SUPPLEMENTARY MATERIALS: MULTI-AGENT SEQUENTIAL LEARNING VIA GRADIENT ASCENT CREDIT ASSIGNMENT

Oussama Sabri University Medical Center Hamburg-Eppendorf (UKE) Hamburg, Germany o.sabri@uke.de

Luc Lehéricy Laboratoire JAD, CNRS Université Côte d'Azur (UCA) Nice, France luc.lehericy@univ-cotedazur.fr

Alexandre Muzy Laboratoire I3S, CNRS Université Côte d'Azur (UCA) Sophia Antipolis, France alexandre.muzy@univ-cotedazur.fr

1 Simulation environment and parameters

1.1 Simulation environment

We describe the simulation environment realized in this paper. All the Monte Carlo simulations were performed over $N = 30$ realizations, using the pseudo-random number generator Mersenne Twister from of library numpy 1.11.1, with seed = 748596. Each realization, indexed by $r \in [N]$, at episode $e \ge 1$, produces $Y^{(e),[r]}$ for any variable Y. Therefore, the mean and the standard deviation of Y over the realizations is given as

$$
\forall e \ge 1 \longmapsto \overline{Y}^{(e)} = \frac{1}{N} \sum_{r=1}^{N} Y^{(e),[r]} = \text{mean} \Big(\big(Y^{(e),[r]} \big)_{r \in [N]} \Big),
$$

$$
\forall e \ge 1 \longmapsto \sigma_Y^{(e)} = \text{SD} \Big(\big(Y^{(e),[r]} \big)_{r \in [N]} \Big).
$$

N

The confidence interval at episode e is given as follow

$$
\left[\overline{Y}^{(e)} - c \frac{\sigma_Y^{(e)}}{\sqrt{N}}, \overline{Y}^{(e)} + c \frac{\sigma_Y^{(e)}}{\sqrt{N}} \right],
$$

where $c \approx 2.045$ is the 97.5th percentile of a student's t-distribution of degree of freedom $N - 1 = 29$.

1.2 Parameters

We recall the parameters used in the simulation results.

1.2.1 Permutation sampling

In Sec. 5.1, we have considered $n = 12$ machines and agents, a constant learning rate $\alpha = 0.01$ and a total number of 15 \cdot 10⁴ episodes. For the first case, the target order τ^* was drawn randomly, whereas in the second case, $\nu_{t,i}$ was drawn from a normal distribution with zero mean and unit variance *i.e.*, $\mathcal{N}(0, 1)$.

1.2.2 Permutation and action sampling

In Sec. [5.2,](#page-0-0) we have considered $n = 9$ machines and agents, each machine has $k_i \in [1, 7]$ action(s). Two learning rates were used: write α_β the learning rate used to update the permutation credit β and α_θ the one used to update the action credit θ . We considered the following: $\alpha_{\beta} = \frac{\alpha_{\beta}}{n}$ $\frac{dv}{n}$. In all simulations, we considered a constant learning rate, with $\alpha_{\theta} = 0.01$. For all $(t, i) \in [n]^2$ and $a \in [k_i]$, $\nu_{t,i,a}$ is sampled from a normal distribution $\mathcal{N}(\mu_{i,t}, 1)$ with mean $\mu_{t,i}$ and unit variance, where $\mu_{t,i}$ is sampled from a uniform distribution $\mathcal{U}[-1,1]$ for all $(t,i) \in [n]^2$.

2 Proofs

2.1 Proof of Theorem [1](#page-0-0)

Let $i \in [n]$. Recall that

$$
\pi \longmapsto \mathbb{E}_{\pi}\big[R^{(1)}\big] = \sum_{\tau \in \mathfrak{S}(n)} \pi\big(\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a}\big)\lambda_{\tau,\mathbf{a}},
$$

where $\lambda_{\tau,\mathbf{a}} = \mathbb{E}[R^{(1)} | \sigma^{(1)} = \tau, A^{(1)} = \mathbf{a}].$ Therefore, for any $u \in \{1, 2\}$ and $v \in \{A, B\}$,

