
HAL Id: hal-04629865
https://hal.science/hal-04629865v1

Submitted on 3 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Improving YOLO Object Detection Performance on
Single-Board Computer using Virtual Machine

Amirul Muhamad, Le Nam Quoc Huy, Nuniek Fahriani

To cite this version:
Amirul Muhamad, Le Nam Quoc Huy, Nuniek Fahriani. Improving YOLO Object Detection Perfor-
mance on Single-Board Computer using Virtual Machine. Emerging Information Science and Tech-
nology, 2024. �hal-04629865�

https://hal.science/hal-04629865v1
https://hal.archives-ouvertes.fr

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

Copyright ⓒ 2024 EIST

Improving YOLO Object Detection Performance on

Single-Board Computer using Virtual Machine

Muhamad Amirul Haq1*, Le Nam Quoc Huy2, Nuniek Fahriani3

1,3Universitas Muhammadiyah Surabaya
2National Taiwan University of Science and Technology

*Corresponding author : amirulhaq@ft.um-surabaya.ac.id

Abstract

Single-board computers have gained popularity in the recent decade, largely due to the

immense advancements in deep learning. Deep learning involves complex computational

processes that are beyond the capabilities of regular microcontrollers, thus necessitating

the use of single-board computers. However, single-board computers are primarily

designed to operate efficiently in low-power environments. Therefore, optimization is

crucial for running deep learning algorithms effectively on single-board computers. In this

work, we explore the impact of utilizing the DeepStream framework to run deep learning

algorithms, specifically the YOLO algorithm, on NVIDIA Jetson single-board computers.

The DeepStream framework can be executed in virtual machines, notably Docker, to

improve the performance and portability of the model. Additionally, deploying the Docker

virtual machine from removable disks can further enhance its portability and even increase

the algorithm's speed. The result of this study shows that real-time streaming of the YOLO

algorithm can operate up to 8.5 times faster when deployed from a Docker virtual machine.

Keywords: Deep learning, single-board computer, virtual machine, edge computing,

optimization

1. Introduction

Deep learning has become a critical component in the evolution of computing

technology, notably impacting the functionality and efficiency of single-board computers

(SBCs) [1]. These compact, energy-efficient devices have become increasingly vital in

implementing intelligent systems, especially in applications like traffic surveillance and

security. However, deploying deep learning algorithms on SBCs presents a unique set of

challenges due to the devices' limited computational power and memory capacity. This

situation calls for specialized optimization strategies to fully exploit the capabilities of

SBCs without compromising performance [2], [3].

In the application of traffic surveillance, for example, real-time processing and analysis

of video streams are essential for detecting accidents, managing congestion, and ensuring

public safety [4], [5], [6]. Similarly, security applications rely on the swift recognition of

potential threats and anomalies to prevent incidents [7]. Deep learning models, with their

ability to learn from vast amounts of data and make accurate predictions, are ideal for these

tasks. Yet, their complexity and the high volume of computations make them difficult to

run effectively on SBCs, which are constrained by lower processing power and limited

memory compared to standard computing resources.

The primary challenge in using SBCs for deep learning lies in balancing the need for

computational efficiency with the devices' inherent limitations. SBCs, while capable of

performing a wide range of computing tasks, are not inherently designed to handle the

intensive demands of deep learning algorithms. This discrepancy can lead to issues such as

slower processing speeds, reduced accuracy in model predictions, and the potential for

overheating, which can affect system reliability and longevity.

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

37

Deploying and maintaining deep learning models on SBCs requires specialized

expertise, particularly in fine-tuning deep learning algorithms to function within the the

devices' limited resources. This optimization process involves several methods aimed at

enhancing the operational efficiency of models while managing their demand on

computational and memory resources. Some examples among these methods is model

pruning, which involves the selective removal of less important neurons from a network.

