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Abstract

This study explores coherent structures in a swirling turbulent jet. A stationary axisymmetric solu-
tion of the Reynolds—Averaged Navier—Stokes equations at Re = 200,000 was obtained using an
open source computational fluid dynamics code and the Spalart—Allmaras eddy viscosity model. Re-
solvent analysis with the same eddy viscosity field then provided coherent structures of the turbulent
fluctuations on the baseflow. As in many earlier studies, a large gain separation is identified between
the optimal and sub-optimal resolvent modes, permitting a focus on the most amplified response
mode and its corresponding optimal forcing. At zero swirl, the results indicate that the jet’s coherent
response is dominated by axisymmetric (m = 0) structures, which are driven by the usual Kelvin-
Helmholtz shear instability mechanism. However, as swirl is increased, different coherent structures

begin to dominate the response. For example, double and triple spiral (jm| = 2 and |m| = 3)
modes are identified as the dominant structures when the axial and azimuthal velocity maxima of
the base flow are equal. In this case, distinct co- and counter-rotating |m| = 2 modes experience

vastly different degrees of amplification. The mechanics of this selection process involve several phys-
ical mechanisms contributing simultaneously in different regions of the mode. This is analysed in
more detail by comparing the alignment between the wavevector of the dominant response mode and
the principal shear direction of the base flow. Additional discussion also considers the development
of structures along the exterior of the jet nozzle, which is related to the lift-up effect.
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1 Introduction

Swirling jets are shear flows characterized by the introduction of angular momentum into a concentrated
axial stream, causing fluid particles to travel in spiraling trajectories along the jet axis. Such flows may be
found for instance in combustion chambers, where swirl is typically used to enhance mixing and promote
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flame stability. Despite their widespread use in the combustion industry, the behaviour of such flows
remain incompletely understood, especially with regards to the dominant coherent turbulent structures.
This study aims to describe such coherent structures in a turbulent swirling jet using resolvent analysis.

[10, 20, 35, 51] all presented experimental evidence of spiral-type coherent structures in a rotating
jet. The last three especially were able to single out double spirals using dye visualisation as well as
Particle Image Velocimetry. Through loudspeakers, [20] forced the jet at specific azimuthal wavenumbers
and observed the resulting flow. In this manner, the robustness of vortex breakdown was established as
well as the receptivity of the flow to double or triple spirals.

[50] also performed high fidelity measurements that fitted well with weakly non-parallel spatial stabil-
ity analysis predictions close to the nozzle at relatively low Reynolds number. [50] found a double spiral
co-winding counter-rotating mode present close to the nozzle but decaying faster in the downstream
direction than the dominant bending mode. This mode was explained invoking C instabilities.

On the numerical front, [39] used a line vortices model to study the evolution of rotating jets. These
calculations brought to light complex interplay between KH phenomena in the axial and azimuthal
directions as well as the influence of C effects. These different phenomena are very sensitive to initial
conditions, displaying chaotic behaviour. One of the major effects of introducing swirl in the flow is the
formation of counter-rotating structures under certain specific initial conditions. These structures can in
turn be dispersed by strong KH waves or overtake them. The same authors made multiple contributions
on this topic including [40-43], always highlighting the competition between KH and C effects when swirl
is introduced in the jet.

[52] describe the fluctuations that arise from a turbulent baseflow taken from LES [57]. Using an
eddy-viscosity model, the authors were able to explain the underlying physical mechanisms behind ampli-
fication, namely Orr mechanism, LU, and KH. [52] finally provides a mapping to where each phenomenon
is expected to dominate throughout the frequency space.

More recently, [45] performed a Large Eddy Simulation (LES) of a swirling flow and then a Spectral
Proper Orthogonal Decomposition (SPOD) to obtain the most energetic fluctuations from this flow. This
study was performed at relatively low Reynolds number, but attained high swirl, as the focus of the
authors was on the description of vortex breakdown. In the regime that is of interest to this study, the
authors exhibited four spirals at very low frequency, which were considered to be a spurious consequence
of the coordinate system in the publication.

Literature on KH instability dates back to [54] in cylinder flows. It was generalised by [8], where an
instability growing simultaneously on radial shear in the axial and azimuthal directions was proposed.

This is the favoured mechanism in [21] for instability growth through local temporal stability analysis
of an inviscid swirling jet at high wavenumbers. This approach has the advantage of being purely ana-
lytical, which allows a clear separation of the different terms driving instabilities. In turn, this enabled
the authors to highlight four separate mechanisms, namely inertial waves, C, axial and azimuthal KH.
However, the authors acknowledge that their use of an plug flow profile is known to lead to nonphysical
KH solutions.

On the subject of C instabilities, [53] derived what became known as the Rayleigh criterion in the
case of parallel flow with no axial component. This criterion states that the existence of a radius where
0-(r?U2) < 0 is a necessary condition for axisymmetric C instability. In [62], this criterion was found to
be sufficient in the case of Couette flows.

A generalised necessary criterion for non axisymmetric instability was further derived in [27]. [31]
derived a simpler sufficient criterion for instability in the infinitely large wavenumber limit. [19] proved
later that this criterion was linked to C instability by considering a coordinate system turning with
the fluid, writing associated inertial effects, and falling back on [31]’s criterion. More recently, further
generalisation was performed in [11, 12] for a wider range of profiles and at a higher order. [11, 12, 19,
27, 31, 53, 62] all used generic flow profiles in inviscid local temporal stability analysis. [22, 29, 30, 37, 38,
41] have all conducted local temporal or spatial stability analysis of swirling flows at zero to moderate
Reynolds number. These authors all took a prescribed parallel baseflow sometimes as simple as a plug
flow then derived dispersion relations analytically or numerically, which can greatly facilitate physical
interpretation of obtained modes.

Gallaire et al. [22] identified an absolute instability of double-spiral perturbations in a swirling jet
before vortex breakdown. [37] additionally plotted critical curves where the transition from convective to
absolute instability takes place depending on co-flow and swirl intensity for every azimuthal wavenumber.



