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Abstract7

Consider the NP-hard problem of, given a simple graph G, to find a planar subgraph of G with the8

maximum number of edges. This is called the Maximum Planar Subgraph problem and the best9

known approximation is 4/9 and is obtained by sophisticated Graphic Matroid Parity algorithms.10

Here we show that applying a local optimization phase to the output of this known algorithm11

improves this approximation ratio by a small ϵ = 1/747 > 0. This is the first improvement in12

approximation ratio in more than a quarter century. The analysis relies on a more refined extremal13

bound on the Lovász cactus number in planar graphs, compared to the earlier (tight) bound of [5, 8].14

A second local optimization algorithm achieves a tight ratio of 5/12 for Maximum Planar Subgraph15

without using Graphic Matroid Parity. We also show that applying a greedy algorithm before this16

second optimization algorithm improves its ratio to at least 91/216 < 4/9. The motivation for not17

using Graphic Matroid Parity is that it requires sophisticated algorithms that are not considered18

practical by previous work. Also, we could not find any implementation. The best previously19

published [7] approximation ratio without Graphic Matroid Parity is 13/33 < 5/12.20
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1 Introduction35

Maximum Planar Subgraph (MPS) is the following problem: given a graph G, find a planar36

subgraph of G with the maximum number of edges. MPS is known to be NP-complete [24]37

and APX-hard [5], meaning that there exists a small ϵ > 0 such that a polynomial-time38

algorithm with approximation ratio of at least 1 − ϵ for MPS implies that P = NP . In this39

paper all graphs are undirected, nonempty, finite, simple graphs unless otherwise noted.40

Besides theoretical appeal, MPS has applications in circuit layout, facility layout, and41

graph drawing (see [17, 31, 27, 23, 14, 12, 21] and the references contained there). Pora-42

nen [27] uses simulated annealing and interestingly reports that using the output of better43

approximation algorithms as the start of simulated annealing obtains better practical re-44

sults. Chimani, Klein, and Wiedera [13] also report benefits of using better approximation45

algorithms for MPS.46

We assume that the reader has basic knowledge of planar graphs and approximation47

algorithms. For a quarter century, the best known approximation algorithm for MPS has a48

tight approximation ratio1of 4/9 [5] and uses polynomial-time algorithms for Graphic Matroid49

Parity2 to construct a maximum triangular cactus (a graph all of whose blocks3are triangles4),50

followed by adding edges to connect the components of this cactus without creating any new51

cycles. Graphic Matroid Parity has polynomial-time algorithms [26, 25, 9, 18, 19] and allows52

us to find a triangular cactus with maximum number of triangles.53

In this paper we show that applying a local optimization phase after finding a maximum54

triangular cactus achieves an approximation ratio of (4/9) + ϵ, for a small ϵ > 0. A second55

local optimization algorithm achieves a tight ratio of 5/12 for MPS without using Graphic56

Matroid Parity. We also show that applying a “greedy" algorithm before this second local57

optimization algorithm improves its ratio to at least 91/216. This variant has an upper limit58

of 3/7 < 4/9 on its approximation ratio. The motivation for not using Graphic Matroid Parity59

is that it requires sophisticated algorithms that are not considered practical by Chimani60

and Wiedera [14]5. The best previously published [7] approximation ratio without Graphic61

Matroid Parity is 13/33 < 5/12.62

Besides these theoretical guarantees, both of our local optimizations “make sense" (since63

each local improvement step increases the size of the output by one) and can be used in64

heuristics, or as a starting point of simulated annealing. Other ideas that make sense are65

further discussed in Conclusions (Section 6).66

1.1 Previous Theoretical Work67

A planar graph on n vertices has at most 3n − 6 edges. As we can assume that the input68

graph is connected (or else we can run an algorithm separately on the connected components69

of the input), simply outputting a spanning tree achieves a tight approximation ratio of70

1/3. Dyer, Foulds, and Frieze [16] proved that the Maximal Planar Subgraph, which simply71

outputs an inclusion-maximal planar subgraph, has performance ratio 1/3. Cimikowski [15]72

proved that the heuristics of Chiba, Nishioka, and Shirakawa [10] and of Cai, Han, and73

1 tight in this paper means that there are matching examples for the approximation ratio of the algorithm
2 See Sections 2 for the exact definition
3 We use the standars definition of block, explicitly stated in Section 2
4 A simple graph is a cactus if any two distinct simple cycles have at most one vertex in common. A

triangular cactus as defined by us is a cactus.
5 Also, we could not find any implementation.
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Tarjan [2] have performance ratios not exceeding 1/3.74

Călinescu, Fernandes, Finkler, and Karloff [5] were the first to improve this. Their first75

algorithm (GT, from Greedy-Triangles) (greedily) adds triangles, as long as the graph stays a76

triangular cactus. Then the algorithm greedily adds edges connecting the components of the77

cactus, without creating any new cycles. This “connecting" phase appears at the end of all78

the approximation algorithms and we will not mention it from now on. The GT algorithm has79

a tight approximation ratio of 7/18. Their second algorithm (MT, from Maximum-Triangular80

Cactus) employs exact algorithms for Graphic Matroid Parity (i.e., [25]) to construct a81

triangular cactus with a maximum number of triangles. This algorithm achieves a tight82

approximation of 4/9, and the analysis is long and complicated. Another claim of the 4/983

ratio was sent in a personal communication in 1996 or 1997 by Danny Raz, and is also proven84

in Chalermsook, Schmid, and Uniyal [8]6; these proofs are also long and/or complicated.85

Poranen [28] proposes two new approximation algorithms but their ratio is below 4/9 [11].86

Chalermsook and Schmid [7] obtain a 13/33 ratio without using Graphic Matroid Parity.87

Note that 13/33 > 7/18. We have examples showing that this algorithm has ratio at most88

11/27 < 5/12. See Figure 1 for a graphical representation of approximation ratios.89

Spanning Tree (T):
Maximal Planar (T):

1
3 ≈ 0.3333

GDLDT(A)*:
91

216 ≈ 0.4213

GDLDT(B)*:
3
7 ≈ 0.4286

GT(T):
7

18 ≈ 0.3888

MkC (B):
1
2 = 0.5

MT(T):
4
9 ≈ 0.4444

LDT(T)*:
5

12 ≈ 0.4166
MTLK4(A)*:
4
9 + ϵ ≈ 0.4457

GDT(B)*:
11
27 ≈ 0.407

GDT(A):
13
33 ≈ 0.3939

Figure 1 Ratios for various approaches. (T) says that the result is tight with matching example.
(A) says an algorithm is proven to achieve that ratio. (B) says an upper bound for the approximation
ratio of an algorithm. New results marked by *.

1.2 Techniques discussion90

A graph A is a kt-structure if every block in every non-trivial connected component of A91

is either a K4 or a triangle. A diamond is the graph resulting from deleting any single92

edge from a K4. A graph A is a dt-structure if every block in every non-trivial connected93

component of A is either a diamond or a triangle. A graph A is a 4-structure if every block94

in A has at most 4 vertices. All 4-structures are planar graphs. See Figure 2 for illustrations.95

6 [8] also has the sentence “Therefore, combining this with our bound implies that local search arguments
are sufficient to get us to a 4

9 + ϵ approximation for MPS", but no proof for this sentence; their previous
arguments give a 4

9 − ϵ approximation.

ESA 2024
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Figure 2 In the upper left, a triangular cactus. In the upper right, a kt-structure. In the lower
left, a dt-structure. In the lower right, a 4-structure.

4-Structures can have more edges than triangular cacti, but finding a 4-structure with96

maximum number of edges is known to be NP-hard [4] (easy reduction from 3D-Matching [20]).97

It is known [3] that even if we fix k and allow blocks of size up to k in our output, and could98

find the k-structure with maximum number of edges and planar blocks (algorithm MkC), we99

would still get an approximation ratio of at most 1/2.100

Local optimization is a powerful technique for unweighted maximization problems. For101

example, Lee, Sviridenko, and Vondrák [22] prove that a basic local optimization algorithm102

achieves a (1 − ϵ)-approximation for Matroid Parity, a generalization of Graphic Matroid103

Parity that is NP-hard [29]. Using local optimization for MPS was suggested by [8].104

Our first algorithm, denoted by MTLK4 (Maximum-Triangular-Local-K4) from now on,105

starts with a maximum triangular cactus and simply replaces, as long as we still have a106

kt-structure, at most two triangles by a K4. Previous approximation algorithms for MPS107

have not been able to exploit K4’s in getting a better approximation ratio, and in fact our108

analysis giving that the approximation ratio of MTLK4 is at least (4/9) + ϵ is complicated109

and not tight7. The analysis relies on Theorem 5, which gives a more refined extremal bound110

on the Lovász cactus number in planar graphs, compared to the earlier (tight) bound of111

[5, 8].112

The algorithm of Chalermsook and Schmid [7] (which we call GDT, from Greedy-113

Diamonds-Triangles) consists of greedily adding diamonds followed by greedily adding114

triangles (while staying a dt-structure), and has approximation ratio between 13/33 and115

11/27. Our 5/12 approximation ratio of our second local optimization algorithm, denoted by116

LDT (Local-Diamonds-Triangles) from now on, is based on the fact that LDT does “break"117

diamonds to add more diamonds, assuming a triangle is left from our broken diamond. While118

this 5/12-approximation is tight, it can be improved by greedily adding diamonds (while119

staying a dt-structure)8, followed by LDT. We call this algorithm GDLDT. We prove that120

GDLDT has an approximation ratio between 91/216 and 3/7.121

While our algorithms are fairly simple, their analyses are long and complicated. The122

7 We believe that another page of arguments will make our ϵ a very little bit bigger.
8 This is exactly the start of the GDT algorithm of [7].
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reader may want to start with the (7/18)-approximation of [5] (also presented in [4]) for a123

simple non-trivial algorithm with a somewhat simple analysis.124

One can also use local optimization to approximate Graphic Matroid Parity, as described125

in [22]. As pointed out in [8], this leads to a 4/9−ϵ approximation for MPS, as outlined below.126

The local optimization algorithm used by [22], adapted to our terminology, replaces sets of k127

triangles by sets of k + 1 triangles, as long as it keeps a triangular cactus. We have (so far128

unpublished, and involving a different set of authors) evidence that swapping two triangles129

for one gives a ratio of at least 11/27. Theorem 1.1 of [8] also mentions a 2-swap algorithm,130

but it swaps only triangles of a plane graph and is not analyzed as an MPS algorithm. Let131

n be the number of vertices in the input graph, and M be the number of triangles in the132

input graph. The analysis of [22] requires k = 5⌈1/(2ϵ)⌉ to achieve a (1 − ϵ)-approximation for133

Matroid Parity. To achieve a 5/12 approximation for MPS, one would need an ϵ = 1/4 above:134

if the optimum is triangulated and the maximum triangular cactus has n/3 triangles (which135

we know that it can happen, from [5]), then we need a triangular cactus with almost n/4136

triangles in the algorithm’s cactus to get a ratio of 5/12, which means we must approximate137

Graphic Matroid Parity with a factor of 3/4. Directly using the analysis of [22] gives an138

O(M25)-time algorithm. We do not fully understand [1] and maybe it provides a better139

analysis of the swapping heuristics and achieves a O(n4+3/ϵ) running time. This would be140

O(n16) time to get a ratio of 5/12 for MPS. By comparison, our LDT algorithm has an141

implementation that runs in O(n5) time.142

2 Preliminaries143

Generally speaking we follow West [32] for terminology and notation. Given a graph144

G = (V, E), V ′ ⊆ V , we denote by G[V ′], the induced subgraph of G with vertex set given145

by V ′ (we keep in this subgraph with vertex set V ′ all the edges of G with both endpoints in146

V ′).147

A triangle in a graph is a C3, a cycle of length three. A graph is planar if it can be drawn148

in the 2-dimensional plane so that no two edges meet in a point other than a common end.149

A triangle of a plane graph is a facial triangle if the triangle is the boundary of a face of the150

plane graph. We call a face of a plane graph a triangular face if its boundary is a triangle.151

A cut-vertex (respectively, bridge) is a vertex (resp., edge) whose deletion increases the152

number of components. A graph is said to be a biconnected graph, if it has at least three153

vertices and it does not contain any cut-vertices. A block is a maximal connected subgraph154

without a cut-vertex. Thus, every block is either a maximal biconnected subgraph, or a155

bridge.156

Graphic Matroid Parity is the following problem: given a multigraph G′ = (V ′, E′) and a157

partition of the edge set E′ into pairs of distinct edges {f, f ′}, find a (simple) forest F ⊆ E′
158

with the maximum number of edges, such that f ∈ F if and only if f ′ ∈ F , for all f ∈ E′.159

