
HAL Id: hal-04629332
https://hal.science/hal-04629332

Submitted on 29 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated level-based clustering of dataflow actors for
controlled scheduling complexity

Ophélie Renaud, Hugo Miomandre, Karol Desnos, Jean-François Nezan

To cite this version:
Ophélie Renaud, Hugo Miomandre, Karol Desnos, Jean-François Nezan. Automated level-based clus-
tering of dataflow actors for controlled scheduling complexity. Journal of Systems Architecture, 2024,
pp.103217. �10.1016/j.sysarc.2024.103217�. �hal-04629332�

https://hal.science/hal-04629332
https://hal.archives-ouvertes.fr


Automated Level-Based Clustering of Dataflow Actors

for Controlled Scheduling Complexity ⋆

Ophélie Renauda, Hugo Miomandrea, Karol Desnosa, Jean-François Nezana

aUniv Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes,
France, first.last@insa-rennes.fr,

Abstract

Dataflow Models of Computation (MoCs) significantly enhance parallel com-
puting by efficiently expressing application parallelism on multicore archi-
tectures, unlocking greater performance and throughput. However, the com-
plexity of graphs within dataflow-based systems can result in a time-consuming
resource allocation process. To address this issue, a solution is to cluster
computations to ease heuristic solving. The information encompassing the
context of computations and the constraints of the architecture plays a cru-
cial role in determining application performance. This paper presents an
automated approach that leverages this information to control graph com-
plexity prior to the resource allocation process. Experiments demonstrate
that the proposed method, driven by clustering, not only yields improved
throughput but also provides better mapping decisions and data transfer ef-
ficiency, achieving a throughput up to 1.8 times higher than state-of-the-art
techniques.

Keywords: Dataflow model, Hierarchy, Clustering, Pipeline

1. Introduction

With the exponential growth of data and the increasing demand for faster
processing, the challenge of parallel programming has become more impor-
tant than ever. Parallel programming involves enabling computer programs
to use multiple Processing Elements (PEs) simultaneously, which can im-
prove the performance and efficiency of complex tasks.

⋆This work was supported by DARK-ERA (ANR-20-CE46-0001-01).

Preprint submitted to Journal of Systems Architecture June 29, 2024



Parallel programming paradigms provide a framework for understanding
how applications behave on target systems, guiding the development of high-
performance parallel software. Among these paradigms is the dataflow Model
of Computation (MoC) [1], which can naturally express parallelism making
it well-suited for a wide range of data-processing applications. A dataflow
model is a representation of an application, consisting of a graph G = (V,E),
where V is the set of vertices, also known as actors, and E is the set of edges.
The actors represent computations, while the edges represent First In First
Out queues (FIFOs) buffers.

In order to expand the capabilities of the dataflow MoC, a hierarchi-
cal structure has been introduced, promoting composability and modularity
[2]. These properties foster the creation of complex programs by assembling
smaller, self-contained, and reusable components. Various hierarchy-based
dataflow MoCs exist, and one of them is the State-Aware Parameterized and
Interfaced DataFlow (SPiDF) MoC [3]. In this context, the term hierarchy
refers to an organizational framework that allows actors to be defined by
subgraphs instead of relying on standard code.

In dataflow programming, mapping a program to PEs can be challeng-
ing for complex dataflow graphs with a large number of actors and FIFOs
resulting in a time-consuming and resource-intensive process [4]. Modern
applications, especially those with significant data parallelism, often exhibit
a high number of actors within their dataflow graphs. This poses a challenge
as allocating computational, communication, and memory resources for exe-
cuting a dataflow graph is an NP-complete problem, with complexity largely
dependent on the graph size and degree of parallelism exposed. Hence, it
is essential to propose techniques for reducing graph complexity and pre-
allocating resources, such as clustering. The concept of clustering dataflow
actors involves grouping actors together based on their inherent relationships,
enabling the newly created cluster to be considered as a single entity within
the dataflow graph. This approach simplifies the overall graph structure and
streamlines the resource allocation process, reducing complexity and effort.

When establishing effective actor clustering, it is crucial to consider two
key aspects: maintaining parallelism and preserving graph consistency. Ad-
dressing the first point, uncontrolled clustering reduces complexity but trans-
forms the graph into a sequential structure, with only a single actor remaining
active. In addition to parallelism, preserving graph consistency is essential.
Grouping two or more actors into a single equivalent hierarchical actor can
potentially alter the behavior of the application or even lead to deadlocks. To

2



mitigate these issues, clustering rules have been introduced in [5]. These rules
serve as guidelines to ensure that the grouping process adheres to specific cri-
teria, preventing unintended consequences in the behavior of the application.

Previous efforts have therefore proposed a method of controlled actor
clustering, with the number of processing elements in the architecture au-
tomatically aligning the degree of parallelism of the application. In this
context, the initial work, as presented in [6], focuses on reducing data par-
allelism on the target platform. The subsequent work, [7], extends the first
by introducing pipeline parallelism to the sequential portions of the graph,
matching pipeline stages to the target architecture. Both of these methods
are parameterized, with the parameter corresponding to the hierarchical level
at which parallelism is adapted. The lower levels are grouped coarsely, and
these methods yield a set of actor clustering configurations, the number of
which corresponds to the number of hierarchical levels in the input graph.
While both methods have effectively simplified graphs by producing trans-
formed graph configurations based on the adjusted level, it is worth noting
that certain configurations from the latter study proved non-functional when
pipelines were introduced inside cycles, as reported in [8].

This paper presents a clustering method that automatically adjusts the
granularity of an application to the target architecture. Unlike previous
methods, the proposed approach incorporates the hierarchical context of the
dataflow graph and ensures graph consistency across various architectures.
This method effectively reduces the solution space to the best. The rest of
this paper is organized as follows: Section 2 presents the SPiDF MoC, the
standard mapping and scheduling method and the state-of-the-art clustering
heuristics. Section 3 describes the proposed method. Section 4 outlines
the experimental evaluation of the clustering method with respect to graph
complexity, resource allocation process time, throughput, and parallelism
setup. Finally, Section 5 concludes this paper.

2. Context and related work

2.1. SPiDF MoC

The SPiDF MoC [3] illustrated in Figure 1 is a recent extension of the
Synchronous Dataflow (SDF) MoC offering significantly enhanced flexibility
and capability in signal processing design. The two features of interest of
the model exploited in this paper are state awareness and the hierarchy of a
graph.

3



E

C
1

1

1
A 2

B
2 h

11

F
2

G

D

Actor
Hierarchical 

Actor
Buffer 
FIFO

Subgraph

GPD

LD

Rate of tokens 
produced

Rate of tokens 
consumed

Interface

11

11

11

1

1

1

1

1 1

Figure 1: Illustration of the SPiDF MoC

State awareness in the SPiDF MoC refers to the capacity of the model to
take into account the internal state of actors within a dataflow graph. The
internal state of a dataflow graph can be represented using initial tokens in
FIFOs, which are also known as delays. Delays are used to create an offset
on the token consumption by an actor in the graph. By introducing initial
tokens, it is possible to break dependencies between the connected actors
that can impact scheduling opportunities. The SPiDF model introduces two
types of delay mainly used in dataflow application modeling, distinguished
by their level of persistence: Local Delay (LD) and Globally Persistent Delay
(GPD).

