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Abstract 

Single-board computers have gained popularity in the recent decade, largely due to the 

immense advancements in deep learning. Deep learning involves complex computational 

processes that are beyond the capabilities of regular microcontrollers, thus necessitating 

the use of single-board computers. However, single-board computers are primarily 

designed to operate efficiently in low-power environments. Therefore, optimization is 

crucial for running deep learning algorithms effectively on single-board computers. In this 

work, we explore the impact of utilizing the DeepStream framework to run deep learning 

algorithms, specifically the YOLO algorithm, on NVIDIA Jetson single-board computers. 

The DeepStream framework can be executed in virtual machines, notably Docker, to 

improve the performance and portability of the model. Additionally, deploying the Docker 

virtual machine from removable disks can further enhance its portability and even increase 

the algorithm's speed. The result of this study shows that real-time streaming of the YOLO 

algorithm can operate up to 8.5 times faster when deployed from a Docker virtual machine. 

Keywords: Deep learning, single-board computer, virtual machine, edge computing, 

optimization 

 

1. Introduction 

Deep learning has become a critical component in the evolution of computing 

technology, notably impacting the functionality and efficiency of single-board computers 

(SBCs) [1]. These compact, energy-efficient devices have become increasingly vital in 

implementing intelligent systems, especially in applications like traffic surveillance and 

security. However, deploying deep learning algorithms on SBCs presents a unique set of 

challenges due to the devices' limited computational power and memory capacity. This 

situation calls for specialized optimization strategies to fully exploit the capabilities of 

SBCs without compromising performance [2], [3]. 

In the application of traffic surveillance, for example, real-time processing and analysis 

of video streams are essential for detecting accidents, managing congestion, and ensuring 

public safety [4], [5], [6]. Similarly, security applications rely on the swift recognition of 

potential threats and anomalies to prevent incidents [7]. Deep learning models, with their 

ability to learn from vast amounts of data and make accurate predictions, are ideal for these 

tasks. Yet, their complexity and the high volume of computations make them difficult to 

run effectively on SBCs, which are constrained by lower processing power and limited 

memory compared to standard computing resources. 

The primary challenge in using SBCs for deep learning lies in balancing the need for 

computational efficiency with the devices' inherent limitations. SBCs, while capable of 

performing a wide range of computing tasks, are not inherently designed to handle the 

intensive demands of deep learning algorithms. This discrepancy can lead to issues such as 

slower processing speeds, reduced accuracy in model predictions, and the potential for 

overheating, which can affect system reliability and longevity. 
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Deploying and maintaining deep learning models on SBCs requires specialized 

expertise, particularly in fine-tuning deep learning algorithms to function within the the 

devices' limited resources. This optimization process involves several methods aimed at 

enhancing the operational efficiency of models while managing their demand on 

computational and memory resources. Some examples among these methods is model 

pruning, which involves the selective removal of less important neurons from a network. 

This technique effectively reduces the model's size and its computational complexity, 

thereby lightening the load on SBCs without significantly compromising the model's 

accuracy. Another example is quantization, which reduces the precision of the numerical 

parameters of a model from floating-point representations with longer decimal points to 

smaller datatypes. This approach can substantially decrease the model's memory footprint 

and speed up its computations, making deep learning models more adaptable to the 

constraints of SBCs. Knowledge distillation is also employed, where a simpler, more 

efficient "student" model learns to mimic the behavior of a larger, more complex "teacher" 

model. The student model maintains essential functionalities with much lower 

computational requirements. Optimization also extends to coding practices, which are 

crucial for minimizing the computational cost of SBCs. Techniques such as optimizing 

loops, utilizing efficient data structures, and reducing memory access times can 

considerably decrease the computational load. Additionally, exploiting the hardware 

acceleration capabilities of some SBCs, like GPUs or TPUs, can further enhance the 

performance of deep learning applications. 

Optimizing deep learning models for use on SBCs involves several aforementioned 

techniques, include pruning (trimming unneeded parts of the model), quantization (reducing 

the precision of the calculations to speed them up), and knowledge distillation (teaching a 

smaller model to mimic a larger one). Additionally, writing code that makes good use of 

the computer's capabilities and using hardware acceleration where possible are also key. 