Graphic Matroid Parity algorithms can be used to construct a maximum triangular cactus160

in a given graph [25]. Indeed, given a graph G = (V, E), one constructs G′ by having V ′ = V ,161

and for each triangle T of G, let e, e′ be any pair of distinct edges in T . Add two new edges162

f and f ′ to E′, f with the same endpoints as e, and f ′ with the same endpoints as e′. Pair163

f with f ′ in the partition of E′. The straightforward lemma 2.13 of [5] states that a forest F164

of G′ as above with 2p edges exists if and only if a triangular cactus with p triangles exists165

in G.166

ESA 2024



3:6 Local Optimization Algorithms for Maximum Planar Subgraph

3 Local Optimization after Max Triangular Cactus167

Here is our first approximation algorithm, Algorithm MTLK4: Start with a maximum168

triangular cactus. As long as possible, if there exists a K4 in the input graph and at most169

two edge-disjoint triangles in our kt-structure such that removing the (one or two) triangles170

and adding the K4 results in a kt-structure, do this replacement. See figures 3 and 4 for171

illustrations. Each such replacement increases the cyclomatic number9 of the kt-structure,172

and thus this is a polynomial-time algorithm. Precisely, there are O(n4) K4’s to consider and173

for each we can look at O(n2) ways to choose two existing triangles for replacement (these174

two triangles come from a graph with O(n) edges). So we can achieve each replacement in175

O(n7) time, for a total running time, excluding the Matroid Parity algorithm, of O(n8).176

Figure 3 On the left side, the current kt-structure, with two connected components. There is
a K4 in the input graph, with its four vertices represented by small filled squares. Two triangles,
dashed, can be removed to disconnect these four vertices, after which the K4 (with edges represented
by dashed cycle arcs) can be be added resulting in another kt-structure (on the right side, with
three connected components) with a higher cyclomatic number.

9 The cyclomatic number (also called circuit rank, cycle rank, or nullity) of an undirected graph is the
minimum number of edges that must be removed from the graph to break all its cycles, making it into
a tree or forest.
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(a) (b)

Figure 4 Both (a) and (b) show kt-structures where, for each of them, two triangles (dashed)
can be removed to allow a K4, whose vertices are represented by small filled squares, to be added
resulting in a kt-structure.

We believe that an O(n5)-running time version of the algorithm exists, based on the177

following idea. One needs to read the proof of approximation first, as we modify the algorithm.178

We only check for each K4 if there is no strong bond, and its four vertices are not all in the179

same component of the current kt-structure. This check can be done in O(1) after computing180

connected components (and this has to be done only once after each local improvement).181

A K4 that does not pass this check is not used for the local improvement, even though in182

MTLK4 it could possibly lead to improvement (see Figure 4 (a)). However, we cannot get a183

O(n4) running time by showing that a K4 that was found not useful once will not become184

useful in the future. We have a counterexample.185

The rest of the section will be spent on the approximation ratio analysis.186

First, some intuition. Let β(Ḡ) be the number of triangles in a maximum triangular187

cactus in graph Ḡ. It is known from [5] (see also Inequality (2) below) that, if H̃ is a planar188

graph on n vertices with |E(H̃)| = 3n−6− t, then β(H̃) ≥ (1/3)(n− t−2). With G the input189

graph and H an optimum solution (a maximum planar subgraph of G), we obtain that the190

output of the MT algorithm (which, recall, computes the triangular cactus with maximum191

number of triangles, and then connects the components of this cactus) has n − 1 + β(G)192

edges (since every triangle gains one edge over a spanning tree), and we obtain a ratio of193

4/9 from β(G) ≥ β(H). With θ such that H has 3n − 6 − θ edges, from simple algebraic194

manipulation, we would have an ϵ > 0 improvement over 4/9 if θ ≥ ϵ′n for some ϵ′ > 0. But195

we cannot count on this happening.196

So now we assume that θ is close to 0. As we use K4’s, the second question is what happens197

if H (the optimum solution as above) does not have any K4’s. The bound β(H) ≥ (1/3)(n −198

θ−2) is not tight anymore, and in fact with θ = 0 we are able to prove that β(H) ≥ (3/7)n−1199

when H has no K4’s. This is good as (n + (3/7)n − 2)/(3n − 6) ≥ 10/21 > 4/9.200

So we assume that θ is close to 0 and H has K4’s. To quantify the benefits of these K4’s,201

we introduce some notation (see Figure 5 for an illustration):202

ESA 2024
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u

v

x

y

z

Figure 5 In this triangulated plane graph, x and v are the cubic (degree three) vertices.

▶ Definition 1. Call a vertex v of a triangulated plane graph H̃ cubic if it has degree three203

(so we have a K4 formed by v and its neighbors). Let c(H̃) be the number of cubic vertices204

in H̃.205

Theorem 5 below obtains that β(H̃) ≥ (3/7)n − (1/7)c(H̃) − 1, with n = |V (H̃)|. With206

H̃ a triangulated supergraph of H on the same vertex set, we have that H̃ contains exactly207

θ edges not in H. Then we can obtain that β(H) ≥ (3/7)n − (1/7)c(H̃) − 1 − θ. Now, if208

c(H̃) is also small in addition to θ being close to 0, we have again a ratio bigger than 4/9.209

And when c(H̃) is “large" compared to n, and θ is close to 0, then there are enough K4’s in210

H for the local optimization phase of MTLK4 to use, as shown after Theorem 5. We are211

done with providing some intuition. As small graphs are easy to handle, we assume that212

n = |V (G)| > 4 in this section. On our way to Theorem 5 we need a lot of notation.213

Double-partitions. Let Ḡ = (V, E) be a graph on n vertices. Let P = {V1, . . . , Vk} be214

a partition of the vertices of Ḡ into vertex classes, and Q = {E1, . . . , Em} be a partition of215

the edges of Ḡ into edge colors. We say that an edge color and a vertex class are incident if216

at least one of the edges of the edge color is incident to at least one of the vertices of the217

vertex class. For 1 ≤ i ≤ m, let ui denote the number of vertex classes Vj of P incident to218

edge color Ei of Q. We say that “double-partition" (P, Q) covers a triangle if the triangle219

has at least two vertices in the same vertex class of P (when we also say that the triangle is220

covered by this vertex class) or all three edges in the same edge color of Q (when we also say221

that the triangle is covered by this edge color). We call the double-partition (P, Q) valid for222

Ḡ if every triangle of Ḡ is covered. Set10:223

Φ(P, Q) = n − k +
m∑

i=1
⌊ui − 1

2 ⌋. (1)224

Since k ≤ n and ui ≥ 1 for all i, we have that Φ(P, Q) ≥ 0, and note that there is always a225

valid double-partition (P, Q) for Ḡ (e.g., k = 1 and q = 1 and V1 = V (Ḡ) and E1 = E(Ḡ)).226

10 The formula given here, which differs from that in [25] by having floors, is correct. See also [30] or
Theorem 11.3.2 of [25].
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Call a vertex class a trivial vertex class if it has just one vertex, call this vertex a singleton,227

and an edge color a trivial edge color if it has just one edge. The contribution of an edge228

color Ei of Q to Φ(P, Q) is the quantity ⌊ ui−1
2 ⌋. The contribution of P to Φ is defined to be229

n − k.230

According to Lovász and Plummer [25], we have:231

▶ Proposition 2 (Theorem 11.3.6 in [25]). The number of triangles in a maximum triangular232

cactus in a graph Ḡ is equal to the minimum of Φ(P, Q) taken over all valid double-partitions233

(P, Q) for Ḡ.234

Let H̃ be a planar graph with n ≥ 3 vertices. Embed H̃ in the plane without crossing235

edges, obtaining a plane graph. Let t be the number of edges missing for this embedding to236

be triangulated (meaning that adding t edges to H̃ would result in a triangulated planar237

graph). A triangulated plane graph has 3n − 6 edges, if n ≥ 3. So t = (3n − 6) − |E(H̃)|; t238

does not depend on the embedding. The 4/9-approximation of [5] is based on:239

▶ Proposition 3 (Theorem 2.3 of [5], also equivalent to Corollary 1.2 of [8]). Let H̃ be a240

connected planar graph with n ≥ 3 vertices. Let t be the number of missing edges, defined as241

above. Then242

Φ(P, Q) ≥ 1
3(n − 2 − t),243

for all valid double-partitions (P, Q) for H̃.244

This bound is known to be asymptotically tight when t = 0, see for example [5] where245

their 4/9-approximation is proven tight. Recall that β(H̃) is the number of triangles in a246

maximum triangular cactus in H̃. From Propositions 2 and 3 we obtain:247

β(H̃) ≥ 1
3(n − 2 − t), (2)248

If a double-partition (P, Q) is valid for plane graph H̃, then it must cover all the facial249

triangles of H̃.250

▶ Definition 4. Call a double-partition (P, Q) of a plane graph H̃ p-valid if it covers the251

facial triangles of H̃.252

Note that a valid double-partition (P, Q) of a graph Ḡ is p-valid for any plane embedding253

of Ḡ. The main technical result of this section is Theorem 5 below, which gives a lower254

bound for Φ(P, Q) for all p-valid double partitions (P, Q) of a triangulated plane graph H̃255

in terms of n and c(H̃). The accounting part of the lower bound is proven assuming that256

the double partition (P, Q) satisfies a number of conditions. Ideally, we would want that P257

would have only one vertex class P1 with more than one vertex (we are not able to ensure258

this condition); this condition would make the accounting much simpler.259

We will enumerate the actual conditions later. To get that (P, Q) satisfy these actual260

conditions, we modify (P, Q), which really means obtaining from a p-valid (P, Q) another261

double partition (P ′, Q′) such that Φ(P, Q) ≥ Φ(P ′, Q′) and such that (P ′, Q′) is also p-valid262

for H̃. It is fine to make such modifications since, once we prove a lower bound for (P ′, Q′),263

then it holds for (P, Q) as well.264

Assuming that H̃ is a triangulated plane graph, one can easily verify based on the265

definition of Φ(P, Q) (Equation (1)) that we can do the following modifications:266

ESA 2024
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1. Any edge of H̃ such that both facial triangles that contain this edge are covered by vertex267

classes is put into an edge color by itself (we can do this since this trivial edge color268

contributes 0 to Φ, and the contribution of any other edge color does not increase). In269

particular, any edge that is incident to two vertices in the same vertex class is put into270

an edge color by itself.271

2. If we have two distinct edge colors both incident to the same two (or more) distinct vertex272

classes, these two edge colors can be merged into one edge color.273

3. If an edge color Qi can be partitioned into two edge colors Q′ and Q′′ such that all the274

facial triangles covered by Qi are covered by Q′ or Q′′, and Q′ and Q′′ are incident to at275

most one common neighbor among the vertex classes, split Qi into Q′ and Q′′.276

Recall Definition 1. One main technical result is:277

▶ Theorem 5. Let H̃ be a triangulated plane graph with n ≥ 3 vertices, and let (P, Q) be a278

double-partition p-valid for H̃. Then:279

Φ(P, Q) ≥ 3
7n − 1

7c(H̃) − 1. (3)280

281

This very long proof appears later. We give some shorter intuition now. Equation (3) is282

tight (excluding a small additive term), as shown by the following two constructions. Both283

of them provide useful examples for the intuition behind the proof. Consider a triangulation284

W on r vertices containing no K4. From Euler’s formula we get that W has 2r − 4 faces. In285

the first construction, insert one cubic vertex in every face. We have n = r + (2r − 4) and286

c = 2r − 4. We take P to have only one non-trivial vertex class, W , and Q to have only287

trivial edge colors. Thus Φ(P, Q) = r − 1 = (3/7)n − (1/7)c − (1/7).288

In the second construction, insert three new vertices into every face of W as in Figure 6.289

We have n = r + 3(2r − 4) = 7r − 12 and c = 0. We take P to have only one non-trivial290

vertex class, W , and Q to have 2r − 4 non-trivial edge colors, each with the edges embedded291

strictly in each face of W . Each of these non-trivial edge colors is incident to exactly 4 vertex292

classes: the three singletons (singletons are vertices) inside the face of W , and the non-trivial293

class comprised of W . Thus Φ(P, Q) = r − 1 + 2r − 4 = (3/7)n + (1/7).294

Figure 6 A face of W is shown in solid edges.