Figure 1: Case layout

In turn, this allowed him to single out the most unstable azimuthal wavenumbers for a given co-flow as
the first one transitioning into absolute instability when increasing swirl.

[38] and [30] studied the interplay between swirl and compressibility finding swirl to be more desta-
bilising than compressibility is stabilising. [29] also introduced viscosity and discovered additional types
of viscous instabilities. Furthermore, this work compared the modes obtained numerically to experiments
and demonstrated satisfying agreement for a range of frequencies.

The different authors cited here disagree on which mode is more unstable when introducing swirl,
yet this is not surprising as their base flows also differ. [37] argues in favour of the axisymmetric mode,
whereas [22, 29, 30, 38, 41] claim it to be a spiral mode.

The closest study to this one would be [46], who used resolvent analysis on a coaxial swirling jet. The
key difference between this work and the present study are geometry and Reynolds number considered.
The former is fully turbulent, whereas the latter was decidedly laminar.

This work studies the dynamics of coherent structures in an amplifier-type turbulent swirling jet
using resolvent analysis. It is organised as follows: section 2 describes the methodology adopted through
the study, beginning with defining the flow configuration in section 2.1. Section 2.2 then presents the
procedure followed to obtain the base flow used for this work as well as its main characteristics, and
section 2.3 details the theory and implementation of the resolvent analysis framework. Then, section 3
showcases the most important results, namely the gains and the various structures obtained. Finally,
section 4 summarises the study.

2 Methodology

2.1 Flow configuration

This study considers an axisymmetric swirling jet emanating from a nozzle into a large domain with a
weak non-swirling co-flow, as represented in figure 1. Our cylindrical coordinate system is centred at the
nozzle outlet. Using the nozzle radius R as a length scale, the inner wall of the nozzle is given a radius
and length of 1. Note that, at its base, the nozzle wall has a small but finite width of ¢ = 10™%, which
sharpens to a point at the injection plane.

The flow in this configuration is governed by the dimensionless Navier-Stokes equations,

du+u-Vu+Vp-V-[(Vu+ Vu”)/Re] =0,

where the velocity vector in cylindrical coordinates is u = uye, + ure, + upey, €; is the unit vector
in direction ¢, and the Reynolds number Re = UyR /vy = 200,000 where 1 is the reference molecular
kinematic viscosity of the fluid and Uy is the velocity scale.

In this study, the velocity is normalised by setting Uj equal to the maximum base flow axial velocity
at the inlet. Hence, the flow along the inlet inside the nozzle (see figure 1) is prescribed in dimensionless
units as,

Qinlet(r) = tanh (6(1 - 7"2)) (QZL’ + STQG) ) (2)

where S is the dimensionless swirl intensity. Without loss of generality, this study only considers

positive swirl, meaning that fluid particles wind in space in the positive sense defined by the right-hand

rule with respect to the axial direction. Inlet profiles are very similar to those presented on figure B3a,

and resemble a smooth top-hat profile with a near solid body rotation of dimensionless axial vorticity

S. To achieve convergence, it was necessary to introduce a weak axial coflow around the jet, which we
specify as,

Qcoflow(r) = 2Umf(1 - f/Z)va (3)
with U,, = 0.05 and 7 = (r — 1 — €)/(19 — €). Therefore, the axial coflow has a parabolic profile that
vanishes along the nozzle wall and increases to about five percent of the jet axial velocity at the radial edge
of the computational domain. Regarding the other boundary conditions, no-slip conditions are imposed



along the nozzle walls, symmetry conditions are imposed along the central axis, and stress free boundary
conditions are adopted along the outer radial and axial edges. Note that the stress free, also known as
zero-traction condition, is a mixed boundary condition involving the pressure and velocity that requires

po=v(Yu + Yu")n, 4)
with n the vector normal to the boundary — in this case either ¢, or e,.

2.2 Base flow

This paper analyses the coherent structures of a high Reynolds number swirling jet using a linear analysis
about the turbulent base flow. For this purpose, a base flow representative of a mean flow, is required as
an input. We therefore invoke the concept of the triple decomposition [28], where the velocity and pressure
are decomposed into a mean component, a set of spatiotemporally-organised coherent structures, and
a background of incoherent turbulent fluctuations. The incoherent fluctuations will be modelled with a
turbulence model such that the velocity and pressure may instead be represented as the sum of the base
flow and coherent structures, i.e. u = U +u and p = P + p. Here, the base flow is defined with ensemble
averages such that u = U and p = P.

Applying this ensemble averaging framework to equation (1) yields the well-known Reynolds Averaged
Navier-Stokes (RANS) equations governing the base flow. Then, invoking a Spalart Allmaras (SA) eddy
viscosity model for the Reynolds stress [61], these stationary equations are closed and may be written as,

V-U=0,
™ _ ()
YU U+VP-V-[v(YU + YUT)] =0
Note that, throughout this work, the effective viscosity v is taken as the sum of the dimensionless
molecular viscosity and the eddy viscosity vy, i.e. v = 1/Re + v;.
This setup allows for a base flow with a very thin shear layer, characterised as follows

Up (z) = min Uy (z, ),
rm(x) = argmin Uy (z, 1),

Uy(z,7) — Up(2)
1—Up(z)

Oz) = /0 " M) [1 = T, )] e (8)

I(z,r) =

This leads to figure 2 and about ©(R) =~ 0.02. For reference, the shear layer thickness of the flow
used by [57] obtained by LES is also shown, in appropriate non-dimensional units. Thus, the base flow
in this study has a very sharp shear layer of finite thickness.

2.2.1 OpenFOAM calculations

All spatial discretisations used in this paper are based on triangular, unstructured, inhomogeneous meshes
drawn using gmsh [25]. Following a mesh convergence study (see appendix B), the final mesh chosen for
this study has about 152,000 nodes.

