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ABSTRACT

We consider a multi-agent learning problem with two layers: first, split up the tasks among the
agents, and then have them solve their allocated task. A set of algorithms is proposed based on
a policy gradient method with different reward functions and models of policy parameterizations.
The algorithms are proved to converge. Their performances are assessed and compared on several
synthetic data sets. The proposed algorithms prove to be more efficient than a naive multi-armed
bandit algorithm.

Keywords Credit assignment ⋅Multi-agent sequential learning ⋅ Policy gradient algorithm

1 Introduction

The job assignment problem involves assigning n machines to m agents such that each machine is assigned to exactly
one agent, subject to certain constraints. This problem, as discussed in works like [1], is a classic optimization problem
with no randomness and known constraints, making it inherently combinatorial in nature. The combinatorial nature of
the problem arises from the exponential number of possible allocations of machines to agents, which increases rapidly
with the number of agents and machines.

Similar to how Markov decision processes serve as stochastic generalizations of combinatorial problems, the problem
examined in this article represents a stochastic variant of the assignment problem. In our scenario, agents lack access
to the reward function they aim to optimize. Instead, they must estimate it by sampling combinations of agents and
machines and observing the resulting, potentially random, rewards.

Our formalization introduces an additional complexity layer to the assignment problem by requiring agents to select one
action among several available actions on the machines post-allocation. A practical example is when a manager assigns
projects to teams, where the success depends on both the allocation and subsequent decisions made by the teams [2, 3].

Thus, the problem we consider unfolds in two steps:

1. Centralized Allocation: Each agent is allocated a machine, ensuring a one-to-one assignment.
2. Decentralized Action Selection: Each agent chooses an action from several options available on their

allocated machine, where the number of possible actions is machine-specific.

Upon completing both steps, agents observe a reward, which is the same for all agents and can be used to update their
decision policies. This problem can also be conceptualized as a sequential decision process, where a single agent moves
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through a sequence of machines, selects an action at each machine, and receives a reward after interacting with all the
machines.

Our approach does not make assumptions about how the reward is calculated from machine allocations and action
choices. An example and the simplest way to formalize the action choices is to use Multi-Armed Bandits (MABs) [4, 5]
on each machine, and observe the sum of the rewards of all pulled arms.

Since a combination of multiple decisions results in a single reward, a significant challenge is identifying which decisions
are beneficial. This issue relates to the credit assignment problem in Reinforcement Learning (RL), where assigning
credit or blame for individual decisions in a sequence is challenging when only a global reward is available [6, 7].

Our problem is also close to Multi-Agent Reinforcement Learning (MARL) [8], where multiple agents make decentral-
ized decisions to maximize their own objectives. However, our scenario is distinct because all agents share the same
objective function, and there is a centralized step in the decision process (machine allocation), which can be viewed as
selecting the state of their environment.

Although there is increasing interest in experimentally studying sequential learning in MARL [9], convergence studies
of such approaches are scarce. In the Decentralized Partially Observable Markov Decision Processes (Dec-POMDP)
framework [10, 11, 12], which our setting can be seen as a special case of, convergence studies typically address parallel
learning where agents make decisions independently.

We present and compare various models based on action sampling, permutation sampling, or a combination of both.
For each model, we introduce a policy gradient ascent algorithm [13] and demonstrate that the algorithms converge to
a zero of the gradient of the expected reward. Our proposed method operates with polynomial complexity, making
it computationally feasible for larger problem instances. Additionally, we compare our method to a naive multi-
armed bandit approach, which treats each agent-machine allocation independently. Our results show that our method
outperforms the naive approach.

Our simulations on synthetic data sets, using several reward functions, provide insights into the limits of each model
and the conditions under which they might converge to a sub-optimal zero of the gradient of the expected reward instead
of the optimal decision.

2 Problem formulation

2.1 Notation and definitions

Let N∗ be the set of positive integers. For any n ∈ N∗, let [n] be the set {1,2, . . . , n}.

Let n ∈ N∗ be a number of machines and agents, and write S(n) the set of permutations of [n]. Permutations are used
to specify what machines the agents are allocated to (or, when seeing the problem as a single agent sequentially acting
on each machine, in what order the machines are picked). We write σ = (σt)t∈[n] the random variable taking values in
S(n) that describes the allocation of the machines: for any t ∈ [n], σt is the machine picked by agent t (or the t-th
machine picked by the agent in the sequential formulation).

Given a permutation τ ∈S(n), we define

• τk∶l ∶= {τt}k⩽t⩽l ⊂ [n], for all (k, l) ∈ [n]2, as the machines allocated to the agents numbered between k and l
when their allocation is given by τ . If l < k, take τk∶l = ∅.

• τ−1(i) ∈ [n], for all i ∈ [n], as the agent allocated to machine i when their allocation is given by τ (or, in the
sequential formulation, the time step at which machine i is acted upon).

Let k1, . . . , kn ∈ N∗. For each i ∈ [n], ki is the cardinal of the set of actions available when on machine i, denoted as
[ki]. Let A =∏i∈[n][ki] be the set of vectors of actions.

Let A = (Ai)t∈[n] ∈ A be the random variables that describes the vector of actions chosen by the agent on each
machines, i.e., Ai ∈ [ki] is the action taken on machine i (by agent, or at time, σ−1(i)).

