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Abstract

Operational canopy height mapping at high resolution remains a challenging task at country-
level. Most of the existing state-of-the-art inversion methods propose physically-based
schemes which are specifically tuned for local scales. Only few approaches in the literature
have attempted to produce country or global scale estimates, mostly by means of data-driven
approaches and multi-spectral data sources. In this paper, we propose a robust deep learning
approach that exploits single-pass interferometric TanDEM-X data to generate accurate forest
height estimates from a single interferometric bistatic acquisition. The model development is
driven by considerations on both the final performance and the trustworthiness of the model
for large-scale deployment in the context of tropical forests. We train and test our model over
the five tropical sites of the AfriSAR 2016 campaign, situated in the West Central state of
Gabon, performing spatial cross-validation experiments to test its generalization capability.
We define a specific training dataset and input predictors to develop a robust model for
country-scale inference, by finding an optimal trade-off between the model performance and
the large-scale reliability. The proposed model achieves an overall estimation bias of 0.12m,
a mean absolute error of 3.90m, a root mean squared error of 5.08m and a coefficient of
determination of 0.77. Finally, we generate a time-tagged country-scale canopy height map
of Gabon at 25 m resolution, discussing the potential and challenges of these kinds of products
for their application in different scenarios and for the monitoring of forest changes.

Keywords: Forest height, forest parameter regression, deep learning, bistatic SAR,
interferometric coherence, InSAR, TanDEM-X, LVIS.

1. Introduction

The regular and precise monitoring of the state of Earth’s forests is of paramount impor-
tance for preservation efforts [10]. The assessment of a forests’ health, dynamics and resources
can be achieved through the measurement and monitoring of proxy indices, such as the canopy
height, the above-ground biomass density or the canopy cover fraction. Conventionally, the
most precise way to estimate such forest variables is to acquire them manually on-ground on
a per-tree basis, which is both time consuming and expensive [17,31]. In order to characterize
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forests on regional or national scales statistical acquisition strategies that approximate the
area of interest with representative sampling grids are typically introduced [3].

To achieve wall-to-wall estimates at large-scales, it is necessary to derive these parameters
from satellite imagery, by relating the bio-physical forest parameters to the acquired spaceborne
feature-maps. This can be achieved by either inverting physical-based models, which attempt
to describe the interaction of the transmitted signals with the forest structure, or by relying on
data-driven approaches, which directly learn the underlying relationship from large-amounts
of informative case samples.

In this scenario, Synthetic Aperture Radar (SAR) sensors have received great attention
from the remote sensing (RS) community, as the interaction between the electromagnetic waves
and the imaged scatterers strongly depends on the geometrical and the dielectric properties
of the target, i.e., on the characteristics of the vegetation. Here, the Random Volume over
Ground (RVoG) model probably represents one of the most studied and understood physical
interpretations of the InSAR microwave interaction with the forest structure, characterizing
the scattering profile of vegetation as the combination of a Dirac-like ground component and
a vertical distribution of randomly oriented scatterers [7, 30]. The model inversion requires
a single-baseline fully-polarimetric (i.e., quad-pol.) acquisition, allowing for the estimation of
the forest height. Modern spacerbone SAR systems, such as the German TanDEM-X mission
[20, 21], are indeed also capable of acquiring fully-polarimetric InSAR products, but these
typically do not represent the operational acquisition mode for large-scale surveys, as they can
only be acquired as experimental products over limited test sites. Therefore, much effort has
gone into the definition of effective strategies to invert such a model in presence of non-fully
polarimetric data [5, 29].

More recently, research attention has shifted towards sparse fusion strategies, aiming at
exploiting the availability of modern dedicated spaceborne LiDAR-based missions (e.g., GEDI,
ICESat-2) to retrieve the model parameters necessary for proper model inversion. In [8] it was
proposed to train a support vector machine (SVM) with sparse LiDAR samples, in order to
select the optimal baseline for the RVoG model inversion with NASA’s UAVSAR (L-band) and
LVIS instruments. The validation over the study areas of the AfriSAR Campaign [11] achieved
an RMSE varying between 4.99m, and 5.99m. In [16], the authors proposed to avoid
the parametrization of the simplified vertical profile functions, and instead to estimate these
directly from LiDAR waveforms. Forest height inversion from TanDEM-X coherence samples
led to a root mean square error (RMSE) of 8.16m and to a squared Pearson correlation
coefficient r2 of 0.16 over the AfriSAR test site of Lopé, after removing 10.69% of the estimates,
which fell below the interferometric phase center. Finally, by generating two separate profiles
for vegetation below 25m and above 40 m, respectively, and interpolating the profiles in the
transitional range, the authors achieved a RMSE of 8.62m and a r2 of 0.40 (after dropping
14.17% of underestimated samples). Similarly, in [6] a mean TanDEM-X vertical reflectivity
profile was estimated using the zero-order eigenvector of diagonalized profile covariance matrix,
derived from GEDI LiDAR waveforms. Using this approach, they generated a continuous
25m forest height map of the island of Tasmania, Australia. In comparison with reference
LiDAR measurements, their proposed approach achieved RMSE values between 6.6m and
7.2m, and r2 values between 0.40 and 0.42, respectively, depending on the considered orbit
direction and orthogonal baseline.

In the last two decades, data-driven approaches have seen a major surge for remote-sensing
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applications, offering a completely different paradigm: instead of building up semi-empirical,
physically-based models and retro-fitting them to the existing data, they take advantage of
the availability of large quantities of heterogeneous data and learn the underlying relationships
with physical phenomena from the data itself. Up to now, most of the works published in the
literature mainly relied on the use of multi-spectral optical data.

In [33], the authors proposed a bagged regression tree ensemble-based approach to predict
canopy heights at 30m of resolution from multi-temporal Landsat acquisitions on a global
scale. The machine-learning algorithm was calibrated per-image using GEDI-derived RH95
estimates as reference, to estimate forest height from a mixture of Landsat-derived features
expressing spectral, phenological, statistical and temporal properties of the scene. They
obtained a mean absolute error (MAE) of 6.36m, an RMSE of 9.07m, and a coefficient of
determination R2 of 0.61.

