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ABSTRACT

We consider the problem of classifying a pair of Synthetic
Aperture Radar (SAR) images by proposing an explainable
and frugal algorithm that integrates a set of divergences. The
approach relies on a statistical framework that takes standard
probability distributions into account for modelling SAR data.
Then, by learning a combination of parameterized Renyi di-
vergences and their parameters from the data, we are able to
classify the pair of images with fewer parameters than regular
machine learning approaches while also allowing an interpre-
tation of the results related to the priors used. Experiments on
real multi-class data demonstrate the virtues of the suggested
method when compared to both Random Forest and Convo-
lutional Neural Networks (CNN) classifiers, showing its re-
silience to disturbances such as polluted labels and variations
in the percentage of training data.

Index Terms— SAR, Rényi divergence, explainable ma-
chine learning, classification

1. INTRODUCTION

In the recent decades, Synthethic Aperture Radar (SAR) im-
ages have shown a dramatic increase in temporal and spa-
tial availability thanks to the numerous satellite acquisition
missions. Measuring the distance between any pair of SAR
observations is one among the challenges related to the ex-
ploitation of these images. Such a measure becomes intricate
when studying images from different acquisition modalities.
This scenario arises when using sensors with the same type
but operating on different frequency bands [1] or when oper-
ating with multiple/various sensor categories and configura-
tions [2] (optical, SAR, near infrared) while trying to merge
information for classification. This scenario also occurs when
considering physical interferometry matching (to assess co-
herence) in supervised [3] but also non-supervised [4] and
semi-supervised [5] classification issues, in addition with the
analysis of time-shifted observations (same sensor but differ-
ent acquisition dates) for change detection using wavelet de-
compositions [6].

Classification of SAR images has been extensively de-
veloped with approaches ranging from texture-based feature

extraction [7] to extravagant, over-parameterized and oner-
ous deep learning approaches that are furthermore difficult to
interpret [8]. Moreover the nature of SAR images (speckle
multiplicative noise and very large spatial spanning) makes
a ground truth difficult to obtain at large scales. This limits
the performance and generalisation of learned models com-
pared to computer-vision applications. One approach to cir-
cumvent this limitation is to integrate physics-based priors al-
lowing to obtain representations that are robust to the speckle
noise. Additionally, by keeping those priors at each step of
the learning algorithm, it is possible to interpret the results
by backtracking each step to understand the impacts of the
models involved, yielding an explainable framework. Those
approaches can rely on low-level descriptors linked to the
physics of the problem [9] or by trying to inject a more com-
plex knowledge into neural networks architectures and by in-
terpreting the decisions [10].

One approach that has been successful in SAR applica-
tions is considering the probability distributions of the ob-
servations, either in a non-parametric approach (histograms
for instance) or by using parametric probability models, and
then comparing these distributions for the sake of cluster-
ing/classification. When dealing with classification over stas-
tical models, statistical divergence based methods have been
popular [11]. However the limitations of those approaches is
that they either rely on prior and compute distances between
empirical divergences [12] or rely on a single probability prior
model [13]; while it is often difficult to model the variability
of the data from a single probability distribution family. In
the second case, neural networks are able to learn the charac-
teristics of imaged fields thanks to providing a huge quantity
of data. However, in SAR context, these networks often lack
generalisation [14] and decision explainability given the im-
portant number of parameters involved. We propose to com-
bine hereafter the strengths of the 2 approaches highlighted
above in terms of deriving a shallow neural network operat-
ing on probability distribution models and their correspond-
ing statistical divergences.

The contributions provided by the papers are as follows:
(i) We propose a learning framework that is able to classify
based upon a combination of Renyi divergences over prior
distributions. (ii) Given SAR data distributions, we propose



to learn the α parameter from the data and derive the neces-
sary gradients to perform an end-to-end optimisation, which
to the best of our knowledge has not been studied yet in this
scenario. Noticeably, we provide analytical expressions for
the derivative for log-normal, gamma and Rayleigh distribu-
tions. (iii) We perform a study on a real dataset in mountain-
ous regions and showcase both the explainable nature of the
learned parameters and the better robustness of the approach,
in comparison with CNN and Random Forest algorithms.