Equations (5) were solved under the boundary conditions detailed in section 2.1 using the simpleFoam
solver from the OpenFOAM CFD software available at [63]. For the purposes of this code, turbulent eddy
viscosity was set to zero at the walls and zero-gradient at all other boundaries.

Base flow calculations were performed over a range of S values from S = 0 to S = 1.6. This allowed for
confirmation that the SA model was able to properly capture the vortex breakdown phenomenon, shown
in figure 3, which first appeared in the vicinity of S = 1.4. However, since vortex breakdown is well-known
to promote self-excited dynamics in swirling jets [15, 44], such large S values will not be considered in
the main results. Instead, we will focus on flows with S < 1. For these S values, it was verified that the
system is modally stable, and that the axial velocity on the axis remains positive throughout the domain.

Actual computations were made in parallel using forty 2.10 GHz Intel(R) Xeon(R) Gold 6230 CPUs
with a frequency of 2.10 GHz. Convergence was defined using an absolute tolerance of n = 10~'2 for each
calculation. The full configuration is available on GitHub under a GPL-3.0 license.


https://github.com/hawkspar/openfoam.git
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Figure 2: Shear layer thickness © of the base flow, compared to the reference case of Schmidt et al. [57].
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Figure 3: z — r view of the x component of the base flow at S = 1.6 close to the nozzle
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Figure 4: x — r views of base flow velocities at S = 1 close to the nozzle

The result is represented on figure 4 for reference.

2.3 Resolvent analysis
2.3.1 Formalism

Given a base flow, resolvent analysis is a way to model and predict coherent structures of turbulent

. . . T . . .
fluctuations [34, 57, 64]. Said fluctuations ¢ = [u” p]” are three-dimensional and time-dependent but
may be Fourier-decomposed into modes with discrete azimuthal wavenumbers m and pulsations w as

=m,w

o0 0o
q(x,r,0,t) = Z / q. (= r)elmI=wt) L g* (g, p)el @m0y, 9)
m=—oc0”0 '

In the following, the distinction will be made between a mode observed wrapped in space around e,,,
which is designated to be winding, and a mode moving in time around the same axis, which will be called
rotating. With these conventions, a mode with m < 0 is counter-rotating.

Equation (9) makes it clear the desired flow structures are real. This leads to

Q—m,—w = g:n,w (10)
by unicity of the Fourier decomposition. Thus, w > 0 is imposed with no loss of generality, as in [22].

For the purpose of conciseness, q. . will simply be written g in the following. Using this decomposition
leads to the operator replacement 9y s im and thus V < V,,. Hence, the fluctuations equations can be
derived

—m

V,, - u=0,
T 11
{—z’wu+ Vit U+ YoU u+ V0= Vo v ( Yunts + YT )| = ¥, - (@” — ). )

At this stage, the eddy viscosity is introduced into the perturbation equations in order to improve the
accuracy of the linear model, see [13, 47]. This introduction is also consistent with considering equations



(11) as fluctuations of the base flow equations (5), and was performed in several other works such as [1,
48]. Therefore, the viscosity v = 1/Re + 1 in equation (11) is identical to that used in section 2.2.

The method of resolvent analysis has been detailed in works such as [1, 48, 56, 60] and many others
besides, so only a short reminder will be offered here. The core objective of resolvent analysis is to find
the right-hand side of equations (11) most amplified by the linear dynamics of the left-hand side, and
obtain the associated coherent structures.

Looking at equation (11), the left hand side is linear with respect to the fluctuations but the right
side is not. This allows us to write the entire system in matrix form as Lq = B f, with

1]

so that incompressibility is strictly enforced. Introducing the extractor

[isv
[

H=[I0], (13)
one may write Hq = u which in turn gives the resolvent operator R = H L' B. This resolvent
operator is unique for a given base flow Q and a choice of both azimuthal number m and pulsation w.

From there, it is clear that R f = u. In other words, the resolvent operator links forcing terms with
velocity fluctuations in a linear manner. Finally, a Singular Value Decomposition (SVD) of the matrix
R=> U(i)w(i)(b(i)H yields the three main quantities of interest:

1. The gains o9, which can be understood as a ratio of perturbation kinetic energy obtained over
non-linear terms work required to produce them. These allow us to order the modes from the most
amplified by the linear operator, associated to o(¥), to the least amplified.

2. The dominant response mode w(l) represents the structure which can be expected to arise in the
flow fluctuations around the base flow, provided o > 1 and ¢ > ¢,

3. The optimal forcing mode ¢(1) gives the normalised least energetic stimulation that will give rise to

w(l) through the linear operator. It is not predictive of flow behaviour, but may still be useful from
an engineering perspective to damp a problematic mode.
Resolvent analysis is a linear method of studying instabilities that differs significantly from temporal
stability analysis, also known as modal analysis, in three important respects:

1. In the resolvent formalism, the frequency is a parameter, whereas it is an unknown in modal analysis,

2. Response modes obtained through resolvent analysis require their associated forcing in order to
exist, whereas temporal eigenmodes are self-sustaining (unstable) or decay (stable),

3. The dominant response mode is expected to collapse onto the first SPOD mode of a real flow in
case of strong gain separation and uncoloured turbulent forcing, as established in [9]. Conversely, a
normal mode can only be measured in a linearly unstable flow.

It should also be noted that this analysis is global and three-dimensional throughout the domain,
which is distinct from the local analyses in the literature of parallel flows. This is a key consideration
when studying a spatially-developing flow such as a swirling jet.

2.3.2 Implementation

In order to perform the process detailed in section 2.3.1 around the base flow computed in section 2.2,
the Taylor-Hood P2-P1 family and Basix elements detailed in [58] were used from the FEniCSx finite
element library published in [59]. The problem was formulated in weak form in the UFL language published
in [2] with no special treatment at the axis of symmetry. Interpolation of the base flow between the two
codes, OpenFO0AM and FEniCSx, was non trivial and required some smoothing.

