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Wet Snow Detection from Satellite SAR Images by
Machine Learning with Physical Snowpack Model

Labelling
Matthieu Gallet, Abdourrahmane Atto, Fatima Karbou and Emmanuel Trouvé

Abstract—The detection of wet snow by satellite imaging is
currently done in an unsupervised way and lacks quantitative
evaluation due to the difficulty of collecting ground truths in
extreme environments. In this paper, we propose to take into
account information associated with a physical model to label
satellite data for the purpose of supervised learning of snow
properties using Synthetic Aperture Radar (SAR) imagery. This
dataset is constructed from Sentinel-1 SAR images, augmented
with topographic information obtained from a Digital Elevation
Model (DEM). The labelling of this data is done at the scale of the
Northern Alps using the CROCUS physical snow model. Then,
we trained, over thirteen combinations of labelled dataset, a wide
range of machine learning models to quantitatively identify the
most relevant learners for the wet snow detection task. The results
demonstrate consistency among the different algorithms, with sig-
nificant improvement observed when incorporating polarimetric
combinations and topographic orientation data in the input of
the model. The best algorithmic solution trained on this dataset
is evaluated by comparing the obtained wet snow map over a
validation area in the French massif of the Grandes Rousses with
the existing Copernicus products, Fractional Snow Cover (FSC)
and SAR Wet Snow (SWS). We also compare the temporal results
obtained at one meteorological station located in the test area.
The results show a better representation of wet snow during the
melting period using the supervised learning approach, as well
as a reduction in areas classified as wet during the winter season.

Index Terms—Sentinel-1, SAR, wet snow, detection, segmen-
tation, supervised machine learning, labelling, snowpack model

I. INTRODUCTION

The identification of snow states, notably wet snow, has
considerable significance in diverse domains owing to its mul-
tifaceted implications. To ensure effective risk management,
it is essential to monitor wet snow, especially in the context
of forecasting [1], avalanche awareness [2], modelling the
run-out of wet snow avalanches [3], and employing physical
models for avalanche simulation [4]. The impact of climate
change on snow states is of significant importance. Proper
assessment and understanding of these factors are necessary
to mitigate the impacts of climate change. Therefore, it is
crucial to evaluate its effects on communities, water resource
availability [5] [6], glacier dynamics [7] [8], and hydrological
basins [9]. The importance of wet snow in hydrology is critical
to the hydrological cycle, influencing the timing and amount
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of spring snowmelt runoff [10]. The transformation of wet
snow to liquid water can result in rapid and unpredictable
fluctuations in river discharge, which has implications for the
planning of natural resources and the management of water
and energy resources [11] [12] [13]. This is especially signif-
icant within regions where snowmelt significantly contributes
to water availability [14] [15]. Additionally, it is important to
monitor and comprehend snow and wet snow conditions to
guarantee sustainable economic activities related to tourism
[16] [17]. Several papers made advances in the study of the
cryosphere and snow in general [18] or, more specifically,
using satellite imagery [19] [20], highlighting the challenges,
the prospects and the current limitations. Satellite imagery
makes it possible the global mapping, from the scale of a
mountain range to a whole country. One of the largest used
optical satellite indicators is the Normalized Snow Difference
Index (NDSI) [21] with its combination of spectral bands,
which provides information on total snow cover [22]. This
index led to the creation of Fractional Snow Cover product of
the European Copernicus program. However, the use of optical
or multi-spectral satellites limits the analysis of the total snow
cover [23], with no specific information on snow conditions:
wet and dry snow. Tracking snow in the Alps via these optical
satellites is difficult, especially in winter, by the presence of
clouds masking portions of current acquisition or even the
entire image, requiring heavy techniques for their use [24].
SAR imagery, meanwhile, with its ability to observe the Earth
in all weather conditions, is a complementary solution, partic-
ularly during the winter periods. Some studies have utilised
both optical and SAR data to mitigate weather disturbances
[25]. Due to the ease of processing with a single sensor, SAR
data has been widely used in snow studies, primarily with an
X-band sensor [26] or C-band [27]. Nevertheless, the use of C-
band SAR data is shown to be more appropriate for analysing
the snow properties [18]. The launch of the Sentinel-1A and
1B C-band satellites, operating at a frequency of 5.405GHz,
allowed for continuous monitoring of Western Europe and
extensive regions [28] [29] [30] [31]. These satellites provided
free data access and offered repeat pass acquisitions every 6
days using the two satellites producing, dense time series of
images that are particularly interesting for regular monitoring
[32] [33]. Sentinel-1B is no longer available since December
2021. Ground Range Detected (GRD) products are created
from focused SAR data, involving detection, multi-looking,
and projection to ground range using an Earth ellipsoid model.
The ellipsoid projection of GRD products is adjusted based
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on specified terrain height. The resultant product has nearly
square spatial resolution and pixel spacing, with reduced
speckle thanks to multi-look processing. These GRD data
are most often used to analyse the backscatter coefficient
(σ0) [34] in order to detect wet snow. Liquid water in wet snow
induces significant dielectric losses and consequently reduce
the backscatter coefficient as the liquid water content (LWC)
increases. Unlike dry seasonal snow, which allows radar
signals to penetrate several meters, wet snow predominantly
reflects and scatters radar signals near the surface and within
the uppermost layers of the snowpack [35]. This distinction
results in a more notable contrast in backscatter intensity
between regions with wet snow cover and those with dry or
snow-free conditions [36]. However, many physical parame-
ters, such as snow density or incidence angle, can affect this
signal reduction [37]. One of the most widely employed snow
detection methods relies on the approach developed by Nagler
et al. in [38]. In fact, Tsai et al. [19] shown that over 80%
of the algorithms utilized for wet snow detection employ the
backscattering signal, as in [39], [40], [41] and [42]. Nagler’s
method based on applying a threshold on the backscatter
coefficient of the ratio between a current acquisition and a
snow free reference image led to the development of the SAR
Wet Snow (SWS) Copernicus products. With the rapid growth
of machine learning, some studies are exploiting radar data to
adapt computer vision techniques to supervised classification
problems. When analysing the signal, one is no longer seeking
a specific threshold corresponding to a physical variation. But,
the emphasis is placed on recognising attributes that can serve
as distinguishing factors between classes. These features can
be directly polarimetric channels [43], obtained through the
use of classical textural extractors such as GLCM1 [44] or even
through the first layers of deep learning networks as shown in
the GPR2 data in [45]. Some works have integrated the use of
these supervised techniques for the study of the cryosphere,
such as [46] with artificial neural networks. More specifically,
a classification of wet and dry snow based on Support Vector
Machines (SVM), is proposed in [47]. Other studies have
shown the benefits of using complementary data to perform
wet snow classification [48] [49]. However, the main obstacle
to the development and generalisation of these methods over
large areas is the data labelling required to train the models. In
addition, the spatio-temporal nature of the data requires greater
care in the process of creating and selecting training and test
areas to prevent any spatial or temporal correlation [50].