More recently, Deep Learning (DL) approaches have received most of the attention, as they
take advantage of local and non-local spatial patterns to improve the performance accuracy
over less sophisticated pixel-wise approaches. In [24] a fully convolutional approach, based on
the Xception DL architecture, was proposed, which was trained to regress forest canopy height
from multiple Sentinel-2 multi-spectral acquisitions. The authors trained and validated their
approach both over two alpine regions in Switzerland using stereophotogrammetry-derived
measurements, and over the five AfriSAR sites in Gabon using LVIS-derived measurements.
Over Gabon, the authors obtained a MAE of 4.9 m and an RMSE of 6.5 m, respectively, using
the least clouded acquisitions, and of 4.3 m and 5.6 m when considering the median height. In
[1], the authors proposed a Bayesian Deep Learning (BDL) approach which was validated
at country-level over Norway, achieving state-of-the art performance in the simultaneous
estimation of five complementary forest structure proxies. These two previous works were
combined and expanded upon in [23], where the authors proposed to train their CNN model
ensemble using sparse 25m footprint GEDI samples as ground-truth data. This resulted
in the generation of a world-cover canopy height estimate map based only on Sentinel-2
acquisitions as input. The performance of the proposed approach was evaluated using a
mixture of independent LVIS and ALS measurement campaigns, achieving an RMSE of 7.9 m
and a mean error (ME) of 1.7m.

To the best of our knowledge, the work in [4] was the first one in the literature to investigate
the use of a pure data-driven deep learning-based approach for forest height estimation from
single-pass InSAR data. The method consisted in a custom CNN architecture, trained on
rasterized LVIS height estimates, acquired in the context of the 2016 AfriSAR campaign. This
preliminary work achieved a MAE of 4.20m, an RMSE of 5.69m and a R2 score of 0.73.

In light of the current state of the art, forest height estimation at large-scales using
InSAR data is plagued by one or more operational compromises. Physical-based models,
while offering a great mathematical interpretation behind the electromagnetic scattering
mechanisms [30], in practice require either a large-quantity of interferometric baselines, fully
polarimetric InSAR acquisitions [8], privileged ancillary information (e.g., DTM, LiDAR
waveforms) [6, 16], or simplifying assumptions that affect the inversion performance [5, 29]. In
practice, the estimation of the model parameters also requires extensive tuning with respect
to the local properties of the forest: a requirement which is not suited for generalization
purposes over larger areas. The overall performance has been shown to be outperformed by
that achieved by data-driven approaches, even when the full model is inverted using privileged
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sources of information [4,8, 24]. When it comes to state-of-the-art deep learning approaches,
peak accuracy is currently achieved with optical data either by aggregating the estimates
from multiple dates [24], or by means of model ensembles [1, 23], both of which increase
the computational complexity and the temporal delay between one estimate and the next.
However, performance and operational deployment using optical sensors are especially limited
by cloud coverage, with an estimated 50% of Earth’s surface being hidden by clouds at any
given moment [14]. On the other hand, the few published works that explored the potential of
SAR sensors [1] neither have considered the complexity given by the side-looking acquisition
geometries, nor have explored the use of interferometric products, resulting in an accuracy
which is worse than the one achieved with optical data only, and thus not justifying the added
overhead and processing complexity.

On the basis of the knowledge gained from the ablation study published in [4], in this
work we present a robust deep learning approach which uses a single TanDEM-X bistatic
acquisition to deliver state-of-the-art forest height estimates at large scale. Starting from the
initial CNN architecture developed in [4], we investigate the role of different input features
and we design a novel training strategy tailored for an operational large-scale deployment.
Finally, we combine the gathered information to generate a tree height map for the state of
Gabon, obtained from estimates from a single TanDEM-X coverage (i.e., only one baseline)
and subsequently moisaicked together. This makes our approach particularly interesting for
the exploitation of the historical and current global TanDEM-X dataset (acquired since the
end of 2010), as well as of the upcoming L-band NISAR mission (launch planned in 2024,
NASA/ISRO) and of the planned Sentinel-1 bistatic Earth Explorer mission Harmony (launch
planned in 2029, ESA).

The paper is structured as follows. Sec. 2 lists the different datasets used in our approach.
Sec. 3 starts with a brief introduction on the interferometric coherence. Then, it presents the
details of our proposed deep learning approach, including the model architecture, the training
strategy, the performance metrics and the developed approach to evaluate the trustworthiness
of the model for large-scale inference. Sec. 4 illustrates a series of experiments for tacking
the challenges of large-scale deployment, investigating the trade-offs between accuracy and
model trustworthiness. This leads to the definition of the final model and to the generation
of a country-scale map of canopy height over Gabon. Sec. 5 discusses our findings in the
context of large-scale inference of forest parameters, highlighting potential issues and offering
pragmatic solutions to model deployment and generalization capabilities. Finally, Sec. 6
summarizes our efforts and gives an outlook on potential future research aspects.

2. Materials

2.1. TanDEM-X Data
The German TanDEM-X mission comprises two twin SAR satellites, TerraSAR-X and

TanDEM-X, operating at X-band and flying in a varying close-orbit formation [20,42]. This
particular configuration enables the acquisition of high-resolution, single-pass InSAR data
with variable perpendicular baselines, allowing for the successful generation and delivery of a
global digital elevation model (DEM) with unprecedented accuracy in 2016 [35].

For the scope of this work, we considered TanDEM-X bistatic data, acquired in single
polarization (HH) stripmap mode, with an extension in range of about 30 km. We distinguish
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two forms of TanDEM-X datasets:

• In order to properly train our model and generalize it across all possible acquisition
geometries, we considered all existing TanDEM-X bistatic data acquired between
December 2010 (i.e., the beginning of the mission) and 2022 over the five regions of
interest (ROIs) of the 2016 AfriSAR campaign.

• For the generation of the final large-scale products, we retrieved all existing acquisitions
covering the West Central African state of Gabon for the years of 2010/11. This
allowed us to create one edge-to-edge mosaic, using products acquired with suitable
interferometric baselines.

The resulting datasets are characterized by a large variety of acquisition geometries,
i.e., of interferometric baselines and incidence angles. The inputs to our processing chain
are the co-registered single-look complex (CoSSC) products. The underlying focusing and
co-registration processing steps were performed by the operational TanDEM-X processor
(ITP) [13].

For each product we compute the backscattering coefficient σ0, as recorded by the transmit-
ting satellite only (monostatic channel). It is derived from the absolutely calibrated intensity
β0 (i.e., the radar brightness) and the local incidence angle θinc as:

σ0 = β0 sin(θinc), (1)

where θinc is computed from the satellite’s orbit position and the underlying DEM product.
For the estimation of the bistatic InSAR phase, we apply Φ-Net [38], a state-of-the-art

residual deep-learning denoising architecture, capable of preserving the spatial resolution
(compared to the commonly used boxcar multi-looking approach). For each input CoSSC
product, we also generate the InSAR DEM, called raw DEM. For the sake of clarity, we recall
that the value of an InSAR-based DEM, such as TanDEM-X, represents the topographic
height corresponding to the location of the radar mean phase center. Given the capability of
radar waves to penetrate into volumetric targets, such as vegetation, this elevation value is
located somewhere below the top of the canopy, depending on the sensor characteristics (e.g.,
center frequency and acquisition geometry) as well as on the properties of the target itself.
Differently, the terms digital surface model (DSM) and digital terrain model (DTM) identify
the elevation of the top of the canopy and of the ground, respectively. The generation
of the raw DEM is motivated by our previous conclusions in [4] that the use of the global
TanDEM-X edited DEM [15], generated by combining multiple acquisitions between 2010
and 2015, can be affected by small errors caused by the automatic editing procedure, which
negatively affect our approach. By relying on the raw acquisition DEM we can also guarantee
that all of our input features are consistent with each other. The raw DEM is also used to
compute the local incidence angle θinc with respect to the local topography.