2. SAR DISTRIBUTION MODELLING

We consider amplitude SAR images meaning that the pixel
values belongs in R+. To model such data, extensive proba-
bility models have been proposed [15, 16] to account for the
varaibility in the scenes observed. In this paper, we consider
the following probability models:

(i) Gamma: G(x;µ,L) = e−
xL
µ ·

(
L

µ

)L
· Γ(L) · xL−1, with

shape and scale L and µ,

(ii) log-normal: O(x;µ, σ) = e−
(log x−µ)2

2σ2 · 1

xσ
√
2π

, with

mean µ and variance σ,
(iii) Rayleigh: R(x;µ) =

x

2µ2
· e−( x

2µ )2 with scale µ,

that have shown ability to accurately model amplitude SAR
data with a few easily estimable parameters. To estimate the
parameters of those probability models, we rely on an estima-
tion of the log-cumulants of the distributions that are directly
linked to the statistical parameters. This consideration allows
to compromise between a good estimation and a very low
computational cost [17]. The estimate of the log-cumulant
of order r is given by the recurrence formula:

k̂r = m̂r −
r−1∑
i=1

(
r − 1

i− 1

)
k̂im̂r−i, (1)

with k̂1 = m̂1, m̂r = 1
n

∑n
i=1 ln z

r
i , r ∈ N, r > 1 and

zi, being a sample of a continuous random variable Z with a
probability density function defined over R+.

Concerning divergences we rely on the Renyi parameteri-
zation for its high-generalisation capabilities with respect to a
wide class of well-known divergences [18]. The Rényi diver-
gence of order α between two probability distributions P,Q
on Rn can be expressed as follows:

Dα(P∥Q) =
1

α− 1
ln

∫
P (x)αQ(x)1−αdx, (2)

with α > 0 and α ̸= 1. This parametric divergence is in-
teresting due to its capacity to represent the Kullback-Leibler
divergence as α tends to 1. It encompasses special cases such
as the Bhattacharyya distance when α = 0.5 and becomes
proportional to a χ2 divergence when α = 2. In contrast with
approaches that determine and fix α for subsequent use, we
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Fig. 1: Summary of the proposed classification approach.

propose a framework where α is a learnable parameter with
respect to the data and class distributions, hence learning the
suitable metrics for the optimization problem (4). Thanks to
[19], we have the analytical forms of the Rényi divergence for
the three distributions considered, given their parameters and
α. Due to a non-definition for the case α = 1, we restrict the
feasible set to α ∈ [0, 1[.

3. DIVERGENCE LEARNING FRAMEWORK

We consider a problem of supervised multi-class classifica-
tion. Given an ensemble of n labelled data E = {(Xi,y) ∈
Rv×2 × {0, 1}m : 1 ≤ i ≤ n}, where Xi corresponds to
a pair of vectors of v features that are the estimated param-
eters of the prior distributions. They are associated with
a one hot encoding label vector yi(c) = [δ1c, . . . , δmc]

T,
m being the number of classes, δ the kronecker symbol
with c ∈ {1, . . . ,m}, corresponding to the class of the
pair. One of those classes corresponds to a dissimilar-
ity class between the two images of the pair. Let f =
[D1(Xi, α1), ..., Dp(Xiαp)]

T be a vector composed by a set
of p Renyi divergences with parameters α = [α1, . . . , αp]

T ∈
(0, 1)p. We construct a network, as shown in Figure 1, that
computes for each class c, a vector of divergences, given a set
of parameters αc between the pair and combines them with:

dc(Xi,αc) = wT
c f(Xi,αc) + bc, (3)

where wc ∈ Rp+ and bc ∈ R+. The positivity of the weights
and the bias are enforced to preserve explainability of the fi-
nal combination. Then all the obtained combinations are fed
into a softmax operator (σ(dc) = edc∑m

i edi
) to output the class

probabilities.
We consider the cross-entropy loss defined as H(y, ŷ) =

−
∑m
c yc log(ŷc), with ŷ, y ∈ Rm respectively be the predic-

tion of a classifier and its associated ground truth. This gives
us the following minimization problem:

argmin
∀c∈{1,...,m},
αc∈(0,1)p,

wc ∈Rp
+,bc∈R+

1

n

n∑
i=0

−
m∑
c

yi(c) log [σ ◦ dc(Xi,αc)]︸ ︷︷ ︸
Li

. (4)



Divergence derivate ∂Dα̂(·)/∂α(·)
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]
Table 1: Rényi’s derivate, with λij = (eαlLi + Lj)/(1 + eαl), βij = eαlLiµj + Ljµi, Σij = σ2

j + σ2
i and γij = eαlµ2

j .