Labelling is a major step in the supervised classification
process but remains a challenge in the context of SAR images,
especially when dealing with large areas. The main leverages
for the extensive use of machine learning methods rely on this
labelling, which allows to get a variety of samples that offer
sufficient representativeness to enable the model to generalise
the learning. Visually, the nature of SAR images complicates
manual labelling. Furthermore, the ability of SAR waves to
penetrate certain surfaces makes it difficult to exploit labels
obtained from optical imagery. For the problem of studying
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snow through SAR imaging, the decrease in backscattering
coefficient when the snowpack becomes wet makes the manual
labelling task difficult, even impossible. Solutions have been
proposed by adopting different strategies: either an unsuper-
vised framework using an empirical threshold [35], statisti-
cal analysis like the one proposed by [51] which considers
thresholding and radiative transfer modelling; or using total
snow cover, obtained from MODIS [48], but incorporating a
variety of SAR signal characteristics (backscattering, PolSAR,
and InSAR). However, these approaches face the limits of the
unsupervised methods, such as in thresholding, or when the
label is too general and quite different from the radar signal
sensitivity. The incorporation of topographic data is a helpful
method for enhancing classification [52] [48].

In numerous studies, the final validation focuses on using
weather data. However, this validation remains complex due
to spatial limitations, and sometimes partially evaluated, as
indicated by [19]. Nevertheless, the capability of weather
models to provide detailed information at the scale of large
mountain areas, as well as specific information about the
nature of the studied process [53], enables fully exploiting
the spatial and temporal extent of SAR data in the labelling
process.

In this paper we propose a new dataset for large-scale
wet snow detection, labelled from the physical model of the
snowpack provided and developed by Météo-France: CRO-
CUS [54]. The objective of the proposed approach is to
study the ability of physical model to label a SAR dataset
for supervised detection of wet snow in a machine learning
framework. We illustrate the complete framework in Figure
1. In Section II, we first present the data used, their char-
acteristics and the processing performed, followed by the
labelling process with a focus on dataset structuring within
the framework of supervised learning. Then in Section III, we
discuss the characteristics of the dataset created, and present
the 7 classic machine learning algorithms, to evaluate this
dataset. In Section IV, we present a comprehensive analysis
where we assess the performances of 7 algorithms and the
influence of 13 data associations on the input. This evaluation
involves using polarimetric, topographic, and combined po-
larimetric data, while quantifying the results using commonly
employed metrics in machine learning. We conduct an analysis
in Section IV-C with a comparison with existing Copernicus
products considering the topographic characteristics of the
ground and with a time series of in situ measurements from
a meteorological station in the test area. Finally, we conclude
with a discussion on the results obtained in Section V.

II. LSD4WSD: WET SNOW DATASET

A. Satellite data

SAR data: : We use GRD data obtained during the as-
cending orbit number 161 of Sentinel-1, denoted by A161.
This orbit has a local crossing time of 5:30 pm. We use SAR
images pre-processed using the CNES3 computing facilities,
which consists of a reduction of thermal noise, a calibration
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Fig. 1: Diagram of the complete chain for creating a labelled dataset for wet snow detection from SAR and auxiliary data and
evaluating the dataset using different algorithms and metrics.

of the data, and a correction of the terrain using the SRTM
30 m Digital Elevation Model (DEM). The study is conducted
within a segment of the 31TGL tile, a component of both
the Sentinel-2 tiling system and the Military Grid Reference
System, situated in the Northern French Alps, which covers
seven French alpine massifs, as shown in the Figure 2. We
finally have a series of 69 images with a temporal resolution
of 6 days, using Sentinel-1A and 1B, between August 4th 2020
and August 22nd 2021. These images are unfiltered, with a size
of 10980× 10980 pixels and a pixel resolution of 20m. Each
image has two polarimetric channels, VV, and VH and a third
channel corresponding to the ratio of the other two: VV/VH.
Geometric distortions (layover, shadows, foreshortening) are
inherent to SAR imaging. To avoid selecting these zones in
the dataset, we avoid them by using a binary mask mapping
the distortion zones (in orange in Figure 2). We focused on
Sentinel-1’s orbit in the late afternoon to keep the geometric
distortion consistent. It’s worth noting that snow gets warmer
after a full day, which increases liquid water content. By
analysing liquid water content at 6 pm and 6 am, we can
see the difference between the descending and ascending orbit
times. The median value of this difference is 0.15 kg/m2 from
October to the end of March, where we can consider a global
winter-like behaviour. Similarly, this difference is 1.28 kg/m2

between April and the end of September. These values confirm
a more significant presence of liquid water at the end of the
day. Choosing this option helps map more expansive areas of
wet snow, as the snowpack is more strongly associated with
liquid water.

Auxiliary data: : We use a 10m resolution DEM provided
by IGN4, giving access to the elevation, on which we have
calculated the slope and orientation maps. We have selected
an image of the GRD time series (August 9th 2020), which
we consider as a reference image without snow. All these
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additional data aim to investigate how they are processed by
the algorithms and whether or not they add any value to the
quality of the classification. To compare the obtained results,
we have selected two other high-level products provided by
the Copernicus program. The first one is the Fractional Snow
Cover (FSC) over the canopy which gives the percentage
of snow cover for each pixel with a resolution of 20m
per pixel from the Sentinel-2 data using the n Normalised
Difference Snow Index (NDSI). The second product provided
by Copernicus is the SWS obtained by the Nagler method [38]
with the ascending data of Sentinel-1, with a resolution of
60m per pixel. Because we use only ascending data, we have
compared our results with SWS products obtained only in
ascending passes. Two orbits covered the validation area (path
88 and path 161).

B. Labelling data

The criteria for characterising snow as wet are complex:
liquid water content threshold and total or partial moistening
of the snowpack. One of the main definitions is based on
the liquid water content of the snowpack, considering the
presence of wet snow from a 1% of volume water content [19]
or 2% of LWC for [55]. Table I summarises four methods
used to obtain the physical parameters required for labelling.
These physical parameters need specific instruments (such
as the Nivose stations of Météo-France), less common than
the more standard instruments used to measure temperature
or precipitation [56]. Compromises, therefore, have to be
made. Automatic or manual measurement networks are not
dense enough, so they cannot be set up in some mountainous
regions to capture large variation. Measurement campaigns
[57], are often limited to a small spatial and temporal extent
but are highly accurate. Numerical models [58] can derive
indicators directly from snowpack simulations with better
temporal resolution but more limited spatial resolution.
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A. B.