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{u,v}[R^{(1)}]}{\partial \beta_i} = \frac{\partial}{\partial \beta_i} \left(\sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^u(\sigma^{(1)} = \tau) \pi_{\theta}^v(A^{(1)} = \mathbf{a} | \sigma^{(1)} = \tau) \lambda_{\tau,\mathbf{a}} \right),
$$

$$
= \sum_{\tau \in \mathfrak{S}(n)} \frac{\partial \pi_{\beta}^u(\sigma^{(1)} = \tau)}{\partial \beta_i} \mathbb{E}_{\theta}^v[R^{(1)} | \sigma^{(1)} = \tau].
$$

Model 1. Recall that

$$
\pi_{\beta}^{1}(\sigma^{(1)} = \tau) = \prod_{t \in [n]} \pi_{\beta}^{1}(\sigma_{t}^{(1)} = \tau_{t} | \sigma_{1:(t-1)}^{(1)} = \tau_{1:(t-1)}),
$$

$$
= \prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta, \tau_{t}).
$$

So that

$$
\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{i}} = \frac{\partial}{\partial \beta_{i}} \left(\prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta, \tau_{t}) \right),
$$

$$
= \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \left[\sum_{t \in [n]} \frac{1}{\Phi_{\tau_{t:n}}(\beta, \tau_{t})} \underbrace{\frac{\partial \Phi_{\tau_{t:n}}(\beta, \tau_{t})}{\partial \beta_{i}} \right].
$$
(S.1)

Since

$$
(\star) = \frac{\partial \Phi_{\tau_{t:n}}(\beta, \tau_t)}{\partial \beta_i},
$$

\n
$$
= \mathbb{1}_{t \leq \tau^{-1}(i)} \frac{\partial}{\partial \beta_i} \left(\frac{e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} \right),
$$

\n
$$
= \mathbb{1}_{t \leq \tau^{-1}(i)} \frac{\mathbb{1}_{\tau_{t} = i} e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} - \mathbb{1}_{t \leq \tau^{-1}(i)} \frac{e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} \frac{e^{\beta_i}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}},
$$

\n
$$
= \mathbb{1}_{t \leq \tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, \tau_t) (\mathbb{1}_{\tau_{t} = i} - \Phi_{\tau_{t:n}}(\beta, i)).
$$

Eq. [\(S.1\)](#page-1-0) becomes

$$
\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{i}} = \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \Biggl(\sum_{t \in [n]} 1_{t \leq \tau^{-1}(i)} \Bigl(1_{\tau_{t} = i} - \Phi_{\tau_{t:n}}(\beta, i) \Bigr) \Biggr),
$$

$$
= \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \Biggl(1 - \sum_{t=1}^{\tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, i) \Biggr).
$$

Therefore, for any $v \in \{A, B\}$, the gradient of the objective function is

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{1,v}[R^{(1)}]}{\partial \beta_i} = \sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^1(\sigma^{(1)} = \tau) \left(1 - \sum_{t=1}^{\tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, \tau_t)\right) \mathbb{E}_{\theta}^v[R^{(1)} | \sigma^{(1)} = \tau],
$$

$$
= \mathbb{E}_{\beta,\theta}^{1,v} \left[\left(1 - \sum_{t=1}^{\sigma^{(1)}^{-1}(i)} \Phi_{\sigma_{t:n}^{(1)}}(\beta, i)\right) (R^{(1)} - B^{(1)}) \right],
$$

for any random variable $B^{(1)}$ that is independent of $\sigma^{(1)}$ under π^1_β .