• The LD delayed data tokens are preserved within the scope of a unique
graph iteration. Indeed, LD are initialized by an optional Setter actor
at the beginning of each iteration and the final token is retrieved by a
Getter actor at the end of the iteration.

• The GPD are initialized at the beginning of the program and the value
of the delay at the end of a graph iteration is used as the initial value
for the next iteration.

The two main uses of delays are cycles and pipelines [9]. In dataflow MoC,
a cycle refers to a sequence of actors characterized by one or more feedback
loops. This means that after consuming the initial tokens, the first actor in
this sequence becomes dependent on the tokens produced at the output of the
last actor. At this point, a precedence constraint comes into play, significantly

4



restricting parallelism. In order to increase parallelism opportunities, one
approach is to partially unroll the cycle by exploiting its sequential nature and
inserting delays to create pipeline stages, as discussed in [7]. It is important to
note that this cycle unrolling method is only applied to the LD persistence
cycle initialized by a setter actor at each graph iteration. Applying this
method to other cycle persistence can lead to additional overhead in terms
of processing and memory usage [10], [11].

Example. Considering the graph illustrated in Figure 1, a FIFO feedback
loop is formed around the hierarchical actor h, resulting in a cycle in the
graph composed of actors D and E. This particular FIFO incorporates a
LD.

Pipelining a dataflow graph consists in dividing a graph into pipeline
stages, with an explicit delay used to separate stages [12]. During the first
iteration of the graph, the application runs the first stage and retains the final
token value, which is then used during the second iteration as the initial token
for the second stage, and so on.

Example. Considering the graph G illustrated in Figure 1, a GPD is inserted
between actor C and actor h creating a stage composed of actors A,B,C
and another one composed of actors D,E, F .

In other words, once the graph iteration has reached the pipeline depth,
the previous iteration stages can be executed concurrently. It is recommended
not to introduce a pipeline within a cycle, as this would inevitably result in
token shifts, thus changing the behavior of the dataflow graph. Only the
developer can determine if the result is correct. Currently, this distinction
cannot be automated. Therefore, to ensure consistency of results, it is ad-
visable not to automatically insert pipelines into a dataflow cycle [13].

2.2. Standard flattening method

In order to generate a multicore implementation of an application, a
scheduling process must be completed beforehand. This procedure entails as-
signing and ordering actor firings to available PE. The typical static schedul-
ing process for SPiDF [14] involves four main tasks, namely flattening, Single
rate Directed Acyclic Graphs (SrDAG) transformation [15], mapping, and
scheduling. The flattening task replaces all hierarchical actors with their
contents, which implies bringing actors of different granularities to the top-
level graph. The SrDAG transformation reveals parallelism by converting

5



the flattened graph into a single-rates graph where consumed and produced
rates are equal on each FIFO and cycles are unrolled. During this trans-
formation, actors are duplicated based on their associated coefficients from
the Repetition Vector (RV), which brings data dependencies to the forefront.
The calculation of the RV, denoted as q, where each coefficient indicates
the minimum number of firings required for each actor to restore the graph
to its original state [1]. After the SrDAG transformation, each actor in the
SrDAG is individually mapped and scheduled using complex heuristics. This
process involves exploring numerous possibilities, making it computationally
intensive. Furthermore, as the number of actors in the application and the
available processing elements in the architecture increase, the mapping and
scheduling tasks become even more intricate. In fact, this process is known
to be NP-hard, indicating its high level of computational complexity, as dis-
cussed in [4].

2.3. Cluster of SDF actors

This section reviews the state of the art in dataflow actor clustering
methods. Clustering SDF actors is an efficient method for reducing graph
complexity upstream of the standard resource allocation process. Among
the various techniques, hierarchical dataflow-based clustering methods are
commonly employed, with one notable branch being agglomerative cluster-
ing. Agglomerative clustering operates as a bottom-up method, systemat-
ically merging actors based on their similarities. This technique revolves
around identifying actors with comparable attributes and behaviors within
a dataflow graph, ultimately grouping them to form subgraphs with shared
features. Subsequently, a sub-code is generated for each subgraph, encap-
sulating the behavior of the grouped actors. This sub-code replaces the
hierarchical actor, transforming it into a standard actor defined by the newly
created code. The utilization of agglomerative clustering techniques results
in the conversion of hierarchical actors into standard actors, streamlining
dataflow graph processing and enhancing overall efficiency.

To address potential challenges arising from clustering, a set of cluster-
ing rules has been introduced in [5], with detailed illustrations encompassing
four distinct clustering techniques. These rules are designed to ensure that
the behavior of the application is preserved during the clustering process and
to prevent the emergence of deadlocks. The authors in [5] also present four
clustering techniques. The first method is a manual clustering technique.

6



This approach relies on senior developer analysis to understand the applica-
tion and enable effective optimizations. However, the involvement of senior
developers is time-consuming and error-prone. This task is especially chal-
lenging when the applications increase. Automatic strategies like the one
presented in this paper enable the safe and efficient handling of complex ap-
plication programs. The second method consists of clustering SDF subgraphs
for as long as possible. Similar to the previous method, it also depends on
the developer’s judgment to stop the iteration of subgraph clustering which,
if uncontrolled, leads to a sequential application. The third method is the
Unique Repetition Count (URC) clustering technique. This method consists
of creating an SDF subgraph of at least two sequential actors with identi-
cal RV coefficient and no internal state as defined in Definition 1. The last
method, a dynamic clustering one, falls beyond the scope of this paper, which
primarily addresses static allocation. This process was originally introduced
in [16].

Definition 1. Let G = (V,E) be a directed acyclic graph representing a
well-ordered, URC SDF subgraph, where V is the set of vertices and E is
the set of edges. The graph G satisfies the following properties:

1. Well-Ordered: G is well-ordered if it admits only one topological sort,
ensuring a unique ordering of vertices.

2. URC: G is a URC SDF subgraph if all vertices in V have identical
repetition counts, denoted as q-values.

Two other SDF graph reduction techniques are discussed in [17]. The first
technique involves abstracting a Homogeneous SDF (SDF) clustering actor
with identical firing rates. All the above-mentioned techniques aim to sim-
plify the graph structure but may impact the resulting schedule. In contrast,
the second technique described in [17] maintains throughput and latency by
transforming the SDF graph into a smaller HSDF graph using the Max-
plus algebra technique. However, this HSDF graph introduces complexity
in extracting timing parameters and determining a feasible schedule due to
multiple executions of a single firing. Nevertheless, the Slack-Based Merging
techniques[18] address this concern by considering timing constraints when
selecting clusters of dataflow actors, thereby minimizing potential schedule
losses.