In line with section 2.1, the boundary conditions for the fluctuations were set as follows: u = 0 for all
base flow Dirichlet boundary conditions along the inflow and wall boundaries, stress free at the radial
and axial outlet boundaries, and symmetry boundary conditions on the central axis. These symmetry



conditions ensure continuity of the three-dimensional perturbations and are given as

Oty = ur= ug=0if m =0,
Uy = Opttyr = Orug = 0 if |m| =1, (14)
Uy = uUr = up = 0 else.

Once the system is discretised and projected onto finite elements, the SVD is not computed directly.
Indeed there is an equivalence between the SVD of R and the classic diagonalisation of R W , R, W,

being the matrix of weights associated with the Hermitian product of response modes <Q(i),gu )> =

P
YO W W = 5t This gives
R = Zo(i)y(i)é(i)H & RTW R = Zg(i)QQ(i)?(i)H. (15)
This allows for the formulation of an eigenvalue problem for the leading eigenpair
HpH H pH
R"W R RY"W R
o2 = max?—:H :w:é, gzﬁ(l) = arg max*(b—:H :w:Q (16)
e ¢ Weo - ¢ 9" Wso

This formulation handles the specificity of cylindrical coordinates in the mass matrices W ,, and W 4
as well as inside the operator V.. o o

Weights can also be introduced in matrices B and W .. Having B go to zero in a region in space is
equivalent to preventing this region from being forced in relations (11). Since that region is still accounted
for in W 4, this leads to a range of the forcing vector ¢ that has no influence in the numerator of equation
(16), but increases the denominator. Therefore, the eigenvalue solver will always set the forcing in that
region to zero.

Similarly, having W ,, go to zero for a region in space prevents response from affecting the numerator
of equation (16), removing any incentive for forcing that would lead to structures there. 1) and ¢ live
in identical spaces, so the only added value of considering different weighting matrices EJ and ﬁd, is
this option of constraining response modes. o o

In the following, B was forced to zero for the top left of the domain to prevent spurious forcing
exploiting base flow interpolation defects in the radial far field. In other words, forcing was constrained
to the lower part of the domain for numerical reasons.

The FEniCSx library alone proved insufficient to perform the eigenvalue calculations required by the
resolvent method detailed in section 2.3.1. Thus the PETSc library of [5-7] was used. The parallel version
of this library developed in [65] was especially useful. PETSc was accessed through the petscdpy package
published in [14].

In practice the factorization of the L operator was performed using MUMPS [3, 4] and the eigenvalues
were retrieved using the Krylov-Schur solver implemented in SLEPc, see [26, 55]. Computations were
run on thirty-five Intel(R) Xeon(R) Gold 6240Y CPUs running at 2.60 GHz with a consistent absolute
tolerance of 7 = 107 '2. The complete code is available on GitHub under a GPL-3.0 license.

3 Results

3.1 Flow behaviour with increasing swirl

Figure 5 represent the evolution of the dominant gains ¢(!) as a function of Strouhal number St = wR/7U
for different azimuthal wavenumbers m. Each plot was made for a different swirl intensity S.

As expected, introducing swirl breaks axisymmetry in equations (11). Hence, perturbation equations
are no longer invariant with respect to the transformation 6 <» —6. Therefore, curves of constant |m/| no
longer collapse on each other. Recall relation (10) which leads to

YmeNVSeR, lim o = lim o% | | (17)
St—0+t S St—0t S
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Figure 5: Gains as a function of Strouhal number for different values of S and m

and this behaviour is readily visible on figure 5. Also note that the gains generally become more damped
as |m| increases, which may be attributed to viscous damping acting on smaller-scale structures.

The implementation chosen in section 2.3.2 allows for exploration of very low Strouhal numbers,
where strong amplification is observed at high swirl. Because of the boundary conditions detailed in 2.1,
increasing S amounts to increasing Uy while keeping U, constant at the nozzle inlet. Hence, a higher
swirl intensity means that the base flow has more kinetic energy and stronger shear, both of which may
be leveraged by perturbations to achieve increased amplification at higher S values.

However, comparing S = 0 to S = 1, the base flow structure is very similar, the base flow kinetic
energy has less than doubled by introducing swirl, and the strength of the additional azimuthal shear
component 0,.Uy at S = 1 is roughly equivalent to the axial shear 0,.U, already present at S = 0.
Yet figure 5 indicates that this change in S causes a gain increase of almost two orders of magnitude.
Therefore, the dependence of ¢! on swirl intensity is highly nonlinear at low frequencies. Hence, it
seems likely that a new amplification mechanism absent in non-swirling jets comes into play as swirl is
increased. This idea will be investigated further below.

3.1.1 Influence of swirl on the m = 0 and m = £+1 modes

First of all, the axisymmetric behaviour does not substantially change with S. KH modes at m = 0
dominate flow behaviour for frequencies St > 0.5 in the absence of swirl on figure 5a. This is expected,
as m = 0 leads to the highest gains for pure 0,U, shear in two dimensions as established in [16] by local
temporal stability analysis. When swirl is introduced, the m = 0 curve and associated structures become
overtaken by other azimuthal wavenumbers m > 0 at high frequencies St > 1.

This could be because KH instabilities as described in [21] again in a local temporal stability frame-
work are growing along flow streamlines. A m = 0 mode is invariant along the e, direction and incapable
of evolving azimuthally along streamlines tilted by the presence of Uy. Therefore, it is impossible for
a linear axisymmetric perturbation to leverage azimuthal KH, no matter the frequency regime. Hence,

oy

1

Im|=0
Im|=1
Im|=2
Im|=3
Im|=4

Im|=0
m|=1
Im|=2
|m|=3
|ml=4



we suggest that the optimal gains for the nonaxisymmetric modes overtake the optimal gain of the ax-
isymmetric mode in the swirling regime at high frequencies because nonzero wavenumbers are able to
leverage azimuthal KH for energy transfer and thus become more amplified.