Fig. 2: A. Location of the study area in the French Northern Alps: 6 massifs outlined in red for training and green for testing.
The area inside the dark blue rectangle highlights the wet snow validation zone. In blue, the water bodies given by IGN.
B. Details of the sampling strategy in the Bauges massif for training. The small blue square represent the sample selection
strategy. Layover and shadow are masked in brown.

Fig. 3: Position of the validation area (semi-transparent dark
blue rectangle and span

(√
V V 2 + V H2

)
of the 2 polarimet-

rics channels inside the test massif of the Grandes Rousses.
The white star represents the station considered for in-situ
assessment. Areas affected by the SAR geometric distortions
(layover and shadow) are masked in brown.

CROCUS: : The Snow Study Centre (CEN) of Météo-
France has developed a physically-based model CRO-
CUS [60], which aims to describe the state and the evolution
of the properties of the snowpack. The CROCUS model tracks
changes in the physical properties of the snowpack, including
stratigraphy (up to 50 layers) and underlying ground, in
response to meteorological data reanalysed at hourly intervals
from another numerical model SAFRAN [61] but without any
information of the observed snowpack. However, the primary
assumption of this model is the spatial homogeneity of the
considered massifs, especially for precipitation. Consequently,
the spatial scale considered is that of a mountain range, but
with a topographic division of 300 meters in altitude (from

900 to 3600 m), for six orientations (N, E, SE, S, SW, W)
and three slopes (0, 20°, 40°) and the French mountain massifs
considered (including 23 Alpine massifs with a surface area
of approximately 400 km2). A graph of the temporal variation
of the liquid water content by the model is given in Figure
4. This scale, therefore, excludes local effects such as those
due to snow accumulation or drift by the wind. CROCUS
provides an output of the average snowpack described by
its vertical stratigraphy and the descriptive variables of the
internal snowpack, including the liquid water content, mini-
mum and maximum temperature across the snowpack and its
height. To classify the type of snow, [19] defines wet snow
based on the temperature within the snowpack. According
to this definition, snow is considered wet if the temperature
of the snowpack is above zero degrees Celsius. Compared
to wet snow definitions based on liquid water content, this
formulation has the advantage of remaining close to physical
reality while being understandable for non-experts with less
uncertainty on the model’s variable. We propose the following
relation rule for wet snow labels, based on the minimum
temperature (Tmin) in degrees Celsius and the snow height
(Hs) in meters:

Wet Snow = Tmin ≥ 0 and Hs ≥ 0.4 (1)

Data temporal resolution data history specificity

measuring campaign [47] ++ + ++ / +++
automatic stations [59] ++ / +++ +++ ++ / +++
manual stations ++ +++ + / ++
numerical model [54] +++ +++ +++

(a)

Data scale spatial resolution spatial density

measuring campaign [47] local +++ ++ / +++
automatic stations [59] global +++ +
manual stations global +++ +
numerical model [54] global + / ++ +++

(b)

TABLE I: Comparison of the spatio-temporal specificities of
four LWC information accesses
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Fig. 4: Minimum snowpack temperature given by CROCUS between August 2020 and 2021. In blue, the curves are given for
the Belledonne massif and in orange for the Grandes Rousses massif, for 2 given altitudes, facing south. The grey lines show
the dates on which the equation (1) is respected.

By including a requirement for snow height, we can ensure that
the radar signal is predominantly generated by the existence
of wet snow, and not by the ground response beneath a thin
layer of snow or rocky areas with limited snow coverage. This
limitation also ensures to have homogeneous areas covered
by snow. Figure 4 illustrates an instance of the CROCUS
output. It presents the minimum temperature of the snowpack
for a southern-facing orientation and an average slope of 20°
in two distinct mountain ranges: Belledonne and Grandes
Rousses. These massifs are further divided into different al-
titudes (1500-1800m and 2400-2700m), representing medium
and high mountain levels, respectively. Vertical grey lines on
each curve represent the dates when the conditions defined
by the equation (1) are satisfied based on the CROCUS inputs
(slope, orientation, altitude, and mountain massif). Despite the
geographical proximity depicted in Figure 2, each mountain
range possesses unique characteristics. The Belledone massif
experiences more cases of wet snow and for longer periods
throughout the season. Comparing the first and second lines in
Figure 4, the influence of the altitude gradient becomes clear.
At an altitude of 1800m, the snow is considered wet earlier
in the season (February-March) but with a shorter duration of
snow coverage. Given that we are working within a machine
learning framework, we did not validate the samples obtained
by in-situ measurements. We prefer a large quantity of variable
data with imperfect labelling rather than a small number of
ungeneralisable ground truths. However, numerous works were
able to validate the CROCUS model through measurement
campaigns [62] [60] [63], compare its performance with other
models [64].

C. Dataset creation

For a given acquisition date, we use the 2 polarimetric
channels of Sentinel-1 and their ratio (VV/VH), 3 topographic
channels (elevation, orientation and slope) and the ratio of the
polarimetric channels of the date with the one considered as a
reference. These 3 additional channels of ratio with respect to
the reference allow us to avoid the non-linear calculation step

that some algorithms, such as those based on decision trees,
cannot perform, but also to study the decisions taken by the
algorithm in the presence of only these 3 channels with respect
to the threshold given by [65]. All channels are sampled to
have a pixel size of 10x10m. The pixels of the polarimetric
and ratio channels are transformed in dB. All dates are used
in the creation of this database. The separation of the training
and test dataset is purely spatial and allows to avoid biasing
the classifier by test data strongly spatially correlated to the
training data. The training and test dataset creation chain is
based on 9 channels.

Selection of areas: We divide the data into three categories.
The training data used for learning, the test data needed
for the quantitative evaluation of the model (Figure 2 and
finally the validation area used for the qualitative evaluation
of the method from a spatial and temporal point of view
and comparison with existing Copernicus products (Figure 3.
We have selected 6 massifs to built the training dataset
(Beaufortain, Belledonne, Chartreuse, Maurienne and Vanoise)
and 1 massif for the test and validation (Grandes Rousses).
The geographical distribution of these massifs is illustrated
in Figure 2. This choice was made to avoid obtaining good
results due to the strong spatial correlation of the distribution
of the zones. Moreover, these 7 massifs are present on the
31TGL tile that we used. The selection of 6 massifs to train
the model allows the model to be robust to the intrinsic
characteristics of each massif, without resorting to domain
adaptation techniques. We cut each massif using a 16 × 16
sliding window, and selected one window out of 9 as shown
in Figure 2. The window size of 16 × 16 pixels was chosen
empirically by experimental cross-validation study. It allows
us to have enough sample in the patch to be statistically
significant, its size being a multiple of 2, offers perspectives
on the use of possible feature extractions (DWT5, CNN). This
way we keep the spatial extent and diversity of the dataset, but
we reduce the number of samples to reduce the computation
time and reduce the spatial correlation between each sample.