This technique effectively reduces the model's size and its computational complexity,

thereby lightening the load on SBCs without significantly compromising the model's

accuracy. Another example is quantization, which reduces the precision of the numerical

parameters of a model from floating-point representations with longer decimal points to

smaller datatypes. This approach can substantially decrease the model's memory footprint

and speed up its computations, making deep learning models more adaptable to the

constraints of SBCs. Knowledge distillation is also employed, where a simpler, more

efficient "student" model learns to mimic the behavior of a larger, more complex "teacher"

model. The student model maintains essential functionalities with much lower

computational requirements. Optimization also extends to coding practices, which are

crucial for minimizing the computational cost of SBCs. Techniques such as optimizing

loops, utilizing efficient data structures, and reducing memory access times can

considerably decrease the computational load. Additionally, exploiting the hardware

acceleration capabilities of some SBCs, like GPUs or TPUs, can further enhance the

performance of deep learning applications.

Optimizing deep learning models for use on SBCs involves several aforementioned

techniques, include pruning (trimming unneeded parts of the model), quantization (reducing

the precision of the calculations to speed them up), and knowledge distillation (teaching a

smaller model to mimic a larger one). Additionally, writing code that makes good use of

the computer's capabilities and using hardware acceleration where possible are also key.

Despite the benefits of these methods, they require a deep understanding of both the models

and the hardware, making it challenging without specialized knowledge in computer

science or engineering. Deploying these optimized models on SBCs often involves dealing

with various software and hardware requirements, which can make the process

complicated. Different SBCs may have unique needs, such as specific operating systems or

drivers. This complexity limits the ease of applying deep learning models in dynamic

settings, such as for traffic surveillance or security systems, by affecting their scalability

and portability.

The approach proposed here simplifies this process significantly. It uses NVIDIA

Deepstream [8] and TensorRT [9], [10] for automatically optimizing the models, making

them smaller and more efficient without losing accuracy. Then, by packaging these models

into Docker containers [11], [12], the deployment becomes much easier across different

SBCs. Docker containers help manage software dependencies and ensure that the models

can run smoothly on various devices without needing extensive setup. This method

effectively addresses compatibility and scalability issues, making it a practical solution for

deploying deep learning applications on SBCs.

Experimental results from this research show that this approach not only makes

deployment easier but also speeds up the running time of deep learning algorithms on

multiple SBCs, including Jetson Nano, Jetson Xavier NX, Up Squared, and Up Xtreme.

This improvement is crucial for real-time applications where quick processing and analysis

are necessary for effectiveness.

In summary, this research provides a comprehensive strategy for deploying deep learning

models on SBCs more efficiently. By automating the optimization process using

Deepstream and TensorRT while simplifying deployment through Docker containers, it

lowers the barrier to entry for using advanced deep learning applications across different

devices. This streamlined approach enhances the feasibility of implementing intelligent

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

38

systems in areas requiring real-time processing capabilities, such as traffic surveillance and

security, thereby expanding the potential applications of SBCs in the field of deep learning.

2. Method

In this methodology section, we detail the comprehensive approach used to evaluate the

performance of the YOLOv3-tiny [13] model across various hardware platforms, focusing

on its implementation in different runtime environments. This study was conducted to

assess the effectiveness of deploying deep learning models, specifically for object detection

and identification tasks, on SBCs and a standard Windows desktop. The goal was to explore

optimizations that could facilitate the deployment and enhance the performance of deep

learning models on devices with limited computational resources.

The methodology for conducting the experiments involved setting up each hardware

platform with the necessary software and runtime environments. For the SBCs and the

Windows desktop, this setup included the installation of Docker and the configuration of

the Deepstream and TensorRT environment as needed. Three different application of the

YOLOv3 (regular object detection, person identification, and pedestrian counter) model

was then deployed and tested in the native runtime, regular Docker, and Deepstream Docker

environments, with performance metrics collected for comparison.

Performance evaluation focused on measuring the inference speed and accuracy of the

YOLOv3 tiny model across the different hardware platforms and runtime environments.

The deployment from removable disks was assessed in terms of the ease of setup and any

impact on performance metrics.

This comprehensive methodology allowed for a detailed analysis of the factors

influencing the deployment and performance of deep learning models on various computing

platforms, with a particular focus on optimizing for SBCs. The findings are expected to

contribute valuable insights into the practical application of deep learning technologies in

resource-constrained environments.