To solve this problem, we use a gradient descent approach
on the weights wc and bias bc, as well as Renyi parameters α.
In order to enforce the domain constraints on the variables, we
use a reparameterization: ŵ = ew, b̂ = eb, and α̂ = 1/(1 −
e−α)1. To compute the gradient we compute the derivatives
of the loss, thanks to the chain-rule2:

∂Li
∂dc

= ŷc − yc,
∂Li
∂wc

= f · ewc · (ŷc − yc),

∂Li
∂bc

= ebc · (ŷc − yc),

For Renyi parameters, we have:

∂Li
∂αc

=
∂Li
∂dc

∂dc
∂f

∂f

∂αc
, where

∂dc
∂f

= wc,

and ∂f
∂αc

is matrix of derivatives computed thanks to the re-
sults given in Table 1.

4. EXPERIMENTS

4.1. Real SAR dataset

To evaluate our framework, we create an X-band SAR dataset
from the PAZ satellite. Operating at a frequency of 9.65 GHz,
this satellite delivers images at approximately 11-day inter-
vals, offering a resolution of 3 meters per pixel in two po-
larizations, HH and HV. We specifically examine six linear
amplitude acquisitions spanning from July 7, 2020, to August
26, 2020, encompassing the Mont Blanc massif. In total, we
have extracted 645 patches, each with size 32 × 32 pixels,
during this time interval. These patches are categorized into
five distinct classes: glacier accumulation area, city, forest,
plain or land and rocky area, respectively named ACC, CIT,
FOR, PLA and ROC for the results. The labeling of the im-
ages was done using the CORINE land cover model provided
by Copernicus3. We then consider the balanced version of
all the pairs in this dataset, adding the dissimilar class (DIS),
corresponding to the pair where the class of each image is
different.

1For conciseness, we keep the notation Li while replacing the parameters
by their reparameterizations.

2The details of derivations are omitted due to page limitations.
3© European Union, Copernicus Land Monitoring Service 2018, Euro-

pean Environment Agency (EEA)

4.2. Model architectures and parameterization

RF CNN Rényi

input size 200× 1 32× 32× 4 10× 2
parameters ∼ 152, 000 226, 406 222

Table 2: Number of parameters and size of the inputs used

We compare our approach with two other methods: Ran-
domForest (RF) and CNN. RandomForest is computationally
efficient and offers decision transparency through threshold
analysis but may require many nodes depending on features,
making interpretation complex and sensitive to noise and
outliers. In our case, we use Principal Component Analysis
(PCA) to reduce the dimension followed by a random forest
with 100 trees.
On the other hand, Convolutional Neural Networks capture
detailed spatial information but require a large sample size
and lack transparency. Due to the limited sample data avail-
able, we created a shallow CNN as in [20]. The CNN takes a
32 × 32 × 4 image pair as input and consists of 3 successive
blocks. Each block includes a 3× 3 convolution followed by
a 2 × 2 max-pooling operation. The network then involves
a dense aggregation layer of size 256, followed by a final
dense layer for class prediction. In total, this CNN comprises
226,406 parameters.
Our Rényi approach operates on divergences between image
channel distributions (gamma, log normal, and Rayleigh). We
define these combinations as {∥; =;⊥}, ij, where ij speci-
fies the images for which the divergence is computed, ∥ and
= denote co-polarization and cross-polarization divergences
(e.g., D(HHi, HHj) and D(HVi, HVj)). ⊥ represents cross
divergences between co-polarization and cross-polarization
(e.g., D(HHi/j , HVi/j), D(HHi, HVj) and D(HVi, HHj)).
This provides 18 divergences for 6 classes, weighted by 6 vec-
tors with 18 weights and 6 biases. The number of parameters
and the size of the inputs are described in the Table 2.

