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1 Simulation environment and parameters

1.1 Simulation environment

We describe the simulation environment realized in this paper. All the Monte Carlo simulations were performed over
N = 30 realizations, using the pseudo-random number generator Mersenne Twister from of library numpy 1.11.1, with
seed = 748596. Each realization, indexed by r ∈ [N], at episode e ⩾ 1, produces Y (e),[r] for any variable Y . Therefore,
the mean and the standard deviation of Y over the realizations is given as

∀e ⩾ 1z→ Y
(e) =

1

N

N

∑
r=1

Y (e),[r] = mean((Y (e),[r])r∈[N]),

∀e ⩾ 1z→ σ
(e)
Y = SD((Y (e),[r])r∈[N]).

The confidence interval at episode e is given as follow

[Y (e) − c
σ
(e)
Y√
N

,Y
(e) + c

σ
(e)
Y√
N
],

where c ≈ 2.045 is the 97.5th percentile of a student’s t-distribution of degree of freedom N − 1 = 29.

1.2 Parameters

We recall the parameters used in the simulation results.

1.2.1 Permutation sampling

In Sec. 5.1, we have considered n = 12 machines and agents, a constant learning rate α = 0.01 and a total number of
15 ⋅ 104 episodes. For the first case, the target order τ∗ was drawn randomly, whereas in the second case, νt,i was drawn
from a normal distribution with zero mean and unit variance i.e., N(0,1).
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1.2.2 Permutation and action sampling

In Sec. 5.2, we have considered n = 9 machines and agents, each machine has ki ∈ [[1; 7]] action(s). Two learning
rates were used: write αβ the learning rate used to update the permutation credit β and αθ the one used to update the
action credit θ. We considered the following: αβ =

αθ

n
. In all simulations, we considered a constant learning rate, with

αθ = 0.01. For all (t, i) ∈ [n]2 and a ∈ [ki], νt,i,a is sampled from a normal distribution N(µi,t,1) with mean µt,i and
unit variance, where µt,i is sampled from a uniform distribution U[−1,1] for all (t, i) ∈ [n]2.

2 Proofs

2.1 Proof of Theorem 1

Let i ∈ [n]. Recall that

π z→ Eπ[R(1)] = ∑
τ∈S(n)

π(σ(1) = τ,A(1) = a)λτ,a,

where λτ,a = E[R(1) ∣σ(1) = τ,A(1) = a].
Therefore, for any u ∈ {1,2} and v ∈ {A,B},

∂Eu,v
β,θ[R(1)]
∂βi

= ∂

∂βi
( ∑
τ∈S(n)

a∈A

πu
β(σ(1) = τ)πv

θ(A(1) = a ∣σ(1) = τ)λτ,a),

= ∑
τ∈S(n)

∂πu
β(σ(1) = τ)

∂βi
Ev
θ[R(1) ∣σ(1) = τ].

Model 1. Recall that

π1
β(σ(1) = τ) = ∏

t∈[n]
π1
β(σ

(1)
t = τt ∣σ(1)1∶(t−1) = τ1∶(t−1)),

= ∏
t∈[n]

Φτt∶n(β, τt).

So that

∂π1
β(σ(1) = τ)

∂βi
= ∂

∂βi

⎛
⎜
⎝
∏
t∈[n]

Φτt∶n(β, τt)
⎞
⎟
⎠
,

= π1
β(σ(1) = τ)[∑

t∈[n]

1

Φτt∶n(β, τt)
∂Φτt∶n(β, τt)

∂βi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(⋆)

].
(S.1)

Since

(⋆) = ∂Φτt∶n(β, τt)
∂βi

,

= 1t⩽τ−1(i)
∂

∂βi
( eβτt

∑
j∈τt∶n

eβj
),

= 1t⩽τ−1(i)
1τt=ie

βτt

∑
j∈τt∶n

eβj
− 1t⩽τ−1(i)

eβτt

∑
j∈τt∶n

eβj

eβi

∑
j∈τt∶n

eβj
,

= 1t⩽τ−1(i)Φτt∶n(β, τt)(1τt=i −Φτt∶n(β, i)).

2
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Eq. (S.1) becomes

∂π1
β(σ(1) = τ)

∂βi
= π1

β(σ(1) = τ)(∑
t∈[n]

1t⩽τ−1(i)(1τt=i −Φτt∶n(β, i))),

= π1
β(σ(1) = τ)(1 −

τ−1(i)
∑
t=1

Φτt∶n(β, i)).

