SUPPLEMENTARY MATERIALS: MULTI-AGENT SEQUENTIAL LEARNING VIA GRADIENT ASCENT CREDIT ASSIGNMENT

Oussama Sabri University Medical Center Hamburg-Eppendorf (UKE) Hamburg, Germany o.sabri@uke.de Luc Lehéricy Laboratoire JAD, CNRS Université Côte d'Azur (UCA) Nice, France luc.lehericy@univ-cotedazur.fr

Alexandre Muzy Laboratoire I3S, CNRS Université Côte d'Azur (UCA) Sophia Antipolis, France alexandre.muzy@univ-cotedazur.fr

1 Simulation environment and parameters

1.1 Simulation environment

We describe the simulation environment realized in this paper. All the Monte Carlo simulations were performed over N = 30 realizations, using the pseudo-random number generator Mersenne Twister from of library numpy 1.11.1, with seed = 748596. Each realization, indexed by $r \in [N]$, at episode $e \ge 1$, produces $Y^{(e),[r]}$ for any variable Y. Therefore, the mean and the standard deviation of Y over the realizations is given as

$$\forall e \ge 1 \longmapsto \overline{Y}^{(e)} = \frac{1}{N} \sum_{r=1}^{N} Y^{(e),[r]} = \operatorname{mean}\left((Y^{(e),[r]})_{r \in [N]} \right),$$

$$\forall e \ge 1 \longmapsto \sigma_Y^{(e)} = \operatorname{SD}\left((Y^{(e),[r]})_{r \in [N]} \right).$$

The confidence interval at episode e is given as follow

$$\left[\overline{Y}^{(e)} - c\frac{\sigma_Y^{(e)}}{\sqrt{N}}, \overline{Y}^{(e)} + c\frac{\sigma_Y^{(e)}}{\sqrt{N}}\right],$$

where $c \approx 2.045$ is the 97.5th percentile of a student's *t*-distribution of degree of freedom N - 1 = 29.

1.2 Parameters

We recall the parameters used in the simulation results.

1.2.1 Permutation sampling

In Sec. 5.1, we have considered n = 12 machines and agents, a constant learning rate $\alpha = 0.01$ and a total number of $15 \cdot 10^4$ episodes. For the first case, the target order τ^* was drawn randomly, whereas in the second case, $\nu_{t,i}$ was drawn from a normal distribution with zero mean and unit variance *i.e.*, $\mathcal{N}(0, 1)$.

1.2.2 Permutation and action sampling

In Sec. 5.2, we have considered n = 9 machines and agents, each machine has $k_i \in [[1;7]]$ action(s). Two learning rates were used: write α_β the learning rate used to update the permutation credit β and α_θ the one used to update the action credit θ . We considered the following: $\alpha_\beta = \frac{\alpha_\theta}{n}$. In all simulations, we considered a constant learning rate, with $\alpha_\theta = 0.01$. For all $(t,i) \in [n]^2$ and $a \in [k_i]$, $\nu_{t,i,a}$ is sampled from a normal distribution $\mathcal{N}(\mu_{i,t}, 1)$ with mean $\mu_{t,i}$ and unit variance, where $\mu_{t,i}$ is sampled from a uniform distribution $\mathcal{U}[-1,1]$ for all $(t,i) \in [n]^2$.

2 Proofs

2.1 Proof of Theorem 1

Let $i \in [n]$. Recall that

$$\pi \longmapsto \mathbb{E}_{\pi} \left[R^{(1)} \right] = \sum_{\tau \in \mathfrak{S}(n)} \pi \left(\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a} \right) \lambda_{\tau, \mathbf{a}}$$

where $\lambda_{\tau, \mathbf{a}} = \mathbb{E} \Big[R^{(1)} | \sigma^{(1)} = \tau, A^{(1)} = \mathbf{a} \Big].$ Therefore, for any $u \in \{1, 2\}$ and $v \in \{A, B\}$,

