor such that the sum of Dt+1(i) is 1. 
In this study, to reduce the hyperparameter tuning time 
and to reuse the experience of some of the used learners, 

β =
∑n

i= 1
αiφ(xi) = φTα.

α = (φTφ+ �I)
−1

yc = (K + �I)−1yc,

K =





K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
K(xn, x1)

...
K(xn, x2)

...
· · ·

...
K(xn, xn)





n×n

y(xi) = k′(K + �I)−1yc,

k
′

=





K(xi, x1)
K(xi, x2)

...
K(xi, xn)





T

f(x) =
∑M

t=1

(
log

1

εt

)
ft(x)

/∑M

t=1

(
log

1

εt

)
;

KRR was used as the base learner for AdaBoost.R2 
(abbreviated as AdaBoost.R2_KRR). When optimizing 
the hyperparameters of AdaBoost.R2, the optimal num-
ber of base learners was unstable and difficult to deter-
mine. Therefore, we used the default number of base 
learners (i.e., 50).

For the above three ML methods, genomic prediction 
was performed with the help of the sklearn package for 
Python (V0.22). In addition, considering that the optimal 
hyperparameters of ML methods might differ between 
populations, it is not reasonable to train the model for 
prediction by directly combining populations, especially 
for populations with different genetic backgrounds. 
Therefore, a population-specific hyperparameter opti-
mization strategy based on cross-validation was adopted 
for all three ML methods. For the two-population sce-
nario, first, the reference populations for genomic selec-
tion of each population were randomly divided into five 
groups, four of which were treated as the training set, 
and the remaining set was treated as the test set. Then, 
the training sets of the two populations were combined 
to construct a joint training set, the Pearson correlation 
between corrected phenotypes yc and predicted genetic 
effects of the test set under different hyperparameter 
combinations was calculated separately for each popula-
tion by grid search, and the hyperparameter combination 
with the highest average Pearson correlation was used as 
the optimal hyperparameter when predicting this popu-
lation. The same strategy was used for the multi-popula-
tion scenario to divide the Austrian and A training but 
the other three Chinese populations were not divided 
but were directly added to the training sets. The optimal 
hyperparameters for multi-population genomic predic-
tion in the two-population and multi-population scenar-
ios are shown in Tables 2 and 3, respectively.

Cross‑validation and genomic predictive ability
Because of the inconsistency in birth years between the 
Austria and A populations (as shown in Table  1) and 
the small size of both populations, we did not adopt the 
strategy of using young individuals as the validation set. 
Instead, 10 replicates of fivefold cross-validation (CV) 
were performed to estimate the predictive ability, mean 
square error (MSE), and unbiasedness. For the two-pop-
ulation scenario, all individuals from each population 
were randomly divided into five groups, with four groups 
serving as the reference population and the remaining 
group as the validation population; the reference popu-
lations of the two populations were then combined to 
create a joint reference population. For the multi-popu-
lation scenario, the same partitioning strategy was used 
for the Austrian and A reference sets but the other three 
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Chinese populations were not divided; instead, they were 
directly added to the reference population. Notably, for 
both scenarios, the reference and validation populations 
for genomic prediction were the same for all methods for 
each replicate of the fivefold CV.

For all methods, predictive ability was assessed as the 
Pearson correlation between corrected phenotypes yc 
and predicted values (i.e., breeding values in GBLUP 
and BayesHE, and genetic effects including additive 
and non-additive effects in ML methods) of the valida-
tion population, prediction bias was calculated as the 
regression of yc on predicted values of the validation 
population, and MSE was computed as follows:

where n represents the number of animals in each vali-
dation data set of the fivefold CV, and the vectors f ′ and 
y
′

c represent the centralized predicted values (i.e., pre-
dicted value minus the mean of the validation popula-
tion) and centralized observed values (i.e., corrected 
phenotype minus the mean of the validation population), 
respectively. The overall predictive ability, MSE, and 

MSE =
1

n

∑n

i=1
(f′i − y′ci)

2
,

unbiasedness were the averages of 10 replicates of five-
fold CV. In addition, for all evaluation metrics (predic-
tive ability, MSE and unbiasedness), the standard error of 
the fivefold CV results for each replicate was calculated, 
and the final standard error reported was the average of 
10 replicates. To compare the prediction accuracy of dif-
ferent methods, multiple t-tests (with P-values adjusted 
using the Bonferroni method) were conducted based on 
the outcomes of 10 replicates.