An ordered trajectory (or simply, a trajectory) is a vector (τ,a) = ((τt)t∈[n], (ai)i∈[n]) ∈S(n) ×A, where τt ∈ [n] is
the machine allocated to agent t and ai ∈ [ki] is the action selected on machine i. Thus, (σ,A) is the ordered trajectory
selected by the agents. We call its distribution the policy.

The experiment proceeds as follows: the ordered trajectory (σ,A) is sampled according to its policy, and the environment
returns a reward R. We call this procedure an episode. Then, the policy is updated based on the trajectory sampled, the
reward, and previous episodes.
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For each episode e ⩾ 1, let (σ(e),A(e)) be the random variable taking values in S(n) ×A that describes the trajectory
sampled during the eth episode, and let R(e) be the return of the environment at episode e.

Example 1
When the reward is of the form

R =
1

n
∑
i∈[n]

Ri,σ−1(i),Ai

where the variables (Ri,t,a)i,t,a are independent (Ri,t,a is the reward generated by machine i, when allocated to agent
t and when action a is chosen), our problem becomes a multi-agent multi-arm bandits [14, 15], where one and only one
agent can act on each MAB and the reward from each MAB depends not only from the arm and MAB, but also on which
agents pulls the arm.

Remark 1
Despite the appellation “machine”, this problem is not, in general, a multi-agent multi-armed bandit, since these
models assume that the reward has a specific structure.

2.2 Optimization problem

At the end of each episode e ⩾ 1, after choosing the trajectory (σ(e),A(e)), the agents receive a reward R(e) ∈ R whose
distribution depends only on the trajectory chosen. The goal of the agents is to maximize the expected value of R(e),
that is to maximize

π z→ Eπ[R
(1)] = ∑

τ∈S(n)
a∈A

π(σ(1) = τ,A(1) = a) λτ,a, (1)

where λτ,a = E[R(1) ∣σ(1) = τ,A(1) = a]. Note that this conditional expectation does not depend on the policy π: it is a
function of the environment and the trajectory, not of the agents’ policy. In the following section, we present several
classes of policies over which this objective function can be optimized.

3 Policies

In this section, we introduce four classes of policies to sample ordered trajectories. All of them are split into two parts:
first, allocate the machine (i.e., sample the permutation σ), and then, sample the actions. For each of these parts, we
propose two options.

Fig. 1 represents the interactions of the multi-agent’s entities in an experiment. A leader agent matches agents and
machines (this is the sampling of the permutation σ). Then, each agent makes its own decision independently of
the other agents. In this sense, this is a combination of a centralized policy –to allocate machines to agents– and a
decentralized policy [16] –to choose the actions.

…

Optimization 
Algorithm

Env.

…

 
 

…

Figure 1: Interactions of the multi-agent entities with the environment and optimization algorithm.
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We use the softmax function, denote as Φ, for specifying the policy probabilities. Let I be a finite set and J ⊂ I . Given
a vector ϑ = (ϑi)i∈I ∈ RI of real numbers and an element i ∈ I , let

ΦJ(ϑ, i) = 1i∈J
eϑi

∑
j∈J

eϑi
,

be the ith component of the softmax function evaluated on ϑ, restricted on the subset J . It defines a probability vector
on I which gives mass 1 to J , from a vector of weights ϑ. When J = I , we simply write Φ(ϑ, i).

3.1 Permutation sampling

In this section, we propose two policies π1
β and π2

β to sample the permutation describing the allocation of the machines.

Model 1 Model 2

N
ot

at
io

n

β =

⎛
⎜
⎜
⎜
⎜
⎝

β1

⋮

βi

⋮

βn

⎞
⎟
⎟
⎟
⎟
⎠

∈ Rn β =

⎛
⎜
⎜
⎜
⎜
⎝

β1,1 ⋯ β1,i ⋯ β1,n

⋮ ⋱ ⋮ ⋱ ⋮

βt,1 ⋯ βt,i ⋯ βt,n

⋮ ⋱ ⋮ ⋱ ⋮

βn,1 ⋯ βn,i ⋯ βn,n

⎞
⎟
⎟
⎟
⎟
⎠

∈ Rn×n

3.1.1 Model 1

For each β = (β1, . . . , βn) ∈ Rn, let π1
β be the distribution such that

∀(t, i) ∈ [n]2 , π1
β(σt = i ∣σ1∶(t−1)) = 1i∈σt∶n

eβi

∑
j∈σt∶n

eβj
= Φσt∶n(β, i).

Hence, for all τ ∈S(n)

π1
β(σ = τ) = ∏

t∈[n]

π1
β(σt = τt ∣σ1∶(t−1) = τ1∶(t−1)) = ∏

t∈[n]

Φτt∶n(β, τt).

In this model, the same permutation credits β are used throughout the assignment of the agents. In particular, if a
machine with a high probability to be chosen is not allocated to an agent, it will still have a high probability to be
allocated to the next agent.

3.1.2 Model 2

For each β ∈Mn(R) let π2
β be the distribution such that

∀t ∈ [n] , ∀i ∈ [n] , π2
β(σt = i ∣σ1∶(t−1)) = 1i∈σt∶n

eβt,i

∑
j∈σt∶n

eβt,j
= Φσt∶n(βt, i).

Hence, for all τ ∈S(n),

π2
β(σ = τ) = ∏

t∈[n]

π2
β(σt = τt ∣σ1∶(t−1) = τ1∶(t−1)) = ∏

t∈[n]

Φτt∶n(βt, τt).