Despite the benefits of these methods, they require a deep understanding of both the models 

and the hardware, making it challenging without specialized knowledge in computer 

science or engineering. Deploying these optimized models on SBCs often involves dealing 

with various software and hardware requirements, which can make the process 

complicated. Different SBCs may have unique needs, such as specific operating systems or 

drivers. This complexity limits the ease of applying deep learning models in dynamic 

settings, such as for traffic surveillance or security systems, by affecting their scalability 

and portability. 

The approach proposed here simplifies this process significantly. It uses NVIDIA 

Deepstream [8] and TensorRT [9], [10] for automatically optimizing the models, making 

them smaller and more efficient without losing accuracy. Then, by packaging these models 

into Docker containers [11], [12], the deployment becomes much easier across different 

SBCs. Docker containers help manage software dependencies and ensure that the models 

can run smoothly on various devices without needing extensive setup. This method 

effectively addresses compatibility and scalability issues, making it a practical solution for 

deploying deep learning applications on SBCs. 

Experimental results from this research show that this approach not only makes 

deployment easier but also speeds up the running time of deep learning algorithms on 

multiple SBCs, including Jetson Nano, Jetson Xavier NX, Up Squared, and Up Xtreme. 

This improvement is crucial for real-time applications where quick processing and analysis 

are necessary for effectiveness. 

In summary, this research provides a comprehensive strategy for deploying deep learning 

models on SBCs more efficiently. By automating the optimization process using 

Deepstream and TensorRT while simplifying deployment through Docker containers, it 

lowers the barrier to entry for using advanced deep learning applications across different 

devices. This streamlined approach enhances the feasibility of implementing intelligent 
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systems in areas requiring real-time processing capabilities, such as traffic surveillance and 

security, thereby expanding the potential applications of SBCs in the field of deep learning. 

 

2. Method 

In this methodology section, we detail the comprehensive approach used to evaluate the 

performance of the YOLOv3-tiny [13] model across various hardware platforms, focusing 

on its implementation in different runtime environments. This study was conducted to 

assess the effectiveness of deploying deep learning models, specifically for object detection 

and identification tasks, on SBCs and a standard Windows desktop. The goal was to explore 

optimizations that could facilitate the deployment and enhance the performance of deep 

learning models on devices with limited computational resources. 

The methodology for conducting the experiments involved setting up each hardware 

platform with the necessary software and runtime environments. For the SBCs and the 

Windows desktop, this setup included the installation of Docker and the configuration of 

the Deepstream and TensorRT environment as needed. Three different application of the 

YOLOv3 (regular object detection, person identification, and pedestrian counter) model 

was then deployed and tested in the native runtime, regular Docker, and Deepstream Docker 

environments, with performance metrics collected for comparison. 

Performance evaluation focused on measuring the inference speed and accuracy of the 

YOLOv3 tiny model across the different hardware platforms and runtime environments. 

The deployment from removable disks was assessed in terms of the ease of setup and any 

impact on performance metrics. 

This comprehensive methodology allowed for a detailed analysis of the factors 

influencing the deployment and performance of deep learning models on various computing 

platforms, with a particular focus on optimizing for SBCs. The findings are expected to 

contribute valuable insights into the practical application of deep learning technologies in 

resource-constrained environments. 

 

2.1. You-Only-Look-Once (YOLO) Algorithm 

The deep learning model chosen for this study is YOLOv3 tiny, a lighter version of the 

YOLO (You Only Look Once) [14] model, known for its efficiency and speed in real-time 

object detection tasks. The architecture of the implemented YOLOv3-tiny is illustrated in 

Figure 1. We evaluated three distinct implementations of the YOLOv3 tiny model, each 

tailored to a specific application: Pascal VOC object detection [15], pedestrian counting, 

and person identification. These applications were selected to cover a broad spectrum of 

real-world scenarios where efficient real-time processing on edge devices is crucial. 