Results
Population structure and genetic parameters
Due to the lack of genetic exchange between the five pig 
populations, no pedigree connections between the differ-
ent populations were observed. However, the PCA SNP 
genotypes of the five populations (Fig.  1b) showed that 
the genetic backgrounds of the Austrian and A pigs are 
relatively closer than those of the other three Chinese 
populations.

Table 4 illustrates the LD between adjacent SNPs across 
populations. The average r2LD of adjacent SNPs on each 
chromosome in the Austrian, A, B, C, and D populations 
ranged from 0.33 to 0.42, 0.34 to 0.43, 0.34 to 0.44, 0.34 

Table 2 Optimal hyperparameters for machine learning methods for two-population genomic prediction obtained through a grid 
search

a TNB total number of piglets born, NBA number of piglets born alive, SVR support vector regression, KRR kernel ridge regression

Traita Method Population

Austria A

TNB SVR kernel = ‘rbf’, C = 4, gamma = 0.0001 kernel = ‘rbf’, C = 5, gamma = 0.0001

KRR kernel = ‘rbf’, � = 0.0001, gamma = 0.0001 kernel = ‘rbf’, � = 5, gamma = 0.0001

Adaboost.R2 KRR_kernel = ‘rbf’, KRR_ � = 0.001, KRR_gamma = 0.0001 KRR_kernel = ’rbf’, KRR_ � = 2.5, KRR_gamma = 0.0001

NBA SVR kernel = ‘rbf’, C = 4, gamma = 0.0001 kernel = ‘rbf’, C = 5, gamma = 0.0001

KRR kernel = ‘rbf’, � = 0.0001, gamma = 0.0001 kernel = ‘rbf’, � = 3, gamma = 0.0001

Adaboost.R2 KRR_kernel = ’rbf’, KRR_ � = 0.01, KRR_gamma = 0.0001 kernel = ’rbf’, KRR_ � = 2, KRR_gamma = 0.0001

Table 3 The optimal hyperparameters for machine learning methods for multi-population genomic prediction obtained through a 
grid search

a TNB total number of piglets born, NBA number of piglets born alive, SVR support vector regression, KRR kernel ridge regression

Traita Method Population

Austria A

TNB SVR kernel = ‘rbf’, C = 3, gamma = 0.0001 kernel = ‘rbf’, C = 1, gamma = 0.0001

KRR kernel = ‘rbf’, � = 5, gamma = 0.0002 kernel = ‘rbf’, � = 2, gamma = 0.0001

Adaboost.R2 KRR_kernel = ‘rbf’, KRR_ � = 0.1, KRR_gamma = 0.0001 KRR_kernel = ’rbf’, KRR_ � = 0.1, KRR_gamma = 0.0001

NBA SVR kernel = ‘rbf’, C = 3, gamma = 0.0001 kernel = ‘rbf’, C = 5, gamma = 0.0001

KRR kernel = ‘rbf’, �=4, gamma = 0.0002 kernel = ‘rbf’, � = 2, gamma = 0.00005

Adaboost.R2 KRR_kernel = ’rbf’, KRR_ � = 0.05, KRR_gamma = 0.0001 kernel = ’rbf’, KRR_ � =0.05, KRR_gamma = 0.0001
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to 0.44, and 0.34 to 0.45, respectively, and the average r2LD 
across all chromosomes in the Austria, A, B, C, and D 
populations were equal to 0.37, 0.35, 0.38, 0.39, and 0.40, 
respectively. The average correlation of rLD (i.e., LD con-
sistency) between adjacent SNPs across all chromosomes 
was 0.41, 0.32, 0.35, and 0.34 for Austria with populations 
A, B, C, and D, respectively; for population A, the average 
correlation of rLD with populations B, C, and D was 0.29, 
0.36, and 0.35, respectively. The correlations of rLD also 
suggested the genetic relationship between the Austria 
and A populations is closer than that between the Austria 
and other populations.

Pedigree-based estimates of heritability for each popu-
lation using the single-trait repeatability model during 
the derivation of corrected phenotypes are in Table  1. 
The heritability estimates for TNB and NBA ranged from 
0.05 to 0.12 in the five populations.