In this model, each step of the assignment process uses a different credit vector βt. In particular, the machine with the
highest probability to be allocated may be different depending on the agent. This also means that the optimization of
the permutation credits are decoupled between agents, making the optimization more flexible than in model 1, where
the dependency between allocations interferes with the convergence of the algorithm, as shown in Fig. 2, and may even
mislead it, see Fig. 5.
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3.2 Action sampling

In this section, we propose two policies πA
θ and πB

θ for sampling the agents’ actions. These policies are conditional
distributions, conditioned on the allocation permutation, and such that each agent makes its decision independently of
the others (conditionally to the permutation).

In the first policy, the policy of the agent depends only on the machine it has been allocated, not on who the agent is. In
the second policy, the policy of the agent depends on the machine it has been allocated as well as who the agent is.

Model A Model B

N
ot

at
io

n

θi =

⎛
⎜
⎜
⎜
⎜
⎝

θi,1
⋮

θi,a
⋮

θi,ki

⎞
⎟
⎟
⎟
⎟
⎠

∈ Rki θi =

⎛
⎜
⎜
⎜
⎜
⎝

θi,1,1 ⋯ θi,1,a ⋯ θi,1,ki

⋮ ⋱ ⋮ ⋱ ⋮

θi,t,1 ⋯ θi,t,a ⋯ θi,t,ki

⋮ ⋱ ⋮ ⋱ ⋮

θi,n,1 ⋯ θi,n,a ⋯ θi,n,ki

⎞
⎟
⎟
⎟
⎟
⎠

∈Mn,ki

3.2.1 Model A

For each θ = (θ1, . . . , θn) ∈ Rk1 × ⋅ ⋅ ⋅ ×Rkn , let πA
θ be the conditional distribution such that ∀i ∈ [n],∀a ∈ [ki],∀τ ∈

S(n)

πA
θ (Ai = a ∣σ = τ) =

eθi,a

∑
b∈[ki]

eθi,b
= Φ(θi, a),

and the actions A1, . . . ,An are independent conditionally to σ. Note that in this model, the actions taken are independent
of the allocation permutation σ.
Hence, for all (τ,a) ∈S(n) ×A, u ∈ {1,2}, β and θ,

πu,A
β,θ ((σ,A) = (τ,a)) = π

u
β(σ = τ) ∏

i∈[n]
πA
θ (Ai = ai ∣σ = τ),

= πu
β(σ = τ) ∏

i∈[n]
Φ(θi, ai).

3.2.2 Model B

For each θ = (θ1, . . . , θn) ∈ Mn,k1 × ⋯ ×Mn,kn , let πB
θ be the conditional distribution such that ∀i ∈ [n],∀t ∈

[n],∀a ∈ [ki],∀τ ∈S(n)

πB
θ (Ai = a ∣σ = τ) = ∑

t∈[n]
1τt=i

eθi,t,a

∑
b∈[ki]

eθi,t,b
,

= ∑
t∈[n]

1τt=iΦ(θi,t, a),

and the actions A1, . . . ,An are independent conditionally to σ.
Hence, for all (τ,a) ∈S(n) ×A, u ∈ {1,2}, β and θ,

πu,B
β,θ ((σ,A) = (τ,a)) = π

u
β(σ = τ) ∏

i∈[n]
πB
θ (Ai = ai ∣σ = τ),

= πu
β(σ = τ) ∏

t∈[n]
Φ(θτt,t, aτt),

= πu
β(σ = τ) ∏

i∈[n]
Φ(θi,τ−1(i), ai).

3.3 Policy gradients

The gradient of the expected value of the reward for each model, which will be used in the Algorithms in Section 4, is
as follows.
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Theorem 1
Let B(1) be a random variable that is independent of σ(1). For all (i, t) ∈ [n]2 and v ∈ {A,B},

∂E1,v
β,θ[R

(1)]

∂βi
= E1,v

β,θ[(1 −
σ(1)

−1
(i)

∑
t=1

Φ
σ
(1)
t∶n
(β, i))(R(1) −B(1))]. (2)

∂E2,v
β,θ[R

(1)]

∂βt,i
= E2,v

β,θ[(1i=σ(1)t
−Φ

σ
(1)
t∶n
(βt, i))(R

(1)
−B(1))]. (3)

Proof 1
Proof in supplementary materials Sec. 2.1.

Theorem 2
Let B(1) be a random variable that is independent of (σ(1),A(1)). For all i, t ∈ [n], a ∈ [ki] and u ∈ {1,2},

∂Eu,A
β,θ [R

(1)]

∂θi,a
= Eu,A

β,θ [(1A
(1)
i =a −Φ(θi, a))(R

(1)
−B(1))]. (4)

∂Eu,B
β,θ [R

(1)]

∂θi,t,a
= Eu,B

β,θ [1σ
(1)
t =i(1A

(1)
i =a −Φ(θi,t, a))(R

(1)
−B(1))]. (5)

Proof 2
Proof in supplementary materials Sec. 2.2.