Intuition. To show some of the proof ideas, we make the simplifying assumption that P has295

only one non-trivial part, which we call R (we could not find a way to enforce this assumption296

and ended up with a much longer proof). We also make the simplifying assumptions that297

r := |R| > 2 and that H̃[R] is a connected graph, even though the arguments below can be298

adapted without these two assumptions. First, apply Modification 1 such that any edge of299

H̃[R] is put into an edge color by itself.300
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For a face F of H̃[R], call SF the set of singletons embedded strictly inside F . We discuss301

now the case |SF | > 1. Due to H̃ being triangulated, H̃[SF ] is connected. Walking around302

s ∈ SF in clockwise manner, we get a circular list L of vertices that are not all in the same303

vertex class. When we switch in L from one class to another, we have one facial triangle T1304

of H̃ that is not covered by a vertex class. Later in the walk, when again we switch in L305

from one vertex class to another, we have another facial triangle T2 of H̃ that is not covered306

by a vertex class. If there are two distinct edge colors Q1 and Q2 of Q covering T1 and T2,307

then there are two distinct vertex classes incident to both Q1 and Q2 and we can apply308

Modification 2. Continue this traversal of L and get that all the facial triangles incident309

to s that are not covered by R are covered by one single edge color. H̃[SF ] is connected,310

and we can do a depth-first search traversal and as we meet the vertices of SF , we do the311

walk-around described above for each of them to obtain that all the facial triangles of H̃312

embedded in F that are not covered by R are covered by one single edge color which we call313

QF . By construction, QF meets all the singletons of SF and the vertex class R.314

If edge color QF as above also covers facial triangles outside F , then we can apply315

Modification 3, where Q′ consist of the edges of QF embedded strictly inside F and Q′′
316

consists of the other edges of QF ; note that only R among the vertex classes can be incident317

to both Q′ and Q′′. After doing this for all the faces of H̃[R], we get that any non-trivial318

edge color is the QF for some face F with |SF | > 1 of H̃[R], and all the edges of QF are319

embedded strictly inside F . Note that when |SF | = 0 or |SF | = 1, all the triangular faces320

of H̃ embedded in F are covered by R. And all the triangular faces of H̃ are embedded in321

some face F of H̃[R]. We now have:322

Φ(P, Q) = (r − 1) +
∑

F face of H̃[R]

⌊|SF |/2⌋ = (r − 1) +
∑
i≥0

fi⌊
i

2⌋, (4)323

where fi is the number of faces of H̃[R] each with i singletons embedded inside. Let c1 be324

the number of triangular faces of H̃[R] with exactly one singleton embedded inside. As any325

such singleton is a cubic vertex,326

c1 ≤ c. (5)327

Let d1 be the number of non-triangular faces of H̃[R] with one singleton inside, so that328

f1 = c1 + d1. We would have 2r − 4 triangular faces of H̃[R] if it were triangulated. A329

non-triangulated face can be replaced by two or more triangulated faces by adding “fake"330

edges, and thus from which we deduce:331

2r ≥ c1 + 2d1 + f3 + f5, (6)332

and therefore333

4r ≥ 2c1 + 4d1 + 2f3 + 2f5 ≥ 2c1 + 3d1 + 2f3 + f5. (7)334

Using the equation above and Equation (5) we obtain:335

4
7r ≥ 2

7c1 + 3
7d1 + 2

7f3 + 1
7f5 = 3

7f1 + 2
7f3 + 1

7f5 − 1
7c1 ≥ 3

7f1 + 2
7f3 + 1

7f5 − 1
7c.336

For i ∈ {0, 2, 4, 6, 7, 8, 9, . . .}, we have ⌊i/2⌋ ≥ 3
7 i. Using this, the equation above,337

Equation (4), and n = |V (H̃)| = r +
∑

i≥0 i · fi, we obtain:338

Φ(P, Q) = (r − 1) +
∑
i≥0

fi⌊
i

2⌋ ≥ 3
7(r +

∑
i≥0

i · fi) − 1
7c − 1 = 3

7n − 1
7c − 1,339
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or Equations (3). We are done providing intuition for the proof of Theorem 5.340

Proof. (of Theorem 5) This long proof has two stages: first stage modifies (if needed) the341

double-partition (P, Q) so that it satisfies five conditions, and the second stage does the342

accounting using the five conditions. A number of definitions are needed before the first343

stage starts.344

We use c to denote c(H̃) and Φ to denote Φ(P, Q). Let P1, P2, . . . , Pq be the non-trivial345

vertex classes of P, and let pi = |Pi|.346

Define Bi := H̃[Pi], and let Bi’s connected components be B1
i , B2

i , . . . , Bji

i . Note that if347

a vertex class covers a facial triangle, then there exists an i with Bi containing an edge e of348

the triangle. If this happens we say that e v-covers the facial triangle.349

Let Bj
i be some component of some Bi and let F be an inner face of Bj

i that contains at350

least one vertex of H̃. Let Lj
i (F ) be the border of F (Lj

i (F ) is a subgraph of Bj
i ). Consider351

all the vertices v and edges e embedded in F but not embedded strictly inside any face F ′
352

of some Bj′

i′ such that F ′ is included in F . These vertices and edges plus Lj
i (F ) comprise a353

plane subgraph of H̃ that we call an internal soup. Lj
i (F ) is called the main border of the354

internal soup. See Figure 7 for an example. Call F (as a region of the plane) the territory of355

the internal soup. Define a relevant facial triangle of an internal soup to be a facial triangle356

whose three vertices belong to more than one vertex class (equivalently, these three vertices357

are not in the same Bi).358

A

B

C

D E

Figure 7 An example of an internal soup. The edges and vertices strictly inside the faces A,
B, C, D, and E are not part of the soup. There are four vertex classes here, depicted by circles,
squares, filled circles, and hexagons. Here, the vertex class depicted by squares is not connected.
The main border of this soup is represented by very thick segments. Thick segments represent other
edges with both endpoints in the same vertex class. Thin segments represent edges of the soup with
endpoints in different vertex classes. All the depicted triangles except possibly B and E are facial
triangles of H̃. The territory of this soup is the plane without the interior of the face A. There are
33 relevant facial triangles of this soup — they all have at least one thin edge. If B or E are facial
triangles of H̃, they are not relevant facial triangles of the soup.

Let u, v, w be the three vertices on the border of the outer face of H̃. If u, v, w are not359

contained in the same Bi, for some i, we also have an external soup defined as above using360

as F (in the definition) the region of the plane that is the complement of the outer face of H̃.361

The external soup does not have a main border. The territory of the external soup is defined362
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to be the region of the plane that is the complement of the outer face of H̃. See Figure 8 for363

an example.364

A

C

B

Figure 8 An example of an external soup. Here F is the region of the plane that is the complement
of the outer face of H̃ (unlike internal soups, and despite its name, here F is not a face of some Bj

i ).
The edges and vertices strictly inside the faces A, B, and C, are not part of the soup. There are
four vertex classes here, depicted by circles, squares, filled circles, and hexagons. Thick segments
represent edges with both endpoints in the same vertex class. Thin segments represent edges of the
soup with endpoints in different vertex classes. All the depicted triangles except possibly B and C
are facial triangles of H̃. The territory of this soup is F . There are 18 relevant facial triangles of
this soup — they all have at least one thin edge and include the facial triangle of the outer face of
H̃. If B or C are facial triangles of H̃, they are not relevant facial triangles of the soup.

Note that every facial triangle of H̃ is either a facial triangle of some soup, or has all its365

three edges in some Bi (and vertex class Pi v-covers the facial triangle).366

We say that a component Bj
i participates in a soup D if Bj

i does not contain the main367

border of the soup D and at least one vertex of Bj
i is a vertex of the soup. Recall that a368

singleton is a vertex that belongs to a size 1 vertex class. Singletons that are part of the369

soup also participate in the soup. For example, in Figure 7, we have three components and a370

singleton that participate in the depicted soup (this is since the vertex class represented by371

squares has two components that participate in the soup).372

Later, the proof requires that the double-partition (Q, P) satisfies the following five373

conditions (goals):374

1. Any edge of H̃ such that both facial triangles that contain this edge are covered by vertex375

classes is in an edge color by itself. In particular, any edge that is incident to two vertices376

in the same vertex class is in an edge color by itself;377

2. At most one edge color covers facial triangles in a soup;378

3. Each Bi is connected (recall that Bi = H̃[Pi], where Pi is a vertex class of P);379

4. An edge color covers facial triangles in at most one soup;380

5. There is no i with |Pi| = 2.381

We start the first stage now, working towards these goals. All the relevant facial triangles382

in a soup must be covered by double-partition (P, Q), so any relevant facial triangle is covered383

by either one vertex class of P or by an edge color of Q. Apply Modification 1 to (P, Q),384

so that any edge of H̃ such that both facial triangles that contain this edge are covered by385

ESA 2024



3:14 Local Optimization Algorithms for Maximum Planar Subgraph

vertex classes is put into an edge color by itself, achieving our first goal. In particular, any386

edge of H̃ connecting two vertices in the same vertex class is put into an edge color by itself.387

Now every relevant facial triangle of every soup is covered either by a vertex class or by an388

edge color but not both.389

Next we modify, if needed, (P, Q), so that at most one edge color is used for covering all390

the relevant facial triangles in a soup that are not covered by a vertex class. If this is not the391

case, we use Modification 2, as described below. That we can do this relies on topological392

arguments. Let Lj
i (D) be the outer border of some component Bj

i that participates in a393

soup D. As we walk clockwise on Lj
i (D), we encounter relevant facial triangles of the soup,394

some with one edge in Lj
i (D), and others with only one vertex in Lj

i (D). These relevant395

facial triangles form the moat of Bj
i in D. See Figure 9 for an illustration. Similarly, we396

define the moat of a singleton w to consist of all the relevant facial triangles that contain397

w. A moat of a component Bj
i (or a singleton) that participates in the external soup can398

include the outer face of H̃.399

A

B

C

D E

Figure 9 An example of a moat, inside the soup represented in Figure 7. The facial triangles
(and corresponding triangular faces) with patterns illustrate the moat of the connected component
of the vertex class whose vertices are marked by empty circles. The pattern is diagonal if the facial
triangle is covered by a vertex class, and horizontal or vertical if the facial triangle must be covered
by an edge color.

If on the outer border of a moat in an internal soup D we only have vertices from the400

main border of D, one can easily check that all the soup D consists of this moat, and all the401

relevant facial triangles in the soup D are covered by vertex classes. For an external soup D,402

if on the outer border of a moat we only have vertices from some a single Lj′

i′ (D) or a single403

singleton, one can easily check that all the soup D consists of this moat, and all the relevant404

facial triangles in the soup D are covered by vertex classes. If not, as we walk on the outer405

border of the moat, when we switch from some Lj′

i′ (D) to another (or to a singleton or to406

the main border, or from a singleton to another or to some Lj′

i′ (D) or to the main border, or407

from the main border to a singleton or to some Lj′

i′ (D)), we have a relevant facial triangle T1408

that has its three vertices in three different vertex classes and therefore must be covered by409

an edge color. And later in the walk we have another facial triangle T2 that must be covered410

by an edge color (when we switch the vertex class outside the moat, as in Figure 9). If there411

are two distinct edge colors Q1 and Q2 of Q covering T1 and T2, then there are two distinct412
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vertex classes incident to both Q1 and Q2 and we can apply Modification 2. Continue around413

this moat and other moats in the soup D, until we get that all the relevant facial triangles in414

the soup D that are not covered by vertex classes are covered by the same edge color. This415

continuation works since H̃ is triangulated and thus all the moats of a soup are “connected"416

as they overlap. More precisely, we treat two moats as being adjacent if they share a relevant417

facial triangle, and then one can easily check that the space of moats of a soup is connected,418

allowing us to obtain that every relevant facial triangle in the soup that is covered by an419

edge color is covered by the same edge color.420

The changes done here do not invalidate the first goal, and do not change any of the421

soups. Thus from now on (P, Q) satisfies that at most one edge color is used for covering all422

the relevant facial triangles in a soup not covered by vertex classes, achieving our second goal.423

Our third goal is to modify the double-partition (P, Q) to obtain that each Bi is connected.424

We also want that each non-trivial edge color covers relevant facial triangles in only one soup425