$$\frac{\partial \mathbb{E}_{\boldsymbol{\beta},\boldsymbol{\theta}}^{\boldsymbol{u},\boldsymbol{v}}[R^{(1)}]}{\partial \beta_{i}} = \frac{\partial}{\partial \beta_{i}} \bigg(\sum_{\boldsymbol{\tau} \in \mathfrak{S}(n)} \pi_{\boldsymbol{\beta}}^{\boldsymbol{u}}(\boldsymbol{\sigma}^{(1)} = \boldsymbol{\tau}) \pi_{\boldsymbol{\theta}}^{\boldsymbol{v}}(A^{(1)} = \mathbf{a} \,|\, \boldsymbol{\sigma}^{(1)} = \boldsymbol{\tau}) \lambda_{\boldsymbol{\tau},\mathbf{a}} \bigg),$$
$$= \sum_{\boldsymbol{\tau} \in \mathfrak{S}(n)} \frac{\partial \pi_{\boldsymbol{\beta}}^{\boldsymbol{u}}(\boldsymbol{\sigma}^{(1)} = \boldsymbol{\tau})}{\partial \beta_{i}} \mathbb{E}_{\boldsymbol{\theta}}^{\boldsymbol{v}} [R^{(1)} \,|\, \boldsymbol{\sigma}^{(1)} = \boldsymbol{\tau}].$$

Model 1. Recall that

$$\pi_{\beta}^{1}(\sigma^{(1)} = \tau) = \prod_{t \in [n]} \pi_{\beta}^{1}(\sigma_{t}^{(1)} = \tau_{t} | \sigma_{1:(t-1)}^{(1)} = \tau_{1:(t-1)}),$$
$$= \prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta, \tau_{t}).$$

So that

$$\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{i}} = \frac{\partial}{\partial \beta_{i}} \left(\prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta, \tau_{t}) \right),$$

$$= \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \left[\sum_{t \in [n]} \frac{1}{\Phi_{\tau_{t:n}}(\beta, \tau_{t})} \underbrace{\frac{\partial \Phi_{\tau_{t:n}}(\beta, \tau_{t})}{\partial \beta_{i}}}_{(\star)} \right].$$
(S.1)

Since

$$\begin{aligned} (\star) &= \frac{\partial \Phi_{\tau_{t:n}}(\beta, \tau_t)}{\partial \beta_i}, \\ &= \mathbbm{1}_{t \leqslant \tau^{-1}(i)} \frac{\partial}{\partial \beta_i} \left(\frac{e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} \right), \\ &= \mathbbm{1}_{t \leqslant \tau^{-1}(i)} \frac{\mathbbm{1}_{\tau_t = i} e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} - \mathbbm{1}_{t \leqslant \tau^{-1}(i)} \frac{e^{\beta_{\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}} \frac{e^{\beta_i}}{\sum_{j \in \tau_{t:n}} e^{\beta_j}}, \\ &= \mathbbm{1}_{t \leqslant \tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, \tau_t) (\mathbbm{1}_{\tau_t = i} - \Phi_{\tau_{t:n}}(\beta, i)). \end{aligned}$$

Eq. (S.1) becomes

$$\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{i}} = \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \bigg(\sum_{t \in [n]} \mathbb{1}_{t \leqslant \tau^{-1}(i)} \big(\mathbb{1}_{\tau_{t}=i} - \Phi_{\tau_{t:n}}(\beta, i) \big) \bigg),$$
$$= \pi_{\beta}^{1}(\sigma^{(1)} = \tau) \bigg(1 - \sum_{t=1}^{\tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, i) \bigg).$$

Therefore, for any $v \in \{A, B\}$, the gradient of the objective function is

$$\frac{\partial \mathbb{E}_{\beta,\theta}^{1,v} [R^{(1)}]}{\partial \beta_i} = \sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^1 (\sigma^{(1)} = \tau) \left(1 - \sum_{t=1}^{\tau^{-1}(i)} \Phi_{\tau_{t:n}}(\beta, \tau_t) \right) \mathbb{E}_{\theta}^v [R^{(1)} | \sigma^{(1)} = \tau],$$
$$= \mathbb{E}_{\beta,\theta}^{1,v} \left[\left(1 - \sum_{t=1}^{\sigma^{(1)^{-1}}(i)} \Phi_{\sigma^{(1)}_{t:n}}(\beta, i) \right) (R^{(1)} - B^{(1)}) \right],$$

for any random variable $B^{(1)}$ that is independent of $\sigma^{(1)}$ under π^1_β .