7



Another clustering technique depicted in [19], the Pairwise Grouping of
Adjacent Nodes (PGAN) method involves iteratively clustering two neigh-
boring actors, resulting in nested looped schedules. This iterative process
is applied to an entire SDF graph, pairing actors until only a single cluster
remains. The resulting schedule variability is influenced by the selection of
coupling heuristics. Consequently, the technique offers a multitude of po-
tential configurations, making comprehensive evaluation a complex task. Its
extension, the Pairwise Grouping of Adjacent Nodes for Acyclic graph (AP-
GAN) clustering technique introduced in [20] shows that the first pairs of
actors that form a cluster with the highest RV leads to a minimum memory
requirement schedule and minimizes the possible configuration. The Cluster
Finite State Machines technique, as described in reference [21], effectively
manages cyclic features but is not suitable for hierarchical graphs. Cluster-
ing techniques in dataflow MoC analysis aren’t limited to simplifying graphs;
they can also optimize code. For instance, one study [22] explores the balance
between modularity and code size when automatically generating code from
hierarchical SDF graphs. Another study [23] delves into the trade-off be-
tween modularity and reusability in code generation from synchronous block
diagrams. Additionally, there is work [24] that combines these approaches
for code generation. It introduces a compositional abstraction for composite
actors, allowing for modular compilation. This work provides algorithms for
the automatic synthesis of non-monolithic Deterministic SDF with shared
FIFOs (FIFO) profiles for composite actors based on the profiles of their
sub-actors.

2.4. Previous work: hardware-specific clustering method

This section describes the two previous methods, which are extended in
this paper. The two methods, known as the Scaling up of Clusters of Actors
on Processing Element (SCAPE) method, assert their ability to adjust the
granularity of an application to match the available processing elements in
an architecture. They achieve this by employing clustering techniques to
optimize mapping and scheduling opportunities.

The first clustering method [6] aims to reduce excessive data parallelism
on the number of PE. It takes as input a parameter nc that corresponds to the
number of hierarchical levels to be clustered entirely. The method analyses
the hierarchy levels of the input SPiDF graph starting at the bottom. The
level is a cluster as long as the current level is lower than the parameter

8



h
x 3

h
x 12

h

x 3

URCSRV B

h

h

h

h

s

g

UR
C

SR
V h’ CA B
x 8

D
x 1 x 8 x 8 x 4 x 1 x 4

Input Graph G1 Input Graph G2Output Graph G1 Output Graph G2

UR
C

SR
V h’ CA B
x 8

D
x 1 x 8 x 8

s gs g s g

Core0.c Core1,2,3.c Core0.c Core1,2,3.cCluster0.c

Cluster1.c

Code Generation G1 Code Generation G2

Cluster0.c

G

G

G

x 1 x 1x 1x 1 x 1 x 1

x 1 x 1

x 1

x 1

x 1 x 1

s(outS);
srv(outS,outSRV);
B(outSRV,outB);
urc(outB,outURC);
srv(outURC,outSRV);
B(outSRV,outB);
urc(outB,outURC)
srv(outURC,outSRV);
B(outSRV,outB);
urc(outB,outURC)
g(outURC);

srv(outS,outSRV);

urc(outB,outURC);
srv(outURC,outSRV);

urc(outB,outURC);
srv(outURC,outSRV);

urc(outS,outSRV);

srv(in,out){
for(i<2)
A(in,out);
}

urc(in,out){
for(i<2)
C(in,out);
D(in,out);
}

// init part
fifoInit(head0);
----------------
// loop part
s(outS);
h(outS,outh);
fifopush(outh0,head0);
g(outh);

// init part
fifoInit(headi);
----------------
// loop part
fifopop(outhi-1,headi-1);
h(outhi-1,outhi);
fifopush(outhi,headi);

h(in,out){
for(i<3)
for(i<8)
A(in,outA);

B(outA,outB);
for(i<8)
C(outB,outC);
D(outC,out);

memcpy(in,out);
}

Figure 2: Illustration of cycle management using the proposed method in two cases de-
ployed on a 4 PEs architecture. The figure on the left shows the graph transformation
and the simplified generated code for a graph whose hierarchical actor repetition is greater
than the number of PEs. The figure on the right shows the case where the repetition of
the hierarchical actor is less than the number of PEs.

9



nc. The levels above the parameter nc are left as they are. The level equal
to the parameter nc is partially clustered by identifying interesting patterns
of actors to cluster. The patterns are URC, introduced in [5], and Single
Repetition Vector (SRV), introduced in [6] which is an actor with a RV
greater than the number of PE. The RV of these clusters are reduced to
match the number of PEs, which is called scaling. Thus, with the different
values of nc, the method offers a set of clustering configurations of decreasing
granularity and parallelism according to the target architecture.
Example. Consider the graph G1 shown in Figure 2, along with a 4 PE
architecture. This graph, which has 2 levels of hierarchy (one top and one
bottom), admits 4 possible configurations:

1. All actors in the graph are clustered into one, making it sequential.

2. No clustering is performed.

3. Particular patterns are identified and clustered at the bottom level of
the hierarchy.

4. Particular patterns are identified and clustered at the top level, while
the bottom level is coarsely clustered.

In this specific example, the patterns are only localized at the bottom level.
Actors C and D are URC candidates because they are at least 2 sequential
actors sharing the same repetition; here, their repetition is 8. Actor A is a
SRV candidate because it is an isolated actor with a repetition greater than
the number of PEs; here, 8 is greater than 4. These two identified patterns
are processed as two clusters of actors. A subgraph is generated containing
actors C and D, and another subgraph containing actor A. The repetition
of each subgraph is adjusted to match the number of PE; each subgraph is
set to repeat 4 times, and their contents repeat twice so that 2 × 4 = 8,
the original repetition. For each cluster, the APGAN method is applied to
compute the internal subgraph schedule. Specifically,

SSRVG1
= 2(A) and SURCG1

= 2(C D).

The subgraphs are then translated into a C file containing function calls as-
sociated with the actors in nested loops according to the calculated schedule.
This translation transforms the subgraph into a standard actor. The trans-
formed, simplified, and optimized graph is sent to the rest of the resource
allocation process.

10



The second clustering method [7] extends the first one by adding two
other patterns of actors. The patterns are sequential pattern which is a se-
quence of actors with a degree of parallelism less than the number of PEs and
Loop pattern which is a sequence of actors where the last one is connected
to the first one by a delayed FIFO incorporating a LD. The method divides
the actors from the sequential pattern into multiple subgraphs, where the
number of subgraphs is the same as the number of PEs. Each subgraph is
designed to have the same latency, and a delay is introduced between each
subgraph to create distinct pipeline stages. The technique also suggests par-
tially unrolling loops to match the number of PEs. This involves dividing the
original cycles into several groups, the number of which corresponds to the
number of processing elements in the target. Each cluster comprises smaller
loops, where the number of iterations aligns with the iteration count of the
original loop divided by the number of processing elements. Additionally, de-
lays are introduced within the FIFO loops connecting these clusters, thereby
establishing pipeline stages that correspond to the target architecture. This
method also provides a set of clustering configurations with greater cluster-
ing opportunities than the original SCAPE method but doesn’t consider the
hierarchical context state before inserting pipelines inside some subgraphs.