Additionally, by considering the annotated information on the satellites’ position, we
encode the information about the interferometric acquisitions geometry in the form of a
two-dimensional map of the height of ambiguity hamb, which is defined as the vertical height
change corresponding to a complete 2π phase cycle in the interferogram and it can be expressed
for the single-pass InSAR case as:

hamb =
λ · r · sin θinc

B⊥
, (2)
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where B⊥ is the orthogonal interferometric baseline, λ is the wavelength and r is the slant-range
distance.

The interferometric coherence γtot represents the key metric to evaluate the interferometric
performance, since it quantifies the amount of noise in the interferogram [39]. It is defined as
the normalized cross-correlation coefficient of the interferometric image pair, called master
(s1) and slave (s2), respectively:

γtot =
E[s1 · s∗2]√
E[s21] · E[s22]

, (3)

where E[·] represents the expectation operator and ∗ the complex conjugate operator. As
already done for the InSAR phase, also the interferometric coherence is estimated using Φ-Net
[38]. Following the approach presented in [34], it is possible to factorize γtot into its constituent
error contributions, called decorrelation factors:

γtot = γSNR · γquant · γamb · γrg · γaz · γtemp · γvol, (4)

where the different terms on the right-hand side identify the contributions due to limited
signal-to-noise ratio (γSNR), quantization (γquant), ambiguities (γamb), baseline decorrelation
(γrg), relative shift of the Doppler spectra (γaz), temporal decorrelation (γtemp) and volume
decorrelation (γvol). In particular, the volume decorrelation factor γvol quantifies the degree
of interferometric decorrelation caused by the scattering effects of a volumetric target, such
as forests, sand or snow packs. From the total interferometric coherence we estimate γvol,
by following the procedure presented in [34]. The volume decorrelation factor constitutes
a valuable proxy parameter for the vegetation structure as it is commonly modelled in the
literature as the normalized Fourier transform of the vertical scatterer distribution [26,30]:

γ̃vol(w⃗) = eikzz0

∫ z0+hv

z0
F (z‘, w⃗)eikzz‘dz‘∫ hv

0
F (z‘, w⃗)dz‘

(5)

where w⃗ represents the polarization vector, F (z‘, w⃗) is the vertical scatterer distribution in the
medium, z0 is the ground elevation, hv is the forest height and kz is the vertical wavenumber.
In turn, kz is closely related to the height of ambiguity hamb through kz = 2π/hamb [26].

2.2. AfriSAR-16 Campaign
As main source of reference forest height measurements, we use the products generated from

the 2016 AfriSAR campaign [11,36] . We consider the full-waveform LiDAR measurements
acquired by NASA’s airborne LVIS (Land, Vegetation and Ice Sensor) instrument [2] between
February and March of 2016. The laser shots sampled the ground in regular intervals, each
of them covering a nominal footprint of 18m of diameter. The resulting vertical energy
profiles were used to derive multiple forest structure proxy parameters, including the forest
height estimates, expressed in terms of relative height (RH), which represents the height
corresponding to a given percentile of returned energy. These products are also made available
in the form of geomaps, which aggregate, interpolate and rasterize the discrete samples to
generate a dense representation with a ground sampling distance of 25m. For our work we
use the rasterized RH99 statistic as our reference tree height measurement, since it represents
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a good proxy for the top of the canopy (99% of the returned energy), while it reduces the
effects of strong outliers. We also use the rasterized digital terrain model (DTM) from LVIS
to get the real topographic information below the dense canopy. The campaign measurements
cover five heterogeneous areas within the state of Gabon [36]:

• The Lopé National Park, consisting of a mixture of seasonal tropical forest and savannah,
both affected by a distinct separation between wet and dry seasons [16]. The area is
characterized by strong topography, representing the highest elevation among all the
considered regions of interest.

• The Mondah forest, which represents a small protected coastal site, partially flooded
and characterized both by the presence of mangroves and tropical hardwood forests.

• The Mabounié site, which is a predominantly forested areas, with localized sites of
mostly anthropogenic degradation.

• The Pongara National Park, located on the southern side of the Gabon River and
characterized by the presence of seasonally flooded forests, as well as very tall mangroves
stands and some grassy savannah.

• The Rabi site, characterized by the presence of an onshore oil-drilling location, is largely
covered by dense rainforest.

2.3. ESA WorldCover Map 2021
In the pre-processing steps, we also make use of the ESA 2021 WorldCover map. This

consists in a 10m resolution global land-cover product that refers to 2021. It was generated
using data from both ESA’s Sentinel-1 and Sentinel-2 satellites and is freely accessible [41].
We take advantage of the information it provides to mask out built-up areas and water bodies
from our dataset.

3. Methods

In this section we present the details of the proposed approach, including the developed
DL framework, the training and validation procedures, as well as the final inference step and
reliability estimation.

3.1. Proposed Deep Learning Framework
The proposed method relies on a deep learning architecture, in the form of a fully

convolutional neural network (CNN). At its core, this technique consists of a sequence of linear
operations in the form of cross-correlation computations, interleaved by non-linear operations
(the so called activation functions). This typology of models has been at the heart of the
AI surge in the computer vision field, as its major advantage over alternative architectures,
such as fully-connected or transformer ones, is the computational efficiency in dealing with
structured data including images. The working principle of CNNs exploits the typical spatial
autocorrelation found in EO images. The convolution operation hard-codes this inductive
bias by applying a small kernel function across the entire spatial extent of the input features,
requiring only a limited amount of parameters in doing so. Assuming non-unitary kernels,
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Figure 1: The proposed fully convolutional deep learning model. The subscript numbers indicate the number
of kernel filters.

by increasing the number of sequential cross-correlation calculations, the dimensions of the
considered spatial contexts (the so-called receptive field) also increase. This in turn, allows
for the creation of feature representations of increasing levels of abstraction and complexity.
Crucially, this results in samples at the extremities of the receptive field being weighted less
than those at its center.

Starting from the model proposed in [4] and illustrated in Figure 1, in this work we
consider the following updated set of TanDEM-X-derived input features:

• The backscattering coefficient in HH polarization σ0,dB
HH (in dB scale).