Model 2. In this case,

$$\begin{aligned} \pi_{\beta}^{2}(\sigma^{(1)} = \tau) &= \prod_{t \in [n]} \pi_{\beta}^{2} \left(\sigma_{t}^{(1)} = \tau_{t} \, | \, \sigma_{1:(t-1)}^{(1)} = \tau_{1:(t-1)} \right), \\ &= \prod_{t \in [n]} \Phi_{\tau_{t:n}}(\beta_{t}, \tau_{t}). \end{aligned}$$

Hence,

$$\frac{\partial \pi_{\beta}^{1}(\sigma^{(1)} = \tau)}{\partial \beta_{t,i}} = \frac{\partial}{\partial \beta_{t,i}} \left(\prod_{l \in [n]} \Phi_{\tau_{l:n}}(\beta_{l}, \tau_{l}) \right),$$

$$= \prod_{\substack{l \in [n] \\ l \neq t}} \Phi_{\tau_{l:n}}(\beta_{l}, \tau_{l}) \underbrace{\frac{\partial}{\partial \beta_{t,i}} \Phi_{\tau_{t:n}}(\beta_{t}, \tau_{t})}_{(\star)}.$$
(S.2)

Since

$$(\star) = \frac{\partial}{\partial \beta_{t,i}} \Phi_{\tau_{t:n}}(\beta_t, \tau_t),$$

$$= \frac{\partial}{\partial \beta_{t,i}} \left(\mathbbm{1}_{i \in \tau_{t:n}} \frac{e^{\beta_{t,\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}} \right),$$

$$= \mathbbm{1}_{i \in \tau_{t:n}} \left[\frac{\mathbbm{1}_{i = \tau_t} e^{\beta_{t,\tau_t}}}{\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}} - \frac{e^{\beta_{t,\tau_t}} e^{\beta_{t,i}}}{\left(\sum_{j \in \tau_{t:n}} e^{\beta_{t,j}}\right)^2} \right],$$

$$= \Phi_{\tau_{t:n}}(\beta_t, \tau_t) \left(\mathbbm{1}_{i = \tau_t} - \Phi_{\tau_{t:n}}(\beta_t, i) \right).$$

Eq. (S.2) becomes

$$\frac{\partial \pi_{\beta}^{2}(\sigma^{(1)}=\tau)}{\partial \beta_{t,i}} = \pi_{\beta}^{2}(\sigma^{(1)}=\tau) \big(\mathbbm{1}_{i=\tau_{t}} - \Phi_{\tau_{t:n}}(\beta_{t},i)\big).$$

Therefore, for any $v \in \{A, B\}$, the gradient of the objective function is

$$\frac{\partial \mathbb{E}_{\beta,\theta}^{2,v}[R^{(1)}]}{\partial \beta_{t,i}} = \sum_{\tau \in \mathfrak{S}(n)} \pi_{\beta}^{2} (\sigma^{(1)} = \tau) (\mathbb{1}_{i=\tau_{t}} - \Phi_{\tau_{t:n}}(\beta_{t}, i)) \mathbb{E}_{\theta}^{v} [R^{(1)} | \sigma^{(1)} = \tau],$$
$$= \mathbb{E}_{\beta,\theta}^{2,v} \Big[(\mathbb{1}_{i=\sigma_{t}^{(1)}} - \Phi_{\sigma_{t:n}^{(1)}}(\beta_{t}, i)) (R^{(1)} - B^{(1)}) \Big],$$

for any random variable $B^{(1)}$ that is independent of $\sigma^{(1)}$ under π^2_β .

2.2 Proof of Theorem. 2

For any $u \in \{1, 2\}$ and $v \in \{A, B\}$,

$$\frac{\partial \mathbb{E}_{\beta,\theta}^{u,v}[R^{(1)}]}{\partial \theta_{x}} = \frac{\partial}{\partial \theta_{x}} \left(\sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} \pi_{\beta}^{u}(\sigma^{(1)} = \tau) \pi_{\theta}^{v}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau) \lambda_{\tau,\mathbf{a}} \right),$$
$$= \sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} \pi_{\beta}^{u}(\sigma^{(1)} = \tau) \frac{\partial \pi_{\theta}^{v}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau)}{\partial \theta_{x}} \lambda_{\tau,\mathbf{a}}.$$