Example. Let’s consider the graph G2 depicted in Figure 2, in conjunction
with a 4-PE architecture. This graph, featuring 2 levels of hierarchy (one
top and one bottom), offers 4 potential configurations, with the distinguish-
ing factor being the identification of specific patterns. In this example, the
patterns are localized at both the bottom and top levels. At the bottom
level, actor B repeats only once, which is fewer than the number of PEs, ren-
dering it a candidate for a sequential pattern. Meanwhile, at the top level,
the hierarchical actor h is a candidate for looping because one of its outputs
connects to one of its inputs. Regarding the clustering configuration where
patterns are solely identified at the bottom level, the process automatically
pipelines actor B. However, in this particular clustering configuration, where
a pipeline is created automatically without considering the hierarchical con-
text, and because the subgraph containing B is within a cycle, this results
in a flawed clustering configuration. This occurs because there will be a
mismatch in the order in which the data is processed. Another clustering
configuration that identifies patterns only at the top level coarsely clusters
the bottom level and unrolls the cycle, as illustrated in Figure 2. In this case,
only 3 out of 4 configurations are not flawed.

11



The proposed method is an extension of SCAPE that offers better par-
allelism management by identifying patterns on each hierarchical level and
integrating pipelines on authorized ones.

3. The proposed method

Pipeline disablingLoop unrolling

Highest 
hierarchical actor 

within a cycle

Start bottom

currentLevel ≥ LevelID?

Pattern 
identification

(except Loop & Seq)

q(ha) ≥ nPE?

Agglomerative 
clustering

No

Upper level exist?

Agglomerative 
clustering

Go upper

Return graph

Pattern 
identification

(all)

Agglomerative 
clustering

No

No

Yes

Yes

Yes

Subgraph 
generation

Sub code 
generation

Hierarchical actor 
transformation

Figure 3: Algorithm of the method

The proposed clustering method simplifies the graph structure and is
inserted just before the flattening process, in other words upstream of the
standard resource allocation process. Unlike the previous SCAPE versions,
the method returns a single well-suited clustering configuration to the archi-
tecture. The algorithm of the method is illustrated in Figure 3.

The different parts of the algorithm are detailed in the following sections.
The method involves the identification of levels that impede pipeline uti-
lization, detailed in Section 3.1. It also encompasses the recognition of four
actor patterns, as expounded in Section 3.2, within authorized levels. These
patterns are then replaced by hierarchical actors that encapsulate the identi-
fied actors, as described in Section 3.3. Additionally, the algorithm involves

12



scheduling computation for the newly formed subgraph, discussed in Sec-
tion 3.4, and the subsequent replacement of the behavior of the hierarchical
actor with the generated code, explained in Section 3.5.

3.1. Identification the highest hierarchical actor within a cycle

The method takes into account the limitations of prior work, where
pipeline insertion in sequential portions was performed without considering
the hierarchical context. This previous approach could inadvertently intro-
duce pipelines within a cycle, potentially causing a misalignment of token
order. To address this issue, the new method starts by assessing the feasibil-
ity of generating pipelines at a specific level, considering that cycles should
not include pipelines. This assessment is carried out by initially travers-
ing the graph from top to bottom and identifying the highest level where a
hierarchical actor is present within a cycle.

To maximize the benefits of cycle existence and avoid inserting pipelines
into cycles, the method identifies the highest hierarchical actor present within
any cycles in the graph. The clustering approach chosen depends on the
repetition of the cycle concerning the available processing elements:

• If the common repetition among all actors within the cycle, including
the hierarchical actor, is less than the number of processing elements,
the method allows all specific clusterings, as outlined in Section 2.3,
that are unrelated to the pipeline on the lower levels of the hierarchical
actor. In other words, only data parallelism is reduced on the child
levels of the hierarchical actor.

• Conversely, if the common repetition among all actors within the cycle,
with the hierarchical actor, is greater than the number of processing
elements, the method coarsely groups the hierarchical levels below the
hierarchical level of the actor and proceeds with partial loop unrolling.

Example. Considering the graphs G1 and G2 illustrated in Figure 2 on 2
levels. On the top level, a hierarchical actor h is self-looped and its content
is a sequence of actor A,B,C,D. hG1 is fired three times per graph iteration
and hG2 is fired twelve times. On both graphs, the highest hierarchical actor
within the cycle are h located on the top-level graph.

13



3.2. Identification of dataflow actor patterns

This section details specific patterns of actors that will be identified for
clustering. The choice of clustering patterns is contingent on the repetition
q of the highest hierarchical actor within the graph ha, as solved in the
preceding section, and whether the method examines the lower or upper
levels concerning the hierarchical actor. The method follows a bottom-up
approach, starting the recognition process at the lowest hierarchical level of
the graph. Once all specific actors at the current level are clustered, the
method proceeds to seek patterns at higher hierarchical levels.

Here are the patterns and corresponding scenarios:

• When the collective repetition of all actors within the cycle, including
the hierarchical actor, is below the number of available processing ele-
ments and the current hierarchical level is lower than the level where
the highest hierarchical actor is located, the method will pinpoint two
patterns from the first method, SCAPE, which aim to reduce data par-
allelism according to the number of processing elements. These two
patterns are URC and SRV, as introduced in Section 2.3. Addition-
ally, in pursuit of further graph complexity reduction, the method will
identify another pattern: the Low Latency Impact (LLI) pattern. This
process consists of clustering actors with a negligible execution time
compared to other actors on the same hierarchical level. This cluster
respects the topological order of the graph and has no internal state.
This case corresponds to the Pipeline disabling stage in Figure 3.

• Conversely, when the repetition of all actors within the cycle, including
the hierarchical actor, exceeds the number of available processing ele-
ments, the method coarsely groups levels lower than the one containing
the highest hierarchical actor. This scenario is representing by the Loop
unrolling stage in Figure 3.

• As for the upper levels, the method takes into account all patterns, as
it no longer faces the potential insertion of pipelines within cycles.

Example. Considering the graphs G1 and G2 Figure 2 and a 4 PE architec-
ture. As hG1 is fired three times per graph iteration that is less than 4 then
its content is the object of clustering URC, SRV and LLI patterns of actors.
As hG2 is fired twelve times per graph iteration that is more than 4 then its
content is the object of coarse clustering.

14



3.3. Subgraph transformation

Section 2.3 delved into the concept of agglomerative clustering techniques
and their role in streamlining dataflow actors. Now, the focus shifts to the
next phase in the proposed method, termed Subgraph Transformation which
is a pivotal step in the hierarchical clustering of dataflow actors. This phase
operates subsequent to pattern identification and entails the generation of
subgraphs containing the identified actors. Within these subgraphs, the de-
lays of all persistency are systematically extracted and interconnected with
the corresponding hierarchical actors. The subgraph transformation process
encompasses the addition of interfaces to the subgraph and the establishment
of links between the ports on the hierarchical actor and the delay(s). Ex-
tracting these delay(s) serves a crucial purpose, enabling the computation of
the internal execution order of the subgraph through the APGAN method.
Moreover, it is important to highlight that at this step, The proposed method
scales the URC and SRV subgraphs to align them with the target architec-
ture. This scaling process ensures that these subgraphs iteratively match the
number of PE of the target. The subsequent example provides further clarity
on this scaling operation and its implications on different graphs within the
context of the execution of the proposed method.