5Discrete Wavelet Transform
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Fig. 5: Topographical distributions of the test and training
samples according to the discretisation given by CROCUS,
for slope, orientation and elevation

This paving represents respectively 1.4% and 1.1% of the
training and test surface area of the massifs. The validation
data uses the test dataset with a cutting similar to the one
used for the test dataset but with a dense mesh, i.e. a stride of
1 instead of 9. The choice of the test massif results from the
comparison made in Figure 5.

The latter illustrates the distribution of areas in km2 for the
3 topographic parameters of the CROCUS model (elevation,
orientation and slope). We note the interest of using 6 massifs
in training by the variety of topographic characteristics that
they represent together (Figure 5a). We note that the Grandes
Rousses test massif is homogeneous in terms of the distri-
bution of these zones for all orientations and mainly for the
medium to steep slopes (Figure 5b). However, for low slopes
(0°), some zones do not exist in the training dataset but appear
in the test dataset. The impact of this gap is measured by the
average size of these areas (of the order of 10−4 km2), which is
much smaller than for larger slopes (of the order of 10−2 km2).
Given Figure 5a, the training dataset is also homogeneous
with ∼ 10 times more surfaces for each topographical feature
studied, than the selected test area. We assign the wet snow
label, as defined in equation (1), to each patch. This label is
obtained from the simulated snowpack by CROCUS at 6:00
p.m., taking into account the slope, altitude, orientation, and
massif information of the respective patch.

The monthly distribution of the training dataset samples
according to the wet and non-wet classes is given in Figure 6.
It is interesting to note that the non-wet class is evenly
distributed across all the massifs, while the wet class is
mainly represented by the Vanoise and Beaufortain massifs.
The month of February also saw a large number of wet
label samples. This can be explained by the mild weather in
February 2021 [66], and the presence of Saharan dust, which
accelerates the warming of the snowpack [67]. This results in
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1Fig. 6: Distribution of the number of samples between August
2020 and 2021, according to the 6 training massifs considered
for the two classes wet and non wet.

a classifier that performs well during this period of the year,
but is less efficient in the rest of the year. The final dataset is
open and available online [68].

III. MACHINE LEARNING FRAMEWORK

A. Machine Learning models

In a first step, we evaluate seven algorithms commonly
used in machine learning, and select one of the best, for with
the dataset. The idea is to see the performance of common
solutions in this classification. Theoretical descriptions of the
algorithms can be found in [69] and a brief presentation of
their use in remote sensing problems [70]. The proposed se-
lection are the following: Adaboost [71], Random-Forest (RF)
[72], Support Vector Machine (SVM) with gaussian kernel
[73], K-Nearest Neighbors (KNN) [74], Logistic Regression
[75], Multi-Layer Perceptron (MLP) [76] and a Convolutional
Neural Network (CNN) architecture based on [77]. This choice
highlights 3 categories of algorithms. The algorithms based
on which is based on learning a set of weak classifiers
(Adaboost and RF). These algorithms are well-suited to bi-
nary classification and have the advantage of allowing an
interpretation of the result obtained, and thus to keep an
understanding of the algorithm. The categories of algorithms
are based on the concept of separation or distance. These
algorithms perform the classification task by projecting the
data to better distinguish classes, in other words, to maximise
the separation or distance between classes (SVM). Either they
directly determine the class of a new sample in relation to the
distances of neighbouring samples and their labels (KNN).
The last category covers neural self-learning algorithms. They
are based on weight learning for linear combinations and
coupled with non-linear functions. Where logistic regression
learns only one level of weights, MLP is made up of a
number of successive learning layers. The CNN is an ex-
tension of the MLP, using convolutions rather than direct
linear combinations. Learning was achieved using the Scikit-
Learn and Keras library from Python. The codes are available
online: https://github.com/Matthieu-Gallet/ML-WetSnowSAR.
The main parameters of the algorithms are given in Table II.

https://github.com/Matthieu-Gallet/ML-WetSnowSAR
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B. Preprocessing

The last step of preparation consists simply in normalising
in 0 and 1 by taking the extreme values on the set of training,
test and validation data. The minimum and maximum of all
samples are used to normalise the first 6 channels. For the
3 channels built on the ratio with a snow free reference
image, the extreme values used for normalisation correspond
to the average of the minimum and maximum of all the
samples. At the end, we obtain a dataset consisting of 487157
samples of size 16 by 16 by 9 for training and 3668 for
testing. From a dataset in RN,Wx,Wy,C , with N the number of
samples, Wx,Wy the size of the windows and C the number
of channels, we study a pre-processing step upstream of these
algorithms based on two solutions:

• The first approach consists in calculating the histogram
of each channels of the data to go from RN,Wx,Wy,C to a
representation RN,Hbins . This processing allows the patch
information to be synthesised and was used extensively
in images classification [78] [79]. In the context of
processing large images or large datasets, this solution
allows us to keep a certain computational frugality while
giving interesting performances. However, this strategy
fails to take into account potential spatial structure. In
order for the histogram to be statistically reliable and
homogeneous, a optimal number of bins Hbins = 16 is
used. This choice comes from the Freedman–Diaconis
rule [80], where the optimal number is calculated with:

Hbins =
⌈ 3
√
n(maxx−minx)

2 · (Q3 −Q1)

⌉
, (2)

with n the number of pixels of the sample x, Q1 and
Q3 are the first and third quantile of the sample. We use
the maximum integer value of Hbins over the dataset and
the channels. The calculation of the histogram is done on
a dynamic range between 0 and 1, ensuring that all the
histograms of the samples have the same support. This
approach is used for the comparison of the models, except
for the CNN where the images are directly given using
the C channels considered, as well as for the study of the
different input channels.

• The second study focuses on the restriction of the his-
togram to channel statistics. Thus it is interesting to
study which statistical information takes precedence over
the classification decision, and if so which statistics are
significant for distinguishing the classes. In this context,
we are interested in the mean µ, standard deviation σ,

Algorithms Settings

KNN K neighbours = 50
SVM kernel = Radial Basis Function (RBF)
RF estimators = 200, criterion = entropy
AdaBoost estimators = 200
MLP hidden layers = 100, L2 regularisation term = 0.01
Logistic Regression L2 penalty
CNN 3 blocks of 2D convolution + Maxpooling + ReLu

TABLE II: Parameterization of the algorithms used

skewness γ1 and kurtosis γ2. The latter two are defined
as follows:

γ1 =
µ3

µ
3/2

2

,

γ2 =
µ4 − 3µ 2

2

µ 2
2

,

(3)

where µi represents the i− th central moment. We apply
this transformation on the best algorithm and the best
combination of input bands. The interest of this analysis
is its ability to give explainable results, based in the KNN
framework, on the Euclidean distance between a small
number of variables (maximum 4) directly correlated to
the nature of the signal.