Therefore, for any v ∈ {A,B}, the gradient of the objective function is

∂E1,v
β,θ[R(1)]
∂βi

= ∑
τ∈S(n)

π1
β(σ(1) = τ)(1 −

τ−1(i)

∑
t=1

Φτt∶n(β, τt))Ev
θ[R(1) ∣σ(1) = τ],

= E1,v
β,θ[(1 −

σ(1)
−1
(i)

∑
t=1

Φ
σ
(1)
t∶n
(β, i))(R(1) −B(1))],

for any random variable B(1) that is independent of σ(1) under π1
β .

Model 2. In this case,

π2
β(σ(1) = τ) = ∏

t∈[n]
π2
β(σ

(1)
t = τt ∣σ(1)1∶(t−1) = τ1∶(t−1)),

= ∏
t∈[n]

Φτt∶n(βt, τt).

Hence,

∂π1
β(σ(1) = τ)
∂βt,i

= ∂

∂βt,i
(∏
l∈[n]

Φτl∶n(βl, τl)),

= ∏
l∈[n]
l≠t

Φτl∶n(βl, τl)
∂

∂βt,i
Φτt∶n(βt, τt)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

.
(S.2)

Since

(⋆) = ∂

∂βt,i
Φτt∶n(βt, τt),

= ∂

∂βt,i
(1i∈τt∶n

eβt,τt

∑
j∈τt∶n

eβt,j
),

= 1i∈τt∶n[
1i=τte

βt,τt

∑
j∈τt∶n

eβt,j
− eβt,τt eβt,i

( ∑
j∈τt∶n

eβt,j)2
],

= Φτt∶n(βt, τt)(1i=τt −Φτt∶n(βt, i)).
Eq. (S.2) becomes

∂π2
β(σ(1) = τ)
∂βt,i

= π2
β(σ(1) = τ)(1i=τt −Φτt∶n(βt, i)).

Therefore, for any v ∈ {A,B}, the gradient of the objective function is

∂E2,v
β,θ[R(1)]
∂βt,i

= ∑
τ∈S(n)

π2
β(σ(1) = τ)(1i=τt −Φτt∶n(βt, i))Ev

θ[R(1) ∣σ(1) = τ],

= E2,v
β,θ[(1i=σ(1)t

−Φ
σ
(1)
t∶n
(βt, i))(R(1) −B(1))],

for any random variable B(1) that is independent of σ(1) under π2
β .
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2.2 Proof of Theorem. 2

For any u ∈ {1,2} and v ∈ {A,B},

∂Eu,v
β,θ[R(1)]
∂θx

= ∂

∂θx
( ∑
τ∈S(n)

a∈A

πu
β(σ(1) = τ)πv

θ(A(1) = a ∣σ(1) = τ)λτ,a),

= ∑
τ∈S(n)

a∈A

πu
β(σ(1) = τ)

∂πv
θ(A(1) = a ∣σ(1) = τ)

∂θx
λτ,a.

Model A. In this case, for any i ∈ [n] and a ∈ [ki],

∂πA
θ (A(1) = a ∣σ(1) = τ)

∂θi,a
= ∂

∂θi,a
( ∏

j∈[n]
πA
θ (A

(1)
j = aj ∣σ(1) = τ)),

= ( ∏
j∈[n]
j≠i

πA
θ (A

(1)
j = aj ∣σ(1) = τ))

∂

∂θi,a
( eθi,ai

∑
b∈[ki]

eθi,b
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

.

Since

(⋆) = 1ai=ae
θi,ai

∑
b∈[ki]

eθi,b
− eθi,ai eθi,a

( ∑
b∈[ki]

eθi,b)2
,

= 1ai=a Φ(θi, ai) −Φ(θi, ai)Φ(θi, a),

= πA
θ (A

(1)
i = ai ∣σ(1) = τ)(1ai=a −Φ(θi, a)).

Thus,

∂πA
θ (A(1) = a ∣σ(1) = τ)

∂θi,a
= πA

θ (A(1) = a ∣σ(1) = τ)(1ai=a −Φ(θi, a)).

Therefore, the gradient of the objective function is

∂Eu,A
β,θ [R(1)]
∂θi,a

= ∑
τ∈S(n)

a∈A

(1ai=a −Φ(θi, a))π
u,A
β,θ (σ

(1) = τ,A(1) = a)λτ,a,

= Eu,A
β,θ [(1A

(1)
i =a −Φ(θi, a))(R

(1) −B(1))],

for any random variable B(1) that is independent of (σ(1),A(1)) under πu,A
β,θ .