(fourth goal). Recall that Pi’s are the parts of P and that Bi := H̃[Pi], and Bi’s connected426

components are B1
i , B2

i , . . . , Bji

i .427

The soups of H̃ can be arranged to be the vertices of a forest F , by containment of their428

territories: if the territory of soup D is inside the territory of soup D′, then D is a descendant429

of D′. If an external soup exists, F is a tree with the external soup as the root. Leaves430

of F are the soups whose territory does not contain the territory of any other soup. We431

traverse F in postorder, keeping the invariant that, when processing soup D, all the soups432

D′ descendants of D satisfy the following property: All the Bj
i embedded in the territory433

of D′, except possibly for the Bj
i that contains the main border of D′, are in fact a Bi (in434

other words, Bi is connected), the edge color that covers relevant facial triangles of D′, if435

any, has all of its edges in D′, and the first two goals are also achieved. We now work on D436

to obtain the same properties and maintain the invariant during this postorder proposal.437

As above, Lj
i (D) denotes the border of some Bj

i as it participates in a soup D (by the438

definition of “participate", Lj
i (D) is not the main border of D). We have (from the second439

goal) that at most one edge color covers relevant facial triangles in the soup D. If Bi has440

some components other than Bj
i , we modify P by splitting the vertex class Pi into two vertex441

classes, one consisting of the vertices of V (Bj
i ) and the other consisting of Pi \V (Bj

i ). All the442

facial triangles are still covered by the new double-partition, since a facial triangle T covered443

before the modification by the vertex class Pi must be v-covered before the modification by444

an edge of Bi and this edge would be in either Bj
i or in what is left from Bi after removing445

V (Bj
i ) from Bi, thus v-covering after the modification the facial triangle T . We claim that446

Φ does not go up: the contribution of P decreases by 1, while the total contribution of edge447

colors increases by at most 1, since trivial edge colors contribute 0 to Φ, and only the (single)448

non-trivial edge color, which we call Ql, that contains edges in the soup D can have its ul449

incremented (recall that ul is the number of vertex classes incident to Ql). Indeed, other450

non-trivial edge colors that are incident to the new vertex class that consists of V (Bj
i ) can451

only cover relevant facial triangles of soups with territory included in interior faces of Bj
i ,452

and these edge colors are not incident to any Bj′

i , for j′ ̸= j, from the invariant. After we453

apply this step to all the Bj
i participating in the soup D, except for the main border of the454

soup D, we do have that all such Bj
i are in fact a Bi.455

If there exists an edge color Q covering relevant facial triangles of D and Q also covers456

facial triangles elsewhere, apply Modification 3 and split Q into Q′ and Q̄, where Q′ consist457

of the edges of Q inside the soup D. Note that the edges of Q̄ are embedded outside the458

territory of D, from the invariant. All the facial triangles covered by Q are now covered by459

either Q′ or Q̄; this is since the facial triangles that have one edge in the main border of D460
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are not covered by an edge color (from the first goal). Also, there is at most one vertex class,461

(specifically, the Pi that contains the vertices of the main border of D) that is incident to462

both Q′ and Q̄, since the edges of Q̄ are embedded outside the territory of D and all the463

vertex classes Pi′ that have vertices inside the territory of D, except for the Pi that contains464

the vertices of the main border of D, form a connected Bi′ (from the invariant) and hence465

Pi′ cannot have vertices outside the territory of D.466

Note that none of the changes invalidate the first two goals, or modify the soups. By now,467

we achieved our first four goals: any edge of H̃ such that both facial triangles that contain468

this edge are covered by vertex classes is in an edge color by itself (in particular any edge of469

H̃ connecting two vertices in the same vertex class is in an edge color by itself), at most one470

edge color covers facial triangles in a soup, double-partition (P, Q) has each Bi connected,471

and each non-trivial edge color covers facial triangles in only one soup. Moreover, the facial472

triangles in a soup that are not covered by vertex classes, if they exist, are all covered by one473

single edge color.474

We further modify the double-partition (P, Q), to have that |Pi| ≠ 2, for all i. Let us475

look at one Pi with |Pi| = 2. The graph Bi is connected by now, so let us look at the soup476

D where Bi participates (Bi cannot contain the main border of a soup), and at the moat477

around Bi. In a first case, the outer border of this moat is the main border of the soup D.478

Then all facial triangles of the soup D are covered by vertex classes. We split the vertex class479

Pi into two singleton vertex classes, and put all the edges of D into a new edge color thus480

covering the two facial triangles that Bi used to cover. Then we apply Modification 1. The481

contribution of P to Φ decreased by 1, while the contribution of this new edge color is exactly482

1 (it is incident to exactly three vertex classes). Note that this modification does not destroy483

any of our first four goals. In a second case, the moat around Bi has two or more vertex484

classes on its outer border. Then there is one edge color that covers facial triangles in the485

soup D. In particular, this edge color is incident to Pi as it covers at least one facial triangle486

with (exactly) one vertex in Pi. Once again split the vertex class Pi into two singleton vertex487

classes, and put all the edges incident to Pi in the edge color that covers facial triangles in488

the soup D, thus covering the two facial triangles that Bi used to cover. Then we apply489

Modification 1. Once again, the contribution of P to Φ decreased by 1, while in this second490

case the contribution of this edge color covering relevant facial triangles in D increased by at491

most 1, as it is incident to one more vertex class. The contribution of other edge colors does492

not change. Note that this modification does not destroy any of our first four goals and does493

not modify the soups.494

We have finished the first stage of the proof, and by now the double-partition (Q, P)495

satisfies the five conditions.496

We continue with the second stage of the proof. Fix D to be a soup which meets497

g vertex classes. These g vertex classes give raise to the components or singletons that498

participate in the soup, and to the main border of the soup if the soup is an internal soup.499

Each of these vertex classes is connected in H̃ and also its intersection with the soup is500

connected.501

▷ Claim 6. Exactly 2g − 4 relevant facial triangles of the soup D are not covered by vertex502

classes.503

Proof. Suppose a vertex class Pi has Li(D) as the border which is part of the soup D;504

V (Li(D)) belong to Pi. Let SD be the set of singletons participating in soup D. Let INS be505

the set of indices of non-singleton vertex classes that meet D (non-trivial vertex classes that506
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participate in D, or that give the main border of D), and let li = |V (Li(D))| when i ∈ INS .507

Let bi be the number of blocks of such an Li(D).508

As li ≥ 2, the edges of Li(D) v-cover exactly li + bi − 1 relevant facial triangles of the509

soup D, as the walk around Li(D) has length exactly li + bi − 1. A relevant triangle of soup510

D that is covered by a vertex class is v-covered exactly once during these walks around all511

the Li(D).512

The total number of relevant facial triangles in the soup D is 2(SD +
∑

i∈INS li) − 4 −513 ∑
i∈INS(li − bi − 1), which is obtained as described in this paragraph. Construct a plane514

graph H ′ as follows. Start with H ′ being the soup D (which is a plane graph). Then all the515

relevant facial triangles of D are faces of H ′. Take a Bi (given by the non-trivial vertex class516

Pi) that participates in the soup. Keep only Li(D) from Bi and triangulate every inner face517

of Li(D). This way, for Bi, we get exactly li − bi − 1 triangular faces of H ′ that are not the518

faces of relevant facial triangles of D. Assume now that D has a main border and is given519

by vertices of Bi; let F be the face of Bi used in the definition of soup D. Triangulate all520

the inner faces of Li(D) except for F , and triangulate the outer face of Li(D). Again, for521

Bi, we get exactly li − bi − 1 triangular faces of H ′ that are not the faces of relevant facial522

triangles of D. Now H ′ is a triangulated graph with 2(SD +
∑

i∈INS li) vertices, and has523

exactly 2(SD +
∑

i∈INS li) − 4 triangular faces. These are all faces of relevant facial triangles524

of D except for the
∑

i∈INS(li − bi − 1) faces that we described above.525

Thus the number of relevant facial triangles of D that are not covered by vertex classes526

is exactly:527

2(SD +
∑

i∈INS
li) − 4 −

∑
i∈INS

(li − bi − 1) −
∑

i∈INS
(li + bi − 1) = 2(SD + |INS |) − 4 = 2g − 4.528

This concludes the proof of the claim.529

Note that when g = 2, this number is 0 (which we have seen before, when we looked at530

moats whose outside border is included in one vertex class). When g > 2, there are relevant531

facial triangles in D that are not covered by vertex classes, and thus must be covered by an532

edge color Qj (just one color, from our second condition). Condition 4 of (P, Q) implies that533

edge color Qj only covers relevant facial triangles of D, and in fact we can assume edge color534

qj only contains edges of D. Thus Qj only covers facial triangles of D; as the facial triangles535

of D that are not relevant (if any) are covered by a vertex class, we conclude that Qj covers536

a set of facial triangles that is exactly the set of relevant facial triangles of D not covered by537

a vertex class. Recall that uj is the number of vertex classes incident to edge color j. We538

have that uj = g, based on earlier arguments when walking around moats with the space of539

moats of a soup being “connected". One can easily check that 2g − 4 = 2uj − 4 ≤ 4⌊ uj−1
2 ⌋,540

and therefore541

coverage(j) = 2g − 4 ≤ 4⌊uj − 1
2 ⌋, (8)542

where coverage(j) is the number of facial triangles covered by edge color Qj . Using Condition543

1 above, every facial triangle covered by an edge color is a relevant triangle in some soup and544

thus, using Condition 4, the equation above holds for all edge colors.545

We have 2n − 4 facial triangles that need to be covered by double-partition (P, Q) in546

H̃. Define λi = 3pi − 6 − E(Bi), the number of edges missing from Bi to be triangulated547

(we used here that pi = |V (Bi)| ≥ 3, from Condition 5). Each edge of Bi can v-cover at548

most two facial triangles of H̃. But there is an exception: if three edges of Bi form a facial549

triangle of H̃, then we must subtract 2 (as this facial triangle is covered three times when we550

computed above). Let f̄3
i be the number of faces of Bi that are faces of H̃. We obtain that551
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the vertex class V (Bi) can cover at most 2(3pi − 6 − λi − f̄3
i ) facial triangles. Based on this552

discussion we have553

2n − 4 ≤ 2
q∑

i=1
(3pi − 6 − λi − f̄3

i ) +
m∑

j=1
coverage(j), (9)554

where as before q is the number of non-trivial vertex classes of P and m is the number of555

edge colors of Q.556

Let p =
∑q

i=1 pi, f̄ =
∑q

i=1 f̄3
i , and λ =

∑q
i=1 λi. Let c′ be the number of triangular557

faces of all Bi that contain exactly one singleton (of the double-partition) and no other vertex558

of H̃. This singleton is a cubic vertex of H̃. Let d be the number of triangular faces of all559

Bi that contain exactly two singletons, and no other vertex of H̃. Let s be the number of560

singletons of P that are embedded in a triangular face of some Bi, where all the vertices561

of H̃ contained in this face are singletons, and there are at least three of them. Let s′ be562

the number of the other singletons of P, not as above. Then n = p + c′ + 2d + s + s′. From563

Equation (9) we deduce:564

2(p + c′ + 2d + s + s′) − 4 ≤ 6p − 12q − 2λ − 2f̄ +
m∑

j=1
coverage(j),565

from which we deduce:566

2s + 2c′ + 4d + 2s′ + 8q + 2λ + 2f̄ − 4 ≤ 4p − 4q +
m∑

j=1
coverage(j).567

Recall that k is the number of parts (vertex classes) of P, q is the number of non-trivial568

vertex classes of P, and p is the total number of vertices in non-trivial vertex classes. The569

contribution of of P to Φ(P, Q) is n − k =
∑q

i=1(pi − 1) = p − q. Thus, using Equation (8),570

1
2s + 1

2c′ + d + 1
2s′ + 2q + 1

2λ + 1
2 f̄ − 1 ≤ Φ(P, Q). (10)571

Recall that each Bi is a connected plane graph with |V (Bi)| = pi ≥ 3. If it were572

triangulated, Bi would have exactly 2pi − 4 triangular faces. Bi is missing λi edges, and573

each of these can destroy at most two triangular faces. So we have at least 2pi − 2λi − 5574

inner triangular faces of Bi. If F , one of these inner triangular faces of Bi, contains some Bj ,575

then we call F a green face. For a green face F of Bi, there exists a j ̸= i, with Bj contained576

in F and such that there is no k ̸∈ {i, j} with Bk contained in F and Bj in an inner face of577