The gains of the bending modes |m| = 1 separate for non-zero swirl as all |m| > 0 modes do, but
these apparently do not undergo radical change as S increases. Figure 5 seems to imply a phenomenon
not unlike Doppler shift, with a m = 1 curve shifting into the high frequencies, and the m = —1 curve
into the low frequencies with a slight additional amplification relative to overall swirl intensity.

Some modal analyses instead highlight increasing amplification of axisymmetric and spiral modes
with swirl. [37] find that the m = 0 mode is the most amplified in their local analysis. [29-31, 50] all
compute the m = —1 mode taking over the axisymmetric KH mode as swirl increases and eventually
leading the way to instability for a swirling jet.

Finally, [17, 21] both argue that an infinite wavenumber has optimal gain as swirl increases, though
the former also concedes this is probably due to the choice of an infinitely thin shear layer.

Recall from section 1 that all the authors above perform local temporal stability analysis, which
includes a parallel flow assumption. The formalism of [50] is also based on local spatial stability analysis,
but only weakly non-parallel. As stated in 2.3.1, there are significant differences between this approach
and the one pursued here, which could explain the disparity between results.

The ‘rebound’ of gains around St = 0 on figure 5 for the axisymmetric mode that persists for different
values of S is apparently associated with an interaction of the computed response with the nozzle wall.
This will be discussed further in section 3.3.

3.1.2 Influence of swirl on the |m| > 1 modes

Figure 5 features a spectacular amplification of modes with |m| > 1 at low Strouhal numbers, especially
for m < —1. Indeed, the gains obtained in this regime become even larger than the maximum of the
axisymmetric mode at St ~ 1 traditionally associated with KH waves. The phenomenon persists up to
the highest wavenumber studied |m| = 5, but wears off around St ~ 1.

Even before looking at the mode structure in detail, this increased amplification of low St |m| > 1
modes points to the LU mechanism as detailed in [49, 52] in a resolvent formalism. This phenomenon,
which exploits shear to create streaks, is expected to play an important role in flow physics for |m| > 1
and low St according to the mechanism map of [52].

This amplification discrepancy is even more dramatic and longer lasting for m < 0, or counter-rotating
modes. This is not a new result. A regime of swirl intensity where such modes are amplified has already
been seen by [22, 29, 32, 33, 36, 38, 50]. Authors present different results when quantifying growth rates,
but the simple persistence of counter-rotating modes for the variety of base flows considered, from the
Batchelor vortex to experimentally-fitted profiles, does suggest some degree of generality. Of course, the
differences between the local temporal stability analysis results of these works and the global resolvent
analysis outlined in section 2.3.1 still apply.

Similar preference for m < 0 can also be found in the resolvent analysis conducted by [46] for a
coaxial jet, whose gain curves on their figure 10 bear striking resemblance to figure 5. The study by
Montagnani et al. is very similar to the current case, though it was performed at a significantly lower
Reynolds number, and for a co-axial jet.

Finally, experimental evidence of a double spiral in a swirling turbulent jet can be found in [10, 20,
22, 35, 50], where double spiral counter-rotating co-winding structures plays a key role, especially around
conical vortex breakdown. These structures were extracted from the flows through a variety of techniques
from hot wire probes to dye visualisations.

3.1.3 Low rank behaviour

For reduced order modelling, it is desirable to have a large gain separation o) > o2 for each m over
a wide range of St, as established in [9]. Figure 6 shows large gain separation throughout the range of
Strouhal numbers considered for m = —2, and this behaviour is representative of the gain separation
for all m at similar S values. It is remarkable that this separation remains large at low frequencies, as
straight (non-swirling) jets exhibit less gain separation, and, thus, higher-rank behaviour, at low St as
seen in [57].
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Figure 6: Three first gains as a function of Strouhal number for (S, m) = (1, —2)
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Figure 7: 3D isocontours at 10% for (5, St) = (1,0.004),m € {—2,2}. Axial forcing gzbgcl) is in cyan-
yellow, response g(cl) in blue-red. The black arrows represent main baseflow velocity components, the

nozzle is in transparent black.

As established in [9], the optimal response mode 1/1(1) is the best single rank approximation of fluc-
tuation energy. Because of the large gain separation observed, it is reasonable to represent energetically
significant dynamics around the base flow using only a single mode pair ¢(1) and l/J(l) for every m and
St, which is equivalent to reduced order modelling of the flow. B a

3.2 Most amplified modes

The focus of our study naturally lands on the most amplified response mode, located at (S, m,St) =
(1,—2,0.004), the highest peak of figure 5d. This 3D co-rotating mode is depicted in figure 7a alongside
its oppositely-rotating m = 2 counterpart. For each, isosurfaces of axial forcing and of velocity response
are shown at 10% of their respective maximum values.

From figure 7a, it is apparent that both double-spiral modes wind in the same direction in space,
despite rotating in opposite directions. Nonetheless, the modes wind with a very different pitch. They
bear close resemblance to modes exhibited in [15], more specifically figure 11 and 12, which present co-
rotating |m| = 1 and counter-rotating |m| = 2 structures respectively. Interestingly, these structures
persist in this study at much higher swirl and exhibit the same basic features as figure 7. Douglas et
al. [15] computed these modes using global temporal stability analysis and numerical continuation at a
much higher swirl number than S = 1 considered here, which could be an indication that these structures
are self-sustaining.

3.2.1 The role of the lift-up mechanism

The forcing for |m| = 2 is extremely localised to the nozzle lip and very similar in appearance. Wrapped
around the nozzle, it acts in the region with the highest axial and azimuthal shear. The forcing mode
envelope ends at x = 0 whereas the response picks up from x =~ 4 onward.

Therefore, extremely localised forcing at the nozzle produces a very large downstream response. The
lack of any significant overlap between the forcing and response modes is a characteristic of convective
instabilities captured by resolvent analysis. The absence of overlap also points to a non-modal amplifica-
tion mechanism linked to the non-normality of the linear operator that can not be accurately reproduced
by local temporal stability analysis.