Genotype imputation accuracy
The imputation accuracy at different MAF intervals and 
for each chromosome is illustrated in Fig.  2.  DR2 was 
sensitive to MAF when the Austria 50 K genotypes were 
imputed to GBTS50K and was relatively low for markers 

with a MAF lower than 0.05 (Fig. 2a). No significant dif-
ferences in  DR2 and CR were observed between chro-
mosomes (Fig. 2b, d). Overall, the average  DR2 values of 
the Austria 50 K and PorcineSNP50 genotypes imputed 
to GBTS50K were 0.89 and 0.97, respectively, while the 
average CR of the Austria 50 K and PorcineSNP50 geno-
types imputed to GBTS50K was 0.96 and 0.99, respec-
tively. Accordingly, both imputations were sufficiently 
accurate to analyse the three SNP panels together.

Genomic prediction in the two‑population scenario
Comparison of ML methods with other methods
Figure  3 presents the average predictive ability, MSE 
and unbiasedness values for the TNB and NBA traits 
in the two-population scenario (the raw values of Fig. 3 
are in Additional file 1: Table S3). In all population and 
trait combinations, the highest predictive abilities were 
achieved using SVR and KRR. However, the predictive 
ability of AdaBoost.R2 was not significantly higher than 
that of MT-GBLUP for all traits and populations. When 
SVR, KRR, and Adaboost.R2 were used, improvements in 
average predictive ability were 4.5, 5.3, and −0.8% (aver-
aged for two traits and two populations), respectively, 

Table 4 Linkage disequilibrium between adjacent SNPs by chromosome and populations

a Austria-A/B/C/D: the correlation of rLD of pairs of adjacent SNPs between the Austrian and A/B/C/D populations; A-B/C/D: the correlation of rLD of pairs of adjacent 
SNPs between the A and B/C/D populations
b Across the 18 porcine autosomes
c Yorkshire pig populations from Austria, A, B, C and D

Chr Length (Mb) Number of SNPs Mean 
distance 
(kb)

