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Abstract: In this paper, we investigate cyclic codes over the ring E of order 4 and characteristic 2
defined by generators and relations as E = ⟨a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b⟩. This
is the first time that cyclic codes over the ring E are studied. Each cyclic code of length n over E is
identified uniquely by the data of an ordered pair of binary cyclic codes of length n. We characterize
self-dual, left self-dual, right self-dual, and linear complementary dual (LCD) cyclic codes over E.
We classify cyclic codes of length at most 7 up to equivalence. A Gray map between cyclic codes of
length n over E and quasi-cyclic codes of length 2n over F2 is studied. Motivated by DNA computing,
conditions for reversibility and invariance under complementation are derived.

Keywords: non-unitary rings; cyclic codes; self-orthogonal codes; Gray map
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1. Introduction

Cyclic codes over finite fields [1] and finite rings [2], form the most popular class
of algebraic codes for both theoreticians and engineers. The well-known reason is their
representation as ideals over the polynomial ring B(A, n) = A[x]/(xn − 1), where x is a
formal variable and A the code alphabet ( a finite ring or a finite field in the above references).
The ring B(A, n) being principal, each ideal in that ring is uniquely characterized by a
polynomial g, say, called the generator polynomial. However, if the alphabet ring is non-
unitary ( without a unit element for multiplication) this approach does not function since
the ring B(A, n) cannot be defined for lack of the element Xn − 1 in A[x].

In this paper, we study cyclic codes over the nonunitary ring E defined by generators
and relations E = ⟨a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b⟩, from the standpoints
of duality, classification, and Gray map. This is the first time that cyclic codes over the ring
E are studied. In a companion paper [3], cyclic codes over the ring H in the classification
of [4] were considered. Since E is a local ring, and H is only semilocal with two maximal
ideals, the difference in the algebraic structure of the codes over these rings is such that
different algebraic techniques are required. Specifically, we characterize the cyclicity of an
E-code in terms of the cyclicity of its residue and torsion codes. The theory of duality of
cyclic E-codes is studied. Both the quasi self-dual codes (QSD) of [5] and the self-dual codes
in the sense of [6] are considered. The notion of Type IV codes of [5] (i.e., both QSD and
with codewords of even Hamming weight) also enters the discussion. The concept of Linear
Complementary Dual codes (shortly LCD codes) introduced by Massey [7] for codes over
finite fields, and revisited over E in [6] is also considered here. A duality-preserving Gray
map, that associates with cyclic codes over E a quasi-cyclic code of double the length over
the binary field is introduced and studied. Motivated by DNA computing a different notion
of complementation was introduced in [8]. We derive necessary and sufficient conditions
for a cyclic E-code to be invariant under that permutation of E. With the same motivation,
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necessary and sufficient conditions for reversibility of cyclic codes over E are derived here.
All the above notions are illustrated by a complete classification in length at most 7.

The material is arranged as follows. Section 2 collects basic notions and notations
needed for the other sections. Section 3 studies the structure of cyclic codes over E. Section 4
introduces the Gray map. Section 5 contains the numerical classification results. Section 6
is the Conclusion.

2. Preliminaries
2.1. Binary Codes

The Hamming weight of x ∈ Fn
2 is denoted by wt(x) is the number of nonzero

coordinates in x. The dual of a binary linear code C is signified by C⊥ and defined as:

C⊥ = {y ∈ Fn
2 |∀x ∈ C, (x, y) = 0},

where (x, y) =
n
∑

i=1
xiyi, denotes the standard inner product. If the code C appears in its

duality, C ⊆ C⊥, then the code C is self-orthogonal. A code is even if all its codewords
have even weight. All binary self-orthogonal codes are even, but not all binary codes are
self-orthogonal. Two binary codes are equivalent if there is a permutation of coordinates
that maps one to the other.

A linear code C of length n overF2 is cyclic provided that for each vector c = c0 . . . cn−2cn−1
in C the vector c′ = cn−1c0 . . . cn−2, obtained from c by the cyclic shift of coordinates
i 7→ i + 1 (mod n), is also in C. We refer to c′ as the cyclic shift of c.

2.2. Rings and Modules

Following [4], we define a ring on two generators a, b by their relations

E = ⟨a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b⟩.

A model for that ring can be obtained by taking a, b to be matrices over F2 defined by

a =

(
0 0
0 1

)
, b =

(
0 1
0 1

)
.