At this point, a closer look was taken at specific amplification mechanisms. The sensitivity analysis
performed in [52] was considered inapplicable here. Even though this concept was developed for the study
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Figure 9: Forcing Q(l) at the nozzle for (S, m, St) = (1,—2,0.004).

of turbulent jets with resolvent analysis, the introduction of a wall gives strong incentive for the optimal
forcing to exist close to the wall where shear is strongest, and for the optimal response to evolve far
from it, where it has room to grow and expand via convective instability. This leads to marked spatial
separation of forcing and response for much of the parameter space, and the sensitivity analysis presented
in [52] was expected to produce little insight here.

Separation between the locations of forcing and response is also a defining trait of the LU phenomenon,
where forcing leads to streak formation further downstream in the flow. Figure 8 shows a slice of the
forcing vectors superposed over contours of the axial response. As expected, the forcing ¢ is found to pick
up fast-moving fluid from inside the nozzle r < 1 and ‘lift’ it up. This fast moving flow induces strong
axial velocity fluctuations, as visible in figure 8. In contrast to the usual LU mechanics in the flow over
a flat plate established in [18], there are no prominent ‘roll’ vortex structures visible in our results.
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The presence of LU can be further investigated by studying the forcing at the nozzle in detail. On
figure 9 one can see forcing structures tightly wrapped around the nozzle, especially focused at its tip,
leading to a clear LU effect where the gradients of the base flow are strongest. The presence of LU
and streaks in non-swirling jets was established in [49] using both experimental data and the resolvent
method. LU was also listed as a dominant mechanism at low frequency for all |m| > 1 in [52] also using
resolvent analysis. Therefore, the presence of the same LU mechanism in a swirling jet at low frequencies
is expected, at least for small swirl. It seems to persist all the way to S = 1.

This explains why |m| = 1 or m = 0 modes appear less amplified than higher |m| modes at low
frequency on figure 5. Indeed, an m = 0 incompressible mode cannot generate a streak, and a |m| =1
streak breaks base flow axisymmetry, preventing it from growing. Therefore, we find it unlikely that these
modes are produced predominantly by the LU mechanism.

Indeed, looking back on figure 7b, the m = 2 mode bears close resemble to a pure streak, as in figure
5 of [52] or figure 9 of [49], who both find streaks in straight jets using resolvent analysis. However, the
presence of LU does not explain why modes with m < 0 are so much more favoured over m > 0 ones, or
the presence of a such a marked frequency peak at very low frequency.

3.2.2 About other amplification mechanisms

The tilted structure of the optimal forcing below and above the nozzle visible on figure 9a is suggestive
of the Orr amplification mechanism. This mechanism causes amplification by allowing a structure tilted
against the base shear to leverage its straightening by the flow’s shear such that it grows in a transient
manner. According to [52], this phenomenon is also significant at low frequency, particularly for m = 0
modes.

In this study, amplification by the Orr mechanism is expected to be present across the parameter
space, but observed dominating only in a restricted regime of axisymmetric modes at low frequency. The
forcing mode displayed on figure 9a is noticeably more tilted than in [52] where its angle to the mean
shear was about 45°. This can be related to the significantly thinner shear layer of the current case as
illustrated in section 2.1.

‘Pure’ Orr-type modes are also expected to have a response which changes tilting orientation along
x as in [24, 34]. The latter study uses resolvent analysis to delve into the details of the Orr mechanism,
notably characterising it as a non-modal phenomenon that temporal stability analysis therefore cannot
capture. The most amplified mode visible on figure 7 does not display the main trait associated with a
‘pure’ Orr response, namely tilted structures straightening as x increases.

[36] mentions interactions between inertial waves and KH modes as a phenomenon that could occur at
low frequencies in parallel jet-type swirling flows. In such circumstances, this interaction has a stabilising
effect on m > 0 modes. It is well possible that long-range feedback through inertial waves may play a
role in our results, but it is not obvious at this point how such effects could be rigorously identified.

KH instabilities may also explain the enormous gain values observed in figure 5. It is easier to think
about KH instabilities in the context of a parallel flow. Writing U = U, (r)e,, + Up(r)e, and periodicity,
it becomes possible to write

g(gj’ T, 9, t) = Z / / Qk . w(r)ei(km—i-me—wt) + QZ . w(r)ei(“t_me_km)dkdw. (18)

m=—0oo

instead of equation (9). One can then define a wavevector A = ke, + me, for the fluctuations and a
principal shear vector ¥ = 0,Ue, + 0, (Ug/r)ey for the base flow.

In this simplified context, consider a cylinder of constant radius r. It is possible to see this cylinder
as the interface between two fluids of velocity U(r~) and U(r*). Instabilities on this surface may be
studied in the U — ¢, plane. Neglecting curvature, one recovers the result of [21] extrapolated from [16]
that the instability growth rate of the KH instability on the cylinder surface scales as A - X.

This scalar product may also be derived directly from the phase of the fluctuations along base flow
streamlines

¥ = kx + mb — wt. (19)
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By itself, the phase is not informative of fluctuations’ behaviour. Taking the derivative of relation
(19) with respect to time yields the Doppler-shifted frequency

U,
v =kU, + m7€ —w. (20)

This quantity appears in [11, 12, 27, 31] and iy is called Doppler-shifted growth rate in [11] for a
complex w. Taking its derivative in the radial direction gives

O,y = kd, Uy + md, (Ze) =0y=AX (21)

It is proposed to use the dot criterion A - ¥ as an indicator of the presence of shear instability.
Coincidentally, this product is also relevant to C instabilities. The existence of an rg so that A-X(rg) =0
is a sufficient condition for C instability in [31, equation (5.6)].