2.1. You-Only-Look-Once (YOLO) Algorithm

The deep learning model chosen for this study is YOLOv3 tiny, a lighter version of the

YOLO (You Only Look Once) [14] model, known for its efficiency and speed in real-time

object detection tasks. The architecture of the implemented YOLOv3-tiny is illustrated in

Figure 1. We evaluated three distinct implementations of the YOLOv3 tiny model, each

tailored to a specific application: Pascal VOC object detection [15], pedestrian counting,

and person identification. These applications were selected to cover a broad spectrum of

real-world scenarios where efficient real-time processing on edge devices is crucial.

For the object detection experiments, we utilized the Pascal VOC 2012 dataset, a

benchmark in the field of computer vision. This dataset comprises 20 object classes,

including people, animals, vehicles, and household objects, making it a comprehensive

testbed for evaluating the effectiveness of object detection models. The diversity of classes

and the challenging nature of the images, which often include objects in varied poses and

occlusions, make the Pascal VOC 2012 dataset ideal for testing and benchmarking deep

learning models. Its widespread use in the research community allows for direct comparison

with other models and techniques, providing a clear measure of performance

improvements.

The pedestrian counting implementation was designed to simulate a common application

of surveillance and urban planning. For this purpose, an IP camera was set up overlooking

a sidewalk in an urban area. The task involves detecting and counting pedestrians passing

by in real time. This application tests the model's ability to accurately identify and track

multiple individuals in dynamic, outdoor environments where lighting, weather, and crowd

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

39

density can vary significantly. The practical implications of this experiment extend to city

planning, traffic management, and public safety, where accurate pedestrian counts are

crucial for informed decision-making.

Figure 1. YOLOv3-tiny Network Architecture

For person identification, a webcam was installed in the hallway of an office building.

This setup aims to evaluate the model's performance in recognizing and identifying

individuals in a controlled indoor environment. The person identification task is critical for

applications such as access control, attendance tracking, and security surveillance. Unlike

the pedestrian counting setup, which focuses on detecting any pedestrian, person

identification requires the model to discern specific individuals, often under varying

lighting conditions and angles. This experiment highlights the model's capabilities in more

personalized applications, where accuracy in identifying individuals is paramount.

These three implementations of the YOLOv3 tiny model—Pascal VOC object detection,

pedestrian counting, and person identification—serve as comprehensive tests of the model's

utility across a spectrum of real-world scenarios. From generic object detection with the

diverse Pascal VOC 2012 dataset to the specialized tasks of counting pedestrians on a city

sidewalk and identifying persons in an office building, these experiments underscore the

model's adaptability and performance in addressing different challenges faced in the

deployment of deep learning models on single-board computers.

Figure 2.Docker allows cross-platform deployment. Allowing models to be

trained only once

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

40

Figure 3. Models can be trained in any devices with different OS version and

then deployed via Docker

2.2. Docker Virtual Environment

Docker plays a pivotal role in this research by providing a platform for containerization,

a technique that packages an application along with its dependencies and libraries in a

container. This containerization ensures that the application runs consistently across

different computing environments, as illustrated in Figure 2 and 3. In the context of

deploying deep learning models on single-board computers (SBCs), Docker offers several

advantages that are instrumental to the research:

2.2.1. Consistency Across Environments

By encapsulating the deep learning environment and its dependencies within a Docker

container, the research ensures that the deep learning models can be deployed consistently

across different SBCs. This consistency is crucial for comparative analysis and

benchmarking, as it eliminates the variability in performance that can arise from differences

in the underlying software environment.

2.2.2. Portability

Docker containers can be easily transferred and deployed across different systems,

enhancing the portability of the deep learning models. This portability is particularly

beneficial in research settings where models need to be tested on various hardware

platforms to assess their performance and scalability.

2.2.3. Isolation

Docker provides an isolated environment for each container, which minimizes conflicts

between different software versions or dependencies. This isolation is important for

research, as it allows for simultaneous testing of multiple configurations or models without

interference, ensuring the integrity of the experimental results.

2.2.4. Efficiency

Docker's lightweight nature and its ability to share resources across containers make it

an efficient choice for deploying deep learning models on SBCs, which often have limited

resources. This efficiency supports more effective utilization of the available computational

power, enhancing the performance of the deep learning models.