Model 2. In this case,

$$
\pi_{\beta}^{2}(\sigma^{(1)} = \tau) = \prod_{t \in [n]} \pi_{\beta}^{2}(\sigma_{t}^{(1)} = \tau_{t} | \sigma_{1:(t-1)}^{(1)} = \tau_{1:(t-1)}),
$$

$$
= \prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta_{t}, \tau_{t}).
$$

Hence,

$$
\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{t,i}} = \frac{\partial}{\partial \beta_{t,i}} \left(\prod_{l \in [n]} \Phi_{\tau_{l:n}}(\beta_l, \tau_l) \right),
$$
\n
$$
= \prod_{\substack{l \in [n] \\ l \neq t}} \Phi_{\tau_{l:n}}(\beta_l, \tau_l) \underbrace{\frac{\partial}{\partial \beta_{t,i}} \Phi_{\tau_{t:n}}(\beta_t, \tau_t)}_{(\star)}.
$$
\n(S.2)

Since

$$
(\star) = \frac{\partial}{\partial \beta_{t,i}} \Phi_{\tau_{t:n}}(\beta_t, \tau_t),
$$

\n
$$
= \frac{\partial}{\partial \beta_{t,i}} \left(\mathbb{1}_{i \in \tau_{t:n}} \frac{e^{\beta_{t,\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}} \right),
$$

\n
$$
= \mathbb{1}_{i \in \tau_{t:n}} \left[\frac{\mathbb{1}_{i = \tau_t} e^{\beta_{t,\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}} - \frac{e^{\beta_{t,\tau_t}} e^{\beta_{t,i}}}{\left(\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}\right)^2} \right],
$$

\n
$$
= \Phi_{\tau_{t:n}}(\beta_t, \tau_t) \left(\mathbb{1}_{i = \tau_t} - \Phi_{\tau_{t:n}}(\beta_t, i) \right).
$$

Eq. [\(S.2\)](#page-2-0) becomes

$$
\frac{\partial \pi_{\beta}^{2}(\sigma^{(1)} = \tau)}{\partial \beta_{t,i}} = \pi_{\beta}^{2}(\sigma^{(1)} = \tau) \Big(\mathbb{1}_{i=\tau_{t}} - \Phi_{\tau_{t:n}}(\beta_{t}, i)\Big).
$$

Therefore, for any $v \in \{A, B\}$, the gradient of the objective function is

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{2,v}[R^{(1)}]}{\partial \beta_{t,i}} = \sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^{2}(\sigma^{(1)} = \tau) \Big(\mathbb{1}_{i=\tau_{t}} - \Phi_{\tau_{t:n}}(\beta_{t},i) \Big) \mathbb{E}_{\theta}^{v}[R^{(1)} | \sigma^{(1)} = \tau],
$$

$$
= \mathbb{E}_{\beta,\theta}^{2,v} \Big[\Big(\mathbb{1}_{i=\sigma_{t}}^{(1)} - \Phi_{\sigma_{t:n}}^{(1)}(\beta_{t},i) \Big) \Big(R^{(1)} - R^{(1)} \Big) \Big],
$$

for any random variable $B^{(1)}$ that is independent of $\sigma^{(1)}$ under π_{β}^2 .

.

2.2 Proof of Theorem. [2](#page-0-0)

For any $u \in \{1, 2\}$ and $v \in \{A, B\}$,

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{u,v}[R^{(1)}]}{\partial \theta_x} = \frac{\partial}{\partial \theta_x} \Biggl(\sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^u (\sigma^{(1)} = \tau) \pi_{\theta}^v (A^{(1)} = \mathbf{a} | \sigma^{(1)} = \tau) \lambda_{\tau,\mathbf{a}} \Biggr),
$$

$$
= \sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^u (\sigma^{(1)} = \tau) \frac{\partial \pi_{\theta}^v (A^{(1)} = \mathbf{a} | \sigma^{(1)} = \tau)}{\partial \theta_x} \lambda_{\tau,\mathbf{a}}.
$$

Model A. In this case, for any $i \in [n]$ and $a \in [k_i]$,

$$
\frac{\partial \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} | \sigma^{(1)} = \tau)}{\partial \theta_{i,a}} = \frac{\partial}{\partial \theta_{i,a}} \left(\prod_{j \in [n]} \pi_{\theta}^{A}(A_j^{(1)} = a_j | \sigma^{(1)} = \tau) \right),
$$

$$
= \left(\prod_{\substack{j \in [n] \\ j \neq i}} \pi_{\theta}^{A}(A_j^{(1)} = a_j | \sigma^{(1)} = \tau) \right) \frac{\partial}{\partial \theta_{i,a}} \left(\frac{e^{\theta_{i,a_i}}}{\sum_{b \in [k_i]} e^{\theta_{i,b}}} \right).
$$