Thus, E has characteristic two and consists of four elements E = {0, a, b, c}, with
c = a + b. From these definitions, the addition table is given below

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

The multiplication table is as below.

× 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

From this table, we conclude that this ring is non-commutative, and does not contain
a multiplicative identity element. It is local with maximal ideal J = {0, c}, and residue field
E/J ≃ F2 = {0, 1}, the finite field of order 2.
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Thus we have a c-adic decomposition as follows. Every element e ∈ E can be written

e = as + ct,

where s, t ∈ F2 and where we have defined a natural action of F2 on E by the rule r0 = 0r = 0
and r1 = 1r = r for all r ∈ E. Thus a = 1a, c = 1c and b = a1 + c1. Note, that for all
r ∈ E, this action is “distributive” in the sense that r(s ⊕2 t) = rs + rt, where ⊕2 denotes
the addition in F2.

Denote by α : E 7→ E/J ≃ F2 the map of reduction modulo J. Thus α(0) = α(c) = 0,
and α(a) = α(b) = 1. This map is extended in a natural way in a map from En to F2.

A linear E-code C of length n is an E-submodule of En. An additive code of length
n over F4 is an additive subgroup of Fn

4 . It is a free F2 module with 4k elements for some
k ≤ n. Using a generator matrix G, such a code can be cast as the F2-span of its rows.
To every linear E-code C is attached an additive F4-code ϕ(C) by the alphabet substitution

0 → 0, a → ω, b → ω2, c → 1,

where F4=F2[ω]. Note, that the reverse substitution attaches to every additive F4 code an
additive subgroup of En, which may or may not be linear. Two E-codes are permutation
equivalent if there is a permutation of coordinates that maps one to the other.

2.3. Duality

Define an inner product on En as (x, y) =
n
∑

i=1
xiyi.

The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En|∀x ∈ C, (x, y) = 0}.

The left dual C⊥L of C is the left module defined by

C⊥L = {y ∈ En|∀x ∈ C, (y, x) = 0}.

Thus the left (resp. right) dual of a left (resp. right) module is a left (resp. right)
module. A code is left self-dual (resp. right self-dual) if it is equal to its left (resp. right)
dual. A left self-dual code C satisfies C⊥L = C. Likewise a right self-dual code C satisfies
C⊥R = C.

There are two binary linear codes of length n associated canonically with every linear
code C of length n over E:

• the residue code res(C) defined by res(C) = {α(y)|y ∈ C},
• the torsion code tor(C) defined by tor(C) =

{
x ∈ Fn

2 |cx ∈ C
}

.

The inclusion res(C) ⊆ tor(C) is satisfied by the two binary codes, and the relationship
between their sizes and C’s size is |C| = |res(C)||tor(C)|. Let k1 = dim(res(C)) and
k2 = dim(tor(C))− k1. The linear code C is said to be of type (k1, k2). We say that a linear
code is free if and only if k2 = 0. Equivalently, C is free if and only if res(C) = tor(C).

3. The Structure of Cyclic Codes over E

Definition 1. A cyclic code C of length n over E is a linear code with the property that if c =
(c0, c1, . . . , cn−1) ∈ C then c′ = (cn−1, c0, . . . , cn−2) ∈ C.

Example 1. The repetition code of length 2, defined by R2 = {00, aa, bb, cc} is a cyclic code over E.

To prepare for the study of cyclic codes over E, we need the following two results.
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Lemma 1 (Lemma 1 in [6]). If C is a linear code of length n over E, then a res(C) ⊆ C.

Theorem 1 (Theorem 7 in [6]). If C is a linear code of length n over E, then C = a res(C)⊕
c tor(C).

The following result can be deduced from the previous theory.

Corollary 1. If C is a linear binary cyclic code of length n over E and let res(C) and tor(C) are
two binary cyclic codes of length n over E with generators g1(x) and g2(x), respectively, then a
generator matrix G of C is of the form

G =

(
aG1
cG2

)
.

where G1 and G2 are generators matries of res(C) and tor(C), respectively.

Proof. The proof is direct from Theorem 4.2.1 in [9] and Theorem 1.

The following result is of crucial importance to our study.

Theorem 2. A linear code C over E is a cyclic code if and only if res(C) and tor(C) are cyclic
codes over F2.