The test dataset is balanced to have an equal number of sam-
ples from the wet and non-wet classes. However, balancing the
training dataset by undersampling would result in a significant
proportion of samples being removed and hence reducing the
variability of the dataset (the wet class being in the minority
with 13975 samples, we would reduce the size of the dataset
of nearly 95%). To address this issue, we propose a variation
of the K-Fold technique [81]: the balanced stratified K-Fold.
We divide the majority class of the dataset into K sub-datasets
of a size equal to the number of samples in the minority class.
Each sub-dataset of the majority class is combined with the
minority class to form a fold. This way, we can sweep across
the entire dataset and study the variability of the models across
all the balanced folds. In our case we obtain K = 34 fold with
13975 samples of each class.

C. Evaluation

Quantitative analysis: In order to evaluate the performance
of each method, associated with transformations or auxiliary
data, we first focus on a quantitative analysis. We choose 4
metrics to characterise each model with TP , TN the true pos-
itives and negatives, FP , FN the false positives and negatives
and N the number of samples considered:

• Accuracy = (TP + TN )/N ,
• F1-score = TP /[TP + 0.5(FN + FP )],
• Kappa [82],
• Receiver Operating Characteristic (ROC) curves.

The first three metrics are used to analyse the results of the
classification of wet snow using all algorithms and only the

Identifier Channel combinations

A VV, VH
B A, VV/VH
C A, elevation
D A, orientation
E A, slope
F A, elevation, orientation, slope
G ).
H A, VVratio, VHratio
Hr A, VV/VH ,VVratio, VHratio, VVratio/VHratio
I A, VVratio, VHratio, orientation
ID A, VVratio, VHratio, elevation
IP A, VVratio, VHratio, slope
J F, G, VV/VH, VVratio/VHratio

TABLE III: Description of the tested channel combinations
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polarimetrics channels VV and VH. We then use specifically
the F1-score to study the sensitivity of the 4 best algorithms
previously tested with respect to various channel combinations.
All the bands combinations are presented in Table III. We have
selected 13 different band combinations. The ones specific to
the polarimetric information of the SAR signal can be grouped
together (A, B, H, Hr). Note that the G combination is
simply the Nagler case when a fixed thresholding classifier
is used directly. This band is therefore important for the
comparison of the performances with respect to the other
combinations. We also consider the groupings made up of the
VV and VH polarimetric channels augmented with topological
information (C, D, E, F). The idea is to see if the topological
information is decisive in addition to the backscatter signal to
differentiate the classes. The counterpart of this grouping is
made up of the remaining classes, and the contribution of the
ratio of a sample at a current date to a reference date is studied
in addition.
We select four different input combinations to plot ROC
curves. On the ROC curves we study more particularly the
thresholding giving the maximum precision (BAROC) and
the thresholding giving a false positive rate lower than 5%
(FCROC). These values are obtained by computing the ROC
curve from the probabilities provided by the classifier. We
then recover the thresholding that maximises the accuracy and
the one that gives a false positive rate of 5%. In this way,
we measure what can be the maximum performances of the
model, but also the performances with a low false positive rate
compensating a poor or noisy labelling.

Qualitative analysis: In a second step, we are interested in
the qualitative evaluation of the methods and their comparison
with existing products (FSC and SWS). The FSC product
is produced using optical satellite data from the Sentinel-2
(revisit time of 5 days). This product provides the percentage
of the surface covered by snow at the top of the canopy
(FSC-TOC) per pixel, with a spatial resolution of 20 m. To
ensure accuracy, atmospheric correction and cloud masking are
utilised. The snow-covered area is identified using a threshold-
ing method based on the Normalised Difference Snow Index
(NDSI) and a digital elevation model. The fractional snow
cover of the snow-covered pixels is then calculated using an
empirical relationship with NDSI that has been calibrated with
higher resolution satellite images [22].

The SWS product is based on Sentinel-1 satellites. To map
the extent of snowmelt areas, the process depends on change
detection, which involves comparing the reduced backscatter
coefficient of wet snow to conditions where the surface is free
of snow or covered by dry snow. Specifically, this product is
based on Nagler’s method [65], and uses S1 Interferometric
Wide Swath (IW) mode with dual-pol (VV, VH) acquisitions.
The resulting product offers wet snow extent data for high
mountain regions, with a spatial resolution of 60 m. To
ensure accuracy, the product masks radar shadow, layover, and
foreshortening, as well as water bodies, forests, urban areas,
and non-mountain regions.

These evaluations are done on the specific area of the
validation dataset (Grandes-Rousses massif) as illustrated in

Figure 3. We utilise a set of 2 distinct dates that are carefully
selected to ensure that both the SWS and FSC products are
available within 2 days of the target date. Furthermore, these
dates are chosen to give an observation of the classification
results:

• during snowmelt, when wet snow represents a significant
part of the snowpack,

• and in the middle of winter, when the snow cover is
important but mainly made up of fresh or dry snow.

On each of the dates, we use 2 spatial tools:
• Geographical maps of wet snow probability. The resulting

maps are the probabilistic output of the classifier Pwet

(the probability of wet snow). This information is discre-
tised into three levels: Pwet > 0.5, Pwet > FCROC, and
Pwet > BAROC. The BAROC and FCROC thresholds
are determined from the training data set and are the
average of the thresholds on each fold. This gives us the
information of the wet snow extension if the maximum
accuracy is considered, if a lower false alarm rate of 5%
is considered, and finally the classical binary output of a
classifier.

• Topographic diagram. It gives the percentage distribution
of wet pixels for a slope and orientation slice as a
function of altitude. It allows us to compare the quality
of classification with respect to the products and its
sensitivity according to the topological characteristics.

IV. PERFORMANCE EVALUATION AND MACHINE
LEARNING PRODUCTION OF WET SNOW MAPS

A. Evaluation of models

The results of the evaluation of the seven models for the 34
folds with the two bands VV and VH are given in Table IV. We
can see that the best results for the three metrics are obtained
with the KNN model. In our case, we use this model with
K = 50, the number of neighbours. It is interesting to note
that the results of the KNN model are better than the results of
the CNN model, although the CNN model is a deep learning
model, which is more complex than the KNN model.