Mean r2
LD

Cora

Austriac Ac Bc Cc Dc Aus‑A Aus‑B Aus‑C Aus‑D A−B A−C A−D

1 261.26 5177 48.14 0.41 0.41 0.44 0.44 0.44 0.49 0.29 0.42 0.42 0.29 0.39 0.41

2 144.32 3133 44.59 0.37 0.39 0.39 0.39 0.39 0.30 0.31 0.37 0.36 0.26 0.29 0.33

3 126.4 2849 42.51 0.36 0.36 0.37 0.39 0.39 0.51 0.34 0.36 0.28 0.21 0.36 0.35

4 124.7 2851 38.9 0.41 0.41 0.40 0.44 0.45 0.41 0.29 0.34 0.34 0.29 0.32 0.31

5 99.43 2222 43 0.35 0.36 0.36 0.37 0.38 0.40 0.38 0.35 0.34 0.29 0.45 0.39

6 162.85 2839 53.6 0.40 0.40 0.42 0.41 0.42 0.45 0.36 0.40 0.44 0.36 0.41 0.42

7 115.97 2914 38.11 0.34 0.35 0.36 0.36 0.37 0.41 0.31 0.29 0.28 0.30 0.32 0.35

8 132.37 2871 43.73 0.34 0.36 0.36 0.37 0.38 0.46 0.32 0.33 0.33 0.35 0.33 0.29

9 132.86 3026 41.98 0.37 0.39 0.37 0.41 0.41 0.51 0.32 0.46 0.36 0.27 0.41 0.43

10 65.89 1832 34.64 0.33 0.34 0.36 0.34 0.34 0.40 0.31 0.37 0.38 0.31 0.38 0.34

11 75.35 1773 40.78 0.33 0.34 0.35 0.36 0.36 0.36 0.22 0.36 0.22 0.21 0.37 0.37

12 58.11 1719 33.2 0.39 0.40 0.38 0.41 0.41 0.45 0.25 0.32 0.28 0.25 0.27 0.26

13 198.36 3795 49.51 0.42 0.43 0.43 0.44 0.44 0.51 0.49 0.50 0.48 0.33 0.47 0.47

14 135.07 3359 38.37 0.41 0.41 0.41 0.44 0.44 0.37 0.30 0.26 0.31 0.30 0.33 0.29

15 133.57 2739 44.63 0.40 0.40 0.40 0.43 0.43 0.32 0.33 0.35 0.41 0.32 0.32 0.38

16 75.58 1776 39.79 0.34 0.35 0.34 0.36 0.37 0.29 0.27 0.31 0.30 0.19 0.35 0.25

17 59.77 1605 36.19 0.34 0.34 0.34 0.37 0.38 0.35 0.26 0.25 0.25 0.40 0.28 0.35

18 53.08 1254 39.22 0.34 0.36 0.37 0.36 0.37 0.36 0.28 0.34 0.37 0.25 0.40 0.38

Mean – – 41.72 0.37 0.35 0.38 0.39 0.40 0.41 0.32 0.35 0.34 0.29 0.36 0.35

Total 2154.94b 47.734b – – – – – – –
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compared to MT-GBLUP and 11.9, 12.6, and 6.1% (aver-
ages of both traits and both populations), respectively, 
compared to ST-GBLUP. The average improvement in 
predictive ability of the ML methods compared to ST-
GBLUP, MT-GBLUP, and BayesHE were 10.2, 3.0, and 
10.8%, respectively (averages of both traits and both pop-
ulations). Although the predictive abilities of SVR and 
KRR were higher than those of MT-GBLUP in all popula-
tion and trait combinations, this superiority was signifi-
cant only for the A population and not for the Austrian 
population. Compared to MT-GBLUP, the improvement 
obtained with ML was greater for population A than for 

the Austrian population, while compared to ST-GBLUP, 
it was smaller for population A than for the Austrian 
population. Compared to MT-GBLUP, SVR, and KRR 
produced lower MSE in most scenarios, while Adaboost.
R2 resulted in lower MSA than MT-GBLUP only for A 
population. In terms of unbiasedness, in the A popula-
tion, AdaBoost.R2 generated the largest bias for both 
TNB and NBA traits, while the other methods yielded 
small biases (i.e., the regression coefficients were close to 
1); in the Austria population, the biases of all three ML 
methods were much larger than those of ST-GBLUP, 
MT-GBLUP, and BayesHE.

Fig. 2 Average imputation accuracy for SNPs with different minor allele frequency (MAF) intervals and chromosomes. a, b Average imputation 
accuracy of Austria 50 K genotypes to GenoBaits Porcine SNP 50 K. c, d Average imputation accuracy of the PorcineSNP50 BeadChip genotypes 
to GenoBaits Porcine SNP 50 K. DR2: average estimated squared correlation between the imputed and the true allele dose; genotype concordance 
rate (CR): average ratio of the correctly imputed genotypes
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Comparison of ST‑GBLUP, MT‑GBLUP and BayesHE
We found that the predictive ability was higher when 
MT-GBLUP was used compared to ST-GBLUP, with 
average improvements of 8.8 and 5.5% for TNB and NBA, 
respectively. Bias of predictions from MT-GBLUP were 
also closer to 1 (i.e., smaller bias) than for ST-GBLUP and 
MT-GBLUP yielded smaller MSE.

As shown in Fig. 3, the predictive ability of ST-GBLUP 
was similar to that of BayesHE for any population and 
none of these differences were statistically signifi-
cant. However, MSE for TNB prediction were lower for 
ST-GBLUP than for BayesHE, but the opposite was 
observed for NBA (see Additional file  1: Table  S3). For 
TNB, BayesHE resulted in a larger bias than ST-GBLUP 
(average regression values were 1.12 and 1.07, respec-
tively) but for NBA, the biases were similar for these two 
methods.

In addition to the comparison of prediction perfor-
mance, estimates of the genetic correlation estimated 
using MT-GBLUP between the Austrian and A popula-
tions were 0.62 and 0.40 for TNB and NBA, respectively, 
with standard errors of 0.125 and 0.152, respectively (see 
Additional file 1: Table S2).