Proof. If C is a cyclic code over E, we want to show that res(C) and tor(C) are both cyclic.
Let x ∈ res(C) then ax ∈ C and since C is cyclic this implies that ax′ ∈ C then we obtain
x′ ∈ res(C) and this means res(C) is cyclic. Let y ∈ tor(C) then cy ∈ C and as C is
cyclic this implies that cy′ ∈ C then we have y′ ∈ tor(C) and we conclude tor(C) is cyclic.
Conversely, If res(C) and tor(C) are cyclic then a res(C) and c tor(C) are cyclic. We need
to prove that C = a res(C)⊕ c tor(C) is cyclic. Let u = ax + cy ∈ a res(C)⊕ c tor(C) then
u′ = ax′ + cy′ ∈ a res(C)⊕ c tor(C). Hence, C is cyclic.

In the following two examples, we make it clear that in the case of only one of res(C)
or tor(C) is cyclic, it does not necessarily follow that C is cyclic.

Example 2. Let res(C) = {00, 01} and tor(C) = {00, 01, 10, 11} be linear codes over F2. We
note that res(C) ⊆ tor(C) and is not cyclic, but tor(C) is cyclic. Indeed it can be seen by inspection
that C is not cyclic since C = {00, 0a, 0c, c0, cc, 0b, ca, cb}.

Example 3. Let res(C) =<

(
1 0 1 0
0 1 0 1

)
> and tor(C) =<

1 0 1 0
0 1 0 1
0 1 0 0

 > be linear

codes over F2. Here res(C) is cyclic, but tor(C) is not cyclic. This implies that C is not cyclic.

To prepare for the study of left self-dual, right self-dual and self-dual cyclic codes over
E, we need the following two lemmas on the duality of E-codes.

Lemma 2 (Corollary 4 in [6]). If C is a linear code of length n over E, then the following holds:

1. C⊥L = a res(C)⊥ ⊕ c res(C)⊥.
2. C⊥R = a tor(C)⊥ ⊕ cFn

2 .

Lemma 3 (Corollary 5 in [6]). If C is a linear code over E, then C⊥ = a tor(C)⊥ ⊕ c res(C)⊥.

The consequence for cyclic codes is the following.

Corollary 2. If C is a cyclic code over E, then the left dual code C⊥L of C is also cyclic.
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Proof. By Lemma 2, we obtain C⊥L = a res(C)⊥ ⊕ c res(C)⊥. Since the dual code of binary
cyclic code is also cyclic. So by Theorem 2 , we obtain the result.

Corollary 3. If C is a cyclic code over E, then the right dual code C⊥R of C is also cyclic.

Proof. By Lemma 2, we obtain C⊥R = a tor(C)⊥ ⊕ cFn
2 . Since the dual code of binary cyclic

code is also cyclic. So by Theorem 2 and the fact that Fn
2 is a cyclic code, we obtain the

result.

Corollary 4. If C is a cyclic code over E, then the dual code C⊥ of C is also cyclic.

Proof. By Lemma 3, we obtain C⊥ = a tor(C)⊥ ⊕ c res(C)⊥. Since the dual code of binary
cyclic code is also cyclic. So by Theorem 2 , we obtain the result.

To prepare for the study of the existence of cyclic self-dual codes over E we need the
following two results.

Theorem 3 (Theorem 14 in [6]). If C is a linear code of length n over E, then the following holds:

• C is the left self-dual if and only if C is free and res(C) is self-dual.
• C is the right self-dual if and only if C is of type (0, n).

Corollary 5 (Corollary 11 in [6]). Let C be a linear code of length n over E. If C is either left
self-dual or right self-dual, then C is self-dual.

From the previous two results we conclude the following,

Proposition 1. Cyclic self-dual codes of all lengths exist over E.

Proof. For any length n, Fn
2 is a binary cyclic code. By Theorem 2 and Theorem 3, C = cFn

2
is a cyclic right self-dual code over E. By Corollary 4, C is a cyclic self-dual code.

Some scholars would consider C = cFn
2 to be a trivial example of a cyclic code. An

answer to that remark might be the following

Proposition 2. Nontrivial cyclic self-dual codes of all even lengths exist over E.

Proof. If n is even, binary self-dual cyclic codes exist. We can construct a free code C over
E with res(C) that is self-dual. Self-duality follows then by combining Theorem 3 and
Corollary 4. Nontriviality follows because the residue code is not the zero code.

We require the following general result.

Theorem 4 (Theorem 15 in [6]). A linear code C over E is self-dual if and only if res(C) =
tor(C)⊥.

The next result is known as the multilevel construction.