Bk. We say that Bj compels F to become a green face and we note that Bj can only compel578

one face to become green. Thus there are at most q green faces. Let ri be the number of579

non-green inner triangular faces of Bi that are not empty of points of H̃ and let r =
∑q

i=1 ri.580

Based on the discussion above, we have:581

r ≥ 2p − 2λ − 5q − f̄ − q = 2p − 6q − 2λ − f̄ . (11)582

From the definition of s,583

s ≥ 3(r − c′ − d)584
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as triangular faces of some Bi that are non-empty and non-green contain either one singleton585

(there are at most c′ such faces), or two singletons (there are at most d such faces) or contain586

three or more singletons. From this and Equation (11) we obtain:587

s + 3c′ + 3d ≥ 3(2p − 6q − 2λ − f̄)588

and therefore:589

7s + 7c′ + 14d + 28q + 7λ + 7f̄ ≥ 6p + 6s + 6c′ + 12d − 2(c′ + d) + 10q,590

which implies, as n = p + s + c′ + 2d + s′, that591

1
2s + 1

2c′ + d + 1
2s′ + 2q + 1

2λ + 1
2 f̄ − 1 ≥ 3

7n − 1
7(c′ + d) + 5

7q − 1 ≥ 3
7n − 1

7c − 1,592

where for the last inequality we use the fact that c ≥ c′ + d, which follows from the fact593

that if two vertices are embedded in a triangular face, and together with the triangle form594

a triangulated planar graph, then one of these two vertices is cubic. This combined with595

Equation (10) implies Equation (3), finishing the proof of Theorem 5.596

We continue the analysis of the approximation ratio of Algorithm MTLK4. As597

before, G denotes the input graph and H an optimum solution (a maximum planar subgraph598

of G). Let H̃ be a triangulated plane supergraph of H, and θ be |E(H̃)| − |E(H)|. As above,599

the value of the optimum solution is |E(H)| = 3n − 6 − θ. Below, c counts the number of600

cubic vertices in H̃.601

From Theorem 5 and Proposition 2 we immediately obtain602

β(G) ≥ β(H) ≥ β(H̃) − θ ≥ 3
7n − 1

7c − θ − 1 (12)603

as one edge of E(H̃) \ E(H) can be part of only one triangle of the maximum triangular604

cactus of H̃.605

Let A be the kt-structure produced by MTLK4. Say that there is a strong bond between606

two vertices if there is a path between them in A with all edges in K4’s of A. Call a cubic607

vertex v of H̃ blocked if K4(v), the K4 formed by v and its three neighbors in H̃, is not added608

to the kt-structure. A cubic vertex v is blocked because of one of the following:609

one of the edges of K4(v) is not in G (also not in H). We call v absent.610

all the edges of K4(v) are in G (and in H - since H is a maximum planar subgraph of G)611

and at least two of the four vertices of K4(v) are connected by a strong bond. We call v612

neutralized.613

all the edges of K4(v) are in G (and in H) and there are no strong bonds between any614

of the vertices of K4(v), and all four of the vertices of K4(v) are in the same connected615

component of A. We call v subdued.616

Indeed, if all the edges of K4(v) are in G (and in H) and there is no strong bond between617

any two vertices of K4(v) and only three of its vertices are in the same component of A,618

then we could remove at most two triangles from A to disconnect these three vertices, and619

add K4(v). And if two of the vertices of K4(v) are in one component of A and the other620

two in another component of A, then we can remove one triangle from each of these two621

components and add K4(v).622

We use ca to denote the number of absent cubics, cs to denote the number of subdued623

cubics, and let cn be the number of neutralized cubics. Let A′
1, . . . , A′

q′ be the non-trivial624

sub-kt-structures obtained from A by removing all the triangles that are not part of K4’s. If625

we have j′
i K4’s in A′

i, then A′
i has 3j′

i + 1 vertices, each two of them connected by a strong626
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bond. All the strong bonds are obtained this way. Let γ be the number of K4’s in A. Then627

γ =
∑q′

i=1 j′
i.628

Let B′
i be H̃[A′

i]. Then B′
i has at most 3(1 + 3j′

i) − 6 = 9j′
i − 3 edges. For a cubic v to be629

neutralized, one of the four edges of K4(v) must be an edge of some B′
i. Recall than n > 4630

and that H̃ is a triangulated plane graph. Then cubic vertices cannot be adjacent in H̃ and631

one can easily check that one edge e of H̃ can participate in at most two K4(u). Precisely, if632

one of the endpoints of e is a cubic, then this endpoint is the only possible u above, and if633

not the only possible u above are the two vertices that each forms a facial triangle with e.634

Thus the total number of neutralized cubics is at most635

cn ≤ 2
q′∑

i=1
(9j′

i − 3) ≤ 18γ. (13)636

Also by the reasoning above,637

ca ≤ 2θ. (14)638

Let α be the number of triangles in A and recall that γ is the number of K4’s in A.639

Let A have non-trivial components A1, . . . , Aq, each with αi triangles and γi K4’s. Let640

Bi = H̃[Ai]. Thus |V (Bi)| = |V (Ai)| = 1 + 2αi + 3γi. Now we count how many subdued641

cubics cs(i) are in V (Ai). Remove all these cubics from Bi and we get a planar graph Di642

with 1 + 2αi + 3γi − cs(i) vertices and where each subdued cubic vertex of Ai is the only643

vertex of H̃ embedded in a triangular face of Di (recall that n > 4 and cubic vertices cannot644

be adjacent in H̃). We know that Di can have at most 2(1 + 2αi + 3γi − cs(i)) − 4 triangular645

faces, and thus:646

cs(i) ≤ 2(1 + 2αi + 3γi − cs(i)) − 4647

from which we deduce:648

cs ≤ 4
3α + 2γ − 2

3q.649

As α ≤ β(G) (recall that β(G) is the number of triangles in a maximum triangular cactus of650

the graph G), adding the equation above to Equations (13) and (14) we obtain:651

c ≤ 20γ + 4
3β(G) + 2θ,652

which we rewrite as653

γ ≥ − 1
15β(G) − 1

10θ + 1
20c. (15)654

Now we have all the ingredients to obtain our ((4/9) + ϵ)-approximation. As before, G655

denotes the input graph and H an optimum solution (a maximum planar subgraph of G).656

Let H̃ be a triangulated plane supergraph of H, and θ be |E(H̃)| − |E(H)|. As above, the657

value of the optimum solution is |E(H)| = 3n − 6 − θ. From Inequality (3) for H, we obtain:658

β(G) ≥ β(H) ≥ 1
3(n − 2 − θ).659

Multiply the inequality above by 141/166, Inequality (12) by 21/166, and Inequality (15)660

by 60/166 (we solved by hand a small linear program to obtain these numbers) to obtain:661
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β(G) + γ ≥ β(G) + 60
166γ ≥ 28

83n − 37
83θ − 1.662

As every K4 has at least one more edge compared to the two triangles it replaces, our663

output has at least n − 1 + β(G) + γ edges. Based on the inequality above, one can check664

that665

n − 1 + β(G) + γ ≥ 111
83 n − 37

83θ − 2 ≥ 37
83(3n − θ − 6).666

In conclusion, we have:667

▶ Theorem 7. Algorithm MTLK4 is a (37/83)-approximation for MPS.668

The improvement ϵ = 1/747.669

4 Local Optimization without Max Triangular Cactus670

Recall that a diamond subgraph is a graph that is isomorphic to the graph resulting from671

deleting any single edge from a K4. We call the two vertices of degree three in a diamond as672

the bases of the diamond, and the two vertices of degree two as the tips of the diamond. We673

call the edge between the two bases of a diamond the base-edge of the diamond. A diamond674

of a plane graph is a facial diamond if the two triangles of the diamond are facial triangles.675

In this section, we present LDT, a local optimization algorithm (inspired by the one of676

[6]) using only diamonds and triangles that is a (5/12)-approximation algorithm for MPS677

on general graphs. There is a tight example for this approximation ratio. The input is a678

graph G, which we assume to be connected as one can run any approximation algorithm on679

separate connected components if needed.680

4.0.0.1 Algorithm LDT:681

We maintain a spanning subgraph A (thus V (A) = V (G)) that is a dt-structure in G, starting682

with E(A) = ∅. The algorithm has two phases.683

Phase I: The goal of this phase is to increase the cyclomatic number of A. For each connected684

component A′ of A, the algorithm keeps a weighted tree TA′ whose vertex set is V (A′)685

and edge set is as follows (see Figure 10 for an illustration). For every diamond of A, the686

edge connecting the bases is included in TA′ with weight 2. For each of the two tips of687

every diamond, include in TA′ an edge between this tip and one of the bases, with weight688

1. For every triangle of A′, include in TA′ two of its edges, each with weight 1. One can689

easily check that TA′ is a spanning tree of A′. Let F (A) be the spanning forest on V (G)690

obtained by taking all the edges of E(TA′) for all the components A′ of A.691
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Figure 10 The tree TA′ obtained from a connected component A′ of A. Edges of weight 2 are
thick

One local optimization step is obtained as follows: if there exist a triangle of G with692

its three vertices in three different components of A, then add this triangle to A, and693

resume. If no such triangle exists, go through all the diamonds D of G. Go through all694

the edges e ∈ E(F (A)) of weight 1. Let Fe(A) be the spanning forest of G whose edge695

set is E(F (A)) \ {e}. If the four vertices of D are in four components of Fe(A), and e696

was in E(F (A)) as an edge of a triangle, then remove from A this triangle and add D. If697

the four vertices of D are in four components of Fe(A), and e was in E(F (A)) as an edge698

that connects a tip of a diamond D′ to one of the bases of D′, then remove from A the699

two edges connecting this tip from the bases (leaving a triangle from the diamond D′)700

and add D.701

Phase II: As long as possible, greedily add edges connecting various components in graph (V (A), E(A))702

to get the output L (L is connected since the input G is connected).703

See Figure 11 for an example of a local optimization step. One can easily check that704

applying the local optimization step of Phase I keeps A a dt-structure and its cyclomatic705

number indeed increases.706
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(b) (c)(a)

e

Figure 11 (a) shows in solid line segments the current dt-structure A. A diamond D, represented
by the dashed line segments, is considered. (b) A forest F (A) is represented by thick solid line
segments having weight 2 and thin solid line segments having weight 1. We can see that by removing
from F (A) the weight-1 edge e, the four vertices of the diamond D are in four different components.
(c) The resulting dt-structure after the local optimization step.

Running time We discuss the running time of one local improvement, or finding out707

that no such improvement exists. There are O(n) edges in the current dt-structure A. Using708

Depth First Search, computing the connected components of the current dt-structure can be709

done in O(n). There are O(n3) triangles in the input graph. Using the information given710

by the connected components of the current dt-structure, it takes constant time to check711

whether a triangle can be used for improving the dt-structure (this involves finding, for each712

vertex v of the triangle, the representative of the connected component containing v, and713

then checking if we have three distinct representatives) . For the local optimization using714

diamonds, we use a more elaborate method to save a factor of n in the running time.715

Let F̂ (A) be the spanning forest on V (G) obtained by taking all the edges of E(TA′) that716

have weight 2, for all the components A′ of A. We construct F̂ (A) and, using DFS, compute717

its connected components in time O(n). Then we go through all the O(n4) diamonds and718

for each such diamond D we check if its four vertices belong to at least three connected719

components of A. If no, D cannot be used. If yes, we check if the two nodes that are in the720

same connected component of A are also in the same connected component of F̂ (A); if yes,721

then D cannot be used. If no, in time O(n) we can find one edge e ∈ F (A) \ F̂ (A) such that722

the four vertices of D are in four different components of Fe(A). In time O(n4) we can easily723

update A to include D.724

There are O(n) local improvement steps, for a total running time of O(n5).725

Approximation Ratio Analysis First we show that the approximation ratio does not726

exceed 5/12 by more than an o(1) term. Consider a large triangular grid H as in Figure 12,727

which occupies a regular hexagon, and such that H has an odd number of vertices, 2p + 1,728

with a large p. Let S be some triangular cactus, with p triangles, and with V (S) = V (H).729

We make S edge-disjoint from H, and also we avoid having the endpoints of an edge of S730

at distance less than 2 in H. One can easily check that H has 4p − o(p) faces. In “every731

second" face of H add a “new" point as in the figure, so that points are not added in two732

faces of H that share an edge in H. Connect each of these new points to the three vertices733

of H lying on the border of the face of H where the new point is added. The input graph G734

consists of the union of H and S and these new points with their incident new edges. Thus735
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G has 4p − o(p) vertices. The union of H and the new points induces an almost triangulated736

planar graph with 12p − o(p) edges. The triangular cactus S can be the solution produced737

by the Phase I of the algorithm, as we show in the next paragraph. Then our output has no738

diamonds and p triangles, for a total of at most 5p edges (the output has cyclomatic number739

of p and less than 4p vertices). By choosing p as large as we wish, we get a ratio as close to740

5/12 as we want.741

Figure 12 The planar graph H is given by filled circles representing the vertices and solid lines
representing the edges. The new vertices are represented by empty circles, and the edges adjacent to
these new vertices are represented by dashed lines.