Genomic prediction in the multi‑population scenario
Comparison of different methods
The genomic predictive abilities when the reference pop-
ulation size was expanded to multiple populations are 
shown in Fig. 4 (the raw values of Fig. 4 are also in Addi-
tional file 1: Table S3). Our results indicate that the ML 
methods did not demonstrate an overall advantage over 
MT-GBLUP in terms of predictive ability. Compared 
to MT-GBLUP, the predictive abilities of SVR and KRR 
improved by on average 1.0 and 1.6%, respectively, in A 
population, while they decreased by on average 4.4 and 
11.5%, respectively, in the Austrian population (averages 
of both traits); Adaboost.R2 did not show any improve-
ment in predictive ability compared to MT-GBLUP for 
either trait and either population. However, compared 
to ST-GBLUP, ML methods generally showed higher 
predictive abilities; 29.7, 24.4, and 11.1% higher for SVR, 
KRR, and AdaBoost.R2, respectively (averages of both 
traits and both populations). Moreover, for both traits, 
the ML methods yielded greater improvements over ST-
GBLUP for the prediction of the Austrian population 
than for that of the A population. This might be due to 
the fact that when the reference population is enlarged 
from two populations to multiple populations, the pre-
dictive ability of ST-GBLUP for the Austrian population 

Fig. 3 Predictive ability, mean squared error (MSE), and bias for genomic predictions for two populations with genetically linked backgrounds. a–c 
Predictive ability, MSE, and bias for total number of piglets born (TNB). d–f Predictive ability, MSE, and bias for number of piglets born alive (NBA). 
ST-GBLUP: single-trait genomic best linear unbiased prediction model; MT-GBLUP: multitrait GBLUP model. The error bar represents the standard 
error



Page 12 of 17Wang et al. Genetics Selection Evolution           (2024) 56:49 

decreased, while it slightly increased for the A popula-
tion. When predicting the Austrian population, average 
improvements of 57.6, 46.4 and 27.4% (averages of both 
traits) over ST-GBLUP were observed for SVR, KRR and 
AdaBoost.R2, respectively. However, when predicting the 
A population, the improvements were small, at 1.8 and 
2.4% (averages of both traits) (averages of both traits) 
for SVR and KRR, respectively, while a decrease of 5.1% 
(averages of both traits) was observed for Adaboost.R2 
compared to ST-GBLUP. It should also be noted that the 
predictive abilities for the A population were higher than 
those for the Austrian population for almost all traits and 
methods, as shown in Fig. 4.

In terms of MSE, MT-GBLUP produced the lowest 
MSE for most traits and populations; SVR and AdaBoost.
R2 performed similar to or better than ST-GBLUP, while 
KRR produced higher MSE than ST-GBLUP for most 
traits and populations. Concerning bias, MT-GBLUP 
was unbiased, with values close to 1, for all population 
and trait combinations. In contrast, the other methods 
exhibited significant deviations from 1 for almost all sce-
narios. The ML methods resulted in larger biases than 
ST-GBLUP for all trait and population combinations, 
except for NBA in the A population, which resulted in 
regression coefficients closer to 1, although still relatively 
large (> 1.14).

Comparison of the two‑population and multi‑population 
scenarios
Figures  3 and 4 show the predictive abilities and MSE 
in the two-population and multi-population scenario, 
respectively, with the underlying values reported in 
Additional file  1: Table  S3. When enlarging the refer-
ence population of genomic prediction from two to 
multiple populations, ST-GBLUP, KRR, and Adaboost.
R2 all improved predictive ability in population A (with 
average improvements of, respectively, 10.2, 3.2, and 
1.5% across the two traits), while their predictive abil-
ity decreased in the Austrian population (with an aver-
age decrease of, respectively, 25.0, 6.5, and 13.1% across 
the two traits). When enlarging the reference popula-
tion, MT-GBLUP showed an improvement in predictive 
ability for all population and trait combinations, and 
this improvement was statistically significant for most 
population and trait combinations. Although improve-
ments in predictive ability when moving from two-
populations to multi-populations were generally also 
observed for SRV (average improvement of 2.5% across 
all populations and traits), statistical significance was 
only found for the TNB in population A (improvement 
of 6.83%). In addition, lower MSE were observed when 
using MT-GBLUP and SVR for multiple populations 
than for two populations for all trait and population 

Fig. 4 Predictive ability, mean squared error (MSE), and bias for genomic predictions for multiple populations with different genetic backgrounds. 
a–c Predictive ability, MSE, and bias for total number of piglets born (TNB). d–f Predictive ability, MSE, and bias for number of piglets born alive 
(NBA). ST-GBLUP: single-trait genomic best linear unbiased prediction model; MT-GBLUP: multitrait GBLUP model. The error bar represents 
the standard error
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combinations but similar or lower MSE were obtained 
when using ST-GBLUP, KRR, and AdaBoost.R2 for 
multiple populations than for two populations. More-
over, when moving from two populations to multiple 
populations, prediction bias generally increased for ST-
GBLUP and the ML methods, but remained approxi-
mately the same for MT-GBLUP.