Although limited to the large wavenumber limit, this result appears again in [22], where it is also
argued that for a viscous swirling jet with weak co-flow an m = —2 spiral is expected to become absolutely
unstable first. Its derivation in that work involves a Doppler-shifted frequency and looking for a stationary
wave in the regime [|A]| > 1. The same product appears again at leading order in the Wentzel-Kramers-
Brillouin (WKB) analysis of [11] also in the large wavenumber approximation (equation (3.8)). At first
order, it would appear that the two mechanisms of KH and C work against each other.

However, for a pure LU mode, we also expect to have A - ¥ = 0. Indeed, considering a non-swirling
flow where ¥ = 0,U,e,, and an idealised response made purely of very long streaks. The existence of
LU means |m| > 0 and very long streaks mean k& — 0 which also leads to A - X. Therefore, there is no
equivalence between a zero dot criterion and a C instability. Indeed, it is only a sufficient condition for
its presence.

Of course, the method presented in section 2.3 is not local. So in order to exploit the dot criterion k
must be approximated. Here, this is done using

PP (“) . (22)

YUy

The dot criterion exhibited in equation (21) was computed and averaged over the envelope of the
modes. This envelope was defined as the area where the square of mode amplitude ||u||* = |ug|? + [ur|> +
|ug|? was above ten percent of its maximum value. Taking this region as A and its surface area as A(A),
the quantity of interest becomes mode alignment

1 A-X
Y= A4 /A T (23)

In the case (S, m, St) = (1,—2,0.004), x ~ 10~3. Based on this very small alignment with base shear,
we conclude that the observed dramatic amplification at low Strouhal numbers is not a KH instability,
but that it could be a C one.

X is visible on figure 10 for a broader range of the parameter space. Overall, the alignment increases
with St. This increase is expected as KH becomes the dominant mechanism for driving instability at
high frequency. Conversely, x remains low in a narrow regime around zero frequency, which is the region
where lift-up is expected, and C could exist. This region of low alignment seems to narrow sharply as swirl
intensity S increases. Likewise, gains around St = 0 on figure 5 peak for a narrow range of frequencies
as S increases.

Evolution of alignment relative to S is pretty straightforward in the m = 2 case, with region of low
alignment growing with swirl. Behaviour for m = —2 is less intuitive, with KH instabilities quite quickly
taking over all the way to St &~ 0.75 up to S = 4. At higher S, there seems to be a valley forming,
with KH receding in the high frequency, high swirl regime. This is the only region where the previous
observation that y increases with St is shown wrong.

This pattern is consistent with the gains on figure 5 when associating variations of x and o).
Extremes of alignment correspond to a perturbation that could be understood as making the most of
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Figure 10: Contour of averaged wavenumber-principal shear relative alignment x as a function of swirl
intensity S and Strouhal number St for m € {-2,2}.
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Figure 11: Axial component of the response wS) for (S, m, St) = (0,2,0)

the C or KH amplification mechanism, and show on the gain curves as peaks. Indeed the peak around
St ~ 1 visible on figure 5d for m = —2 traditionally associated to KH seems to shift towards St ~ 0.5 as
S increases, which is also the case on the alignment map.

Therefore, even if the magnitude of x does not directly translate into a gain, it teaches us some-
thing about their structure and the mechanism leveraged. Hence, obtaining the most amplified mode
throughout the parameter space (S, m, St) = (1,—2,0.004) at an alignment minimum is consistent with
the relevance of y as a mechanism discriminator, and with the witnessed amplification not being a KH
instability.

3.3 Outer mode

Another point in the parameter space worthy of attention is the low end of figure 5a for |m| > 1. The
choice of m = 2 makes for easier comparison with the modes of section 3.2. Isocontours of this mode are
displayed on figure 11a.

3.3.1 Shear outside the nozzle

The response is strongly concentrated on the radial exterior of the nozzle, latched onto a region of slow
moving fluid. It is not allowed to wind or rotate because of the parameter St = 0 — it has to remain
steady. This behaviour persists for all S. This is a new result - previous calculations comparable to this
one such as [46, 52| did not include a nozzle inside the computational domain and thus could not observe
these dynamics.

It turns out that the base flow located radially outside of the nozzle is subject to gradients that are
about ten times less intense than those inside the nozzle, see figure 12a. It seems these gradients close to
the wall are not entirely generated by the coflow but rather by the significant entrainment induced by
the jet visible on the streamlines of figure 12b. This contraction leads to a rapid radial increase in axial
velocity radially-outside of the nozzle, and therefore strong shear. Indeed, there is evidence of LU in the
forcing structure on the outer edge of the nozzle, see figure 13, with vectors roughly orthogonal to the
baseflow streamlines visible on figure 12a.

In the end, the overall slower pace of convection on the outside of the nozzle could also play to the
advantage of LU, since forcing mechanisms there have more time to “build-up” streaks before they get
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(a) Baseflow velocity norm at = —0.01 (b) Streamlines

Figure 12: Baseflow visualisations on top of the nozzle

~
\
\
\
\
\
\
¥
S

4
\J
Al
Al
v
]
v
v
¥

!

-10 0.5 oo
x

T
Figure 13: Forcing vectors [qﬁ&l) 5})} atop the nozzle for (S, m, St) = (0,2,0).

advected away in comparison to structures inside the nozzle. Note that contrary to the structures studied
in section 3.2, here the forcing and response modes are co-located.

This phenomenon also explains the “rebound” of axisymmetric gain curves around St = 0 regardless
of swirl intensity observed on figure 5. Since structures in this regime appear fixed on top of the nozzle
where they are able to leverage KH, they are unaffected by swirl inside it.

3.3.2 Spread-out streaks

Another clearly visible feature of this mode are the streaks created in the shear layer. Figure 11a presents
a response concentrated on top of the nozzle, but also a diffuse, weak component of the response that
exists throughout most of the shear layer. This should not be a surprise, as the LU mechanism detailed
in section 3.3.1 is known to produce streaks. These structures are expected to be formed on top of the
nozzle, but manifest downstream. In this process, the streaks are spread over the whole shear layer.