Example. Considering the graphs G1 and G2 Figure 2 and a 4 PE architec-
ture. URCG1 and SRVG1 are scaled to iterate 4 times and their content twice
per graph iteration. hG2 is duplicated 4 times and its content is rolled up in
a loop that iterates 3 times per graph iteration so that 3× 4 = 12.

3.4. Cluster code generation

Following the agglomerative clustering process, the subsequent phase en-
tails the generation of code for the cluster. The method is implemented in the
open source Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) framework [25]. The tool takes as input a dataflow graph where
standard actors are specified in C code. Consequently, the cluster code also
takes the form of C files, where a specialized function is defined. This func-
tion encapsulates the scheduled firing of actors within the subgraph, and the
schedule itself is computed with the APGAN algorithm. The translation of
actor firings into function calls plays a pivotal role, effectively implementing
the behavior of these actors.

In the generated code, the for loops symbolize the RV values of the actors,
allowing for the precise execution of their behaviors. Moreover, the functions

15



include arguments that reference the ports of the actors, and data exchange
is facilitated through FIFO buffers.

In scenarios where the loop pattern is applied and a partial unrolling is
performed, feedback mechanisms are transformed into a memcpy function.
This function is responsible for copying data from an output buffer to an
input buffer, aligning the code with the specific behavior of the actors.

Example. Considering the graphs G1 and G2 Figure 2 and a 4 PE architec-
ture. The schedules of the clusters are calculated using the APGAN algo-
rithm and are as follows:

• SSRVG1
= 2(A)

• SURCG1
= 2(C D)

• ShG2
= 3(8A B8(C D))

The corresponding code for these clusters is illustrated in Figure 2.

3.5. Graph transformation

The behavior of the hierarchical actor parent of the subgraph is then re-
placed by the newly created cluster code. Depending on whether the current
search level is upper than the identified level and the identified actor were the
candidate of Loop or Sequential patterns then GPDs are inserted between
them creating pipeline stages.

Example. One schedule of the output graph of G1 illustrated in Figure 2 can
be: SG1 = s 4(SRV ) B 4(URC) 4(SRV ) B 4(URC) 4(SRV ) B 4(URC) g
A delay is inserted between two instances of hG2 creating four pipeline stages.
One schedule of the output graph of G2 can be: SG2 = s 4(h) g

4. Experiments

4.1. Experimental setup

The proposed method is applied to three image processing applications:
OpenVVC(1), Squeezenet(2), and Stereo(3) on a SPiDF description. The
OpenVVC dataflow model has been introduced in [26], the author particu-
larly explores parallelism between tiles in the VVC decoder. The Squeezenet
application is a CNN for computer vision introduced in [27]. The exper-
imented Stereo matching algorithm has been introduced in [28] and aims

16



at reconstructing the disparity maps with a pair of images. OpenVVC and
Stereo SPiDF model presents 1 hierarchical level whose hierarchical actor is
self-looped forbidding internal pipelining. Squeezenet SPiDF model presents
3 hierarchical levels and clustering opportunities on each of them. All of
these dataflow models are available in Github 1.

The proposed method, noted CC for Current Clustering, is compared
to the configuration without clustering, noted NC for No Clustering, and to
the Best Clustering configuration of the previous SCAPE method, noted BC.
Owing the fact that the previous SCAPE method provides a set of clustering
configurations, the one that offers the best tradeoff in terms of the number
of SrDAG actors, resource allocation process time, also called analysis time,
and throughput speedup is chosen.

Table 1 compares graph complexity based on the size of SrDAG in terms
of the number of Actors, noted A, and the number of FIFOs, noted f . Fig-
ure 4 illustrates analysis time, that is the time the tool takes to map schedule
and generate code to an application, and throughput speedup. Figure 5 com-
pares two critical performance metrics: the average data transfer time per
thread, and the average synchronization time per thread. The average data
transfer time per thread represents the time spent by the memcpy function
to efficiently distribute tokens among several instances of actors. This time
duration exhibits variability depending on the specific thread in which these
functions are executed, and the metric presented here captures the average
data transfer time per individual thread. Concurrently, the average synchro-
nization time per thread reflects the delays introduced by employing Pthreads
barriers to synchronize the various threads involved in the process. Since the
barriers necessitate certain threads to await the completion of others, there
can be discrepancies in the waiting times across threads, thus resulting in
varying synchronization times.

Given that the performance criteria heavily depend on the architecture
and that the method leverages architectural details in the graph transfor-
mation process, experiments were conducted across a range of architectures,
specifically those with 1 to 8 homogeneous cores. To conduct these exper-
iments, the proposed method was implemented within the PREESM [25]
rapid prototyping framework, which is part of open-source projects. The ex-
periments were carried out on a desktop computer featuring an 8-core Intel

1https://github.com/preesm/preesm-apps

17

https://github.com/preesm/preesm-apps


i7-8665U processor and 31.2 GB of RAM.

Number of PEs

1 2 4 8
App. Met. A f A f A f A f

(1) NC 7262 39995 7262 39995 7262 39995 7262 39995
BC 1 0 12 14 24 34 99 159
CC 1 0 12 14 24 34 99 159

(2) NC 5452 17262 5452 17262 5452 17262 5452 17262
BC 1 0 1364 3589 1376 3916 1400 4197
CC 1 0 124 260 188 480 316 920

(3) NC 313 1069 313 1069 313 1069 313 1069
BC 1 0 73 125 76 143 89 313
CC 1 0 53 85 61 113 89 313

Table 1: Comparison of the number of actors A and the number of FIFO f of the SrDAG
between the No Clustering (NC) and the Best Clustering (BC) configurations of the previ-
ous SCAPE method, as well as the clustering configuration of the proposed method (CC)
on 3 applications: OpenVVC(1), Squeezenet(2), and Stereo(3) on various number of PEs.