Discussion
The predictive ability of multi-population genomic pre-
diction is affected by a variety of factors, such as differ-
ences in the LD between markers and quantitative trait 
loci (QTL) across populations, QTL segregating in one 
population only and not the other, differences in MAF 
between populations, and differences in allele substi-
tution effects due to the different backgrounds of the 
populations [39, 40]. In this study, we explored the effec-
tiveness of joint genomic prediction in Chinese and 
Austrian pigs in a two-population scenario and a multi-
population scenario.

As Robertson [41] suggested, 0.80 is the biologically 
important threshold for G × E interactions. The genetic 
correlation for the TNB and NBA traits between the Aus-
tria and A populations were 0.62 and 0.40, respectively 
(see Additional file 1: Table S2). Therefore, G × E interac-
tions are likely to exist between the two populations. In 
the two-population scenario, multitrait models can be 
used to improve the predictive ability of genomic pre-
diction due to their ability to capture the G × E interac-
tions between populations, but higher predictive ability 
can be further gained using ML methods. In the multi-
population scenario, apart from the Austria and A pop-
ulations, populations C and D also had similar genetic 
backgrounds to each other (Fig. 1b) but the genetic cor-
relations between them were lower than those between 
the Austria and A populations (see Additional file  1: 
Table S2), suggesting the possibility of G × E interactions 
between the C and D populations as well. Considering 
that large G × E interactions were not accounted for in 
single-trait models, ST-GBLUP also achieved an overall 
lower predictive ability compared to MT-GBLUP and ML 
methods, and MT-GBLUP resulted in a smaller bias than 
other methods.

In the two-population scenario, compared to ST-
GBLUP, the predictive ability of MT-GBLUP improved 
by on average 8.8 and 5.5% for TNB and NBA, respec-
tively. In addition, multitrait models can also be used to 
account for different phenotype scales between popula-
tions, particularly in the context of international joint 
evaluations, in which traits are not defined in the same 
way and country-specific scale effects may apply [42]. 
Nevertheless, the predictive abilities of SVR and KRR 
were higher than that of MT-GBLUP in almost all cases 

(Fig. 3). In the multi-population scenario, MT-GBLUP is 
also an ideal “benchmark” for comparison, but it failed 
to converge when the covariances between populations 
were estimated using a 5-trait model. Therefore, a series 
of bivariate analyses were performed and the estimated 
genetic parameters were combined into the final (co)vari-
ance matrix. This approach of using a series of bivariate 
analyses is commonly practised in international dairy 
and beef evaluations to deal with multiple populations 
[43]. Alternative approaches could be used to estimate 
(co)variance components, such as a Bayesian sampling 
approach (e.g., Gibbs sampling) instead of the REML 
method [44] that was used here. When using multitrait 
models to handle multiple populations, in spite of genetic 
differences populations, those with similar genetic back-
grounds can be collectively modelled as a single popula-
tion, which reduces the number of traits in the model, 
significantly reducing computational demands. The same 
approach is applicable in scenarios involving different 
breeds or G × E interactions, since farms from similar 
areas tend to exhibit fewer G × E interactions and can 
thus be regarded as a joint population. Therefore, multi-
trait models are still feasible when dealing with data from 
numerous populations.