Model A. In this case, for any $i \in [n]$ and $a \in [k_i]$,

$$\begin{aligned} \frac{\partial \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau)}{\partial \theta_{i,a}} &= \frac{\partial}{\partial \theta_{i,a}} \bigg(\prod_{j \in [n]} \pi_{\theta}^{A} \big(A_{j}^{(1)} = a_{j} \mid \sigma^{(1)} = \tau \big) \bigg), \\ &= \bigg(\prod_{\substack{j \in [n]\\j \neq i}} \pi_{\theta}^{A} \big(A_{j}^{(1)} = a_{j} \mid \sigma^{(1)} = \tau \big) \bigg) \underbrace{\frac{\partial}{\partial \theta_{i,a}} \bigg(\frac{e^{\theta_{i,a_i}}}{\sum_{b \in [k_i]} e^{\theta_{i,b}}} \bigg)}_{(\star)}. \end{aligned}$$

Since

$$(\star) = \frac{\mathbbm{1}_{a_i=a} e^{\theta_{i,a_i}}}{\sum_{b \in [k_i]} e^{\theta_{i,b}}} - \frac{e^{\theta_{i,a_i}} e^{\theta_{i,a}}}{\left(\sum_{b \in [k_i]} e^{\theta_{i,b}}\right)^2},$$

= $\mathbbm{1}_{a_i=a} \Phi(\theta_i, a_i) - \Phi(\theta_i, a_i) \Phi(\theta_i, a),$
= $\pi_{\theta}^A (A_i^{(1)} = a_i | \sigma^{(1)} = \tau) (\mathbbm{1}_{a_i=a} - \Phi(\theta_i, a)).$

Thus,

$$\frac{\partial \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau)}{\partial \theta_{i,a}} = \pi_{\theta}^{A}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau)(\mathbb{1}_{a_{i}=a} - \Phi(\theta_{i}, a)).$$

Therefore, the gradient of the objective function is

$$\frac{\partial \mathbb{E}_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,A} [R^{(1)}]}{\partial \theta_{i,a}} = \sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} \left(\mathbb{1}_{a_i=a} - \Phi(\theta_i, a) \right) \pi_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,A} (\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a}) \lambda_{\tau,\mathbf{a}},$$
$$= \mathbb{E}_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,A} \left[\left(\mathbb{1}_{A_i^{(1)}=a} - \Phi(\theta_i, a) \right) (R^{(1)} - B^{(1)}) \right],$$

for any random variable $B^{(1)}$ that is independent of $(\sigma^{(1)}, A^{(1)})$ under $\pi^{u,A}_{\beta,\theta}$.

Model B. In this case, for any $i, t \in [n]$ and $a \in [k_i]$,

$$\begin{split} \frac{\partial \pi_{\theta}^{B}(A^{(1)} = \mathbf{a} \mid \sigma^{(1)} = \tau)}{\partial \theta_{i,t,a}} &= \frac{\partial}{\partial \theta_{i,t,a}} \left(\prod_{j \in [n]} \pi_{\theta}^{B} \left(A_{j}^{(1)} = a_{j} \mid \sigma^{(1)} = \tau \right) \right), \\ &= \frac{\partial}{\partial \theta_{i,t,a}} \left(\prod_{s \in [n]} \Phi(\theta_{\tau_{s},s}, a_{\tau_{s}}) \right), \\ &= \left(\prod_{\substack{s \in [n]\\s \neq t}} \pi_{\theta}^{B} \left(A_{\tau_{s}}^{(1)} = a_{\tau_{s}} \mid \sigma^{(1)} = \tau \right) \right) \mathbb{1}_{\tau_{t}=i} \underbrace{\frac{\partial}{\partial \theta_{i,t,a}} \left(\frac{e^{\theta_{i,t,a}}}{\sum_{b \in [k_{i}]} e^{\theta_{i,t,b}}} \right)}_{(\star)}. \end{split}$$

Since

$$(\star) = \frac{\mathbbm{1}_{a_i=a} e^{\theta_{i,t,a_i}}}{\sum_{b \in [k_i]} e^{\theta_{i,t,b}}} - \frac{e^{\theta_{i,t,a_i}} e^{\theta_{i,t,a}}}{\left(\sum_{b \in [k_i]} e^{\theta_{i,t,b}}\right)^2},$$

= $\mathbbm{1}_{a_i=a} \Phi(\theta_{i,t}, a_i) - \Phi(\theta_{i,t}, a_i) \Phi(\theta_{i,t}, a),$
= $\pi_{\theta}^B (A_i^{(1)} = a_i | \sigma_t^{(1)} = i) (\mathbbm{1}_{a_i=a} - \Phi(\theta_{i,t}, a)).$