• The raw acquisition DEM hDEM.

• The local incidence angle θinc.

• The estimated total interferometric coherence γtot.

• The estimated volume decorrelation factor γvol.

• The height of ambiguity hamb.

As output we estimate the RH99 height metric as a proxy for the true top of the canopy.
The architecture can be split into several functional blocks. In the input block, the

dimensionality of the input features is progressively increased first to 64 and then to 128 by
means of two 1× 1 convolution layers. This block is followed by a sequence of 5 hidden blocks,
each consisting of two convolutional layers with 128, 3× 3 kernel functions, and which can be
interpreted as the main feature extraction sequence. In the output block (i.e., the head of the
model), the feature dimensionality is decreased back to 64 and later to a single output feature
map by means of two additional convolution layers with 1× 1 kernels. All convolution layers
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are followed by a rectified linear unit (ReLU) activation function and a batch normalization
layer, except for the last one, which directly produces the output prediction.

3.2. Training, Validation and Testing Strategy
In order to train, validate and test the proposed deep learning model, we split each of

the five AfriSAR study areas into three equally sized sub-regions based on their geographic
extent, and then associate these to either training, validation or testing, as presented in Fig.
2 (a). This sub-setting strategy was chosen to guarantee the effective representation of the
heterogeneous forests found across the study areas, while minimizing the effects of spatial
autocorrelation-induced test bias that is commonly affecting random sampling strategies
[18,32].

The model is trained using a fully supervised approach, consisting in the joint minimization
of both the prediction error and l2-norm of the model weights, and expressed by the following
two term loss function:

Loss =
1

n

n∑
i=1

(ŷi − yi)
2 + λ ·

m∑
j=1

w2
j , (6)

where ŷi is the ith predicted sample, yi is the corresponding ith reference sample value, wj

is the jth weight of the model, n is the total number of samples, m is the total number of
weights and λ is the scaling factor of the l2-norm.

The model’s weights are iteratively updated on mini-batches of randomly sampled training
patches. The size of these patches is 15× 15 pixels and it has been chosen in accordance
with the receptive field (RF) of our model, which, for a simple sequence of n two-dimensional
convolutional layers with kernel size k × k pixels, can be computed as:

RF = n(k − 1) + 1. (7)

In our case, this results in a RF of 21 pixels or 525m. Indeed, smaller patches would
strongly crop the receptive field, while larger ones would not provide any additional benefit,
coming at the cost of increased memory and computational loads, as well as poorer sampling
of the available reference data.

Notably, the loss function is computed only on the central pixel of each patch, as this
allows for better exploiting the available fragmented reference dataset and to provide a
clearer interpretation of the model’s working principle, as we will discuss in the inference
post-processing. This choice limits each predicted center pixel to be seen only once for a given
input image (i.e., no oversampling) acquired on a specific date and with a specific acquisition
geometry (i.e., incidence angle and interferometric baseline). Furthermore, we allow pixels
not covered by the reference data to be included inside the patches to give context to the
forest boundaries.

During the backpropagation step we make use of the commonly used ADAM optimizer
[19]. We use the default hyperparameters of the Keras implementation, except for the initial
learning rate, which is set to 10−4. We determine the end of the training phase on the
dedicated validation set by applying an early-stopping criterion once the model has stopped
improving for more than 35 consecutive epochs.
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A total of 13 · 106 patches is available for training, which on a single NVIDIA A100 GPU
takes a maximum of 9 hours to train following the described strategy.

In order to test the trained model, we apply the inference directly at image level, by
splitting each image into smaller chunks of data (2000× 2000 pixel) to fit the GPU’s VRAM
buffer requirements. To provide enough contextual information to the model, we mask out
the inferred pixels which do not correspond to a full valid neighbourhood equal to the training
patch-size. By applying this condition to all border pixels, we effectively delete missing
values inside the image, requiring the inference chunks to be sampled with overlap in order to
reconstruct a contiguous prediction map.

We test our predictions by comparing them on a pixel-wise level with the corresponding
values in the reference data. To evaluate the performance of our model, we use the mean
error (ME), the mean absolute error (MAE), the mean absolute error (MAPE), the root mean
squared error (RMSE) and the coefficient of determination (R2), defined as follows:

ME =
1

n

n∑
i=1

(ŷi − yi) , (8)

MAE =
1

n

n∑
i=1

|ŷi − yi| , (9)

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (10)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2, (11)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (yi − ȳi)
2 , (12)

Furthermore, to test the capability of the model to generalize over unseen regions and
to assess the possible spatial correlations between the areas used for training and testing
(caused by the vicinity of the split subsets in each AfriSAR test site), we perform geographic
cross-validation by iteratively excluding one of the five sites from training and validation. To
compensate for the decrease in training samples, we assign 2

3
of each of the remaining four

sites for training. An example is depicted in Fig. 2 (b) for the permutation in which Rabi is
used for testing only. The concept is then repeated for all different permutations of the five
AfriSAR test sites.

3.3. Country-Scale Inference and Map of Applicability (MoA)
For the generation of the final country-scale CHM mosaic we consider TanDEM-X ac-

quisitions from the first global coverage, designed for the generation of the global DEM
product [35]. In this way, we can guarantee an almost complete coverage with minimal gaps,
as the TanDEM-X products are otherwise acquired irregularly and depending on the specific
acquisition planning. Conversely, some regions are imaged multiple times per year (e.g.,
the AfriSAR test sites) and overlaps are therefore still possible. In order to evaluate the

10



(a) (b)

Figure 2: (a) Geographic sub-setting of the AfriSAR campaign study areas into training, validation
and testing, (b) Exemplary geographic sub-setting for the spatial cross-validation, considering Rabi a
testing area only.

single-baseline quality of the proposed method, we first compute the mean hamb of the overall
distribution seen during training. Then, in presence of overlapping acquisitions only the one
with the minimum distance from this value is considered. As described in sec. 3.1, the model
is subsequently applied to each acquisition individually to generate its corresponding CH
estimate. Finally, the resulting list of forest height maps is mosaicked together to generate
the country-scale product.

The independent validation of the product is challenging: no field plots exist at the
considered scale and they are typically limited to the areas covered by the AfriSAR campaign,
while spacerborne LiDAR missions such as the Global Ecosystem Dynamics Investigation
(GEDI) [9] are reportedly ill-suited as sources of reference data in the presence of tall and
dense canopy [12,22,28]. Inspired by the work in [27], we propose to assess the reliability of the
model’s predictions by validating that the input predictors fall within the subspace sampled by
the training data, as data-driven methods fail to perform reliably on out-of-distribution (OOD)
predictor combinations [25]. Ideally, such an evaluation would be performed by exhaustively
determining for each inference sample the minimum distance in the predictor hyperspace to
the training data and determining, on the basis of test data, where the trustworthiness of the
model falls off. Unfortunately, such a computation becomes computationally intractable for
large numbers of training or inference samples such as those considered in this study.