4 Policy search algorithm

Algorithm 1 is a gradient ascent algorithm based on the gradient from Theorems 1 and 2. Let us define the empirical
gradient functions Gradu,v = (Gradu1 ,Gradv2), for u ∈ {1,2} and v ∈ {A,B}, by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Grad11(σ,A,β, θ,X))
i
= (1 −∑

σ−1(i)
t=1 Φσt∶n(β, i))X,

(Grad21(σ,A,β, θ,X))
t,i
= (1i=σt −Φσt∶n(βt, i))X,

(GradA2 (σ,A,β, θ,X))
i,a
= (1Ai=a −Φ(θi, a))X,

(GradB2 (σ,A,β, θ,X))
i,t,a
= 1σt=i(1Ai=a −Φ(θi,t, a))X.

Note that these gradients means that updating the policy parameters of sampling the actions of machine i only relies on
the global reward, the action on this machine, the policy parameters of this machine, and (in Model B) on the agent the
machine has been allocated to. In that sense, both sampling the action on a machine and updating the policy of that
machine (given the allocation permutation) rely only on local information, not on what happens on the other machines.

Algorithm 1 GAtACA-Series ((n,A), u ∈ {1,2}, v ∈ {A,B}, α > 0, ε > 0, γ > 0)

1: initialize: e = 1, B(1) = 0
2: repeat
3: sample (σ(e),A(e)) ∼ πu,v

β(e),θ(e)

4: get R(e)

5: (β(e), θ(e))← (β(e), θ(e)) + αGradu,v(σ(e),A(e), β(e), θ(e),R(e) −B(e))

6: B(e+1) ←
1

1 − γe
(R(e) + γ(1 − γe−1

)B(e))

7: e← e + 1

8: until ∣R(e−1) −B(e)∣ < ε

9: return (β(e−1), θ(e−1))
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Theorem 3 (Convergence)
Let u ∈ {1,2} and v ∈ {A,B}. Assume that there exists r > 0 such that ∣R(e)∣ ⩽ r and ∣B(e)∣ ⩽ r for all e ⩾ 1. Let
(αe)e⩾1 be a sequence of nonnegative real numbers satisfying the Robbins-Monro conditions

+∞

∑
e=1

αe = +∞ and
+∞

∑
e=1

α2
e < +∞.

For all t ∈ [n] and i ∈ [n], update ((β(e), θ(e)))e⩾1 according to the rule

(β(e), θ(e))←(β(e), θ(e)) + αeGradu,v(σ(e),A(e), β(e), θ(e),R(e) −B(e)).

Then the expected reward (Eu,v

β(e),θ(e)[R
(1)])

e⩾1 converges. Moreover, if u = 2, for each e, t, i, a, let θ̃(e)
i,(t,)a = θ

(e)
i,(t,)a −

max
a∈[ki]

θ
(e)
i,(t,)a, and β̃

(e)
t,i = β

(e)
t,i −max

j∈[n]
β
(e)
t,j . Let B be the (compact) set of parameters (β̃t,i)t,i such that β̃t,i ∈ [−∞,0]

and max
j∈[n]

β̃t,j = 0 for all t, i, and likewise, let Θ be the (compact) set of parameters (θ̃i,t,a)i,t,a (when v = B, and

(θ̃i,a)i,a when v = A) such that θ̃i,(t,)a ∈ [−∞,0] and max
a∈[ki]

θ̃i,(t,)a = 0 for all t, i, a.

Then the limit points of (β̃(e), θ̃(e))e⩾1 are all in the same connected component of the set of zeroes of the gradient of
(β̃, θ̃) ∈ B ×Θz→ E2,v

β̃,θ̃
[R(1)].

Proof 3
The proof is similar to the proof of Theorem 2 of [15]: by Proposition 3 of [17], the expectation of the reward converges
and its gradient with respect to β and θ converges to zero. The fact that the limits of the sequence belong to the same
connected component is due to the fact that ∥(β̃(e+1), θ̃(e+1)) − (β̃(e), θ̃(e))∥Ð→ 0.

Changing (β, θ) into (β̃, θ̃) ensures that the parameter space is compact and clears up potential problems with the
convergence of the parameters. For instance, consider the case where (β(e))e is such that the policy of σ converges
towards the policy π defined by π(σ1 = 1) = p and π(σ1 = 2) = 1 − p, with 1/2 < p < 1. To converge towards this
limit, (β(e)1,⋅ )e must converge to a β such that β1 = β2 = +∞ and βj = −∞ for j > 2 (since ∑j β

(e)
t,j = 0 for all e, t).

This does not properly describe the distribution π. In contrast, the sequence (β̃(e)1,⋅ )e converges to a β̃ such that β̃1 = 0,
β̃2 = log(1/p − 1) and β̃j = −∞ for j > 2, which does define a proper policy.

5 Simulation results

Consider the following reward function

R ∶S(n) ×AÐ→ R

(τ,a)z→
1

n
∑
t∈[n]

νt,τt,aτt
,

(6)

where νt,τt,aτt
is the reward of agent t after having been allocated machine τt and choosing action a ∈ [kτt]. We test our

policy models πu,v
β,θ , where (u, v) ∈ {1,2}× {A,B}, for different reward functions for the problem stated in Section 2.2,

and show the advantages and limitations of each model.

In section 5.1, we consider the case where the actions set is reduced to a single action for all the agents. That is, for all
i ∈ [n], ki = 1. Therefore, the objective is to find the matching of agents and machines maximizing the total reward R.
This situation corresponds to an assignment problem. In this case, the policies comes down to the permutation sampling
models presented in Section 3.1.