Theorem 5. Let B be a binary cyclic self-dual code of length n over E. The code C as defined by
the relationship C = aB + cB⊥ is a cyclic self-dual code. Its residue code is B and its torsion code
is B⊥.
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Proof. First, we want to show that C is a linear code over E. Let x ∈ C then x = au + cv
where u ∈ B and v ∈ B⊥. cx = cau + c2v = cu + 0 = cu ∈ cB ⊆ cB⊥ ⊆ C. bx =
bau + bcv = bu + 0 = bu ∈ bB ⊆ aB + cB ⊆ aB + cB⊥ ⊆ C. ax = a2u + acv = au + 0 =
au ∈ aB ⊆ C.

Hence, C is closed under addition, by linearity of B.
Second, we want to prove that C is self-dual. Since res(C) = B and tor(C) = B⊥

i.e., res(C) = tor(C)⊥ then by Theorem 4 C is self-dual.
Finally, based on Theorem 2 and Corollary 3, and given that both B and B⊥ are cyclic

then we conclude that C is also cyclic code over E.

LCD codes over E are characterized as follows.

Theorem 6 (Theorem 17 in [6]). Let C be a linear code of length n over E. The following hold:

• If C is LCD, then res(C) and tor(C) are binary LCD codes.
• If C is free and res(C) is a binary LCD code, then C is LCD.

The following results follow immediately by Theorems 2 and 6.

Corollary 6. Let C be a cyclic code over E, then C is an LCD cyclic code if res(C) and tor(C) are
LCD cyclic codes.

Corollary 7. Let C be a cyclic code over E, then C is the LCD cyclic code if C is free and res(C) is
the LCD cyclic code.

4. Gray Map

Any codeword of E can be expressed as e = ax + cy, where a, c are generators for the
ring E and x, y are arbitrary elements in F2. The Lee weights of 0, a, b, c ∈ E are 0, 1, 1, 2,
respectively. The Gray map from E to F2 ×F2 is given by λ(e) = (x, x+ y). The Gray map is
a bijection. This map can be extended to En in a natural way. For any r = (r0, r1, . . . , rn−1) ∈
En, where ri = aui + cvi, 0 ≤ i ≤ n − 1, we define λ(r) = (u(r), u(r) + v(r)), where
u(r) = (u0, u1, . . . , un−1), v(r) = (v0, v1, . . . , vn−1). Then, λ is a weight-preserving map
from (En, Lee weight) to (F2n

2 , Hamming weight), that is wL(r) = wH(λ(r)).

Example 4. Let C = a res(C)⊕ c tor(C) where res(C) and tor(C) are binary codes generated by

res(C) = (000) and tor(C) =
(

1 1 0
0 1 1

)
then tor(C) = {000, 110, 011, 101}. Therefore, C =

{000, cc0, 0cc, c0c} and we can write the code C like this C = {a(000) + c(000), a(000) + c(110),
a(000) + c(011), a(000) + c(101)}. Hence, λ(C) = {000000, 000110, 000011, 000101}.

Example 5. Let C = a res(C)⊕ c tor(C) where res(C) and tor(C) are binary codes generated by

res(C) = (1111) and tor(C) is Reed-muller code generated by G(1, 2) =

1 0 1 0
0 1 0 1
0 0 1 1

 then

C = {0000, aaaa, c0c0, 0c0c, 00cc, c00c, 0cc0, cc00, cccc, baba, abab, aabb, baab, abba, bbaa, bbbb}.

Hence

λ(C) = {00000000, 11111111, 00001010, 00000101, 00000011, 00001001, 00000110, 00001100,

00001111, 11110101, 11111010, 11111100, 11110110, 11111001, 11110011, 11110000}.

We characterize the Gray image of a linear E-code as the Plotkin sum ( a.k.a. (u, u + v)
construction [1]) of its residue and torsion codes.

Theorem 7. Let C be a linear code of length n over E. Then, λ(C) = {(u, u + v)|u ∈ res(C) and
v ∈ tor(C)}.
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Proof. Let λ(c) ∈ λ(C). Then, using Theorem 1, we have c = au + cv where u ∈ res(C)
and v ∈ tor(C). By definition of λ we have λ(c) = (u, u + v) ∈ {(u, u + v)|u ∈ res(C) and
v ∈ tor(C)}. Therefore, λ(c) ⊆ {(u, u + v)|u ∈ res(C) and v ∈ tor(C)}.