To overcome this issue, we instead propose the definition of an ad-hoc ODD detector relying
on an approximation of the joint predictor distribution as a proxy for the training set-sampled
predictor space. To obtain such an estimate, we start by computing the histograms for the
individual predictors across globally-defined value ranges1. It is then possible to compute the
relative frequency (i.e. the density) value dj,i for the ith-bin and the jth-predictor as:

dj,i = 100% · hj,i∑N
n=1 hj,n

(13)

1For each predictor, we consider the following ranges: σ0,dB
HH ∈ [−25, 10], θinc ∈ [0,−π

2 ] rad, γtot ∈ [0, 1],
γvol ∈ [0, 1], hamb ∈ [15, 120]m, hDEM ∈ [0, 1100]m, hHPF

DEM ∈ [−700, 700]m, ∇hDEM ∈ [−4, 4]mm−1, where
the last two predictors are introduced later on in Sec. 4.3.
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where hj,i is the absolute frequency value for the ith-bin and the jth-predictor, and N is the
total number histogram bins. At inference, each predictor is associated to the density value
dj,i of the corresponding ith-bin. This leads to the generation of a geographic map representing,
for each pixel position (x, y), the relative sample frequency dj,x,y seen by the model during
training. The individual predictor maps are then aggregated into a single reliability score
map Sx,y by computing their geometric mean as:

Sx,y =

(
J∏

j=1

dj,x,y

) 1
J

(14)

where J is the number of predictors. The resulting mean density map is directly correlated to
the model reliability, as values at (or close to) zero have jointly seen no (or few) samples in
the corresponding predictor sub-space. Finally, the validation set is used to determine the
threshold for Sx,y that minimizes the prediction MSE, allowing for the generation of a binary
Map of Applicability (MoA). Values below such a threshold are considered unreliable and can
therefore be discarded.

In practice, the training set predictor distribution and the threshold are pre-computed
once for each independent model and used at inference to estimate the areas of low prediction
reliability. By combining the performance metrics introduced in 3.2 with the proposed MoA
we drive the joint definition of a proper training dataset and of a set of predictors, which can
yield the best possible trade-off between tested performance and model trustworthiness for
large-scale inference. This is the reasoning behind the series of experiments proposed in Sec.
4.

4. Experiments and Results

4.1. The Impact of Missing Predictor Representation
The first experiment that we propose considers the application of the training, validation

and testing strategy presented in Sec. 3.2. In order to be as consistent as possible with the
LVIS reference dataset, we select TanDEM-X data acquired during 2015-2016 only. The
performance of the resulting baseline model is summarized in Tab. 1a for each test site
separately and overall, achieving a ME of -0.96m, a MAE of 4.05m, a MAPE of 14.28%,
an RMSE of 5.31m and a R2 of 0.75. Moreover, we also perform a cross-validation test, as
presented in Sec. 3.2, and the results are summarized in Tab. 1b. The performance metrics
confirm that the model is robust also when tested on totally independent test sites. Only
a small loss in performance with respect to the baseline case is detected (ME of -0.52m,
MAE of 4.54m, MAPE of 16.38%, RMSE of 5.94m and R2 of 0.69). This is limited to the
Lopé and Pongara test permutations, and can be explained by the unique phenological and
topographical characteristic found in these sites.

We then apply the derived baseline model at country-scale by considering all available
TanDEM-X acquisitions acquired between December 2010 and the end of 2011 in corre-
spondence of the first mission global coverage. We generate a large-scale CHM mosaic and
the corresponding reliability score map and MoA as presented in Sec. 3.3. The results are
depicted in Fig. 3. As it can be seen, the MoA presents extended regions of zero values
which correspond to entire TanDEM-X data-takes, revealing missing representations mainly
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(a)
2015-2016 Dataset Performance

ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -0.42 4.12 11.25 5.34 0.40
Mabounie -1.03 4.82 15.84 6.23 0.37
Mondah 0.89 2.25 28.57 3.22 0.90
Pongara -0.05 3.03 17.30 4.28 0.92
Rabi -2.03 4.18 13.58 5.32 0.53
Overall -0.96 4.05 14.28 5.31 0.75

(b)
Cross-validation Performance

ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -0.24 5.23 15.27 6.75 0.04
Mabounie -0.25 4.79 16.20 6.21 0.38
Mondah 0.84 2.35 29.50 3.32 0.90
Pongara -1.60 4.56 23.27 5.97 0.84
Rabi -0.79 4.03 13.54 5.18 0.56
Overall -0.52 4.54 16.38 5.94 0.69

Table 1: (a) Performance metrics computed for the model trained using TanDEM-X data acquired in 2015-
2016 only, for each AfriSAR test site, separately, and overall. (b) Performance metrics computed for the
cross-validation experiment, for each AfriSAR test site permutation, separately, and overall.

(a) (b) (c)

Figure 3: (a) Country-scale CHM generated using the baseline model trained using TanDEM-X from
2015-2016 only, (b) Corresponding reliability score map and (c) binary MoA.

associated to TanDEM-X acquisition-related parameters. When analyzing in depth the actual
contribution of each single predictor to the reliability score map, as presented in Fig. 4, one
can note that the most critical predictor is the height of ambiguity, which is directly related to
the InSAR acquisition geometry. Nevertheless, also the raw DEM relative sample frequency
map presents extended areas of zero values, significantly contributing to the unreliability
of the country-scale CHM mosaic. This is reflected in the histograms of such features for
the training and inference datasets, respectively, as presented in Fig. 5. Consistently, severe
underestimation of the CHM can be seen in the country-scale mosaic in Fig. 3 (a) in corre-
spondence of zero values of the MoA. Therefore, at the present stage, the model cannot be
considered to be reliable outside of the AfriSAR test regions. Possible solutions to solve these
issues are proposed in Sec. 4.2 and 4.3, respectively.