For the object detection experiments, we utilized the Pascal VOC 2012 dataset, a 

benchmark in the field of computer vision. This dataset comprises 20 object classes, 

including people, animals, vehicles, and household objects, making it a comprehensive 

testbed for evaluating the effectiveness of object detection models. The diversity of classes 

and the challenging nature of the images, which often include objects in varied poses and 

occlusions, make the Pascal VOC 2012 dataset ideal for testing and benchmarking deep 

learning models. Its widespread use in the research community allows for direct comparison 

with other models and techniques, providing a clear measure of performance 

improvements. 

The pedestrian counting implementation was designed to simulate a common application 

of surveillance and urban planning. For this purpose, an IP camera was set up overlooking 

a sidewalk in an urban area. The task involves detecting and counting pedestrians passing 

by in real time. This application tests the model's ability to accurately identify and track 

multiple individuals in dynamic, outdoor environments where lighting, weather, and crowd 
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density can vary significantly. The practical implications of this experiment extend to city 

planning, traffic management, and public safety, where accurate pedestrian counts are 

crucial for informed decision-making. 

 
Figure 1. YOLOv3-tiny Network Architecture 

For person identification, a webcam was installed in the hallway of an office building. 

This setup aims to evaluate the model's performance in recognizing and identifying 

individuals in a controlled indoor environment. The person identification task is critical for 

applications such as access control, attendance tracking, and security surveillance. Unlike 

the pedestrian counting setup, which focuses on detecting any pedestrian, person 

identification requires the model to discern specific individuals, often under varying 

lighting conditions and angles. This experiment highlights the model's capabilities in more 

personalized applications, where accuracy in identifying individuals is paramount. 

These three implementations of the YOLOv3 tiny model—Pascal VOC object detection, 

pedestrian counting, and person identification—serve as comprehensive tests of the model's 

utility across a spectrum of real-world scenarios. From generic object detection with the 

diverse Pascal VOC 2012 dataset to the specialized tasks of counting pedestrians on a city 

sidewalk and identifying persons in an office building, these experiments underscore the 

model's adaptability and performance in addressing different challenges faced in the 

deployment of deep learning models on single-board computers. 

 
Figure 2.Docker allows cross-platform deployment. Allowing models to be 

trained only once 
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Figure 3. Models can be trained in any devices with different OS version and 

then deployed via Docker 

 

2.2. Docker Virtual Environment 

Docker plays a pivotal role in this research by providing a platform for containerization, 

a technique that packages an application along with its dependencies and libraries in a 

container. This containerization ensures that the application runs consistently across 

different computing environments, as illustrated in Figure 2 and 3. In the context of 

deploying deep learning models on single-board computers (SBCs), Docker offers several 

advantages that are instrumental to the research: 

 

2.2.1. Consistency Across Environments 

By encapsulating the deep learning environment and its dependencies within a Docker 

container, the research ensures that the deep learning models can be deployed consistently 

across different SBCs. This consistency is crucial for comparative analysis and 

benchmarking, as it eliminates the variability in performance that can arise from differences 

in the underlying software environment. 

2.2.2. Portability 

Docker containers can be easily transferred and deployed across different systems, 

enhancing the portability of the deep learning models. This portability is particularly 

beneficial in research settings where models need to be tested on various hardware 

platforms to assess their performance and scalability. 

 

2.2.3. Isolation 

Docker provides an isolated environment for each container, which minimizes conflicts 

between different software versions or dependencies. This isolation is important for 

research, as it allows for simultaneous testing of multiple configurations or models without 

interference, ensuring the integrity of the experimental results. 

 

2.2.4. Efficiency 

Docker's lightweight nature and its ability to share resources across containers make it 

an efficient choice for deploying deep learning models on SBCs, which often have limited 

resources. This efficiency supports more effective utilization of the available computational 

power, enhancing the performance of the deep learning models. 

  

2.3. Deepstream and TensorRT Deep Learning Framework 

The combination of NVIDIA DeepStream and TensorRT is integral to optimizing deep 

learning models for real-time applications in the research. DeepStream provides a streaming 
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analytics toolkit designed for AI-based multi-sensor processing, video, and image 

understanding. TensorRT is an SDK for high-performance deep learning inference, which 

includes a deep learning inference optimizer and runtime that delivers low latency and high 

throughput for deep learning applications. Together, they play several critical roles in the 

research: 

 

2.3.1. Performance Optimization 

Deepstream and TensorRT optimize deep learning models for inference on NVIDIA 

hardware, including Jetson SBCs. TensorRT accelerates deep learning inference through 

optimizations such as parametrization, while Deepstream allows for efficient processing 

and analysis of video streams. 