4.3. Global evaluation

We first assess our results using a stratified K-fold with K=5
to maintain class balance while analyzing the entire dataset.
The outcomes are presented in Table 3, which displays the av-
erage classification percentages for each class across the three
methods. We observed that both the CNN and our approach
yielded similar results, outperforming RF, but with distinct



ACC CIT DIS FOR PLA ROC

RF 65.3± 13.0 70.8± 9.2 82.7± 4.1 11.9± 1.2 33.6± 5.8 55.9± 9.0
CNN 83.5± 7.0 61.1± 16.5 82.9± 4.3 45.1± 8.1 49.5± 13.0 72.3± 1.2
Renyi 59.1± 11.1 83.2± 4.2 45.3± 1.2 80.5± 6.9 67.3± 3.7 62.7± 12.0

Table 3: Percentage of good classification with a stratified K-
Fold with K=5

strengths. The CNN excelled in detecting glaciers, rocky ar-
eas, and dissimilar pairs, whereas our method demonstrated
superiority in classifying cities, forests, and plain areas. No-
tably, our method showed slightly improved score consistency
across the folds. The most substantial disparity in perfor-
mance was evident in the dissimilar class, where the CNN
performed approximately 2 times better. This discrepancy
can be attributed to our use of divergences from the same dis-
tribution, which may not effectively model the diverse class
combinations inherent to dissimilar pairs. However, one can
note that for the same experiment, RF performs 7 times lesser
and CNN 2 times lesser than the divergence learning approach
proposed on the “forest” class: a CNN needs to be very deep
and needs a large amount of larger size texture samples in
general for being efficient on textures.

4.4. Learned parameters and explicability

We examine the learned parameters, wc and α, and visu-
alize them in Figure 2 and Figure 3, respectively. In Fig-
ure 2, we observe that class decisions primarily rely on 3 or 4
divergences, with variations among classes. Notably, most
classes employ a Rayleigh distribution, validating its suit-
ability for single-look amplitude images of homogeneous ar-
eas. Additionally, cross-divergences are utilized by all classes
to emphasize the significance of polarimetric channels and
their correlations. Figure 3 displays the distribution of learned
Rényi α parameters for each class. Notably, there is a strong
concentration around 0.5, homogeneous to the Bhattacharyya
distance, which is consistently employed across all classes.
Additionally, we note the use, mainly for the forest and plain
classes, of a distance approaching the Kullback-Leibler.
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Fig. 2: Visualisation of associated weights (mean over the folds) in
the decision process for each class. The values and color correspond
to a percentage of the total weights sum.
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4.5. Sensitivity to perturbation

We assess our approach under two disturbance scenarios,
as depicted in Figure 4. We gauge performance using the
weighted F1 score averaged across all classes and employ
four different seeds for score variation. In Figure 4.a, we
examine methods sensitivity concerning training data varia-
tions. Our approach exhibits superior resilience, maintaining
performance even when training data decreases by 20%,
while the CNN’s performance starts to decline at approxi-
mately 35% of data decrease. Figure 4.b illustrates changes
in the percentage of samples used for training. Our approach
demonstrates greater robustness when confronted with re-
duced training data, owing to the statistical assumptions we
introduce that mitigate the impact of learning through data.
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Fig. 4: Comparison of performance (mean of weighted f1 score
over all class in function) of two perturbations, a. Percentage of
label perturbation and b. Percentage of data training

5. CONCLUSION

We have explored the use of a shallow divergence based learn-
ing algorithm for pairs of SAR image classification. By mod-
elling a physical prior thanks to probability distributions and
incorporating divergences of those models into the learning
process, we are able to obtain a comparable performance than
regular approaches with no priors while keeping the number
of parameters learned very low, as well as yielding explain-
able results. The proposed approach has also been shown
more robust in case of data mislabelling and when fewer sam-
ples for training are applicable. Future directions of research
will include the computation of divergences between differ-
ent mono-variate distribution to enrich the dictionary of di-
vergences used, dealing with unbalanced data and extend the
domain on α parameter learning.
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