4.2. Height of Ambiguity Analysis
In order to tackle the challenge of missing representation in the input heights of ambiguity,

we propose a relaxation of the temporal stationarity constraint between the 2016 LVIS
reference measurements and the input TanDEM-X data considered in Sec. 4.1, where only
data-takes acquired in 2015/2016 were considered. This results in a larger compatibility
with the existing TanDEM-X archived data and leads to a more representative selection of
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(a) σ0
HH (b) γtot (c) γvol

(d) hamb (e) θinc (f) Raw DEM

Figure 4: Relative sample frequency for each predictor (indicated below each image) of the model
presented in Sec. 4.1, trained with TanDEM-X data acquired in 2015/2016 only.

acquisition geometries.
We achieve this by considering TanDEM-X data covering the AfriSAR test sites, acquired

over a time span of about 11 years, starting from the end of 2010 (beginning of the bistatic
TanDEM-X mission) up to 2021. This allows for the generation of a complete dataset
characterized by the distribution of hamb presented in Fig. 6. As it can be seen, the
distribution of the hamb used for the country-scale inference depicted in Fig. 5 (b) is much
better represented with respect to the initial 2015/16 case. By considering multiple acquisitions
we also allow our model to learn a more robust relationship between the acquisition conditions
of the input imagery and the reference canopy height. This assumes that the temporal
misalignment between the input and the reference data results only in minor forest height
inconsistencies due to natural phenomena, such as growth and tree replacement. These can
be characterized as an additive noise contribution, and can thus be interpreted as a data
augmentation process. On the other hand, drastic logging, fire or afforestation events, if
present, are assumed to be limited in scope and are considered as outliers, whose effects are
mitigated by the availability of a large number of training samples.

Regarding the model performance, we test only on TanDEM-X data acquired between
2015 and 2016, in order to be as consistent as possible with the reference LVIS data, as well
as with the settings of the previous experiment in Sec. 4.1. The achieved model performance
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(a) (b)

(c) (d)

Figure 5: (a) Height of ambiguity histogram for the training, validation and testing datasets cor-
responding to the 2015-2016 TanDEM-X acquisitions, (b) height of ambiguity histogram for the
2010-2011 TanDEM-X acquisitions used for the country-scale inference. (c) DEM histogram for the
training, validation and testing datasets corresponding to the 2015-2016 TanDEM-X acquisitions, (d)
DEM histogram for the 2010-2011 TanDEM-X acquisitions used for the country-scale inference.

(a)
Extended Dataset Performance

ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -0.01 3.88 10.68 5.02 0.47
Mabounie 0.02 4.56 15.49 5.91 0.44
Mondah -0.15 2.15 22.81 3.12 0.91
Pongara -0.90 2.84 14.91 4.00 0.93
Rabi -1.29 3.81 12.36 4.93 0.60
Overall -0.54 3.78 13.08 4.98 0.78

(b)
Cross-validation Performance

ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -0.22 4.29 12.15 5.52 0.36
Mabounie 1.58 4.86 17.19 6.31 0.36
Mondah 0.87 2.19 26.26 3.17 0.91
Pongara -1.38 4.95 26.64 6.37 0.81
Rabi -0.80 3.84 12.80 4.97 0.59
Overall -0.18 4.20 15.43 5.49 0.73

Table 2: (a) Performance metrics computed for the model trained using the extended set of TanDEM-X data
acquired in between 2010 and 2021, for each AfriSAR test site, separately, and overall. (b) Performance
metrics computed for the corresponding cross-validation experiment, for each AfriSAR test site permutation,
separately, and overall.

is summarized in Tab. 2a (ME of -0.54 m, MAE of 3.78 m, MAPE of 13.08%, RMSE of 4.98 m
and R2 of 0.78), which shows an overall improvement with respect to the initial baseline
scenario. The cross-validation results are summarized in Tab. 2b, confirming the robustness
of the model when tested on completely independent areas.
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Figure 6: Hight of ambiguity histogram for the extended training, validation and testing dataset,
comprising TanDEM-X acquisitions covering the AfriSAR test sites from December 2010 up to the
end of 2021.

(a) (b) (c)

Figure 7: (a) Country-scale CHM generated with the model trained using the extended dataset
comprising TanDEM-X from 2010 up to 2021 (Sec. 4.2), (b) corresponding reliability score map and
(c) binary MoA.

The resulting country-scale CHM mosaic, generated from TanDEM-X acquisition from
December 2010 up to the end of 2011 (as done in Sec. 4.1), the corresponding reliability
score map and MoA are depicted in Fig. 7. The MoA presents now much less zero values
with respect to the initial model presented in Fig. 3 (b), and the remaining critical areas are
not primarily linked to the TanDEM-X acquisition geometry but rather to local topographic
effects only. Moreover, the areas of severe CHM underestimation shown in the CHM mosaic
of Fig. 3 (a) are not present anymore in the new mosaic of Fig. 7 (a). From now on we will
therefore only consider the model trained using the extended TanDEM-X dataset for further
experiments on the impact of missing representations of the DEM predictor in Sec. 4.3.

4.3. DEM Analysis
When considering the issue of missing DEM representations in the training set, it is not

possible to follow the same strategy proposed for the height of ambiguity in Sec. 4.2, since
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Table 3: Performance metrics for the DEM analysis experiment. Each row identify the performance of the
model derived from the extended dataset presented in Sec. 4.2 (Baseline), the model trained without the
DEM as predictor (w/o DEM), the model trained with the DEM derivatives (∇) and the model trained
with the high-pass filtered version of the DEM (HPF).

DEM Analysis Performance
ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Baseline -0.54 3.78 13.08 4.98 0.78
w/o DEM -0.58 4.13 15.93 5.35 0.75
∇ 0.12 3.90 15.38 5.08 0.77
HPF 0.11 4.00 15.26 5.23 0.76

the inclusions of new acquisitions over the same initial regions of interest would not allow the
model to see a larger variety of topographies during training. In particular, when comparing
the histograms in Fig. 5 (c) and (d), one can note that only elevations up to about 400 m are
well represented by the AfriSAR test sites. At inference, this results in the majority of the
elevation samples being poorly or not at all represented during the training phase.

To address this issue, we propose to either completely remove the DEM as predictor or
to substitute it with some proxy variables which describe only local topographic variations
instead of the absolute elevation of the scene. Regarding the former solution, we expect to
loose some performance with respect to the results presented in Sec. 4.2 in favor of a more
robust model, while, regarding the latter, we investigate the use of two different DEM-derived
variables: the estimates for the set of spatial partial derivatives ∇hDEM, which correspond
to the estimation of the local terrain slope, and a high-pass filtered version of the DEM
hHPF
DEM, which removes the mean elevation of the scene, highlighting only local high-frequency

variations of the topography. One should note that ∇hDEM is computed as:

∇hDEM(x, y) =
(∂hDEM(x, y)

∂x
,
∂hDEM(x, y)