4.2. Analysis time evaluation

The experimental results in Table 1 unveil the impact of graph complex-
ity on the performance of the proposed method. The size of the SrDAG,
as indicated by the number of actors, plays a critical role in influencing the
efficiency of the mapping and scheduling process. The table illustrates a key
trend: larger graphs, characterized by a higher number of actors, tend to in-
duce more time-consuming computations during the mapping and scheduling
phase, as the method explores various possibilities on the target architecture.
In contrast, smaller graphs lead to a simplified process. Moreover, the exper-
imental findings highlight that the complexity of the graph generated by the
proposed approach is either lower or equivalent to the best outcome achieved
by the second version of the SCAPE method. Furthermore, it significantly
surpasses the method without clustering, affirming its efficacy in streamlining
the dataflow graph transformation process. Specifically, for the OpenVVC
dataflow model, the proposed method and the previous SCAPE method both
provide the same configuration, the best. The previous SCAPE method has

18



1 2 3 4 5 6 7 8
Number of Cores

101

103

105

107

Re
so

ur
ce

 a
llo

ca
tio

n 
tim

e 
(m

s)

OVVC NC
OVVC BC
OVVC CC
Squeezenet NC
Squeezenet BC
Squeezenet CC
Stereo NC
Stereo BC
Stereo CC

1 2 3 4 5 6 7 8
Number of Cores

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 S

pe
ed

up

OVVC NC
OVVC BC
OVVC CC
Squeezenet NC
Squeezenet BC
Squeezenet CC
Stereo NC
Stereo BC
Stereo CC

Figure 4: Comparison of analysis time and throughput speedup between the No Clustering
(NC) and the Best Clustering (BC) configurations of the previous SCAPE method, as well
as the clustering configuration of the proposed method (CC), across three applications and
varying numbers of PEs. Squeezenet NC are not shown because they are too large.

1 2 3 4 5 6 7 8
Number of Cores

10 7

10 6

10 5

Av
er

ag
e 

da
ta

 tr
an

sf
er

 ti
m

e 
pe

r t
hr

ea
d 

(s
) OVVC NC

OVVC BC
OVVC CC
Squeezenet NC
Squeezenet BC
Squeezenet CC
Stereo NC
Stereo BC
Stereo CC

2 3 4 5 6 7 8
Number of Cores

10 6

10 5

10 4

10 3

10 2

10 1

Av
er

ag
e 

sy
nc

hr
on

iza
tio

n 
tim

e 
pe

r t
hr

ea
d 

(s
)

OVVC NC
OVVC BC
OVVC CC
Squeezenet NC
Squeezenet BC
Squeezenet CC
Stereo NC
Stereo BC
Stereo CC

Figure 5: Comparison of average data transfer and synchronization times per thread be-
tween the No Clustering (NC) and the Best Clustering (BC) configurations of the previous
SCAPE method, along with the clustering configuration of the proposed method, across
three different applications and varying numbers of PEs

19



to evaluate all possible configurations to retrieve the best one, while the pro-
posed method gives the best solution directly. The finding solution leads to
a substantial reduction in the number of actors, from 7262 to 24, on a 4-core
architecture. This configuration similarity arises particularly on dataflow
graphs with a small number of hierarchical levels and few of them admit
clustering opportunities. Specifically, in the case of the OpenVVC dataflow
model with 1 hierarchical level and clustering opportunities localized on a sin-
gle hierarchical level, both the proposed method and the previous clustering
method achieve the same configuration post-clustering. This is highlighted
in the Squeezenet application that has clustering opportunities on each hier-
archical level the proposed method provides the least complex graphs better
than all other configurations. Concerning the stereo application the method
provides the least complex graphs on small architecture and then retrieves the
same configuration as the previous SCAPE method. The method provides
a graph complexity adapted to the number of PEs of the target, therefore
the complexity of the resulting graph increases as the architecture increases
until it reaches the original configuration when the degree of parallelism of
the description of the origin becomes lower than the number of PEs and the
pipeline gains reach the system limit.

The experimental results depicted on the right of Figure 4 compare the
three use cases: in red OpenVVC, in blue Squeezenet, and in green stereo; on
the three methods: in dotted line, No clustering, in dashed line, the previous
SCAPE method, and in full line, the proposed method. Results concerning
analysis time testify to the link between SrDAG complexity and analysis cost
because the method provides a faster analysis if not equal to the previous
method. The proposed method always provides on these curves an analysis
time of a few seconds. The curves for Squeezenet and OpenVVC without
clustering are not visible due to their high complexity, causing the analysis
to reach the computational limits of the test computer after a full day of
processing. This indicates that the computational capabilities of the tool
have been pushed to their limits without reaching the code generation stage.

4.3. Throughput evaluation

This section investigates the performance of the method by analyzing the
throughput speedup results displayed on the left side of Figure 4. These
results demonstrate that the method outperforms the configuration without
clustering, which is otherwise identical to the previous SCAPE configura-
tion. Notably, the complexity of the OpenVVC and Squeezenet applications

20



is substantial, making direct output generation impossible without the aid
of the method. In the case of OpenVVC, manual modifications have been
applied to the configuration without clustering to enable performance com-
parison. However, such modifications are unfeasible for Squeezenet, resulting
in the absence of a corresponding throughput curve for this application.

Stereo and OpenVVC, both containing cycles, benefit from the proposed
method by leveraging the semi-unrolling feature. This approach brings a
two-fold advantage. Firstly, it introduces pipeline stages, thereby increasing
parallelism, resulting in improved speedup compared to the configuration
without clustering. Secondly, as loop pipeline stages are created based on
the greatest common divisor between the number of PEs and the number of
repetitions of the original loop, the performance curve of the method exhibits
a step-like pattern. The points where the curve reaches a ceiling correspond
to the initiation of each new step in the performance improvement.

The equal performance in throughput obtained with the proposed method
and the previous SCAPE method concerning Stereo and OpenVVC is due to
the fact that the methods retrieve the same graph configuration. Concerning
Squeezenet it is due to the fact that both configurations as similar parallelism
setup which is detailed in Section4.4.

The reason why the method outperforms the OpenVVC dataflow model
is a generic model independent of any target architecture. The developer’s
goal is to model the application once and deploy it on any available archi-
tecture, which is useful in the first phases of a project to quickly evaluate
the potential of a solution. This generic model greatly limits any potential
hardware-specific optimizations, which are automatically provided by the
proposed method, thus achieving both the enhancement of rapid prototyp-
ing to quickly deploy an architecture-independent model of the application
and the provision of hardware-specific optimizations.

4.4. Thread-level data transfer and synchronization evaluation

The results shown in Figure 5 reveal significant time savings in implement-
ing parallelism through specific clustering. This implementation encompasses
parallelism in the description, inter-thread data transfer, and synchronization
processes, as detailed in [29].

Applications with a lot of communication between computations such as
OpenVVC with 39995 FIFOs in Table 1 can suffer from the synchronization
of dependent computations on several threads more than the data transfer
time. Indeed the average data transfer time is negligible by a few nanoseconds

21



on CPU architectures compared to the average synchronization time of a few
milliseconds.

There are two types of synchronization used in PREESM [25]: the syn-
chronization of the beginning and end of the thread loops with the use of
barriers and the synchronization between dependent computations with the
use of send and receive functions on each thread between each dependent
instance. The reduction of complexity thanks to clustering reduces the num-
ber of communications, from 39995 f to 14 f on 2 core architecture con-
cerning OpenVVC, which reduces the number of synchronization and thus
the average synchronization time per thread, from 302ms to 722us. As the
number of cores increases, the dependent computations and synchronization
are distributed, reducing the gain obtained through clustering. Hence the
clear acceleration in throughput on 2 cores, fades with the complexity of the
architecture.