It is easy to check that no triangle can be added to S. Now we check that no diamond can742

be swapped for a triangle in S according to Phase I of the algorithm. From our construction,743

any diamond of G has at least three vertices in V (S), and for any edge e from E(F (E(S))),744

the graph Fe(E(S)) will have one component with at least two of these three vertices.745

We continue with the proof that the approximation ratio of LDT is at least 5/12. Recall746

that G, the input graph, is connected and let OPT be an optimal MPS solution of G. Define747

n := |V (G)| = |V (OPT)|. We fix a planar embedding of OPT which will be used through748

out the section. Add to OPT a set Θ of edges to obtain a triangulated simple plane graph749

H. Let θ := |Θ|. A triangulated plane graph with n vertices has 3n − 6 edges, if n ≥ 3. So750

θ = (3n − 6) − |E(OPT )|; θ does not depend on the embedding of OPT or H.751

Let A be the dt-structure at the end of Phase I of the LDT algorithm. Let A have c752

non-trivial connected components A1, A2, . . . , Ac. Let ti, di be the number of triangles and753

diamonds in Ai respectively. This implies that the number of vertices ni in the component754

Ai is exactly 3di + 2ti + 1 and the number of edges in Ai is exactly 5di + 3ti.755

Let d :=
∑c

i=1 di and t :=
∑c

i=1 ti. We can also see that the output L has (n − 1) + 2d + t756

edges, as every diamond adds two edges and every triangle adds one edge to a spanning tree757

(recall that the input graph G is connected and thus has a spanning tree).758

First, we notice that if c = 0 (there are no triangles in G), then OPT has no triangle759

and it is a simple exercise that OPT has at most 2n − 2 edges (this follows from Euler’s760

formula and the fact that all the faces of an embedding of OPT have at least four edges761

on their boundary). As Phase II produces a graph with at least n − 1 edges, we have a762

(1/2)-approximation. Thus, from now on, we assume c ≥ 1.763
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Second, we notice that, unless n is large compared to d and t, we get the desired764

approximation ratio. Precisely,765

(n − 1) + 2d + t

3n − 6 − θ
≥ (n − 1) + 2d + t

3n − 6 ≥ 5
12766

if n ≤ 8d + 4t + 6. So from now on, we assume that:767

n > 8d + 4t + 6. (16)768

Let Bi := H[V (Ai)] be the subgraph of H induced by the vertices of Ai. Then we have769

ni = |V (Bi)|. Let mi := |E(Bi)|.770

In TAi , defined in the description of Phase I of the LDT algorithm (also illustrated in771

Figure 10), remove the edges of weight 1 and we are left with several connected non-trivial772

components J1
i , J2

i , . . . Jki
i , where ki > 0 if di > 0 (if di = 0 there are no weight-2 edges in773

TAi
and there are no non-trivial components above). The graphs H[V (Jj

i )] are all planar774

and each can have at most 3|V (Jj
i )| − 5 = 3(|V (Jj

i )| − 1) − 2 edges. Note that Jj
i uses775

(|V (Jj
i )| − 1) weight-2 edges in TAi

. We have di weight-2 edges in TAi
. From this we obtain776

that the total number αi of all edges of all the ki graphs H[V (Jj
i )] cannot exceed 3di − 2:777

αi ≤ 3di − 2 (17)778

No border of a triangular face f of H can be added to A in Phase I, and based on this779

we classify all the triangular faces of H into one of the following three categories:780

Category 1: at least one edge bordering f is in Θ (and the triangle given by the border of781

f does not exists in OPT ; recall that Θ is the set of edges we have added to OPT to obtain782

the triangulated plane graph H).783

Category 2: no edge bordering f is in Θ and exactly two vertices on the border of f are in784

the same V (Bi).785

Category 3: no edge bordering f is in Θ and all three vertices on the border of f are in the786

same V (Bi).787

There are 2n − 4 triangular faces of H and at most 2θ can fall in the first category above,788

as one edge of Θ only borders two triangular faces of H. Therefore at least 2n − 4 − 2θ789

triangular faces fall in either the second or the third category.790

If an edge of Bi borders two triangular faces in the second category above, we call it a791

strong edge of Bi, and let Si be the set of strong edges of Bi; also let si = |Si|. The other792

edges of Bi are called weak edges. A weak edge can border at most one triangular face in793

the second category, and can border triangular faces in the third category. Think of this794

weak edge as contributing 1 to the Category 2 triangular faces and 1/3 to the Category 3795

triangular faces. With these reasonings, we obtain:796

c∑
i=1

(2si + (4/3)(mi − si)) ≥ 2n − 4 − 2θ,797

which we rewrite as798

c∑
i=1

((2/3)si + (4/3)mi) ≥ 2n − 4 − 2θ. (18)799

Define Γi to be the set of (strong) edges in Si that are not in any of the ki graphs H[V (Jj
i )]800

mentioned above, and let Γ = ∪iΓi. (This set Γ will give us technical issue complicating801

the proof.) Let γi := |Γi|, and note that si ≤ αi + γi. The graph Bi does not have to be802
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triangulated; let λi := 3ni − 6 − mi (λi is the number of edges missing from Bi to make a803

triangulated planar graph, noting that ni ≥ 3).804

Then from si ≤ αi + γi and Inequality (18) we obtain805

c∑
i=1

((2/3)(αi + γi) + (4/3)(3ni − 6 − λi)) ≥ 2n − 4 − 2θ,806

which we rewrite as807

c∑
i=1

(2
3αi + 4ni − 8) +

c∑
i=1

(2
3γi − 4

3λi) ≥ 2n − 4 − 2θ. (19)808

▷ Claim 8.

c∑
i=1

γi ≤ 5c + 2
c∑

i=1
λi. (20)809

We believe that a stronger inequality holds, maybe without a 2 in front of the second810

summation; however this is enough for our purposes. We are unable to prove this without a811

long charging argument.812

Proof. We first add some notation. The graphs Bi are considered plane graphs here. We813

add and embed a set of edges Λi to Bi to obtain a triangulated plane (simple) graph, and thus814

we will have |Λi| = λi. We do this carefully as follows. Let Bj
i , j = 1, 2, . . . ji be the connected815

components of Bi, and let bj
i = |V (Bj

i )|. Out of these connected components, let j̄i be the816

number of the trivial components, with only one vertex each (also called singletons), and let817

ĵi be the number of components with two vertices only; we call such a component a doubleton.818

If bj
i > 2, let Bj

i (l), for l = 1, 2, . . . lj
i , be the blocks of Bj

i , and let bj
i (l) = |V (Bj

i (l))|. Note819

that bj
i (l) ≥ 2. Let l̄j

i be the number of trivial blocks of Bj
i , meaning with two vertices (these820

trivial blocks are the bridges of the connected component Bj
i ).821

To construct Λi, we start by looking at non-trivial blocks Bj
i (l), and add (and embed) a822

set of “diagonal" edges ∆i in each face of each Bj
i (l) until Bj

i (l) becomes triangulated. See823

Figure 13 for an illustration. It is easy to check that this keeps the graph with vertex set824

V (Bi) and edge set E(Bi) ∪ ∆i simple and plane; moreover each of this graph’s non-trivial825

blocks is a triangulated plane graph.826
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v

xy

u

Figure 13 An illustration of adding edges in ∆i. Here we have the bounded face with corners
u, v, x, y of some Bj

i (l). Other blocks or components of Bi that are embedded in this face are
depicted by thick ovals. We can add and embed the diagonal edge vy, depicted by the dashed
poly-line, while maintaining a plane embedding.

Next, as long as we have a trivial block (a bridge yx) sharing an endpoint x with a trivial827

block xz, we add the edge yz while maintaining planarity. This results in some triangulated828

blocks. Let Ωi be the set of such edges added while doing this.829

Next, if we have a trivial block (a bridge yx) sharing an endpoint x with a non-trivial830

block Q, and y is embedded in a face xuv of Q, we add the edges uy and vy resulting in a831

bigger planar block that contains y and the vertices of Q; see Figure 14 for an illustration.832

This bigger block is triangulated. Let Πi be the edges added in this phase. The resulting833

graph is still planar.834
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x

u v

y

Figure 14 An illustration of adding edges in Πi to merge the bridge xy into the block Q that has
the vertices x, u, v such that y is embedded in a triangular face of Q. Here the starting edges are
thin continuous segments or arc segments, and the new edges added to Πi are dashed segments. We
can do this even if some other blocks contain x or y or u or v. Two such block are depicted as the
thick ovals. While in this figure y is embedded in an inner face of Q, the same idea can be used
when y is embedded in the outer face of Q.

Next, we consider two non-trivial blocks that share one vertex x (an articulation point).835

All blocks except doubletons are triangulated by now. One block Q with outer face triangle836

xyz is embedded in a face xuv of the other block Q′. We add three edges to make Q ∪ Q′
837

triangulated, as in Figure 15. We repeat this process, until all the blocks in the same838

component of Bi are merged together into one plane block; this is a triangulated plane graph839

except for doubletons. Let Υi be the set of such “reinforcing" edges added while doing this.840

(We could but do think of the edges of Omegai ∪ Πi as “reinforcing" a connected component841

since their goal in this proof is to eliminate the bridges).842

x

zy

u v

Q

Q’

An illustration of adding edges in Υi to
merge a block Q with outer face xyz into
the block Q′, where y and z are embed-
ded in an inner triangular face of Q′ that
has as corners the vertices x, u, v. Here
the starting edges are thin continuous seg-
ments, and the new edges added to Υi are
dashed segments.

u v

Q

y

z

x

Q’

An illustration of adding edges in Υi to
merge a block Q with outer face xyz into
the block Q′, where y and z are embed-
ded in the outer triangular face of Q′ that
has as corners the vertices x, u, v. Here
the starting edges are thin continuous seg-
ments, and the new edges added to Υi are
dashed segments.

Figure 15 Merging two non-trivial blocks
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Thus, the graph with vertex set V (Bi) and edge set E(Bi) ∪ ∆i ∪ Ωi ∪ Πi ∪ Υi is planar;843

by now each of its connected components with at least three vertices is a triangulated plane844

graph. We have that the number of bridges of Bi that are not doubletons is at most845

2|Ωi ∪ Πi| (21)846

as any such bridge disappears when we add Ωi ∪ Πi and one edge of Ωi ∪ Πi results in the847

disappearance of at most two such bridges. Precisely, an edge of Ωi makes two bridges848

disappear (meaning that the edge that is a bridge does not form a bridge any more), two849

edges of Πi make one bridge disappear.850

Now we proceed to connect the graph G′, where V (G′) = V (Bi) and initially E(G′) =851

E(Bi) ∪ ∆i ∪ Ωi ∪ Πi ∪ Υi. First let us assume that G′ has a component Q with at least852

three vertices. This component will “absorb" other components as follows. All the other853

components are embedded in faces of Q. Pick a component Q′ so that Q′ is not embedded854

in an interior face of any other component of G′ other than possibly Q. If Q′ is a singleton x855

and is embedded in a faces uvw of Q, add three edges xu, xv, and xw to G′; adjust Q to856

include vertex x and note that Q remains a triangulated plane graph. We are adding three857

edges per singleton. If Q′ is a doubleton xy and is embedded in a (triangular) face of Q with858

corners u, v, w, add the five edges ux, vx, vy, wx, and wy to G′; adjust Q to include vertices859

x and y, and note that Q remains a triangulated plane graph. We are adding five edges per860

doubleton.861

If Q′ has at least three vertices, it is a triangulated plane graph. We have three cases:862

Q′ is embedded in an inner face of Q, or Q is embedded in an inner face of Q′, or each is863

embedded in the outer face of the other. The first two cases are symmetric and we only864

describe the first one below. Let x, y, z (clockwise order) be corners of the outer face of Q′.865