Since

$$
(\star) = \frac{\mathbb{1}_{a_i=a}e^{\theta_{i,a_i}}}{\sum_{b \in [k_i]} e^{\theta_{i,b}}} - \frac{e^{\theta_{i,a_i}}e^{\theta_{i,a}}}{\left(\sum_{b \in [k_i]} e^{\theta_{i,b}}\right)^2},
$$

= $\mathbb{1}_{a_i=a} \Phi(\theta_i, a_i) - \Phi(\theta_i, a_i) \Phi(\theta_i, a),$
= $\pi_\theta^A(A_i^{(1)} = a_i | \sigma^{(1)} = \tau) (\mathbb{1}_{a_i=a} - \Phi(\theta_i, a)).$

Thus,

$$
\frac{\partial \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} \, | \, \sigma^{(1)} = \tau)}{\partial \theta_{i,a}} = \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} \, | \, \sigma^{(1)} = \tau) \big(\mathbb{1}_{a_{i} = a} - \Phi(\theta_{i}, a) \big).
$$

Therefore, the gradient of the objective function is

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{u,A}[R^{(1)}]}{\partial \theta_{i,a}} = \sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} \left(\mathbb{1}_{a_i = a} - \Phi(\theta_i, a) \right) \pi_{\beta,\theta}^{u,A}(\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a}) \lambda_{\tau,\mathbf{a}},
$$

$$
= \mathbb{E}_{\beta,\theta}^{u,A} \left[\left(\mathbb{1}_{A_i^{(1)} = a} - \Phi(\theta_i, a) \right) \left(R^{(1)} - B^{(1)} \right) \right],
$$

for any random variable $B^{(1)}$ that is independent of $(\sigma^{(1)}, A^{(1)})$ under $\pi_{\beta,\theta}^{u,A}$.

Model B. In this case, for any $i, t \in [n]$ and $a \in [k_i]$,

$$
\frac{\partial \pi_{\theta}^{B}(A^{(1)} = \mathbf{a} | \sigma^{(1)} = \tau)}{\partial \theta_{i,t,a}} = \frac{\partial}{\partial \theta_{i,t,a}} \left(\prod_{j \in [n]} \pi_{\theta}^{B}(A_{j}^{(1)} = a_{j} | \sigma^{(1)} = \tau) \right),
$$

$$
= \frac{\partial}{\partial \theta_{i,t,a}} \left(\prod_{s \in [n]} \Phi(\theta_{\tau_{s},s}, a_{\tau_{s}}) \right),
$$

$$
= \left(\prod_{\substack{s \in [n] \\ s \neq t}} \pi_{\theta}^{B}(A_{\tau_{s}}^{(1)} = a_{\tau_{s}} | \sigma^{(1)} = \tau) \right) \mathbb{1}_{\tau_{t} = i} \underbrace{\frac{\partial}{\partial \theta_{i,t,a}} \left(\frac{e^{\theta_{i,t,a}}}{\sum_{b \in [k_{i}]} e^{\theta_{i,t,b}}} \right)}_{(*)}
$$

Since

$$
(\star) = \frac{\mathbb{1}_{a_i=a}e^{\theta_{i,t,a_i}}}{\sum_{b\in[k_i]}e^{\theta_{i,t,b}}} - \frac{e^{\theta_{i,t,a_i}}e^{\theta_{i,t,a}}}{\left(\sum_{b\in[k_i]}e^{\theta_{i,t,b}}\right)^2},
$$

= $\mathbb{1}_{a_i=a}\Phi(\theta_{i,t},a_i) - \Phi(\theta_{i,t},a_i)\Phi(\theta_{i,t},a),$
= $\pi_\theta^B(A_i^{(1)} = a_i | \sigma_t^{(1)} = i)(\mathbb{1}_{a_i=a} - \Phi(\theta_{i,t},a)).$