When comparing MT-GBLUP with ML methods, in 
the two-population scenario, ML methods demonstrated 
superior predictive abilities with similar or smaller biases 
compared to MT-GBLUP in the A population, while they 
showed comparable predictive abilities to MT-GBLUP 
for the Austrian population but with increased biases; 
in the multi-population scenario, ML methods did not 
show higher predictive abilities than MT-GBLUP but 
greater prediction bias. Finally, the ML methods exhib-
ited greater computational efficiency, particularly for 
the multi-population scenario, as shown in Additional 
file 1: Table S4. In addition, when the number of popu-
lations increased, only MT-GBLUP yielded an improve-
ment in predictive ability in both populations, while the 
other methods yielded an improvement only in popula-
tion A and not in the Austrian population. This could be 
because the added populations had significantly lower 
genetic correlations with the Austrian population com-
pared to their correlations with population A (as shown 
in Additional file 1: Table S2); thus, they may have greater 
G × E interactions with the Austrian population. If G × E 
interactions are not adequately accounted for, adding 
such populations in the multi-population scenario might 
decrease the predictive ability. However, the only model 
that was proficient in handling this multi-population 
scenario is MT-GBLUP, as it can account for such G × E 
interactions. Consequently, only MT-GBLUP improved 
the predictive ability for the Austrian population in the 
multi-population scenario.
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In this study, we did not find consistency between PCA 
and the genetic correlation of specific traits. In spite of 
the distinct genetic backgrounds of populations A, B, and 
C based on PCA (Fig. 1b), the estimates of genetic cor-
relations for TNB and NBA between them were high (see 
Additional file 1: Table S2). The estimates of these genetic 
correlations may, however, be biased because the genetic 
markers may not accurately represent differences in allele 
frequencies at causal loci between populations [45]. 
Wientjes et al. [46] demonstrated that unbiased estimates 
of genetic correlation can be obtained from genomic rela-
tionships based on causal loci. However, when the non-
causal SNPs that are used to estimate genetic correlation 
between populations do not have similar properties as 
the causal loci (e.g., similar pattern of allele frequencies), 
estimates of the genetic correlation can be biased [45]. 
Estimates of genetic correlations between populations 
can also be affected when the genetic effects captured by 
the genotyped markers have higher or lower genetic cor-
relations than the portion that is not captured by markers 
[47]. Finally, genetic correlations differ across traits [48–
50] and are also affected by potential differences in the 
environments that the populations are exposed to [51].

Among the three ML methods, SVR and KRR had 
higher predictive ability than ST-GBLUP. These findings 
were consistent with other studies, showing the superi-
ority of SVR and KRR in terms of predictive ability for 
genomic prediction of phenotypes [16, 18, 52, 53]. ML 
methods have demonstrated an ability to use nonadditive 
effects and improve the predictive ability [16]. Moreover, 
the ML methods employed in this study adopted a pop-
ulation-specific hyperparameter optimization strategy, 
ensuring that the most suitable hyperparameters could 
be obtained for each population. In addition, the optimal 
hyperparameters were determined using a grid search 
based on the Pearson correlation coefficient between 
corrected phenotypes yc and predicted genetic effects, 
thereby ensuring that the identified optimal hyperpa-
rameters were closer to the global optimum. These fac-
tors contribute to the advantages of ML algorithms over 
ST(MT)-GBLUP and Bayesian methods in the two-pop-
ulation scenario. However, when adding unrelated refer-
ence populations, the data were not evenly distributed 
across PCA (Fig.  1b). The bandwidth parameter of the 
RBF kernel (i.e., the inverse of gamma) is affected by the 
distribution and local density of data points [54]. There-
fore, using an RBF kernel with a fixed gamma value for 
all individuals may not adequately adapt to local features 
within the data, thereby struggling to establish connec-
tions between populations. In contrast, the MT-GBLUP 
method captures genetic connections between popula-
tions through the G matrix. Consequently, MT-GBLUP 
still achieved higher predictive abilities in that scenario. 

For ML methods, developing an RBF kernel that dynami-
cally adjusts the bandwidth for each data point based on 
local density (i.e., reducing bandwidth within clusters to 
capture more subtle local features, while increasing band-
width in sparser areas between clusters to establish con-
nections across different clusters) could enable the model 
to better adapt to local features and distributions of data, 
which may be beneficial for multi-population datasets.

ML methods also have limitations. (1) Traditional ML 
methods often fail to decompose variance components, 
making the calculation of heritabilities and genetic cor-
relations a challenge. (2) ML methods often exhibit sen-
sitivity to minor perturbations (a change or disturbance 
to the original data) and noise in the data, which could 
lead to instability in the model output (as in the case of 
Adaboost.R2 in our study). (3) Hyperparameter opti-
mization is required during the model training process. 
The time required for hyperparameter optimization with 
grid search is influenced by experience (i.e. the selection 
of the hyperparameter ranges and values in grid search) 
and novices may need some time to explore the optimal 
hyperparameters. However, some automated hyperpa-
rameter search strategies, such as random search, Bayes-
ian optimization, and gradient-based hyperparameter 
optimization, can significantly improve optimization effi-
ciency without being affected by experience. It should 
be noted that in practical breeding, hyperparameter 
optimization is not an issue because automatic hyperpa-
rameter optimization can be integrated into the analysis 
workflow. In addition, as long as there are no significant 
changes in the reference population, there is no need to 
re-optimize hyperparameters and previously trained 
models can be directly employed for prediction. And (4), 
traditional ML methods often struggle to facilitate prac-
tical selection to improve breeding values; because ML 
methods can capture nonlinear relationships in genomic 
data, the genetic effects that they predict also include 
non-additive effects (e.g., dominance and epistasis). 
Therefore, traditional ML methods are difficult to apply 
directly in practical applications for selection to improve 
breeding values, and more research is required to explore 
the dissection of additive effects.