In order to measure the importance of these streaks in the final gain, the response mass matrix W ,
of equation (16) was weighted to only consider response in the region z > 1 and an extra resolvent
calculation was performed for the same parameters. This process yields figure 11b, which is very similar
to 1la.

Therefore, the streaks generated downstream are energetic — or simply spread out — enough to secure
the most amplified position on their own, overtaking other structures without the need for the energy
located around the nozzle. Moreover, the structure external to the nozzle is damped but not fully removed
after the penalisation. This is significant because by relation (16), such a structure does not directly
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contribute to the gain yet still costs energy to produce. It seems that the outer structure is essential to
the creation of the streaks, otherwise it would not have survived the weighting process.

The modes only tell part of the story. Between the two modes on figure 11, who are associated to
different operators, there is a gain variation of about sixteen percent. Thus, the smeared streaks play a
significant role in the overall gain even if at any given point in the shear layer their amplitude do not
compare to the outer nozzle structures.

4 Conclusion

This study presented a resolvent analysis of a turbulent swirling jet. In section 2.2, the computation
process for the base flow and its associated eddy viscosity was detailed. The use of an open source solver
proved critical to achieve the desired Reynolds number of Re = 200, 000. Section 2.3 briefly reviewed the
theory behind the resolvent analysis method and its implementation for this study. The latter is available
online via the lead author’s private repository.

The method yielded two significant results. Firstly, strong gain separation and significant amplification
of low frequency structures were noted in section 3.1 as swirl increased, which was explained by a
detailed study of the most amplified mode in section 3.2. The associated coherent structure was very
large, taking almost all the shear layer, and manifested some distance away from the nozzle. This double
spiral co-winding counter-rotating mode is amplified by a combination of the lift-up mechanism, the
Orr mechanism, and a strong centrifugal mechanism. As a response mode, this structure cannot arise or
survive without sustained forcing at the nozzle.

A criterion based on relative alignment of perturbation wavenumber and principal shear direction was
presented to discriminate between Kelvin-Helmholtz and centrifugal instability mechanisms. This crite-
rion shed a new light on the gains exhibited in section 3.1 by allowing for easier isolation of regimes where
shear or centrifugal instabilities dominates. Furthermore, the co-winding nature of the most amplified
mode was justified by this criterion, naturally explaining the larger amplification for counter-rotating
modes as a consequence of advection.

The second result of import coming from the resolvent analysis of the turbulent swirling jet considered
comes from the choice to include a finite height nozzle inside the computational domain. This leads at
zero frequency and in the absence of swirl to a most peculiar behaviour studied in section 3.3. This
structure latched outside the nozzle, using entrainment as a source of shear to produce streaks that
extend throughout the shear layer from the nozzle tip. Contribution of these streaks to gain was shown
to be significant.

Amongst the drawbacks of the proposed approach, how much the choice of the Spalart-Allmaras eddy
viscosity model in section 2.2 influenced the final result remains unknown. Its inclusion in the fluctuations
has been shown to improve performance relative to its absence in many cases, but such improvement is
not theoretically guaranteed.

Future work on the subject could try to reproduce behaviours presented here by experimental or nu-
merical means other than local temporal stability analysis. The interplay between Kelvin-Helmholtz and
centrifugal instabilities could be explored in more detail, as the influence of inertial waves. A sensitivity
analysis, or a more detailed modal one, could prove useful in differentiating the mechanisms at play here.
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Appendix A Validation case

In this section results from the developed code will be compared to known publications. The emphasis
here is therefore proving the validity of design choices outlined in sections 2.1, 2.2.1 and 2.3.2, not
introducing new phenomena. To increase confidence in our model, reproductions of figure 3.(a) and 7.(a)
of [44], as well as figure 6.6 from [23] were made. They will not be discussed here for the sake of brevity.

The case considered instead is closer to the one described in section 2.1, namely the non-swirling jet
based on [52]. To better compare with the reference, the nozzle was cut out and calculations performed
on z € [0;49]. Figure Al is to be compared with figure 4(b) of that work. This graph differs notably from
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https://github.com/hawkspar/spy.git

its reference - gains are lower than expected, the peak of the m = 0 curve happens at a higher frequency,
and the other curves have a marked increase before the expected monotonic decrease.
However, there are several points where our model substantially differs from the reference :

® Base flows come from different methods - one is the result of a LES calculation, the other a RANS
process,

® Eddy viscosity models also differ, one being a length scale model and the other being the SA model -
even though qualitatively similar, they vary by about a factor three.
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Figure A1l: Squared gains as a function of Strouhal number for a variety of azimuthal wavenumbers
with no nozzle

A qualitative comparison of response and forcing modes was also done on figure A2, which is to be
compared to figures 9(b) and (c) of [52]. These structures are qualitatively very close to the reference,
though somewhat shorter. This is probably due to a difference in the eddy viscosity used, which leads
to different localised damping. It can be observed that the eddy viscosity used in this study steadily
increases with = whereas that of [52] peaks and eventually decays.
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Appendix B Mesh refinement

As part of the validation process of the code used in this work, convergence with respect to mesh
refinement was verified. In the usual manner, a very refined mesh was taken as reference, and it was
checked that results do converge quite quickly to the fine mesh as the number of elements increases, see

figure B3.
1 1
095 095
09 09
0.85 0.85
08 08
075 075
07
8065 § 07
2 0s 2o6s
9055 9 06
g 05 £055
2045 2 05
3 04 8045
2035 2 04
0022 035
: 03
02
0.15(—1.7M 025750k
0.11—™M 0.2{—600k
—600k —1.7M )
008 a0k 0'01“:’ —1M 005

0 01 02 03 04 05 06 07 08 09 1 1.1
r

0O 02 04 06 08 1 12 14 16 18 2 15 2 25 3 35 4 45 6
r

(a)z=1+c¢ (b) z=10 (¢) x=20

Figure B3: Velocity magnitude for a variety of slices at different number of elements
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