In section 5.2, we consider the general case where each agent has to choose between one or more actions. The goal in
this case is to allocate the machines to the agents and pick one action per machine in a way that maximizes the total
reward.

Table 1 describes the different forms of reward functions and the different models considered.
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XXXXXXXXXReward
Model 1 2 2A 2B

1
n ∑
t∈[n]

1τt=τ⋆t (Sec. 5.1.1) ✓ ✓

1
n ∑
t∈[n]

νt,τt (Sec. 5.1.2) ✗ ✓

1

n
∑
t∈[n]

νt,τt,a (Sec. 5.2.1) ✓ ✓

Case 1: best action independent of agent

1

n
∑
t∈[n]

νt,τt,a (Sec. 5.2.2) ✗ ✓

Case 2: best action dependent of agent
Table 1: Reward functions and models. Green checks indicates cases where the algorithm’s limit is optimal. Red crosses
indicate cases where the algorithm’s limit is sub-optimal. Model 1 is not considered in Section 5.2, where the agents
must pick actions in addition to the allocation, since Model 1 is shown to converge either slower than Model 2, or to a
sub-optimal limit, in Section 5.1.

5.1 Permutation sampling

For the permutation sampling of models 1 and 2, we consider two cases of reward functions, Eq. (7) and Eq. (9). For
both cases, we consider n = 12 agents, a constant learning rate α = 0.01 and 1.5 × 105 episodes. Each simulation is
performed over 30 replications. More details on the simulations can be found in supplementary materials Sec. 1

5.1.1 Case 1

Let τ∗ ∈S(n) be a target permutation, and consider the following reward function:

R ∶ τ ∈S(n)z→ R(τ) =
1

n
∑
t∈[n]

1τt=τ⋆t . (7)

This reward function returns the proportion of machines allocated according to the target permutation τ∗.

Fig. 2 shows the average rewards obtained by both models of the policy π1
β and π2

β respectively. Both model were able
to converge to an optimal policy for which the reward is maximized; however, model 1 converges slowly than model 2.

Fig. 3 shows the evolution of the values of the parameter (β̂i)i∈[n] for model 1 and the values of (β̂t,i)i∈[n] at time step
t = 6 for model 2 (left and right respectively).

For example, consider the target order τ∗ = (12,1,8,10,2,3,7,4,9,11,6,5) represented in the legend of Fig. 3 (right).
In model 1, the policy parameters β̂i produced by the algorithm are such that the machine i = 12 (in red), followed by
i = 1 (in blue) and so on, according to the target permutation τ∗ (the algorithm converged to the correct limit). In model
2 though, the parameters β̂t,τ∗t are eventually notably higher than the other parameters β̂t,i, i ≠ τ∗t , making it almost
certain that the machine τ∗t will be allocated to agent t. In the example above, the agent at time step t = 6 is τ∗t = 3.
Its parameter value β̂t,i continue to increase while the other agents τ(t+1)∶n parameter values decrease. Therefore, the
agent i = 3 is more probable to be chosen at that time step, if it has not been chosen before).
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Figure 2: Average reward R on model 1 and on model 2 (left and right respectively) for different values of the learning
rates α. The horizontal curve y = 1 corresponds to the optimum of the function R. Several learning rates α have been
tested to ascertain the best rate of convergence for Model 1, and it seems to be achieved for some α between 0.2 (red
curve) and 0.8 (green curve), for which the algorithm no longer converge. For this whole range of α, Model 1 is handily
beaten by Model 2. For some learning rates (e.g., α = 0.2), Model 1 converges slower than model 2, and sometimes
model 1 does not converge to the optimal solution (e.g., α = 0.8) while model 2 still converges to the optimal trajectory.

Note that during episode e, the parameters β̂t,j for j ∈ σ(e)
1∶(t−1) will not change; in particular, when the policy converges

to a Dirac in τ∗, the parameters β̂t,j for j ∈ τ∗1∶(t−1) will remain almost stationary, around 0 in Fig. 3.

Figure 3: Average (β̂)i∈[n] on model 1 (left) and model 2 for agent t = 6 (right). See Fig. S.1 for full visualization of
βt,i on model 2. Each color and/or shape corresponds to a different machine. The legends shown in the right are sorted
w.r.t. the optimal allocation order τ∗.

The most probable ordered trajectory τ̂ for both models at the last episode is defined as follows

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

τ̂1 =min (argmax
i∈[n]

(β̂)1,i),

τ̂t =min ( argmax
i∈[n]∖τ̂1∶(t−1)

(β̂)t,i), ∀t ⩾ 2.
(8)

In both case, τ̂ = τ∗. Fig. 4 shows the end policy for each model. That is

∀t ∈ [n],∀i ∈ [n], πu
β̂
(i = τ̂t).

We sorted the columns with respect to the target order τ∗ to facilitate the comparison between the learned order τ̂ and
the target order τ∗ by looking at the diagonal of the matrix.
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Figure 4: πu
β̂
(σt = i)(t,i)∈[n]2 , u ∈ {1,2}. Lines correspond to the agents t ∈ [n] and the columns correspond to the

machines i ∈ [n]. The columns are sorted w.r.t. the optimal allocation order τ∗. See Fig S.2 for full visualization of the
evolution of πu

β(e)(σt = i)(t,i)∈[n]2 for all episodes e.