 

2.3.2. Scalability 

The integration of Deepstream with TensorRT enables the research to scale deep 

learning models to process video streams from multiple sources simultaneously, a key 

requirement for applications like traffic surveillance and security monitoring. 

 

2.3.3. Real-time Processing 

Deepstream facilitates the development of applications that require real-time video 

analytics, which is essential for the research's focus on real-time object detection and 

identification tasks. The combination with TensorRT ensures that these tasks can be 

performed with minimal latency, meeting the requirements for real-time performance on 

SBCs. 

 

2.3.4. Ease of Development 

DeepStream provides pre-built models and components that simplify the development 

of complex video analytics applications. This ease of development allows the research to 

focus on the application-specific aspects of the models, such as tuning for object detection 

or person identification, rather than the intricacies of video processing and inference 

optimization. 

 

By leveraging Docker for deployment and NVIDIA DeepStream and TensorRT for 

performance optimization, the research addresses the challenges of deploying and running 

deep learning models on resource-constrained SBCs, enabling efficient and scalable real-

time video analytics applications. 

 

2.4. Removable Disk Deployment 

An additional layer of experimentation involved exploring the feasibility of deploying 

the YOLOv3 tiny model from removable disks. This approach aimed to investigate the 

portability and ease of deployment across different devices, an essential factor for 

applications requiring flexibility and quick setup in various operational contexts. 

 

2.5. Platform Setups 

Table 1. Platform architecture and OS comparison 

Machine Arch OS 

Desktop X86 Windows 11 
Xavier NX ARM Jetpack OS 
Up Xtreme X86 Ubuntu OS 
Up Squared X86 Ubuntu OS 
Nano ARM Jetpack OS 

The experiments are conducted on five different platforms. The SBCs used for these 

experiments includes two Ubuntu x86-based SBCs (Up Xtreme and Up Squared), two 
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ARMs based SBCs (Jetson Xavier NX and the Jetson Nano) both running NVIDIA custom 

linux distro Jetpack OS. Additionally, a Windows desktop was employed as a baseline for 

performance comparison. The choice of these devices reflects a range of computational 

capabilities, from the relatively powerful Windows desktop to the more resource-

constrained SBCs. Meanwhile, all models are implemented using Pytorch [16], [17] deep 

learning framework for fair comparison. 

 

3. Results and Discussion 

The Results and Discussion section of this study meticulously evaluates the performance 

of deep learning models, specifically the YOLO algorithm, across various computing 

platforms and configurations. This evaluation is crucial for understanding the effectiveness 

of our proposed solution, leveraging Docker and NVIDIA's DeepStream and TensorRT, in 

optimizing these models for single-board computers (SBCs). Our analysis is structured 

around three pivotal aspects: model accuracy, inference time, and resource consumption, 

each represented by detailed experimental data. 

Table 2. YOLO accuracy on Pascal VOC Dataset 

Models Accuracy (mAP) 

Pre-trained 51.8 % 

120 epochs unpruned 78.3 % 

300 epochs unpruned 79.7 % 

300 epochs pruned (TRT) 79.8 % 

 

 
 

 
Figure 4. Visualization of object detection deployment on KITTI [18] dataset. 

The model is trained on Pascal VOC 2012. 

3.1. Model Accuracy and Test Performance 

Initially, we focus on the accuracy of the YOLO model, utilizing the Pascal VOC 2012 

dataset. As illustrated in Table 2 and visualized in Figure 4, the model demonstrates a 

notable improvement in accuracy with extended training, moving from a pre-trained 

accuracy of 51.8% to 79.7% after 300 epochs. Interestingly, a slight accuracy increase is 

observed when applying pruning and TensorRT optimizations, pushing the accuracy to 
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79.8%. This increment, although modest, highlights the efficacy of model optimization 

techniques in not only maintaining but potentially enhancing model accuracy even after 

significant reduction in model complexity. However, there is also an inherent limitation of 

YOLO models, which is its inability to accurately detect overlapping objects, as shown in 

Figure 5. Nevertheless, the model also able to be run successfully on the two other tasks, 

the person identification and pedestrian counting, as demonstrated in Figure 6 and 7, 

respectively. 