Because the primary aim of this study was to com-
pare the performance of phenotype prediction methods 
and because of limitations in sample size and birth year, 
a random CV strategy was adopted to achieve more sta-
ble results. However, in practical breeding, selection 
often requires using older animals in the training set to 
predict younger individuals. The predictive ability and 
bias obtained from CV may not represent those of prac-
tical predictive ability and bias because the relationship 
between the training and validation sets is different.
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As an ensemble learning method, AdaBoost.R2 did not 
show advantages compared to SVR and KRR, for which 
there are three possible explanations. (1) The number of 
AdaBoost.R2 iterations (i.e., the number of base learn-
ers) has a strong impact on the predictive ability of the 
model [55]. However, the small size of each population 
and the differences between populations in the training 
set increased the differences between replicate training 
sets, thereby rendering the determination of the optimal 
number of base learners unstable and challenging (results 
not shown). As a result, we did not identify the optimal 
number of base learners but, instead, we used the default 
number of base learners, which may have somewhat 
compromised the performance of AdaBoost.R2. (2) Since 
AdaBoost.R2 mainly focuses on reducing bias through a 
stepwise boosting approach, it often overlooks variance 
control, leading to an increase in model overfitting. To 
increase the diversity of base learners and reduce the risk 
of overfitting, a strong ensemble must be constructed 
based on learners with fairly weak generalization per-
formance (such as the classification and regression tree 
(CART) decision tree or the multi-layer perceptron 
(MLP) neural network) [55]. However, our choice to use 
the more robust KRR as the base learner for AdaBoost 
was primarily motivated by our desire to use fewer base 
learners and to capitalize on the tuning experience (i.e. 
the approximate range of hyperparameters) gained from 
the learners employed in this study (e.g., SVR and KRR), 
thereby significantly reducing hyperparameter optimiza-
tion time. This may have resulted in a decrease in the pre-
dictive ability of AdaBoost.R2. And (3) The performance 
of AdaBoost.R2 is sensitive to abnormal samples, which 
refer to data points that significantly deviate from the 
norm or general distribution of the dataset, often due to 
measurement error or anomalies [55]. For multi-popula-
tion genomic prediction, the individuals in the validation 
population and some of the individuals in the reference 
population come from different populations, and abnor-
mal samples from different populations may be assigned 
greater weights in iterations, while samples from the 
same population may be assigned smaller weights, thus 
affecting the final predictive ability, which may also be 
the reason for the large bias observed for Adaboost.R2.

ML methods provide new options for multi-popula-
tion genomic prediction. However, as the sample size 
increases, the computing time of traditional ML meth-
ods that model each population separately increases. In 
contrast, in transfer learning, previously trained models 
can be reused, and the knowledge learned in the source 
domain (e.g. large population) can be used to help learn-
ing tasks in the target domain (e.g. small population) 
according to the similarity of data, tasks (e.g. genomic 

prediction of phenotypes), and models; therefore, the 
model trained on big data can be transferred to small 
datasets successfully [56, 57].

Conclusions
In this study, we used ST-GBLUP, MT-GBLUP, 
BayesHE, and three ML methods for multi-population 
genomic prediction of phenotypes reproductive traits 
in Chinese and Austrian pigs. Our results demonstrated 
that the MT-GBLUP method showed advantages over 
ST-GBLUP in both two-population and multi-popu-
lation scenarios. When enlarging the reference popu-
lation from two populations to multiple populations, 
ST-GBLUP and ML methods produced overall larger 
bias, while MT-GBLUP generally achieved similar bias. 
Compared to MT-GBLUP, ML methods possess poten-
tial to improve the genomic prediction ability of both 
populations in the two-population scenario, while in 
the multi-population scenario, the advantages of ML 
methods were not demonstrated.
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