Both models converge to an almost Dirac distribution, where at each time step t, τ∗t is the most likely to be chosen.
As discussed above, model 1 converge notably more slowly than model 2. This can be seen on the evolution of the
policy for model 1 in Fig. S.2a in supplementary materials. The policy probabilities converge faster to 0 or 1 for the
first and last agents, and take longer to converge for the agents in the middle. In comparison, in model 2, the algorithm
reinforces the probability of the "good" machine with the same speed for all agents.

5.1.2 Case 2

Let (νt,i)(t,i)∈[n]2 ∈ Rn×n and consider the following reward function

R ∶ τ ∈S(n)z→ R(τ) =
1

n
∑
t∈[n]

νt,τt , (9)

where νt,i is the reward of allocating machine i at agent t. The reward function is this case returns the average reward
of the agents. The goal is to find the order τ∗ that maximizes the expected reward R.

Fig. 5 shows the average rewards obtained by both models of the policy π1
β and π2

β respectively. For any learning rate
considered here, only model 2 was able to converge to an optimal policy for which the reward is maximized, whereas
model 1 converged to a non optimal policy where the reward is not maximized.

Figure 5: Average reward R on model 1 (left) and on model 2 (right) for different values of the learning rates α. The
horizontal curve y ≈ 1.23 corresponds to the maximum of the function R.

Fig. 6 shows the evolution of the averaged values of the parameter (βi)i∈[n] for model 1 and the values of (βt,i)i∈[n]
for agent t = 6 and model 2 (left and right respectively). In model 1, the algorithm did not manage to discriminate the
agents.In model 2, for each agent t, the algorithm manages to clearly identify the best machine, in the sense that the

10
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parameter βt,τ∗t grows significantly larger than the others, where τ∗ is the permutation that achieves the optimal reward.
For instance, at time step t = 6, the "good" agent is i = 9.

Figure 6: Evolution of (βi)i∈[n] on model 1 (left) and (βt,i)i∈[n] for agent t = 6 on model 2 (See Fig S.3 for full
visualisation of βt,i). Each color and/or shape corresponds to a different machine. The legends shown in the right are
sorted w.r.t. the optimal allocation order τ∗.

The most probable allocation permutation for models 1 and 2 (τ̂1 and τ̂2 respectively) are computed as in the previous
section. We show the end policy for each model in Fig. 7. As stated before, model 1 did not converge to an optimal
policy (that is τ̂1 ≠ τ∗), whereas model 2 has converged to an almost Dirac measure where τ̂2 = τ∗.

Figure 7: The end policy πu
β(σt = i)(t,i)∈[n]2 , u ∈ {1,2}. Lines correspond to the agents t ∈ [n] and the columns

correspond to the machines i ∈ [n]. The columns are sorted w.r.t. the optimal allocation order τ∗. (See Fig S.4 for full
visualization of πu

β(e)(σt = i)(t,i)∈[n]2 for all episodes e.)

5.2 Sampling permutation and actions

Consider the following reward function

R ∶S(n) ×AÐ→ R

(τ,a)z→
1

n
∑
t∈[n]

νt,τt,a,
(10)

where νt,τt,a is the reward of machine τt allocated to agent t after action a ∈ [kτt] is chosen.

In this section, we consider n = 9 agents, for which each machine i has ki ∈ {1, . . . ,7} actions, and 3 × 105 episodes.

We keep model 2 for the permutation parameter β, and test our policy models π2,v
β,θ, where v ∈ {A,B}, for two cases

11
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• Case 1: when there exists one action for each machine that returns the highest reward among the other actions
at any time step. That is,

∀i ∈ [n], ∃a ∈ [ki] ∶ ∀t ∈ [n], argmax
b∈[ki]

(νt,i,b) = {a}.

In that case, the action that should be chosen on a machine does not depend on the agent the machine is
allocated to.

• Case 2: when the hypothesis in case 1 is not satisfied. That is, the action with the highest reward may depend
on the agent the machine is allocated to. In this case, model A is not be appropriate, as shown in Section 5.2.2.

For case 1, we order the vector (νt,i,a)a∈[ki] in increasing order for each t and i to ensure that action ki is the optimal
action on machine i, whichever the agent may be.

A notable difference between Algorithm 1 and the one we use in practice is the update of the parameters in this section:
instead of using the same learning rate α for β and θ, we update it as

⎛
⎜
⎜
⎝

β(e+1)

θ(e+1)

⎞
⎟
⎟
⎠

←

⎛
⎜
⎜
⎝

β(e)

θ(e)

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

αβ Gradu,v1 (σ
(e),A(e), β(e), θ(e),R(e) −B(e))

αθ Gradu,v2 (σ
(e),A(e), β(e), θ(e),R(e) −B(e))

⎞
⎟
⎟
⎠

,

with αβ =
αθ

n
.

While not covered by Theorem 3, this update scheme allows our algorithms to converge much faster in practice.

5.2.1 Case 1

In this section, we assume that the best action on any given machine does not depend on the agent it is allocated to.

Fig. 8 shows the average rewards obtained by both models of policies π2,A
β,θ and π2,B

β,θ . Both models were able to
converge to an optimal policy for which the reward is maximized for any value of the learning rate α.

Figure 8: Average reward R on model 2A (left) and on model 2B (right) for different values of the learning rates α. The
horizontal curve y ≈ 2.19 corresponds to the optimum of the function R.