Thus,

$$\frac{\partial \pi_{\theta}^{B} \left(A^{(1)} = \mathbf{a} \, \middle| \, \sigma^{(1)} = \tau \right)}{\partial \theta_{i,t,a}} = \pi_{\theta}^{B} \left(A^{(1)} = \mathbf{a} \, \middle| \, \sigma^{(1)} = \tau \right) \mathbb{1}_{\tau_{t} = i} \left(\mathbb{1}_{a_{i} = a} - \Phi(\theta_{i,t}, a) \right).$$

Therefore, the gradient of the objective function is

$$\frac{\partial \mathbb{E}_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,B} \left[R^{(1)} \right]}{\partial \theta_{i,t,a}} = \sum_{\substack{\tau \in \mathfrak{S}(n) \\ \mathbf{a} \in \mathcal{A}}} \mathbb{1}_{\tau_t = i} \big(\mathbb{1}_{a_i = a} - \Phi(\theta_{i,t}, a) \big) \pi_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,B} \big(\sigma^{(1)} = \tau, A^{(1)} = \mathbf{a} \big) \lambda_{\tau,\mathbf{a}},$$
$$= \mathbb{E}_{\boldsymbol{\beta},\boldsymbol{\theta}}^{u,B} \bigg[\mathbb{1}_{\sigma_t^{(1)} = i} \big(\mathbb{1}_{A_i^{(1)} = a} - \Phi(\theta_{i,t}, a) \big) \big(R^{(1)} - B^{(1)} \big) \bigg],$$

for any random variable $B^{(1)}$ that is independent of $(\sigma^{(1)}, A^{(1)})$ under $\pi^{u,B}_{\beta,\theta}$.

3 Additional figures

3.1 Permutation sampling

Case 1

Figure S.1: The average parameter $(\beta)_i$ on model 2 for each agent t in Sec. 5.1.1. Each color/shape corresponds to a machine i.

Figure S.2: $\pi^{u}_{\beta^{(e)}}(\sigma_t = \hat{\tau})$ for model 1 in (a) and model 2 in (b). $\hat{\tau}$ is obtained as in Eq.8 for each model.

Figure S.3: The average parameter $(\beta)_i$ on model 2 for each agent t in Sec. 5.1.2. Each color/shape corresponds to a machine i.

Figure S.4: $\pi_{\beta^{(e)}}^u(\sigma_t = \hat{\tau})$ for model 1 in (a) and model 2 in (b). $\hat{\tau}$ is obtained as in Eq. 8 for each model.

3.2 Sampling permutation and actions

Figure S.5: The average parameter $(\beta)_i$ on model 2A in (a) and model 2B in (b) for each agent t in Sec. 5.2.1. Each color/shape corresponds to a machine *i*.

Figure S.6: $\pi^{u}_{\beta^{(e)},\theta^{(e)}}(\sigma_t = \hat{\tau})$ for model 2A in (a) and model 2B in (b). $\hat{\tau}$ is obtained as in Eq. 8 for each model.

Figure S.7: The average parameter $(\theta)_i$ on model 2A in (a) and model 2B in (b) for each machine *i* in Sec. 5.2.1 (sorted according to the optimal allocation order τ^*). Each color corresponds to an action $a \in [k_i]$. The red curve represents the best action to be chosen.

Figure S.8: $\pi^{u}_{\beta^{(e)},\theta^{(e)}}(A_{i} = a)$ for model 2A in (a) and model 2B in (b).

Figure S.9: he average parameter $(\beta)_i$ on model 2A in (a) and model 2B in (b) for each agent t in Sec. 5.2.2. Each color/shape corresponds to a machine *i*.

Figure S.10: $\pi^{u}_{\beta^{(e)},\theta^{(e)}}(\sigma_t = \hat{\tau}_t)$ for model 2A in (a) and model 2B in (b). $\hat{\tau}$ is obtained as in Eq. 8 for each model.

Figure S.11: The average parameter $(\theta)_i$ on model 2A in (a) and model 2B in (b) for each machine *i* in Sec. 5.2.2 (sorted according to the optimal allocation order τ^*). Each color corresponds to an action $a \in [k_i]$. The red curve represents the best action to be chosen.

Figure S.12: $\pi^{u}_{\beta^{(e)},\theta^{(e)}}(A_i = a)$ for model 2A in (a) and model 2B in (b).