∂y

)
(15)

where x and y are the horizontal and vertical coordinates, respectively. This corresponds to
the addition of two different input predictors, identifying the horizontal and vertical partial
derivatives, respectively. The performance for all different test cases is summarized in Tab.
3, together with the performance of the model derived from the extended dataset presented
in Sec. 4.2 for comparison purposes (Baseline case). As expected, the complete removal of
the DEM from the set of predictors (w/o DEM case) causes a general loss in performance,
which is partly mitigated by the use of the DEM spatial derivatives (∇ case) or the high-pass
filtered version (HPF case), with the former achieving the overall peak performance (ME of
0.12m, MAE of 3.90m, MAPE of 15.38%, RMSE of 5.08m and R2 of 0.77). On the other
hand, the robustness of model for country-scale inference significantly improves, as it can be
seen from the MoA of all three considered cases in Fig. 8. Indeed, for all considered solutions
the corresponding MoAs show an almost complete coverage of valid values, with the ∇ case
(subfig. (b) and (e)) being characterized by overall higher values in the reliability score map.
The majority of remaining invalid values is located in correspondence of water surfaces, which
were not seen during training.
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(a) (b) (c)

(d) (e) (f)

Figure 8: (Top row) Reliability score maps for the three different DEM-related solutions: (a) removal
of the DEM as predictor, (b) substitution of the DEM with its spatial derivatives (local slope), (c)
substitution of the DEM with its high-pass filtered version. (Bottom row) Corresponding MoAs.

4.3.1. Final Country-scale Model and Inference
In light of the knowledge gained from the previous experiments, we define our final model

for the generation of a country-scale map of the canopy height over Gabon as the CNN
architecture proposed in Sec. 3.1, trained with an extended dataset of TanDEM-X image
acquired from December 2010 up to 2021 over the test sites of the 2016 AfriSAR campaign as
presented in Sec. 4.2, and replacing the input DEM predictor with the estimate of its spatial
derivatives, as proposed in Sec. 4.3.

The detailed performance metrics are reported in Tab. 4 (a) (ME of 0.12m, MAE of
3.90m, MAPE of 15.38%, RMSE of 5.08m and R2 of 0.77). Compared to to the reference
model presented in Sec. 4.2 only a minor degradation in performance can be observed,
predominantly caused by a slight overestimation of very short vegetation samples. This
behaviour can be spotted in the scatterplot presented in Fig. 9 (a), showing the reference
RH99 LVIS values versus the prediction for the final selected model. The estimation bias
(ME) with respect to different reference tree height sub-ranges is shown in 9 (b), together
with the overall reference RH99 distribution of test samples. Notably, measurements are
on average slightly overestimated for vegetation heights below 15m, are unbiased between
30m and 40m, with a tendency to more strongly overestimate forest heights in the 15m
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∇ Performance
ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -0.02 3.78 10.41 4.88 0.50
Mabounie 0.44 4.45 15.24 5.77 0.46
Mondah 1.98 2.95 39.69 4.00 0.85
Pongara 1.52 4.21 28.27 5.45 0.86
Rabi -0.59 3.79 13.01 4.93 0.60
Overall 0.12 3.90 15.38 5.08 0.77

Cross-validation Performance
ME MAE MAPE RMSE R2

Experiment [m] [m] [%] [m] [·]
Lope -3.82 5.27 13.36 6.65 0.07
Mabounie 1.50 4.65 16.19 6.07 0.41
Mondah 3.25 4.12 62.94 5.71 0.69
Pongara -1.17 5.37 28.91 7.01 0.77
Rabi -1.18 3.85 12.84 4.96 0.59
Overall -1.43 4.64 17.69 6.03 0.68

Table 4: (a) Performance metrics computed for the final model trained using the estimate of the spatial DEM
gradient as a replacement for the DEM itself, shown for each AfriSAR test site separately and overall. (b)
Performance metrics computed for the corresponding cross-validation experiment, shown for each AfriSAR
test site permutation separately and overall.

(a) Prediction Scatterplot (b) Estimation Bias

Figure 9: Comparative estimation performance plots between the selected model for country-scale
inference and the reference LVIS dataset. The scatterplot (a) displays the linear prediction agreement.
The boxplot sequence (b) captures the estimation bias and spread for different reference tree height
sub-ranges; the whisker contain 90% of the samples, the boxes 50%, while the black line represents the
median value. The background histograms depict the relative samples distributions of the training
(red) and test sets (blue), respectively.

to 30m range and to underestimate for values above 40m. The results for the geographic
cross-validation experiments are reported in Tab. 4 (b) and show a similar degree of spatial
independence as seen for the previous results.

To further analyze the model’s bias with respect to parameters characterizing both the
illuminated areas and the acquisition geometry, we extend the test dataset to all TanDEM-X
acquisitions from 2010 up to 2021 overlapping the AfriSAR test sites. In this way, a good
representation of the analyzed parameters is considered. Fig.10 (a) displays the relative
dependency of the estimation error on the acquisition Day Of the Year (DOY), highlighting a
comparably unbiased relationship across the value range. Fig.10 (b) relates the error to the
local terrain slope, which is computed using the LVIS-derived DTM estimates. It is possible
to note that the median absolute error show almost no dependency on the local slope of
the underlying topography. Additionally, we evaluate the performance dependency on the
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(a) Day of Year (DOY) (b) Terrain Slope

(c) Height of Ambiguity hamb (d) Incidence Angle θinc

Figure 10: Estimation error bias and spread versus the acquisition DOY (a), the Terrain Slope (b), the
hamb (c) and the incidence angle (d) features, represented as a discrete sequences of boxplots. Each
boxplot covers a feature sub-range, and is described by its whiskers (containing 90 percent of the
samples), its box (containing 50 percent of the samples) and black median line. In the backgrounds,
the respective feature distributions on the test set (in blue).

TanDEM-X acquisition geometry. We observe that across both the hamb (Fig.10 (c)) and
the incidence angle ranges (Fig.10 (d)) the median estimation errors suggest an essentially
unbiased estimation.

Finally, the country-scale mosaic of the CHM over Gabon at 25 m resolution, inferred for
the TanDEM-X acquisitions of 2010/2011 is depicted in Fig. 11a. Further details at higher
resolution, corresponding to the areas included in the red squares, are presented in Fig. 11b.
The first zoom-in (left), shows the presence of primary tropical forest, a complex system of
rivers and antropogenic activities. In the second one (center) it is possible to observe the
presence of tall mangroves along the shores of the Gabon estuary, with peak canopy heights
above 45 m. The third one (right) shows a further example of a dense mangrove forest along
the coast.

5. Discussion

The results detailed in sec. 4 provide a complete overview on the challenges and solutions
related to the country-scale application of the proposed method. In particular, moving from
the confined study areas of the 2016 AfriSAR campaign to the country-scale inference poses the
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(a)

(b)

Figure 11: (a) Country-scale mosaic of Gabon representing the CHM, generated using TanDEM-X
acquisitions from the first global covered of the mission (Dec. 2010 - end of 2011). (b) Zoom-ins of
the three regions included in the red boxes of the country-scale CHM mosaic. Invalid values, caused
by either shadow and layover or by the unreliability of the model, are depicted in white.

natural challenge of validating the final product, especially in the absence of complementary
reference measurements.