Fig. 9 shows the evolution of the permutation parameter (βt,i)i∈[n] for agent t = 3. Both models were able to
discriminate the "good" machine to be allocated to that agent (τ∗3 = 8, where (τ∗,a∗) is the optimal trajectory). Both
models eventually recover to the optimal allocation τ∗.
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Figure 9: Evolution of (βt,i)i∈[n] on model 2A (left) and on model 2B (right) for agent t = 3 (See Fig S.5 for full
visualisation of βt,i). Each color and/or shape corresponds to a different machines. The legend shown in the right are
sorted w.r.t. the optimal allocation order τ∗.

We show in Fig. 10 the end policy (as defined in the previous section) ordered with respect to the optimal order τ∗. For
both models, the policy of the permutation converges to a Dirac measure at τ∗.

Figure 10: π2,v

β̂,θ̂
(σt = i)(t,i)∈[n]2 , v ∈ {A,B}. Lines correspond to the agents t ∈ [n] and the columns correspond to the

machines i ∈ [n]. The columns are sorted w.r.t. the optimal allocation order τ∗. See Fig S.6 for full visualization of
π2,v

β(e),θ(e)(σt = i)(t,i)∈[n]2 ) for all episodes e.

An optimal allocation order does not mean that the reward is maximized. It remains to be checked whether each agent
has selected the best action or not. Fig. 11 shows the evolution of machine i = 6’s action parameters (θi,a)a∈[ki] and
(θi,t,a)a∈[ki] for model 2A and model 2B respectively. In the latter, we considered agent t = 4, as it was the best match
to machine i = 6.

Action a = 6 is most likely to be chosen in both cases, as its parameter is significantly larger than the other actions. In
model 2A, it increases faster than in model 2B. This may explains why the reward grows faster at the start for model 2A
than for model 2B on Fig. 8.

Fig. S.8 shows the π2,v

β(e),θ(e)(Ai = a) for each machine i ∈ τ∗, v ∈ A,B at each episode e. The red curves represent the
action with the highest reward. Both models reinforce the actions with the highest reward.
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Figure 11: Evolution of (θi,a)a∈[ki] for machine i on model 2A (left) and (θi,t,a)a∈[ki] for the same machine allocated
to agent t = 4 on model 2B (right) See Fig S.7 for full visualization of θ on both models. Each color corresponds to a
different action. The optimal action is in red.

5.2.2 Case 2

Now, we allow the optimal action on a machine to depend on the agent it is allocated to.

Fig. 12 shows the average reward obtained for both models 2A and 2B (left and right respectively). Model 2A does not
converge to an optimal ordered trajectory for which the reward is maximized, since it does not account for the fact that
the optimal action depends on the agent, whereas model 2B does. This is not an issue of the optimal trajectory being
unreachable, since a near-Dirac at the optimal trajectory is a valid policy under model 2A, but rather that the lack of
flexibility hinders the convergence of the algorithm.

Figure 12: Average reward R on model 2A (left) and on model 2B (right) for different values of the learning rates α.
The horizontal curve y ≈ 2.19 corresponds to the optimum of the function R.

Fig. 13 shows the evolution of the permutation parameter (βt,i)i∈[n] for agent t = 3. Only model 2B was able to
discriminate the “good” machine to be allocated to that agent (τ∗3 = 8), while model 2A tends to selecte a non-optimal
machine (here machine i = 1 is most likely to be allocated to agent t = 3). When comparing the allocation order τ̂2,A
and τ̂2,B learned by both models, only model 2B matches the optimal order τ∗ whereas τ̂2,A ≠ τ∗.

The suboptimality of the limit of model 2A can be seen by comparing its end policy. Fig. 14 shows the end allocation
policy for both models. Model 2A does not converge to the Dirac measure in τ∗, even if it does approach a Dirac
measure, whereas model 2B converges as in the previous section.

Fig. 15 shows the evolution of machine i = 6’s action parameters (θi,a)a∈[ki] and (θi,t,a)a∈[ki] for model 2A and model
2B respectively. For the latter, we took the agent t = 4, as it was the best match for machine i = 6.

In addition to the fact that the order did not converge to the optimal order τ∗, the best action available to each agent was
not chosen all the time by model 2A. In this example, we action a = 2 is the most likely, rather than the optimal action
a = 5. In contrast, for model 2B, the best action (a = 6) is the most likely to be chosen.
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Figure 13: Evolution of (βt,i)i∈[n] on model 2A (left) and on model 2B (right) for agent t = 3. See Fig S.9 for full
visualization of βt,i. Each color and/or shape corresponds to a different machine. The legends shown in the right are
sorted w.r.t. the optimal allocation order τ∗.

Figure 14: π2,v

β̂,θ̂
(σt = i)(t,i)∈[n]2 , v ∈ {A,B}. Lines correspond to the agents t ∈ [n] and the columns correspond to the

machines i ∈ [n]. The columns are sorted w.r.t. the optimal allocation order τ∗. See Fig S.10 for full visualisation of
π2,v

β(e),θ(e)(σt = i)(t,i)∈[n]2 for all episodes e.