5. Conclusion

This paper presents a new automated method to reduce mapping and
scheduling time while preserving and adding the parallelism of SPiDF graphs.
The method consists in reducing the size of the graph by clustering actors re-
producing particular patterns taking into account the graph context and the
target architecture. Experimental results show that the method provides bet-
ter throughput result thanks to adapting the implementation of parallelism
to the target architecture. In addition, the method yields the most mean-
ingful results on complex graphs to be deployed on complex architecture.
Potential directions for future work include adapting the internal behavior
of the clusters of actors to the target architecture.

References

[1] E. A. Lee, D. G. Messerschmitt, Static scheduling of synchronous data
flow programs for digital signal processing, IEEE Transactions on Com-
puters C-36 (1) (1987) 24–35. doi:10.1109/TC.1987.5009446.

[2] J. Piat, S. S. Bhattacharyya, M. Raulet, Interface-based hierarchy for
synchronous data-flow graphs, 2009 IEEE Workshop on Signal Process-
ing Systems (2009) 145–150doi:10.1109/SIPS.2009.5336240.

22

https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/SIPS.2009.5336240


[3] F. Arrestier, K. Desnos, M. Pelcat, J. Heulot, E. Juarez, D. Menard,
Delays and States in Dataflow Models of Computation, in: SAMOS
XVIII, Pythagorion, Greece, 2018. doi:10.1145/3229631.3229645.
URL https://hal.science/hal-01850252

[4] E. Lee, S. Ha, Scheduling strategies for multiprocessor real-time dsp,
in: 1989 IEEE Global Telecommunications Conference and Exhibition
’Communications Technology for the 1990s and Beyond’, 1989, pp. 1279–
1283 vol.2. doi:10.1109/GLOCOM.1989.64160.

[5] J. Pino, S. Bhattacharyya, E. Lee, A hierarchical multiprocessor schedul-
ing system for dsp applications, in: Conference Record of The Twenty-
Ninth Asilomar Conference on Signals, Systems and Computers, Vol. 1,
1995, pp. 122–126 vol.1. doi:10.1109/ACSSC.1995.540525.

[6] O. Renaud, D. Gageot, K. Desnos, J.-F. Nezan, SCAPE: HW-
Aware Clustering of Dataflow Actors for Tunable Scheduling Com-
plexity, in: Design and Architecture for Signal and Image Processing,
Springer Nature Switzerland, Cham, 2023, pp. 3–14. doi:10.1007/

978-3-031-29970-4_1.

[7] O. Renaud, N. Haggui, K. Desnos, J.-F. Nezan, Automated clustering
and pipelining of dataflow actors for controlled scheduling complexity,
in: 2023 31st European Signal Processing Conference (EUSIPCO), 2023,
pp. 1698–1702. doi:10.23919/EUSIPCO58844.2023.10290113.

[8] T. Parks, J. Pino, E. Lee, A comparison of synchronous and cycle-
static dataflow, in: Conference Record of The Twenty-Ninth Asilomar
Conference on Signals, Systems and Computers, Vol. 1, 1995, pp. 204–
210 vol.1. doi:10.1109/ACSSC.1995.540541.

[9] E. Lee, Consistency in dataflow graphs, IEEE Transactions on Parallel
and Distributed Systems 2 (2) (1991) 223–235. doi:10.1109/71.89067.

[10] X. Ye, X. Tan, M. Wu, Y. Feng, D. Wang, H. Zhang, S. Pei,
D. Fan, An efficient dataflow accelerator for scientific applica-
tions, Future Generation Computer Systems 112 (2020) 580–588.
doi:https://doi.org/10.1016/j.future.2020.03.023.
URL https://www.sciencedirect.com/science/article/pii/

S0167739X19313986

23

https://hal.science/hal-01850252
https://doi.org/10.1145/3229631.3229645
https://hal.science/hal-01850252
https://doi.org/10.1109/GLOCOM.1989.64160
https://doi.org/10.1109/ACSSC.1995.540525
https://doi.org/10.1007/978-3-031-29970-4_1
https://doi.org/10.1007/978-3-031-29970-4_1
https://doi.org/10.23919/EUSIPCO58844.2023.10290113
https://doi.org/10.1109/ACSSC.1995.540541
https://doi.org/10.1109/71.89067
https://www.sciencedirect.com/science/article/pii/S0167739X19313986
https://www.sciencedirect.com/science/article/pii/S0167739X19313986
https://doi.org/https://doi.org/10.1016/j.future.2020.03.023
https://www.sciencedirect.com/science/article/pii/S0167739X19313986
https://www.sciencedirect.com/science/article/pii/S0167739X19313986


[11] Y. Li, M. Wu, X. Ye, W. Li, R. Xue, D. Wang, H. Zhang, D. Fan,
An efficient scheduling algorithm for dataflow architecture us-
ing loop-pipelining, Information Sciences 547 (2021) 1136–1153.
doi:https://doi.org/10.1016/j.ins.2020.09.029.
URL https://www.sciencedirect.com/science/article/pii/

S0020025520309397

[12] E. Lee, D. Messerschmitt, Pipeline interleaved programmable dsp’s:
Synchronous data flow programming, IEEE Transactions on Acous-
tics, Speech, and Signal Processing 35 (9) (1987) 1334–1345. doi:

10.1109/TASSP.1987.1165275.

[13] A. Honorat, K. Desnos, M. Dardaillon, J.-F. Nezan, A Fast Heuristic to
Pipeline SDF Graphs, in: Embedded Computer Systems: Architectures,
Modeling, and Simulation, Embedded Computer Systems: Architec-
tures, Modeling, and Simulation 20th International Conference, SAMOS
2020, Samos, Greece, July 5–9, 2020, Proceedings, Pythagorion, Samos
Island, Greece, 2020, pp. 139–151. doi:10.1007/978-3-030-60939-9\
_10.
URL https://hal.science/hal-02993338

[14] Z. Zhou, W. Plishker, S. S. Bhattacharyya, K. Desnos, M. Pelcat, J.-F.
Nezan, Scheduling of parallelized synchronous dataflow actors for mul-
ticore signal processing, J. Signal Process. Syst. 83 (3) (2016) 309–328.
doi:10.1007/s11265-014-0956-2.
URL https://doi.org/10.1007/s11265-014-0956-2

[15] G. Sih, E. Lee, Scheduling to account for interprocessor communication
within interconnection-constrained processor networks., in: Proceedings
of the 1990 International Conference on Parallel Processing, Urbana-
Champaign, IL, USA, August 1990. Volume 1: Architecture, Pennsyl-
vania State University Press, 1990, pp. 9–16.

[16] V. Sarkar, Partitioning and scheduling parallel programs for execution
on multiprocessors (1 1987).
URL https://www.osti.gov/biblio/7043298

[17] M. Geilen, Reduction techniques for synchronous dataflow graphs,
Design Automation Conference (Jul 2009). doi:10.1145/1629911.

1630146.