In addition, the variability of the two model of the family of
deep learning models (CNN and MLP) is higher than the other
models. This factor is quite important, because it shows the
overfitting of some of the models. This can be explained by the
fact that each of the folds, an instance of a classifier is trained
and then tested on the same dataset. If the variability across

Adaboost RF KNN CNN

Accuracy 70.9± 0.3 71.8± 0.3 73.2± 0.3 71.5± 1.9
F1-score 74.7± 0.2 75.4± 0.2 75.9± 0.3 70.7± 2.4
Kappa 41.8± 0.7 43.6± 0.6 46.5± 0.6 43.1± 3.7

Logistic Regression MLP SVM

Accuracy 70.4± 0.2 72.0± 2.6 72.6± 0.2
F1-score 74.5± 0.1 75.0± 1.0 75.6± 0.1
Kappa 40.8± 0.4 43.9± 5.1 45.1± 0.3

TABLE IV: Results for 3 metrics for the 7 classifiers consid-
ered for the snow detection problem using K-fold
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1Fig. 7: Evaluation of the F1-score for the 4 best algorithms obtained in Table IV as a function of the combinations of the
considered channels

folds is large, this means that each instance of the classifier
is more concerned with maximising the metrics specific to
the training dataset than with finding a sufficiently general
model. This reduction in variability goes hand in hand with
the generalisation of the model over all folds, but leads to a
slight decrease in some criteria such as accuracy compared to
other models such as the KNN. In terms of needs, the two best
classifiers in this study are the KNN, for its overall average
performance, which is better than the other classifiers. But also
the SVM, which is close to the KNN metrics with a good
stability on all folds. Given these results, we chose to select
the 4 best algorithms in terms of F1-score (SVM, RF, MLP
and KNN) to evaluate the performance of theses models as a
function of the combinations of the input bands (see Table III).
This selection details the behaviour of the 3 main proposed
families. More results can be found in [83], where the authors
focus specifically on the Random Forest and CNN studies.

B. Evaluation of auxiliary data

The results are given in Figure 7. For the KNN algorithm, it
can be noted that the solution using the VV and VH channels
(A) alone gives a baseline for the other combinations with a
value around 0.76 and a low variability. The addition of the
VV/VH ratio (B) slightly degrades the performance. The most
striking feature is the addition of topographical information.
The elevation in particular does not allow to refine the results,
on the contrary to the orientation which improves the F1-
score by more than 2%. It can be seen that the combination
(G) only composed of the VV and VH ratios of the current
dates with respect to the reference date gives better results
than the combinations using both the simple polarimetric
channels and the topographical information. The attempt to
use all the channels to have the best possible performance
is not the best solution, but rather the H and I solutions,
which offer a compromise between the best performance and
a lower variability over all the K-Folds. It is observed that the
performance of the considered algorithms is fairly consistent
across the channels examined. However, the MLP approach
exhibits a significant degree of variability when applied to
combinations. The random forest algorithm is noteworthy for
its good performance at large and minimal variability across
all folds. This methodology has been previously utilised in
[48]. For the remainder of this study, our focus will be on
the KNN algorithm due to its ability to incorporate a distance

measure between samples. Additional analyses can be found
in [83] on random forest and CNN.

Figure 8 gives the ROC curves for a selection of combina-
tions for the wet class. On the left figure, BAROC (×) and
FCROC (+) thresholds have been added. These thresholds
were calculated from the training data. This explains why
the FCROC thresholds, calculated for a false positive rate
of 5%, are shifted. The best classifiers on this criterion are
those with the lowest false positive test rate of 5%. The
G combination performs best on this criterion with a false
positive test rate of 8% against ∼ 10% and 16% for the
others. On the criterion of the area under the curve, the two
combinations I and J give the best performances in terms of
detection, with a slight advantage for combination I which
gives its maximum accuracy with a false positive rate lower
than that of combination J.

These results can be linked to the right part of the figure 8
where we studied the ability of the mean backscattering of
the VV and VH channels to detect the wet snow class. To do
this we used the training dataset and calculated the average
value of each sample for VV and VH. We notice that both
thresholds are obtained for a lower true positive rate than the
methods proposed in the right part of the figure, demonstrating
the benefit of both the additional channels and a classification
based on a more complex algorithm than a thresholding.

On Nagler’s thresholding: The thresholding algorithm can
then be considered and the ROC curve and the BAROC
and FCROC thresholds associated with this mean can be
calculated. The FCROC value gives a threshold value between
0 and 1 for which only 5% of false positives are obtained (and
similarly for the BAROC value). Thus, from these threshold
values, and knowing the dynamics used to normalise the data,
we can arrive at a threshold value in dB that can be compared
to that traditionally used by the Nagler method. The results
obtained are given in table V. It can be seen that the traditional
thresholding value of -3dB is close to the threshold obtained
with the FCROC thresholding. The thresholding based on the
average of a 16× 16 pixels window, to obtain a false positive
rate of the wet snow class compared to the labelling rule given
in 1 is similar to the threshold proposed in [35]. This result
validates the proposed labelling based on CROCUS. We also
notice that when we select the BAROC thresholding which
gives the thresholding for the maximum accuracy, the detection
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1Fig. 8: ROC curve for 4 input channel combinations for the KNN classifier and their associated BAROC and FCROC metric
at 5% (left). ROC curve for the simple thresholding type classifier on the mean of each sample for the VV and VH channels
(Nagler thresholding), with BAROC and FCROC metrics (right).

threshold tends to be higher than -3dB. Consequently, we can
deduce that in the framework of this labelling, the optimal
threshold to detect samples respecting the proposed labelling
is about 2dB higher than the Nagler threshold. This results
in the detection of a larger area. This conclusion is based on
a learning of the threshold respecting the CROCUS labelling
from ascending data.

VV VH

min/max (dB) -35.96 / 36.42 -33.30 / 29.53
BAROC (dB) -0.99 -1.33

FCROC 5% (dB) -2.61 -3.40

TABLE V: Threshold value for BAROC and FCROC metrics
for learning on the sample mean for VV and VH

C. Statistics set

We study the performances of the KNN classifier, when
using statistics as presented in Section III-A. We study 4
combinations described in Table VI, with µ the mean, σ the
standard deviation and γ1, γ2 respectively the skew and kurto-
sis. These statistics are calculated on the G-band combination,
in order to observe results that depend only on polarimetric
data. The results obtained are given in Figure 9.