2.3. Deepstream and TensorRT Deep Learning Framework

The combination of NVIDIA DeepStream and TensorRT is integral to optimizing deep

learning models for real-time applications in the research. DeepStream provides a streaming

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

41

analytics toolkit designed for AI-based multi-sensor processing, video, and image

understanding. TensorRT is an SDK for high-performance deep learning inference, which

includes a deep learning inference optimizer and runtime that delivers low latency and high

throughput for deep learning applications. Together, they play several critical roles in the

research:

2.3.1. Performance Optimization

Deepstream and TensorRT optimize deep learning models for inference on NVIDIA

hardware, including Jetson SBCs. TensorRT accelerates deep learning inference through

optimizations such as parametrization, while Deepstream allows for efficient processing

and analysis of video streams.

2.3.2. Scalability

The integration of Deepstream with TensorRT enables the research to scale deep

learning models to process video streams from multiple sources simultaneously, a key

requirement for applications like traffic surveillance and security monitoring.

2.3.3. Real-time Processing

Deepstream facilitates the development of applications that require real-time video

analytics, which is essential for the research's focus on real-time object detection and

identification tasks. The combination with TensorRT ensures that these tasks can be

performed with minimal latency, meeting the requirements for real-time performance on

SBCs.

2.3.4. Ease of Development

DeepStream provides pre-built models and components that simplify the development

of complex video analytics applications. This ease of development allows the research to

focus on the application-specific aspects of the models, such as tuning for object detection

or person identification, rather than the intricacies of video processing and inference

optimization.

By leveraging Docker for deployment and NVIDIA DeepStream and TensorRT for

performance optimization, the research addresses the challenges of deploying and running

deep learning models on resource-constrained SBCs, enabling efficient and scalable real-

time video analytics applications.

2.4. Removable Disk Deployment

An additional layer of experimentation involved exploring the feasibility of deploying

the YOLOv3 tiny model from removable disks. This approach aimed to investigate the

portability and ease of deployment across different devices, an essential factor for

applications requiring flexibility and quick setup in various operational contexts.

2.5. Platform Setups

Table 1. Platform architecture and OS comparison

Machine Arch OS

Desktop X86 Windows 11
Xavier NX ARM Jetpack OS
Up Xtreme X86 Ubuntu OS
Up Squared X86 Ubuntu OS
Nano ARM Jetpack OS

The experiments are conducted on five different platforms. The SBCs used for these

experiments includes two Ubuntu x86-based SBCs (Up Xtreme and Up Squared), two

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

42

ARMs based SBCs (Jetson Xavier NX and the Jetson Nano) both running NVIDIA custom

linux distro Jetpack OS. Additionally, a Windows desktop was employed as a baseline for

performance comparison. The choice of these devices reflects a range of computational

capabilities, from the relatively powerful Windows desktop to the more resource-

constrained SBCs. Meanwhile, all models are implemented using Pytorch [16], [17] deep

learning framework for fair comparison.

3. Results and Discussion

The Results and Discussion section of this study meticulously evaluates the performance

of deep learning models, specifically the YOLO algorithm, across various computing

platforms and configurations. This evaluation is crucial for understanding the effectiveness

of our proposed solution, leveraging Docker and NVIDIA's DeepStream and TensorRT, in

optimizing these models for single-board computers (SBCs). Our analysis is structured

around three pivotal aspects: model accuracy, inference time, and resource consumption,

each represented by detailed experimental data.

Table 2. YOLO accuracy on Pascal VOC Dataset

Models Accuracy (mAP)

Pre-trained 51.8 %

120 epochs unpruned 78.3 %

300 epochs unpruned 79.7 %

300 epochs pruned (TRT) 79.8 %

Figure 4. Visualization of object detection deployment on KITTI [18] dataset.

The model is trained on Pascal VOC 2012.

3.1. Model Accuracy and Test Performance

Initially, we focus on the accuracy of the YOLO model, utilizing the Pascal VOC 2012

dataset. As illustrated in Table 2 and visualized in Figure 4, the model demonstrates a

notable improvement in accuracy with extended training, moving from a pre-trained

accuracy of 51.8% to 79.7% after 300 epochs. Interestingly, a slight accuracy increase is

observed when applying pruning and TensorRT optimizations, pushing the accuracy to

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

43

79.8%. This increment, although modest, highlights the efficacy of model optimization

techniques in not only maintaining but potentially enhancing model accuracy even after

significant reduction in model complexity. However, there is also an inherent limitation of

YOLO models, which is its inability to accurately detect overlapping objects, as shown in

Figure 5. Nevertheless, the model also able to be run successfully on the two other tasks,

the person identification and pedestrian counting, as demonstrated in Figure 6 and 7,

respectively.