24

https://www.sciencedirect.com/science/article/pii/S0020025520309397
https://www.sciencedirect.com/science/article/pii/S0020025520309397
https://doi.org/https://doi.org/10.1016/j.ins.2020.09.029
https://www.sciencedirect.com/science/article/pii/S0020025520309397
https://www.sciencedirect.com/science/article/pii/S0020025520309397
https://doi.org/10.1109/TASSP.1987.1165275
https://doi.org/10.1109/TASSP.1987.1165275
https://hal.science/hal-02993338
https://hal.science/hal-02993338
https://doi.org/10.1007/978-3-030-60939-9_10
https://doi.org/10.1007/978-3-030-60939-9_10
https://hal.science/hal-02993338
https://doi.org/10.1007/s11265-014-0956-2
https://doi.org/10.1007/s11265-014-0956-2
https://doi.org/10.1007/s11265-014-0956-2
https://doi.org/10.1007/s11265-014-0956-2
https://www.osti.gov/biblio/7043298
https://www.osti.gov/biblio/7043298
https://www.osti.gov/biblio/7043298
https://doi.org/10.1145/1629911.1630146
https://doi.org/10.1145/1629911.1630146


[18] H. I. Ali, S. Stuijk, B. Akesson, L. M. Pinho, Reducing the complexity
of dataflow graphs using slack-based merging, ACM Trans. Des. Autom.
Electron. Syst. 22 (2) (jan 2017). doi:10.1145/2956232.
URL https://doi.org/10.1145/2956232

[19] S. S. Bhattacharyya, E. A. Lee, Scheduling synchronous dataflow graphs
for efficient looping, Journal of VLSI signal processing systems for sig-
nal, image and video technology 6 (1993) 271–288. doi:10.1007/

BF01608539.

[20] S. Bhattacharyya, P. Murthy, E. Lee, Apgan and rpmc: Complementary
heuristics for translating dsp block diagrams into efficient software im-
plementations, Design Automation for Embedded Systems 2 (09 1997).
doi:10.1023/A:1008806425898.

[21] J. Falk, J. Keinert, C. Haubelt, J. Teich, S. S. Bhattacharyya, A gen-
eralized static data flow clustering algorithm for mpsoc scheduling of
multimedia applications, in: Proceedings of the 8th ACM Interna-
tional Conference on Embedded Software, EMSOFT ’08, Association
for Computing Machinery, New York, NY, USA, 2008, p. 189–198.
doi:10.1145/1450058.1450084.
URL https://doi.org/10.1145/1450058.1450084

[22] R. Lublinerman, C. Szegedy, S. Tripakis, Modular code generation from
synchronous block diagrams: Modularity vs. code size, SIGPLAN Not.
44 (1) (2009) 78–89. doi:10.1145/1594834.1480893.
URL https://doi.org/10.1145/1594834.1480893

[23] R. Lublinerman, S. Tripakis, Modularity vs. reusability: Code genera-
tion from synchronous block diagrams, in: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, DATE ’08, Association
for Computing Machinery, New York, NY, USA, 2008, p. 1504–1509.
doi:10.1145/1403375.1403736.
URL https://doi.org/10.1145/1403375.1403736

[24] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, E. A. Lee, Compositionality
in synchronous data flow: Modular code generation from hierarchical
sdf graphs, ACM Trans. Embed. Comput. Syst. 12 (3) (apr 2013). doi:
10.1145/2442116.2442133.
URL https://doi.org/10.1145/2442116.2442133

25

https://doi.org/10.1145/2956232
https://doi.org/10.1145/2956232
https://doi.org/10.1145/2956232
https://doi.org/10.1145/2956232
https://doi.org/10.1007/BF01608539
https://doi.org/10.1007/BF01608539
https://doi.org/10.1023/A:1008806425898
https://doi.org/10.1145/1450058.1450084
https://doi.org/10.1145/1450058.1450084
https://doi.org/10.1145/1450058.1450084
https://doi.org/10.1145/1450058.1450084
https://doi.org/10.1145/1450058.1450084
https://doi.org/10.1145/1594834.1480893
https://doi.org/10.1145/1594834.1480893
https://doi.org/10.1145/1594834.1480893
https://doi.org/10.1145/1594834.1480893
https://doi.org/10.1145/1403375.1403736
https://doi.org/10.1145/1403375.1403736
https://doi.org/10.1145/1403375.1403736
https://doi.org/10.1145/1403375.1403736
https://doi.org/10.1145/2442116.2442133
https://doi.org/10.1145/2442116.2442133
https://doi.org/10.1145/2442116.2442133
https://doi.org/10.1145/2442116.2442133
https://doi.org/10.1145/2442116.2442133
https://doi.org/10.1145/2442116.2442133


[25] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, S. Aridhi, Preesm:
A dataflow-based rapid prototyping framework for simplifying multicore
dsp programming, in: 2014 6th european embedded design in education
and research conference (EDERC), IEEE, 2014, pp. 36–40.

[26] N. Haggui, W. Hamidouche, F. Belghith, N. Masmoudi, J.-F. Nezan,
OpenVVC Decoder Parameterized and Interfaced Synchronous Dataflow
(PiSDF) Model: Tile Based Parallelism, Journal of Signal Processing
Systems (2022). doi:10.1007/s11265-022-01819-7.
URL https://hal.science/hal-03884560

[27] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and ¡0.5mb model size (2016). arXiv:1602.07360.

[28] J. Zhang, J.-F. Nezan, M. Pelcat, J.-G. Cousin, Real-time gpu-based
local stereo matching method, 2013 Conference on Design and Architec-
tures for Signal and Image Processing (2013) 209–214.
URL https://api.semanticscholar.org/CorpusID:9166047

[29] M. Pelcat, S. Aridhi, J. Piat, J. F. Nezan, Physical Layer Multi-Core
Prototyping: A Dataflow-Based Approach for LTE eNodeB, Lecture
Notes in Electrical Engineering, Springer-Verlag London, 2012. doi:

10.1007/978-1-4471-4210-2.
URL https://hal.science/hal-00739957

26

https://hal.science/hal-03884560
https://hal.science/hal-03884560
https://doi.org/10.1007/s11265-022-01819-7
https://hal.science/hal-03884560
http://arxiv.org/abs/1602.07360
https://api.semanticscholar.org/CorpusID:9166047
https://api.semanticscholar.org/CorpusID:9166047
https://api.semanticscholar.org/CorpusID:9166047
https://hal.science/hal-00739957
https://hal.science/hal-00739957
https://doi.org/10.1007/978-1-4471-4210-2
https://doi.org/10.1007/978-1-4471-4210-2
https://hal.science/hal-00739957

	Introduction
	Context and related work
	SPiDF MoC
	Standard flattening method
	Cluster of SDF actors
	Previous work: hardware-specific clustering method

	The proposed method
	Identification the highest hierarchical actor within a cycle
	Identification of dataflow actor patterns
	Subgraph transformation
	Cluster code generation
	Graph transformation

	Experiments
	Experimental setup
	Analysis time evaluation
	Throughput evaluation
	Thread-level data transfer and synchronization evaluation

	Conclusion