We notice at first that the use of the mean of each of the
4 channels (L) considered gives a difference of more than
14% on the F1-score. However, we reduced the number of
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1Fig. 9: F1-score for the KNN classifier as a function of the
combination of statistics described in Table VI on the G
channel combinations

features for each sample by 16 to perform this task with only
4 features. The addition of second order moments improves
the performance. The addition of the third-order moment (N)
reduces the variability of the score over all the folds. However,
the O combination has a lower F1 score than N, and M and
shows increased variability, and the addition of the fourth
moment P brings the f1 score down to 60%. The best score is
obtained using the mean and standard deviation combination
(N) of each channel. It is interesting to note that with only
the first two moments calculated for each channel, we obtain
∼ 99% of the F1-score obtained using the full histogram
on each channel. We observe that moments of order higher
than 2 reduce the F1-score drastically. This may be due to
two factors. The first is the imprecision that increases when
trying to estimate higher order moments. The second is due
to the nature of the distributions of the two classes, where the
Gaussian character takes precedence, giving rise to superior
performance only thanks to the first two moments.

Figure 10 illustrates the distributions of each of the 6
possible combinations for the 4 channels as a function of the
mean and standard deviation, i.e. the 2D histogram for the
sample mean (10a) and the sample standard deviation (10b).

It can be seen that the distributions associated with the mean
of the samples are more distinct for the two classes than those
associated with the standard deviation. However, the latter
show significant differences in shape (R VV versus VV) and
even in mode (R VV versus R VH). The distributions related
to the mean are more different between the two classes: while
the dry class appears to be strongly Gaussian, which can be
explained by the averaging of 256 of medium resolution, that
of the wet class is more complicated.

Identifier Statistics combinations

M µ
N µ, σ
O µ, σ, γ1
P µ, σ, γ1, γ2

TABLE VI: Description of the tested statistical combinations,
where µ, σ are the mean and standard deviation and γ1, γ2 are
given in Eq.(3)
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(a) Comparison of the mean for each samples of the four considered channels. The first line of plots corresponds to the wet class and the
second to the non-wet class.
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(b) Comparison of the standard deviation for each samples of the four considered channels. The first line of plots corresponds to the wet
class and the second to the non-wet class.

Fig. 10: Comparison of 2D histogram for both mean and standard deviation of each samples, for the two classes wet and not
wet, and between the different channels for (V V ,V H R V V and R VH). R V V and R VH represents the ratio between
the current acquisition and the reference image described in I respectively in V V and V H polarisation

There are marked differences in the mode of some of
the distributions (R VV versus R VH), but above all we
can observe a bimodal aspect, especially in the distributions
between the primary polarimetric channels (VV,VH) and the
ratios. We analysed the composition of the modes present
in the distribution formed by the VH and R VV channels.
We selected 5000 samples of the wet class around the 2
main modes Mb1 and Mb2 whose barycenters are located
respectively around (xMb1

, yMb1
) = (∼ 0.3,∼ 0.42) and

(xMb2
, yMb2

) = (∼ 0.4,∼ 0.48). The first difference between
the samples is the acquisition date. While the samples compos-
ing the first mode Mb1 are homogeneously distributed between
February and June, the samples of the second mode Mb2

are mainly concentrated on February. The second distinction
between the two modes is the geographical position of the
samples. We note that the samples belonging to the Mb1 mode
are mainly located in rocky areas, on plains or bare ground.
On the other hand, the samples from the Mb2 mode are mainly
located in forest areas. It is interesting to note that the position
of Mb2 is very close to the single mode for the non-wet class

samples. This is due to the fact that in the presence of a drill
the wave penetration is too weak to reliably distinguish the
presence of wet snow, at least from a point of the signal
average on the resolution cell. However, the presence of such
samples may allow the use of the histogram to differentiate
certain areas with low forest cover.

D. Focus on specific situations

The study area on which the wet snow map is made is
shown in Figure 3. Two acquisition dates are considered:
January 18, 2021 and March 31,2021. The Copernicus SWS
products are obtained for these same dates, while the optical
FSC products are obtained for January 19, 2021 and March
30, 2021 respectively. To perform this study we use the results
obtained by the KNN classifier using the histograms on each
of the bands of the I combination.

Wet snow map: Based on this combination the training
dataset allows us to calculate the BAROC and FCROC thresh-
olds. Traditionally, classifier outputs are thresholded at 0.5,
with higher values considered as belonging to the class under
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(b) Map details and zoomed-in view of snow classification results for the two best combinations I and J comparing Copernicus FSC
and SWS products in the Alpe d’Huez, France during the melting period March 31st 2021

Fig. 11: Wet snow maps for different solutions using KNN, compared with existing products
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(b) March 31, 2021

Fig. 12: Diagrams of the distribution of wet pixels (FRCOC, BAROC, SWS) and snow cover (FSC) as a function of altitude
and orientation for a slope less than 45°, for two dates

consideration. It is proposed to add the two additional thresh-
olds BAROC and FCROC. The maximum accuracy is reached
at 79.7% with a BAROC threshold of 0.48. We obtained an
accuracy of 75.2% with a constant false positive rate of 5%,
for an FCROC threshold of 0.72. The classification results are
performed using a sliding window. The classification value
of the central pixel is respectively 0,1,2 or 3 if there is no
wet snow, wet snow obtained by BAROC thresholding, wet
snow by classical thresholding at 0.5 and wet snow by FCROC
thresholding. The results are shown in Figure 11a.

We first notice is that the addition of the BAROC threshold
does not bring much to the results obtained with the KNN
compared to the usual thresholding (0.5). However, we can
see the advantage of using the thresholds together, with higher
resulting pixel values in areas where the threshold above which
the training classifier made few misclassification.

We need to be careful about directly comparing results on
January 18, 2021. Indeed on this date, the CROCUS model
classify ∼ 5% of the pixels in this area as wet snow according
to the proposed criterion. The FSC product does not detail the
difference between wet and dry snow and gives the overall
snow cover result, while the SWS product, because of its
threshold, tends to overestimate our criterion.

On the date of 31 March 2021, this time we are in the
melting period and we can see a more marked correlation
between the 3 results. Where the SWS product gives large
homogeneous areas, we find a more important clipping, as
in the extreme right part of the image where we find the 5
diagonal bands corresponding to bowl faces. This clipping has
the opposite effect of obtaining more heterogeneous maps.

The Figure 11b represents a zoom in Figure 11a on the
Alps d’Huez for march 31st 2021. For SWS products, we
have added the product mask categories. In this way, the
SWS product masks both city and forest areas. Interestingly,

the KNN result offers a finer segmentation of wet snow. In
addition, based on the variety of samples, we can see that city
areas are correctly taken into account compared to the FSC
optical product, as are forest areas.