Table 3. Inference Time Comparison Between Docker and Native Runtime

on Various Platforms

Machine on Host on Docker Container

Desktop 2 ms 3.3 ms
Xavier NX 41 ms 26 ms
Up Xtreme 32 ms 33.5 ms
Up Squared* - 185 ms
Nano 619 ms 72.75 ms

* Up Squared cannot run Pytorch natively

Figure 5. Several misdetection on the YOLOv3-tiny object detection

algorithm. The model is especially prone to miss overlapping objects.

3.2. Inference Time Comparison Between Docker and Native Runtime

Table 3 presents a comparison of inference times between models running natively and

those within a Docker container equipped with DeepStream. The data reveals a mixed

impact of containerization on inference speed. While native execution is unsurprisingly

faster on the desktop, running YOLO within a Docker container on the Xavier NX and

Nano shows a dramatic decrease in inference time, showcasing the effectiveness of our

Docker-based deployment in optimizing runtime performance on SBCs. Notably, the Up

Squared SBC, which cannot run Pytorch natively due to hardware limitations, becomes

capable of executing the model within a Docker environment, albeit with higher inference

times, underscoring the versatility of our approach.

Figure 6. YOLO for Person Identification

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

44

3.3. Deepstream and TensorRT Deep Learning Framework

Table 4 explores the impact of running multiple Docker containers on resource usage

within a desktop environment. The experiment aims to assess the scalability of our solution

when deployed in scenarios requiring multiple instances of the model. The results indicate

a marginal increase in CPU usage and a slightly more pronounced rise in RAM usage with

the addition of more containers. However, the overall system resources remain largely

unaffected, suggesting that our Docker-based deployment method is not only efficient but

also scalable, allowing for multiple models to run concurrently without significant resource

drain.

In summary, the experimental results substantiate the proposed method's effectiveness

in enhancing the deployment and performance of deep learning models on SBCs. By

achieving a balance between accuracy, runtime efficiency, and resource utilization, this

research contributes meaningful insights into the practical application of deep learning in

real-time, resource-constrained environments with the help of DeepStream framework [19],

[20]. Further discussion will delve into the implications of these findings for the deployment

of AI applications on edge devices and identify potential areas for future investigation.

Figure 7. YOLO for Pedestrian Counter

4. Conclusion

Our experiments across various hardware platforms, including the Jetson Xavier NX and

Nano, as well as Ubuntu-based x86 SBCs like the Up Xtreme and Up Squared, demonstrate

a substantial improvement in the speed and efficiency of deep learning algorithms that is

run on virtual machine. The deployment from removable disks further underscores the

versatility and practicality of our approach, offering a new dimension of portability and

ease of setup that is particularly valuable in dynamic application environments. The core

challenge lies in the resource constraints of SBCs, which necessitate innovative approaches

to model optimization and deployment. Our exploration reveals that leveraging Docker,

combined with the computational optimizations offered by NVIDIA Deepstream and

TensorRT, provides a compelling solution to these challenges. Docker significantly

simplifies the deployment process across different SBCs by ensuring consistency and

portability, while also offering efficient use of limited resources through its containerization

technology. Meanwhile, Deepstream and TensorRT have proven essential in reducing the

number of parameters of deep learning models on SBCs, enabling real-time processing

capabilities that are crucial for the applications studied. This research not only contributes

to the academic understanding of deep learning deployment on SBCs but also provides a

Emerging Information Science and Technology

Vol. 5, No. 1, (2024), pp. 36-45

45

practical framework that can be readily applied across different domains requiring real-time

data processing and analysis. Future work will explore further optimizations and the

potential integration of emerging technologies to enhance the scalability and applicability

of deep learning models in real-world scenarios, ensuring that the benefits of AI can be

more broadly realized in a variety of settings.

References
[1] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proceedings of the IEEE, vol.

107, no. 8, pp. 1655–1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.

[2] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan.

2017, doi: 10.1109/MC.2017.9.