Figure 15: Evolution of (θi,a)a∈[ki] for machine i = 6 for model 2A (left) and (θi,t,a)a∈[ki] allocated to agent t = 4 for
model 2B (right) (See Fig S.11 for full visualization of θ on both models). Each color corresponds to a different action.
The optimal action is in red.
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6 Performance comparison: M1, M2 and a naive MAB

In this section, a comparison analysis is performed between the two GAtACA-Series variants designed for the agents-
machine assignment problem. For comparison, a naive deterministic simulation of a multi-armed bandit is executed. As
baseline, we consider the naive multi-armed bandit approach, where each possible permutation of the agents defines an
arm. Since it has to see each arm at least once, it needs at least n! to find the best permutation.

To facilitate a fair and unbiased comparison between the two GAtACA-Series models, the learning rates α1 and
α2 are optimized, for M1 and M2 respectively. The objective is to find the rates α∗1 and α∗2 that ensure the fastest
convergence. This ensures that any observed differences in scalability are attributable to the models themselves and not
to a sub-optimal choice of learning rate. While the assumption in Theorem 3 suggests that the learning rate should
satisfy the Robbins-Monro conditions [18], we use a constant learning rate to maintain a straightforward and efficient
learning procedure.

Algorithm 2 illustrates the iterative process of searching the optimal learning rate for two models. Since, as mentioned
stated in Section 5.1, Model 1 works for a specific class of reward functions (see Table 1), we will consider the reward
function given by Eq. (7).

The algorithm begins with a small initial learning rate α0 and conducts K independent simulations. Each simulation
terminates when either the maximum number of episodes is reached (indicating lack of convergence) or when the
probability of assigning agent t to machine τ∗t , for all t ∈ [n], approaches 1 (within a margin of ε), signifying
convergence. Upon convergence, the learning rate is incremented by a small step size η > 0. The algorithm stops
when it encounters an episode with a given learning rate α for which the number of episodes exceeds the predefined
maximum.

Algorithm 2 Find Best Learning Rate α∗u.
(n,u) ∈ N∗ × {1,2}, ε > 0, γ > 0, α0 > 0, η > 0, emax ∈ N∗, K ∈ N∗

1: initialize: τ∗ ∈S(n), α ← α0, E ← Null
2: while True do
3: E′ ← []
4: for k in 1 ∶K do
5: initialize: e = 1, β(e) = 0, B(1) = 0
6: while e ⩽ emax and 1 −Φτ∗t∶n(β

(e)
t , τ∗t ) < ε, ∀t ∈ [n] do

7: sample σ(e) ∼ πu
β(e)

8: get R(e) =
1

n
∑
t∈[n]

1
σ
(e)
t =τ∗t

9: update β(e+1) ← β(e) + α Grad(σ(e), β(e),R(e) −B(e))
10: update B(e+1) # as in Algo. 1, line 6.
11: e+ = 1
12: end while
13: if e > emax then
14: return e = SUM(E)/K and α∗u = α
15: else
16: E′.append(e − 1)
17: end if
18: end for
19: α ← α + η, E ← E′

20: end while

Fig. 16 illustrates the comparative analysis between the two models M1 and M2. For each n, the iterative learning
rate search was started at α0 = 0.1, conducting K = 1000 simulations. For each u ∈ {1,2}, αu > 0 and n ∈ N∗, write
e(αu, n) the average number of episodes ran by model u before stopping across the K simulations. Subsequently, the
learning rate was incremented by η = 0.1. For each n, let emax be twice the maximum number of episodes required
to converge when α = α0, i.e., emax = 2 ×max{Eα0

k , k ∈ [K]}, where Eα
k is the number of episode the algorithm ran

before stopping during simulation k with learning rate α. The optimal learning rate differs between the two models:
α∗1 < α

∗
2 . Moreover, upon employing their respective optimal rates, Model 2 exhibits a faster convergence rate compared

to M1, and both reach the convergence criterion in polynomial time rather than the factorial of the naive multi-armed
bandit (MAB) scenario.
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Figure 16: Comparison between M1 and M2. Left: optimal learning rate α∗u w.r.t. the number of agents/jobs n. As n
varies, the best-suited learning rate α∗ is determined through Algo. 2. Right: the average number of episodes to reach
the convergence criteria for each model using best α∗u w.r.t. the number of agents/jobs n.

7 Conclusion

We proposed a formalization of the multi-agent sequential learning problem. Different reward functions and models of
policy for sampling the allocation of machines and actions have been proposed:

• Models 1 and 2, which sample the permutation describing the allocation of machines. In model 1, the
same permutation credits β were used throughout the assignment of the agents. In model 2, each step of
the assignment process uses a different credit vector βt. The optimization of the permutation credits were
decoupled between individual time steps, making the optimization more flexible than in model 1. Also, as
shown by the simulations, the algorithm based on model 1 does not converge to an optimal policy in some
situations, whereas the one based on model 2 converges.

• Models 2A and 2B, which sample the agents’ actions based on the allocation permutation. In model 2A, the
policy of the agent depends only on the machine it has been allocated, not on who the agent is. In model 2B,
the policy of the agent depends on the machine it has been allocated as well as who the agent is.

• Several rewards based on Multi-agent Multi-Armed Bandits.

We rather recommend model 2B, as it converges in more cases and seems to converge more quickly than model 2A,
based on the simulations we have performed and shown in Fig. 12. This is an empirical result, which would require
further study of the rates of convergence.

Another interesting generalization would concern the case where each agent evolves in an environment and changes
states according to the choice (τ,A) of both machine allocation and action.
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