Wet snow topographic repartition: We then evaluated the
distribution of pixels considered as wet snow for the topo-
graphical parameters of orientation and altitude, for the two
dates (31 March 2021 and 18 January 2021), but over the
whole Grandes Rousses massif (given in green in Figure 2).
We considered a step of 100m for the altitude and 12.5° for
the orientation. To simplify the analysis we did not consider
the slope variable, and calculated this distribution on all
slopes below 45°. This evaluation was carried out on the
same results as in the sectionIV-D, i.e. KNN with the bands
combination I. We studied separately the results obtained by
the FCROC thresholding, the BAROC one, and compared with
the distribution calculated for the SWS products. We also
compared the snow cover distribution of the FSC product. The
representation in Figure 12 gives in percentage for each cell
over the whole area considered without clouds for the FSC
and without geometric distortion.

For the date of January 18, 2021, we find that the three
results based on the SAR and therefore sensitive to wet snow,
are less distributed than the true snow extension. It can be seen
that the FCROC, BAROC and SWS give a maximum of wet
snow for elevations between 1800m and 2400m facing East.

For the date of 31 March 2021, we notice that the BAROC
threshold diagram is closer to that of the FSC than the
SWS, notably in terms of percentage, we find the 2 main
modes for elevations between 1800 and 2400m with an East
and West orientation, and this in a marked way in the 2
diagrams, whereas the SWS is slightly more homogeneous
on all orientations.

A number of pixels are detected as wet snow for elevations
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Fig. 13: Comparison of Lac Noir station measurements with KNN’s prediction.

below 1800m for orientations between West and South West,
but only in the FCROC and BAROC results. These areas
correspond to the detection of 2 lakes in the southern part
of the Grandes Rousses massif.

E. In-situ comparison

We consider the Lac Noir weather station, positioned as
shown in Figure 3, providing the following daily in-situ
measurements: snow depth (cm), minimum daily temperature
(degrees Celsius) and precipitation (mm). To make the figures
easier to read, we have normalised precipitation between 0 and
1, where 1 is the maximum precipitation during the period
considered (corresponding to a precipitation of 23.5mm).
Figures 13a,13b show the temporal variation of wet snow
prediction by the KNN method, as a function of the three
in situ information for two combinations of channels (A, I).
The temporal window is between January 2020 and early June
2020. The prediction is made on a 2 by 2 pixel window centred
on the station. We have added to the figures the dates on which
the Copernicus SWS product indicated the presence of wet
snow. It is interesting to note that the A combination gives
fairly homogeneous results with no particular trends. If we
set the probability threshold at 0.5, we find the information
given by the SWS product. It is difficult to see a clear
correlation between these data and the in-situ measurements.
From April onwards, we notice that a trend is emerging and
the number of dates and the associated probability of wet snow
increases. This is explained by the progressive increase in

the temperature of the snowpack and the start of snowmelt.
Figure 13b gives the variation for the combination giving the
best results in the tests proposed in the manuscript. There
are clearly two regimes, one before mid-March when the
probability is low even at times when there is a sudden increase
in temperature. The other regime, after mid-March, shows an
increase in the probability of detection, correlated with the
permanent increase in temperature. This probability is higher
than that given by combination A. In all scenarios, the drop
in the probability of wet snow at the beginning of June is
explained by a significant reduction in the snowpack, at the
limit or even below the labelling threshold (40cm).

V. DISCUSSIONS

It is important to note that the information used for labelling
is imperfect. However, this allows us to add information on a
large number of samples and to use the diversity of the samples
to guide sufficiently generalised learning for the evaluation
of our problem. We note that the maps created using the
KNN algorithm have a higher degree of heterogeneity than
the FSC and SWS products. However, the resolution of SWS
in particular is 60m per pixel, whereas we propose maps with
10m per pixel. It may be interesting to carry out an analysis
in further work on the scores and classification quality as a
function of the type of soil. It can be seen that the solution
using all the channels (I) tends to overestimate the areas
considered as wet snow. This is clearly seen in Figure 11b,
where areas that are not even detected by the FSC product as
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having snow are detected as wet snow.
The results presented in Figure 13b are interesting because

the Copernicus method clearly shows that snow is detected
early in the season where, for a snow depth of more than 40cm,
the minimum temperature is low, mostly below 0 or even
−2.5◦C, whereas our proposals give low probability rates. This
can be explained by the impact of frost on the radar signal.
General studies have shown the sensitivity of the C-band radar
signal to the detection of frozen ground [84], causing a drop in
the backscattered signal in a similar way to the consequence
of the presence of wet snow [85]. We can hypothesise that
the thresholding method for Copernicus products is sensitive
to this frost and detects it as wet snow, whereas our method,
by learning from a large number of features associated with a
rich training data, does not consider these areas as wet snow.

VI. CONCLUSION

In this work, we have proposed a new dataset for the
problem of detecting wet snow with SAR images, based on
the use of a physical model of the snowpack covering the
entire Alps. We successfully demonstrated the effectiveness
of machine learning algorithms in classifying wet snow. Our
approach involved using a novel labelling method based on
the physical model of the snowpack CROCUS. We tested
seven classifiers of a different kind after implementing our new
labelling framework. KNN was the most effective. We anal-
ysed input channels, including histograms and topographical
information, to inspect our classification methods. We found
that reducing the channels to statistics of order 1 to 4 improved
our understanding of the classification decisions made by the
classifier. We compare the results at the scale of the Grandes
Rousses massif with the main reference snow products.

Interestingly, beyond the numerical performance in sec-
tion IV which notably outperforms the fixed threshold ap-
proach, the classification results show coherent maps with the
existing products to be put in perspective with the proposed
label. Testing different classifiers helps us analyse the perfor-
mance of the training data, which is imbalanced because of
the object’s temporal nature. This can be seen when evaluating
and comparing the results with existing Copernicus products.
There has been a clear improvement in detection sharpness,
although this may tend to reveal heterogeneous detection
zones. The size and variety of the data used also makes it
possible to dispense with zone masks, which can be complex
to manage in the case of simple thresholds such as forest or
city zones. A possible improvement would be to restrict the
temporality of the dataset to the melting season, by increasing
the spatial density, to have a classification valid only for some
months of the year when wet snow can be found (this excludes
cases of rain on snow events). A second possible improvement
would be the aggregation or fusion of the different results
in a supervised or unsupervised ensemble approach. We have
observed that the SWS maps and the outcomes produced by
our classifier, along with a blend of different bands, yield
comparable results. However, each method possesses unique
specificities that distinguish them from one another. This
specificity is generalised if we look at the results of other

classifiers or other band combinations. Thus the aggregation of
these model outputs according to the same criterion or another
more general one would allow us to obtain more detailed maps.
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