[3] M. G. Brahmam and V. A. R, “VMMISD: An Efficient Load Balancing Model for Virtual Machine

Migrations via Fused Metaheuristics With Iterative Security Measures and Deep Learning

Optimizations,” IEEE Access, vol. 12, pp. 39351–39374, 2024, doi: 10.1109/ACCESS.2024.3373465.

[4] U. Drolia, K. Guo, and P. Narasimhan, “Precog: prefetching for image recognition applications at the

edge,” in Proceedings of the Second ACM/IEEE Symposium on Edge Computing, in SEC ’17. New

York, NY, USA: Association for Computing Machinery, Oct. 2017, pp. 1–13. doi:

10.1145/3132211.3134456.

[5] M. A. Haq, S.-J. Ruan, and J.-H. Chen, “Detecting Obstacle in 3D Space using Monocular Camera,” in

2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Mar. 2022, pp. 431–

432. doi: 10.1109/LifeTech53646.2022.9754879.

[6] M. A. Haq, S.-J. Ruan, M.-E. Shao, Q. M. U. Haq, P.-J. Liang, and D.-Q. Gao, “One Stage Monocular

3D Object Detection Utilizing Discrete Depth and Orientation Representation,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 11, pp. 21630–21640, Nov. 2022, doi:

10.1109/TITS.2022.3175198.

[7] Z. Lv, D. Chen, B. Cao, H. Song, and H. Lv, “Secure Deep Learning in Defense in Deep-Learning-as-

a-Service Computing Systems in Digital Twins,” IEEE Transactions on Computers, vol. 73, no. 3, pp.

656–668, Mar. 2024, doi: 10.1109/TC.2021.3077687.

[8] Md. I. Uddin, Md. S. Alamgir, Md. M. Rahman, M. S. Bhuiyan, and M. A. Moral, “AI Traffic Control

System Based on Deepstream and IoT Using NVIDIA Jetson Nano,” in 2021 2nd International

Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Jan. 2021, pp. 115–

119. doi: 10.1109/ICREST51555.2021.9331256.

[9] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep Learning Inference Parallelization on

Heterogeneous Processors With TensorRT,” IEEE Embedded Systems Letters, vol. 14, no. 1, pp. 15–

18, Mar. 2022, doi: 10.1109/LES.2021.3087707.

[10] G. Jocher et al., “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export

and Inference,” Zenodo, Feb. 2022, doi: 10.5281/zenodo.6222936.

[11] I. Miell and A. Sayers, Docker in Practice, Second Edition. Simon and Schuster, 2019.

[12] J. Nickoloff and S. Kuenzli, Docker in Action, Second Edition. Simon and Schuster, 2019.

[13] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv, Apr. 08, 2018. doi:

10.48550/arXiv.1804.02767.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object

detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 779–788.

[15] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The

Pascal Visual Object Classes Challenge: A Retrospective,” Int J Comput Vis, vol. 111, no. 1, pp. 98–

136, Jan. 2015, doi: 10.1007/s11263-014-0733-5.

[16] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in

Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online].

Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf

[17] “PyTorch | SpringerLink.” Accessed: Apr. 01, 2024. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-030-57077-4_10

[18] “Vision meets robotics: The KITTI dataset - A Geiger, P Lenz, C Stiller, R Urtasun, 2013.” Accessed:

Apr. 01, 2024. [Online]. Available: https://journals.sagepub.com/doi/full/10.1177/0278364913491297

[19] V. Pednekar, N. Shettigar, and S. Tawhare, “Enhancing Security Surveillance Through Business

Intelligence with NVIDIA DeepStream,” in Data Science and Emerging Technologies, Y. Bee Wah, D.

Al-Jumeily OBE, and M. W. Berry, Eds., Singapore: Springer Nature, 2024, pp. 91–104. doi:

10.1007/978-981-97-0293-0_7.

[20] Y. Anvarjon, S. Park, and J. Kim, “Design and Implementation of Data Concentrator Unit supported

with Multiple Synchronized Cameras for Object-Detection,” in 2023 IEEE International Conference

on Consumer Electronics-Asia (ICCE-Asia), Oct. 2023, pp. 1–2. doi: 10.1109/ICCE-

Asia59966.2023.10326437.