We approached the problem following two different paths. On the one hand, we examined
the reliability of the achieved performance metrics by verifying the absence of spatial correlation
between the training and test sets. To do so, we carried out geographically-independent
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cross-validations, which resulted in consistently small deviations in performance with respect
to the standard testing strategy. In particular, these are limited to the Lopé and Pongara
test permutations, being the former characterized by high-relief terrain, and the latter by
the presence of tall mangroves. These observations allow us to confirm the soundness of the
achieved model performance.

On the other hand, we assess the applicability of the model at country scale, where the
estimates cannot be validated otherwise. Based on the assumption of a unique bijective
relationship between predictors and forest height, the proposed approach is meant to identify
those predictors positioned inside the subspace sampled by the training dataset. Rather than
providing a pixel-wise validation, this approach allows for assessing the trustworthiness of
the CH estimates. This means that we are not pixel-wise associating an accuracy value to
each estimate, but are instead able to identify whether the model accuracy falls within the
boundaries defined during the test phase. Clearly, should the underlying assumption of a
bijective relationship not hold anymore (i.e., by missing a necessary discriminative feature),
also the MoA would fail to detect unreliable estimates.

In practice, in the analyses in 4.1 and 4.2 the MoAs have allowed for detecting missing
representations in the training data, which directly match with strongly underestimated forest
heights. On the contrary, the proposed modifications of the training data set in Sec. 4.2 and
the new input predictors defined in Sec. 4.3 have led to the definition of a robust model for
country-scale inference.

The final model achieves an overall very competitive performance, which starts to be
significantly biased toward underestimation only for canopy heights above 45m. Moreover,
beyond canopy heights of 55m, the model tends to saturate, a behaviour often observed in
the literature [24,37,40]. This effect might be related to different aspects. On the one hand, it
could be related to the disproportionately low frequency of high tree samples in the training
set or, on the other hand, to the limited capability of of radar waves at X-band to penetrate
into dense forests.

Regarding the fact that the performance remains stable with respect to the DOY, it is
reasonable to assume that this is valid for tropical forests only. For example, we expect
temperate forests to be affected by more complex changes throughout the year, possibly
requiring additional input information to the model, such as the DOY itself or the time of
acquisition, to remain unbiased.

Similarly, the unbiased estimation with respect to the height of ambiguity and the local
incidence angle is extremely relevant for large-scale applications using single-pass InSAR, as it
suggests that our model is capable of delivering spatially consistent estimates, independently
of the SAR and InSAR geometries.

A performance comparison of our method with respect to the state of the art in the
literature is also of interest. Compared to the preliminary work published in [4], the newly
presented approach yields an overall improvement across all considered metrics. The total bias
has improved by 1.36 m, the MAE by 0.30 m, and the RSME by 0.61 m. When comparing our
methodology to the physical-based models, the RVoG model represents the most investigated
approach [5, 7, 16, 29, 30]. Given the features used in our proposed method, we compare
our performance with the inverted sinc-approximation of the RVoG model [29], since it
also only requires information about the acquisition geometry (i.e., θinc and hamb) and the
volumetric decorrelation coefficient γvol from a single-pol, single-baseline acquisition. The
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RVoG achieves an overall ME of -2.24m, a MAE of 8.60m and an RMSE of 10.85m. In
[16], the proposed RVoG inversion scheme using a combination of TanDEM-X imagery and
LiDAR profiles achieved an RMSE of 8.16m and a r2 value of 0.16 over the site of Lopé.
For comparison, with our approach we achieve an RMSE of 4.88m and r2 of 0.50. In [8],
the RVoG is inverted using multi-baseline, quad-pol acquisitions and selecting the optimal
baseline using a support vector machine (SVM) trained on sparse LiDAR measurements.
These experiments lead to an RMSE of 5.64m over Pongara, of 4.99m over Mondah, and
of 5.99m over Lopé, respectively. Using our proposed approach, we achieve an RMSE of
5.45m, 4.00m and 4.88m, respectively. Finally, in [24] the authors propose a deep learning
approach, which estimates the CHM values from Sentinel-2 multi-spectral data. The analyses
over the AfriSAR Campaign test sites achieve a MAE of 4.9 m and an RMSE of 6.5 m when
considering the yearly least cloudy acquisitions, and a MAE of 4.3 m and an RMSE of 5.6 m
when applying a temporal median filter across a one year inference stack. In this context, our
proposed method achieves extremely competitive results, at the advantage of requiring only a
single TanDEM-X acquisition as input.

Finally, the proposed method shows a significant potential for generating multi-temporal,
time-tagged products and for monitoring forest height changes in time. On the one hand,
clear cuts and afforestation can be easily identified since they represent abrupt changes. On
the other hand, the challenge is to monitor forests dynamics, whose variations lie within the
current uncertainty boundaries of the model. To this aim, further validation is required to
assess the reliability of the derived model with respect to reference data acquired at different
times.

6. Conclusions

In this work, we presented a novel supervised deep learning approach for country-scale
forest height estimation from single-pass TanDEM-X SAR and InSAR products. The method
was trained and tested using the rasterized airborne LVIS LiDAR measurements, acquired
in the context of the 2016 NASA/ESA AfriSAR campaign in Gabon. The deployment at
large-scale posed a series of challenges, mainly related to missing representations of the input
predictor space in the training set and to the assessment of the model reliability where no
reference data is available for precise validation. To cope with these challenges, we proposed
a novel model reliability measure, called map of applicability, and we used it to drive the
definition of a robust dataset for training, concentrating on the role of the height of ambiguity
and of the raw DEM as input predictors. The final model delivers accurate height estimates,
which show a very competitive performance with respect to state of the art methods, at the
advantage of requiring only one single TanDEM-X acquisition, i.e., considering only a single
baseline for each pixel. Finally, we deployed our proposed approach to map the entirety of
Gabon at 25 m resolution using time-tagged data from the first global coverage of TanDEM-X
acquisitions. The proposed method represents a solid starting point for setting up a reliable
framework for the generation of large-scale products of biophysical forest parameters over
tropical forests. As an outlook to future activities, we aim at further assessing the potential
of the methodology for monitoring changes in time in the canopy height, as well as improving
the model itself, by increasing its complexity to simultaneously encompass multiple forest
scenarios across different continents. In order to further improve the performance, we consider
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to expand the framework to a multi-source approach, in which we take advantage of the
synergistic use of both SAR, InSAR and multi-spectral information. Finally, we also aim
at expanding our model to complementary forest parameters, such as forest coverage and
above-ground biomass, thanks to the flexibility of deep learning to transfer knowledge between
similar domains.
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