Here Q′ is embedded in an inner face F ′ of Q; let u, v, w (clockwise order) be the corners866

of F ′. Add to G′ the six edges: ux, uy, vy, vz. wz, and wx. See the left side Figure 16 for867

an illustration. Adjust Q to included Q′ and note that it is triangulated plane graph. In868

the third case, Q′ is embedded in the outer face F ′ of Q. let u, v, w (clockwise order) be the869

corners of F ′. Add to G′ the six edges: ux, uy, wy, wz. vz, and vx. See the right side of870

Figure 16 for an illustration. Adjust Q to included Q′ and note that it is triangulated plane871

graph.872

Keep doing this until G′ is connected and triangulated; let Ψi be the set of edges added873

in this stage. Recall that ji is the number of connected components of Bi, j̄i is the number of874

singletons and ĵi is the number of doubletons respectively. There are (ji − j̄i − ĵi) connected875

components of Bi that are not singletons nor doubletons. Thus:876

|Ψi| = 3j̄i + 5ĵi + 6(ji − j̄i − ĵi − 1) (22)877

Second, assume that G′ does not have components with at least three vertices. Then G′
878

has j̄i + 2ĵi vertices and ĵi edges. Note that |V (G′)| = |V (Bi)| ≥ 3. A triangulated graph879

with this many vertices would have 3(j̄i + 2ĵi) − 6 edges and therefore a set Ψi with exactly880

3j̄i + 5ĵi − 6 edges can be added to G′ to make it a plane triangulated simple graph. Note881

that Equation (22) still holds.882

Finally Λi = Ψi ∪ Ωi ∪ Πi ∪ Υi ∪ ∆i. Recall that λi = |Λi|.883

Our credit scheme starts with credits equal to the RHS of Inequality (20). These credits884

are given by a procedure we describe later to each components of every Bi, bridges of885

every Bi, and edges of ∆i ∪ Υi (“diagonals" and “reinforcing"). These components, bridges,886

diagonals, and reinforcing edges pay, as described later, for all the edges Γ so that every edge887

of Γ receives one credit, and nobody uses more credit than it was allocated.888
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u

zy

w v

Q’

x
Q

An illustration of adding edges in Ψi to
merge a connected component Q′ with
outer face xyz with a connected compo-
nent Q, where Q′ is embedded in an inner
triangular face of Q that has as corners the
vertices u, v, w. Here the starting edges
are thin continuous segments, and the new
edges added to Ψi are dashed segments.

u

w v

Q’
x

Q zy

An illustration of adding edges in Ψi to
merge a connected component Q with outer
face uvw with a connected component Q′

with outer face xyz, when Q is embedded
in the outer triangular face of Q′ and vice-
versa. Here the starting edges are thin
continuous segments, and the new edges
added to Ψi are dashed segments.

Figure 16 Merging two components of G′

Precisely, we give 5 + 2λi credits to Bi, further allocated as follows. Every edge of Λi has889

2 credits. We keep 2 credits to every edge of ∆i We give one credit on every bridge of Bi890

that is not a doubleton; these credits come from Ωi ∪ Πi.891

We give 3 credits on every connected component of Bi, and another 1 credit one every892

doubleton of Bi. These credits come from the 5 allocated to Bi, and from the edges of893

Ψi. To check that we have enough credits, we look at how Ψi is constructed. If Bi has894

one component with at least three vertices, then we give this component 3 credits from895

the 5 we have. Whenever we add another component of Bi with at least three vertices,896

we give this component 3 credits, from the 6 edges we are putting in Ψi. Whenever we897

add another component of Bi with 2 vertices (a doubleton), we give this component 4898

credits, from the 5 edges we are putting in Ψi. Whenever we add another component of899

Bi with 1 vertex (a singleton), we give this component 3 credits, from the 3 edges we are900

putting in Ψi. If Bi only has singletons and doubletons, we would need 3j̄i + 4ĵi credits,901

and we have two credits for every edge of Ψi, plus another 5 credits. In total, we have902

5 + 2(3j̄i + 5ĵi − 6) = 3j̄i + 4ĵi + (3j̄i + 6ĵi − 7) credits, and this is enough since 3j̄i + 6ĵi ≥ 9903

(recall that here j̄i + 2ĵi = ni ≥ 3).904

We continue with the proof of Inequality (20). Consider an edge xy ∈ Γi (for some i),905

and let us look at the facial diamond D of H which has xy as a base. We name u and v the906

tips of D. Note that u cannot be in V (Bi) since no facial triangle adjacent to xy has all907

three vertices in V (Bi), since xy is a strong edge. Also, all the edges of this diamond are in908

OPT and therefore in the input graph G; this follows from the fact that none of the edges909

of D are in Θ since, again, xy is strong. Same reasoning applies to show v ̸∈ V (Bi). And910

we must have the case that u and v are in the same V (Bi′), since otherwise the Phase I of911

the LDT algorithm will not stop yet, as argued next. Since xy ∈ Γi, x and y are not in the912

same V (Jj
i ), for some j. This means that there exists an edge e of TAi

of weight 1 that can913

disconnect x from y in TAi
. If u and v were not in the same V (Bi′), then u, v, x, y, the four914

vertices of D, would be in four components of Fe(A) and another step of Phase I would be915

executed.916
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If the edge xy is a bridge of Bi, then we use one credit given to that bridge in the credits917

scheme to pay the edge; if this bridge is a doubleton, it still has three credits left. By now,918

the edges of Γ that are bridges in some Bi are all paid and every connected component of919

every Bi has at least three credits left. Also, every edge of each ∆i has two credits left.920

Assume now that xy is not a bridge of Bi and let F ′ be an interior face of Bi having xy921

as one of the edges bordering F ′. We have that one of {u, v} is embedded in F ′ and the922

other is embedded outside F ′, as xyv and xyu are the two facial triangles of H adjacent to923

edge xy. Let us assume that u is embedded in F ′; then the whole component of Bi′ that924

contains u is embedded in F ′. Moreover, there cannot be another inner face F” of some Bi”925

such that the component of Bi′ that contains u is embedded in F” and some vertex w of926

this component has two neighbors x” and y” in Bi” such that the there exists a triangular927

face of H with corners w, x”, y” (see Figure 17). Traversing the boundary of the face F ′ we928

meet a total of f ′ edges once and b′ edges twice (these are bridge edges of Bi). Note that929

these bridge edges, if they are in Γi, they are paid one credit each. To triangulate F ′, we930

must use exactly f ′ + 2b′ − 3 edges. As done by our procedure of constructing G′, we have931

at most 2b′ of these edges in Ωi ∪ Pii - indeed, if we use an edge in Ωi to replace two bridges932

by a block that is a triangle, then we later use (three) edges from Υi merge this block into933

the larger block. And for the other bridge edges, we put exactly two edges in Πi. This leaves934

us with at least f ′ − 3 edges of ∆i ∪ Υi embedded inside F ′.935

x

y

u

x"

y"

F"

F’w

Figure 17 An illustration of the fact that F ” cannot exist. The connected component of Bi′ that
contains u is depicted by a an oval with thin solid borders. The dashed straight segments are edges
of the input graph G.

We pay all the edge of Γi that appear on the boundary of F ′ and are not bridges by936

charging the component of Bi′ that contains u and the edges of ∆i ∪ Υi embedded inside937

F ′. Note that as argued above, Bi′ cannot be charged more than once this way, and thus938

it brings 3 credits. Also, the edges of ∆i ∪ Υi embedded inside F ′ are not charged in any939

other place, so they bring 2(f ′ − 3) credits. Then we have at least f ′ credits to pay for all940

the edges of Γi that appear on F ′. We do this and then every edge of every Γi is paid one941

credit. In conclusion, the claim holds.942

Using Inequality (20) in Inequality (19) we obtain:943
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c∑
i=1

(
2
3αi + 4ni − 8

)
≥ 2n − 4 − 2θ − (10/3)c.944

From this, the fact that ni = 1 + 3di + 2ti, and Inequality (17), we obtain:945

c∑
i=1

(
2
3(3di − 2) + 4(1 + 3di + 2ti) − 8

)
≥ 2n − 4 − 2θ − (10/3)c,946

which simplifies to947

c∑
i=1

(
14di + 8ti − 16

3

)
≥ 2n − 4 − 2θ − (10/3)c.948

This in turn simplifies to:949

14d + 8t − (16/3)c ≥ 2n − 4 − 2θ − (10/3)c,950

and using the early assumption that c ≥ 1, this implies951

7d + 4t ≥ n − θ − 1. (23)952

From Inequality (16) we obtain:953

2n ≥ 11d + 8t,954

which is equivalent to955

5(n − 7d − 4t) + 24d + 12t ≥ 3n.956

Using Inequality (23), this implies:957

5θ + 24d + 12t ≥ 3n − 18.958

which is equivalent to959

(n − 1) + 2d + t

3n − 6 − θ
≥ 5

12 .960

This completes the analysis of the algorithm LDT. We have:961

▶ Theorem 9. Algorithm LDT leads to an approximation algorithm with ratio of 5/12, and962

can be implemented to run in time O(n5).963

5 A Greedy Algorithm followed by LDT964

In this section, we present Algorithm GDLDT (Greedy-Diamonds-Local-Diamonds-Triangles)965

that achieves a small improvement over Algorithm LDT from the previous section.966

Algorithm GDLDT adds diamonds greedily as long as we can maintain a dt-structure11
967

before we start Phase I of the LDT algorithm.968

11 As mentioned earlier, this is exactly the start of the GDT algorithm of [7].
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We end up with k ≥ 0 non-trivial connected diamond-structures12 Ai each with di969

diamonds. A special case is k = 0; it will be discussed later. Recall that H is a triangulated970

plane graph that has all the edges of OPT and another set ∆ of δ edges. We have 1 + 3di971

vertices in Ai or in Bi := H[V (Ai)]. Bi would have at most 9di − 3 edges. We define972

d :=
∑k

i=1 di. Also let BB := ∪i∈{1,2,...,k}E(Bi).973

H has 3n − 6 facial diamonds - one for every edge. Call a pair of facial diamonds974

interlocking if the base of one is an edge of another. Then one facial diamond participates in975

four pairs of interlocking facial diamonds.976

No facial diamond of H can be added when Greedy Diamonds stops, and based on977

this we classify all the facial diamonds of H into one of the following three categories:978

Category I: One edge of the facial diamond is in Θ (recall that Θ is a set of edges that are979

in H but not OPT , and that θ = |Θ|).980

Category II: Not of Category I, and one edge of the facial diamond is in BB.981

Category III: Not of Categories I and II, and the two tips of the facial diamond are in the982

same V (Bi), for some i ∈ {1, 2, . . . , k}.983

An edge e of Θ participates in at most 5 facial diamonds: one diamond D where the edge984

e is the base, and at most 4 facial diamonds where the base is one of the at most four edges985

other than e in the facial diamond that has e as a base. Thus there are at most 5Θ facial986

diamonds of Category I.987

If k = 0 (the special case where no diamonds were found), then we only have facial988

diamonds of Category I. Then we have989

5θ ≥ 3n − 6. (24)990

From Inequality (23) (here d = 0), we obtain:991

4t ≥ n − θ − 1992

and therefore993

n − 1 + 2d + t

3n − 6 − θ
≥ (5/4)n − (5/4) − (1/4)θ

3n − 6 − θ
≥ 11

24 >
91
216 ,994

where the middle inequality above follows by simple algebra from Inequality (24).995

From now on, we assume that k > 0. Similarly, an edge of BB participates in at most 5996

facial diamonds. Thus there are at most 5|BB| facial diamonds of Category II.997

Let us now consider the set of facial diamonds of Category III. If a facial diamond of998

Category III belongs to interlocking pair of facial diamonds with another facial diamond of999

Category III, then we put both these facial diamonds in a set Q. Let R be the set of facial1000

diamonds of Category III that were not put in Q.1001

We construct a bipartite multigraph M with R as the vertices of one part, and BB ∪ Θ1002

as the vertices of the other part, and edge set defined as follows.1003

Let D be a facial diamond of R with base vertices x and y and tips u and v. Note that1004

there is an i such that u and v are in V (Bi) while x and y are not in V (Bi). Consider the1005

four distinct facial diamonds of H with bases xu, yu, xv, and yv. As we assumed D is not in1006

Q, for each D′ of these four facial diamonds, there must be an edge e of Θ ∪ BB that makes1007

D′ ineligible for being added by the Greedy algorithm (D′ is of Category I or II since if D′
1008

were to be of Category III, then D′ and D would interlock). Put an edge in M between D1009

12 A diamond structure is a graph whose blocks are all diamonds
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and e and label this edge by D′. Do this for all the four diamonds interlocking with D. We1010

may end up putting two edges between D and some edge e of Θ∪BB, labeled by two distinct1011

diamonds that interlock with D and both contain e. See Figure 18 for an illustration. Note1012

that e is not the base of the facial diamond D′ when an edge of M incident to e (seen as a1013

vertex of M) is labeled by D′.1014

u

v

z3

e1

e2

y

D

z1

z2

e3

x

Figure 18 Straight segments, dashed or not, are edges of H. We have a diamond D that is in
the set R, with base xy and tips u and v. There are four facial diamonds that interlock with D, and
in this figure the facial diamonds with bases xu, xv, yu, and yv have tip set {z1, y}, {z1, y}, {z2, x},
and {z3, x} respectively. Each of these four facial diamonds has one edge in Θ ∪ BB, which in this
figure are the three dashed segments e1, e2, and e3. Then in M we put two edges with endpoints e1

and D, one edge with endpoints e2 and D, and one edge with endpoints e3 and D. These edges of
M are represented by arcs with arrows on both ends.