Model B. In this case, for any i, t ∈ [n] and a ∈ [ki],

∂πB
θ (A(1) = a ∣σ(1) = τ)

∂θi,t,a
= ∂

∂θi,t,a

⎛
⎝ ∏j∈[n]

πB
θ (A

(1)
j = aj ∣σ(1) = τ)

⎞
⎠
,

= ∂

∂θi,t,a

⎛
⎝ ∏s∈[n]

Φ(θτs,s, aτs)
⎞
⎠
,

= ( ∏
s∈[n]
s≠t

πB
θ (A(1)τs = aτs ∣σ

(1) = τ))1τt=i
∂

∂θi,t,a
( eθi,t,ai

∑
b∈[ki]

eθi,t,b
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

.
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Since

(⋆) = 1ai=ae
θi,t,ai

∑
b∈[ki]

eθi,t,b
− eθi,t,ai eθi,t,a

( ∑
b∈[ki]

eθi,t,b)2
,

= 1ai=a Φ(θi,t, ai) −Φ(θi,t, ai)Φ(θi,t, a),

= πB
θ (A

(1)
i = ai ∣σ(1)t = i)(1ai=a −Φ(θi,t, a)).

Thus,

∂πB
θ (A(1) = a ∣σ(1) = τ)

∂θi,t,a
= πB

θ (A(1) = a ∣σ(1) = τ)1τt=i(1ai=a −Φ(θi,t, a)).

Therefore, the gradient of the objective function is

∂Eu,B
β,θ [R(1)]
∂θi,t,a

= ∑
τ∈S(n)

a∈A

1τt=i(1ai=a −Φ(θi,t, a))π
u,B
β,θ (σ

(1) = τ,A(1) = a)λτ,a,

= Eu,B
β,θ [1σ

(1)
t =i(1A

(1)
i =a −Φ(θi,t, a))(R

(1) −B(1))],

for any random variable B(1) that is independent of (σ(1),A(1)) under πu,B
β,θ .

3 Additional figures

3.1 Permutation sampling

Case 1

Figure S.1: The average parameter (β)i on model 2 for each agent t in Sec. 5.1.1. Each color/shape corresponds to a
machine i.
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(a)

(b)

Figure S.2: πu
β(e)(σt = τ̂) for model 1 in (a) and model 2 in (b). τ̂ is obtained as in Eq.8 for each model.
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Case 2

Figure S.3: The average parameter (β)i on model 2 for each agent t in Sec. 5.1.2. Each color/shape corresponds to a
machine i.
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(a)

(b)

Figure S.4: πu
β(e)(σt = τ̂) for model 1 in (a) and model 2 in (b). τ̂ is obtained as in Eq. 8 for each model.
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3.2 Sampling permutation and actions

Case 1

(a)

(b)

Figure S.5: The average parameter (β)i on model 2A in (a) and model 2B in (b) for each agent t in Sec. 5.2.1. Each
color/shape corresponds to a machine i.
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(a)

(b)

Figure S.6: πu
β(e),θ(e)(σt = τ̂) for model 2A in (a) and model 2B in (b). τ̂ is obtained as in Eq. 8 for each model.
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(a)

(b)

Figure S.7: The average parameter (θ)i on model 2A in (a) and model 2B in (b) for each machine i in Sec. 5.2.1 (sorted
according to the optimal allocation order τ∗). Each color corresponds to an action a ∈ [ki]. The red curve represents
the best action to be chosen.
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(a)

(b)

Figure S.8: πu
β(e),θ(e)(Ai = a) for model 2A in (a) and model 2B in (b).
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Case 2

(a)

(b)

Figure S.9: he average parameter (β)i on model 2A in (a) and model 2B in (b) for each agent t in Sec. 5.2.2. Each
color/shape corresponds to a machine i.
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(a)

(b)

Figure S.10: πu
β(e),θ(e)(σt = τ̂t) for model 2A in (a) and model 2B in (b). τ̂ is obtained as in Eq. 8 for each model.
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(a)

(b)

Figure S.11: The average parameter (θ)i on model 2A in (a) and model 2B in (b) for each machine i in Sec. 5.2.2
(sorted according to the optimal allocation order τ∗). Each color corresponds to an action a ∈ [ki]. The red curve
represents the best action to be chosen.
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(a)

(b)

Figure S.12: πu
β(e),θ(e)(Ai = a) for model 2A in (a) and model 2B in (b).
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