Table 3. Inference Time Comparison Between Docker and Native Runtime 

on Various Platforms 

Machine on Host on Docker Container 

Desktop  2 ms 3.3 ms 
Xavier NX 41 ms 26 ms  
Up Xtreme 32 ms 33.5 ms 
Up Squared* - 185 ms  
Nano 619 ms 72.75 ms 

* Up Squared cannot run Pytorch natively 

 

 
Figure 5. Several misdetection on the YOLOv3-tiny object detection 

algorithm. The model is especially prone to miss overlapping objects.  

3.2. Inference Time Comparison Between Docker and Native Runtime 

Table 3 presents a comparison of inference times between models running natively and 

those within a Docker container equipped with DeepStream. The data reveals a mixed 

impact of containerization on inference speed. While native execution is unsurprisingly 

faster on the desktop, running YOLO within a Docker container on the Xavier NX and 

Nano shows a dramatic decrease in inference time, showcasing the effectiveness of our 

Docker-based deployment in optimizing runtime performance on SBCs. Notably, the Up 

Squared SBC, which cannot run Pytorch natively due to hardware limitations, becomes 

capable of executing the model within a Docker environment, albeit with higher inference 

times, underscoring the versatility of our approach. 

 
Figure 6. YOLO for Person Identification 
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3.3. Deepstream and TensorRT Deep Learning Framework 

Table 4 explores the impact of running multiple Docker containers on resource usage 

within a desktop environment. The experiment aims to assess the scalability of our solution 

when deployed in scenarios requiring multiple instances of the model. The results indicate 

a marginal increase in CPU usage and a slightly more pronounced rise in RAM usage with 

the addition of more containers. However, the overall system resources remain largely 

unaffected, suggesting that our Docker-based deployment method is not only efficient but 

also scalable, allowing for multiple models to run concurrently without significant resource 

drain. 

In summary, the experimental results substantiate the proposed method's effectiveness 

in enhancing the deployment and performance of deep learning models on SBCs. By 

achieving a balance between accuracy, runtime efficiency, and resource utilization, this 

research contributes meaningful insights into the practical application of deep learning in 

real-time, resource-constrained environments with the help of DeepStream framework [19], 

[20]. Further discussion will delve into the implications of these findings for the deployment 

of AI applications on edge devices and identify potential areas for future investigation. 

 

 
Figure 7. YOLO for Pedestrian Counter 

 

4. Conclusion 

Our experiments across various hardware platforms, including the Jetson Xavier NX and 

Nano, as well as Ubuntu-based x86 SBCs like the Up Xtreme and Up Squared, demonstrate 

a substantial improvement in the speed and efficiency of deep learning algorithms that is 

run on virtual machine. The deployment from removable disks further underscores the 

versatility and practicality of our approach, offering a new dimension of portability and 

ease of setup that is particularly valuable in dynamic application environments. The core 

challenge lies in the resource constraints of SBCs, which necessitate innovative approaches 

to model optimization and deployment. Our exploration reveals that leveraging Docker, 

combined with the computational optimizations offered by NVIDIA Deepstream and 

TensorRT, provides a compelling solution to these challenges. Docker significantly 

simplifies the deployment process across different SBCs by ensuring consistency and 

portability, while also offering efficient use of limited resources through its containerization 

technology. Meanwhile, Deepstream and TensorRT have proven essential in reducing the 

number of parameters of deep learning models on SBCs, enabling real-time processing 

capabilities that are crucial for the applications studied. This research not only contributes 

to the academic understanding of deep learning deployment on SBCs but also provides a 
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practical framework that can be readily applied across different domains requiring real-time 

data processing and analysis. Future work will explore further optimizations and the 

potential integration of emerging technologies to enhance the scalability and applicability 

of deep learning models in real-world scenarios, ensuring that the benefits of AI can be 

more broadly realized in a variety of settings. 
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