Thus,

$$
\frac{\partial \pi_\theta^B\big(A^{(1)}=\mathbf{a} \,|\, \sigma^{(1)}=\tau\big)}{\partial \theta_{i,t,a}} = \pi_\theta^B\big(A^{(1)}=\mathbf{a} \,|\, \sigma^{(1)}=\tau\big) \mathbb{1}_{\tau_t=i} \Big(\mathbb{1}_{a_i=a} - \Phi(\theta_{i,t},a)\Big).
$$

Therefore, the gradient of the objective function is

$$
\frac{\partial \mathbb{E}_{\beta,\theta}^{u,B}[R^{(1)}]}{\partial \theta_{i,t,a}} = \sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} 1_{\tau_t = i} \Big(1_{a_i = a} - \Phi(\theta_{i,t}, a) \Big) \pi_{\beta,\theta}^{u,B} \Big(\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a} \Big) \lambda_{\tau,\mathbf{a}},
$$

$$
= \mathbb{E}_{\beta,\theta}^{u,B} \Big[1_{\sigma_t^{(1)} = i} \Big(1_{A_i^{(1)} = a} - \Phi(\theta_{i,t}, a) \Big) \Big(R^{(1)} - B^{(1)} \Big) \Big],
$$

for any random variable $B^{(1)}$ that is independent of $(\sigma^{(1)}, A^{(1)})$ under $\pi_{\beta,\theta}^{u,B}$.

3 Additional figures

3.1 Permutation sampling

Case 1

Figure S.1: The average parameter $(\beta)_i$ on model 2 for each agent t in Sec. [5.1.1.](#page-0-0) Each color/shape corresponds to a machine i.

Figure S.2: $\pi_{\beta^{(e)}}^u(\sigma_t = \hat{\tau})$ for model 1 in (a) and model 2 in (b). $\hat{\tau}$ is obtained as in Eq[.8](#page-0-0) for each model.

Figure S.3: The average parameter $(\beta)_i$ on model 2 for each agent t in Sec. [5.1.2.](#page-0-0) Each color/shape corresponds to a machine i.

Figure S.4: $\pi^u_{\beta^{(e)}}(\sigma_t = \hat{\tau})$ for model 1 in (a) and model 2 in (b). $\hat{\tau}$ is obtained as in Eq. [8](#page-0-0) for each model.

3.2 Sampling permutation and actions

Figure S.5: The average parameter $(\beta)_i$ on model 2A in (a) and model 2B in (b) for each agent t in Sec. [5.2.1.](#page-0-0) Each color/shape corresponds to a machine i.

Figure S.6: $\pi^u_{\beta(e),\theta(e)}(\sigma_t = \hat{\tau})$ for model 2A in (a) and model 2B in (b). $\hat{\tau}$ is obtained as in Eq. [8](#page-0-0) for each model.

Figure S.7: The average parameter $(\theta)_i$ on model 2A in (a) and model 2B in (b) for each machine i in Sec. [5.2.1](#page-0-0) (sorted according to the optimal allocation order τ^*). Each color corresponds to an action $a \in [k_i]$. The red curve represents the best action to be chosen.

Figure S.8: $\pi^u_{\beta^{(e)},\theta^{(e)}}(A_i = a)$ for model 2A in (a) and model 2B in (b).

Figure S.9: he average parameter $(\beta)_i$ on model 2A in (a) and model 2B in (b) for each agent t in Sec. [5.2.2.](#page-0-0) Each color/shape corresponds to a machine i .

Figure S.10: $\pi_{\beta^{(e)},\beta^{(e)}}^u(\sigma_t = \hat{\tau}_t)$ for model 2A in (a) and model 2B in (b). $\hat{\tau}$ is obtained as in Eq. [8](#page-0-0) for each model.

Figure S.11: The average parameter $(\theta)_i$ on model 2A in (a) and model 2B in (b) for each machine i in Sec. [5.2.2](#page-0-0) (sorted according to the optimal allocation order τ^*). Each color corresponds to an action $a \in [k_i]$. The red curve represents the best action to be chosen.

Figure S.12: $\pi_{\beta^{(e)},\theta^{(e)}}^u(A_i = a)$ for model 2A in (a) and model 2B in (b).