Thus in M , every vertex that is a facial diamond of R has degree exactly four. An edge e1015

of Θ ∪ BB, seen as a vertex of M , cannot gain more than one edge of M labeled by diamond1016

D′ (here D′ must contain e), since e is not the base of D′ and if two facial diamonds of1017

R, say, D1 and D2 will get an edge to e in M labeled D′, then D1 and D2 interlock (see1018

Figure 19) and thus they are not in R. Thus a vertex of M that is an edge e of Θ ∪ BB has1019

degree at most four in M . By counting the degrees of the vertices of M , we conclude that:1020

|R| ≤ |BB| + θ. (25)1021
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u

v

e1
y

z1

z2

x D1

D2

D

Figure 19 Here D is the facial diamond with bases x and y and tips u and v. Assume that D is
a member of R. As we construct the graph M , we put an edge between D and e, and we label this
edge D′. Here e is the edge between w and x, and D′ is the facial diamond of H with bases x and u

and tips y and w. The only other facial diamond that could have an edge of M labeled D′ incident
to e is D2, but then D2 and D1 interlock and none of them would be a member of R.

Let AA := E(H[∪i∈{1,2,...,k}V (Ai)]), where we recall that k is the number of non-1022

trivial components Ai. Also recall that BB = ∪i∈{1,2,...,k}E(Bi) and Bi = H[V (Ai)]; thus1023

BB ⊆ AA. We will construct a bipartite graph M ′ with the left part being the edges of1024

AA \ BB and the right part being the diamonds of Q.1025

Consider now a facial diamond D1 from Q. Let D1 have base vertices x and y and tips1026

u and v. Note that there is an i such that u and v are in V (Bi) while x and y are not in1027

V (Bi). Since D1 ∈ Q, there is a diamond D2 of Category III that interlocks with D1; wlog1028

we assume that D2 has base uy and tips x and z. See Figure 19 for an illustration, ignoring1029

the vertex w and the diamond D′. Then there exists j ≠ i with vertices x and z in V (Bj).1030

Note then that ux and xv are edges of AA \ BB. We put in M ′ edges from D1 to the edges1031

ux and xv. Note that neither ux nor xv is the base edges of D1. Thus every vertex in the1032

right part of the bipartite graph M ′ has degree exactly 2. An edge of AA \ BB appears as a1033

non-base edge in four diamonds of H and thus, seen as a vertex in the left part of M ′, can1034

have degree at most 4. We conclude:1035

|Q| ≤ 2|AA \ BB| = 2|AA| − 2|BB|.1036

As every facial diamond of H belongs to one of the three categories, using the equation1037

above and Equation (25), we conclude:1038

3n−6 ≤ 5θ +5|BB|+ |R|+ |Q| ≤ 6θ +6|BB|+2(|AA|− |BB|) = 6θ +4|BB|+2|AA|. (26)1039

Now, since Bi is a simple planar graph with 1 + 3di vertices, we have |E(Bi)| ≤ 9di − 3.1040

Note also that |BB| =
∑k

i=1 |E(Bi)| ≤ 9d − 3k. The set AA is the edge set of a planar graph1041

with
∑k

i=1(1 + 3di) = k + 3d vertices and therefore |AA| ≤ 3(k + 3d) − 6 = 9d + 3k − 6.1042

Using these inequalities and Inequality (26) we obtain:1043

3n − 6 ≤ 6θ + 4(9d − 3k) + 2(9d + 3k − 6) = 6θ + 54d − 12 − 6k.1044

ESA 2024



3:36 Local Optimization Algorithms for Maximum Planar Subgraph

This implies1045

d ≥ 1
18n − 1

9θ.1046

Adding this to Inequality (23), we obtain:1047

8d + 4t ≥ 19
18n − 10

9 θ − 1,1048

which leads to1049

2d + t ≥ 19
72n − 5

18θ − 1
4 .1050

Using θ ≥ 0, one can verify that this implies:1051

n − 1 + 2d + t

3n − 6 − θ
≥ 91

216 ,1052

which is still far from 3/7 but is a little bit better than 5/12. In conclusion we have the first1053

statement of:1054

▶ Theorem 10. Algorithm GDLDT (greedily adding diamonds followed by our LDT algorithm)1055

leads to an approximation algorithm with ratio of at least 91/216, and at most 3/7, and can1056

be implemented to run in time O(n5).1057

Regarding the running time, there are O(n4) diamonds and it is straightforward to use1058

connected components to check whether a diamond can be greedily added in time O(n4).1059

There are at most O(n) such additions. Algorithm LDT can be implemented to run in time1060

O(n5) 9. The second statement of the theorem is proved ahead.1061

5.1 Upper bound on the approximation ratio1062

We do not have a matching upper bound for the algorithm discussed in this section. However1063

the ratio will not exceed 3/7 < 4/9, as shown in the following example.1064

Consider a dt-structure D with d diamonds and no triangles; moreover the d diamonds1065

are connected so that the edges between the bases of each diamond form a tree T . So T has1066

d + 1 vertices; there are another 2d tips. Arrange the 2d tips as our graph H from the 5/121067

example and, just like there, add a new vertex in every second face of H, making it adjacent1068

to the three vertices of H bordering that face. Construct a triangulated planar graph J on1069

the d + 1 vertices of V (T ). Then add a new vertex in every face of J , connecting it to the1070

three vertices of J bordering the face. The dt-structure D together with H and J and the1071

new vertices form the input graph G. There are 2d − o(d) new vertices in the faces of H and1072

2d − 2 new vertices in the faces of J ; so G has 7d − o(d) vertices. Graph H combined with1073

its new vertices is planar and has 4d − o(d) vertices and 12d − o(d) edges, and J combined1074

with its new vertices is planar and has 3d − 1 vertices and 9d − 9 edges, and thus a planar1075

subgraph of G with 21d − o(d) edges exists.1076

Just like in the 5/12 series of examples, one can check that D cannot be improved by the1077

local optimization step. Then our output will have at most 7d + 2d edges (two extra edges1078

for each diamond). By choosing d as large as we wish, we get a ratio as close to 9/21 = 3/71079

as we want.1080

A variation of this example gives an upper bound of 11/27 < 5/12 for the algorithm of [7]1081

which greedily adds diamonds followed by greedily adding triangles: put a new vertex in all1082

the faces of H, not just half of them. We end up with 6d − o(d) new vertices, for a total of1083

9d − o(d) vertices and a planar subgraph with 27d − o(d) edges. The output will have at1084

most 9d + 2d edges as no triangle can be added to the d diamonds of D.1085
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6 Conclusions and Discussion1086

We improved the approximation ratio for Maximum Planar Subgraph from 4/9 to 4/9 + ϵ,1087

for a very small ϵ > 0, by analyzing the application of a natural local optimization step1088

after applying the previously known, Matroid-Parity based (4/9)-approximation algorithm.1089

Our analysis, while involved, is not tight and there may be room for a more significant1090

improvement here.1091

In particular, we do not believe that Equation (12) is tight. We conjecture that the tight1092

(excluding a small additive term) bound that generalizes Theorem 5 is:1093

Φ(P, Q) ≥ 3
7n − 1

7c − 10
21 t (27)1094

Here we are looking at double-partitions (P, Q) that cover all the facial triangles of a plane1095

graph H with n vertices and t is the number of edges missing from H to be a triangulation.1096

As before, c is the number of cubic vertices in H, but without H being triangulated, we1097

provide a new definition of cubic, as follows. Say vertex v is adjacent to u, x, y forming a1098

K4 with v embedded strictly inside the triangle uxy. We call v cubic if none of the three1099

triangles vux, vxy, vyu have a vertex z strictly inside that forms a K4 with its neighbors.1100

See Figure 20 for an example. This bound would be tight, as described next.1101

v

x y

u

Figure 20 Here v is a cubic while u is not.

Consider a triangulation W on r vertices containing no K4. Add four vertices in each1102

face as in Figure 21. We have n = r + 4(2r − 4) = 9r − 16 and t = 3(2r − 4) = 6r − 12. There1103

are no K4’s and therefore no cubic vertices in this graph. Choose P to have one non-trivial1104

vertex class: W , and Q has no non-trivial edge color, so that Φ(P, Q) = r − 1. One can1105

verify that all the triangles are covered by double-partition (P, Q). Then, as r increases,1106

Equation (27) becomes tight.1107
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Figure 21 Faces used to show tightness of Equation (27).

Equation (27) would allow us to increase the ϵ to maybe 1/270 with the current techniques.1108

We also presented a local optimization algorithm, LDT, that does not use Matroid Parity1109

and has a tight approximation bound of 5/12. Applying a greedy algorithm before starting this1110

second local optimization gives a small improvement, to at least 91/216 = (5/12) + (1/216).1111

Consider the following variant of our LDT algorithm: the algorithm keeps a dt-structure,1112

and a local optimization step would either add a triangle, replace a triangle by a diamond,1113

or replace a diamond by a diamond and a triangle. This variant has approximation ratio of1114

at least 5/12, as all the local steps LDT makes are done by the variant. Moreover, the series1115

of examples showing that LDT has approximation ratio at most 5/12 holds for this variant.1116

And if we augment the variant to add diamonds before adding triangles, then we get a ratio1117

between 91/216 and 3/7 as we did for GDLDT.1118

As in the previous work [5], we use the approach of using a few basic graphs for blocks in1119

our output. This guarantees planarity and is at the basis of the analysis of all approximation1120

algorithms for MPS with ratio bigger than 1/3. As long as one uses this approach, this paper1121

suggests that the application of local optimization, even if it comes before or after other1122

algorithms, is beneficial, and more powerful than Greedy algorithms (albeit slower).1123

If we are to use blocks of fixed size, it is not hard to see and known since [3] that one1124

cannot achieve an approximation better than 1/2. But maybe the “spruces" of [6] can give1125

us something better than 1/2 if used as the blocks of output.1126

One approach that does not use Matroid Parity, and we were not able to analyze beyond1127

the 91/216 bound presented earlier outputs a 4-structure by:1128

1. Use the approximation algorithm of [22] to get a ((2/3) − ϵ)-approximation for the1129

maximum K4-structure. Contract the selected K ′
4s.1130

2. Use again the approximation algorithm of [22] to get a ((2/3) − ϵ)-approximation for the1131

maximum diamond-structure.1132

3. Use our LDT algorithm. Add to it three other local “new" optimizations steps:1133

If one can replace two triangles by a diamond and still have a 4-structure, do so;1134

If one can replace three triangles by a K4 and still have a 4-structure, do so;1135

If one can replace one triangle and one diamond by a K4 and still have a 4-structure,1136

do so;1137
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4. Contract the blocks and use once again the approximation algorithm of [22] to get a1138

(2/3) − ϵ approximation for the maximum C4-structure.1139

5. Expand everything contracted and connect the blocks with bridges to output a connected1140

graph.1141

Maybe this or a variant of this can also beat the 4/9 ratio. The three new local optimization1142

steps mentioned above do not increase the cyclomatic number but may be useful as they1143

increase the number of connected components in our 4-structure.1144

An alternative would be to devise an approximation algorithm for Weighted Matroid1145

3-Parity, when the weights are 3 (from K4’s), 2 (from diamonds), and 1 (from triangles and1146

C4’s). With such small integer weights, again local optimization seems the way to go.1147
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