On the other hand, for any {(u, u + v)|u ∈ res(C) and v ∈ tor(C)}, we have au ∈
a res(C) ⊆ C and cv ∈ tor(C) ⊆ C. By lineartiy of C, cu ∈ C and thus au + cu + cv ∈ C.
Hence, au + c(u + v) ∈ C and (u, u + v) = λ(au + c(u + v)) ∈ λ(C). Therefore, {(u, u +
v)|u ∈ res(C) and v ∈ tor(C)} ⊆ λ(C). Hence, λ(C) = {(u, u + v)|u ∈ res(C) and
v ∈ tor(C)}.

Corollary 8. Let C be a linear code of length n over E and λ(C) = {(u, u + v)|u ∈ res(C) and
v ∈ tor(C)}. Then, λ(C⊥) = {(u, u + v)|u ∈ tor(C)⊥ and v ∈ res(C)⊥}.

Proof. Follows directly from Lemma 3 and Theorem 7.

We need to prove the following proposition using Theorem 3 in order to be ready to
explore the relationship between duality and the Gray map.

Proposition 3. Let C⊥ be the dual code of C over E. If C is a left self-dual code over E then
λ(C⊥) = λ(C)⊥.

Proof. For any c1 = au1 + cv1 ∈ C, c2 = au2 + cv2 ∈ C⊥ where u1, u2, v1, v2 ∈ Fn
2 , we can

obtain that λ(c1) ·λ(c2) = (u1, u1 + v1) · (u2, u2 + v2) = 2u1 ·u2 +u1 · v2 + v1 ·u2 + v1 · v2 =
0 which means λ(C⊥) ⊆ λ(C)⊥.

On the other hand, let λ(c1) = λ(au1 + cv1) = (u1, u1 + v1) ∈ λ(C) and λ(c2) =
λ(au2 + cv2) = (u2, u2 + v2) ∈ λ(C)⊥ where u1, u2, v1, v2 ∈ Fn

2 , we can obtain that c1 · c2 =
a2u1 · u2 + acu1 · v2 + cau2 · v1 + c2v1 · v2 = 0 which means λ(C)⊥ ⊆ λ(C⊥). Hence,
λ(C⊥) = λ(C)⊥.

From the previous proposition, we can conclude the following directly.

Corollary 9. If C is left self-dual over E then λ(C) is self-dual.

As for the previous proposition, the following example shows that it does not apply to
self-dual and to right self-dual in this case.

Example 6. The code C = {00, 0c, c0, cc} is self-dual and right self-dual, then λ(C) = {a(00) +
c(00), a(00) + c(01), a(00) + c(10), a(00) + c(11)}. As C is self-dual ⇒ λ(C⊥) = λ(C) =
{0000, 0001, 0010, 0011}. Since (0001) · (0001) = 1 ̸= 0. ⇒ 0001 /∈ λ(C)⊥. Therefore,
λ(C⊥) ̸= λ(C)⊥.

We may create a new code C3 = λ(C) from a (n, |C1|, d1) code C1 = res(C) and a
(n, |C2|, d2) code C2 = tor(C), both with the same lengths. This new code is composed of
all vectors (u, u + v), where u ∈ C1 and v ∈ C2.

From Theorem 33 in [1], we can infer the following conclusion.

Corollary 10. If C is a linear E-code with residue and torsion codes as said above then λ(C) is a
(2n, |C|, d = min{2d1, d2}) code.

Example 7. If C is such that its residue and torsion codes are the Simplex and Hamming codes of
respective parameters [2m − 1, m, 2m−1] and [2m − 1, 2m − 1 − m, 3] for some integer m ≥ 2, then
λ(C) is a [2m+1 − 2, 2m − 1, 3] code.

Theorem 8. Let C and D be two linear codes over E. The codes λ(C) and λ(D) are permutation
equivalent if and only if C and D are permutation equivalent.
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Proof. ⇔ Since λ(C) and λ(D) are permutation equivalent then there exists a permutation
matrix P such that res(D) = res(C)P and tor(D) = tor(C)P. Since C and D are two
linear codes over E, by Theorem 1. We have C = a res(C)⊕ c tor(C) and D = a res(D)⊕
c tor(D). This implies that D = a res(C)P ⊕ c tor(C)P. Hence, C and D are permutation
equivalent.

Proposition 4. If C and D are two linear codes over E, such that λ(C) = λ(D) then C = D.

Proof. Since λ(C) = λ(D), we know that res(C) = res(D) and tor(C) = tor(D). Hence,
we have C = D.

To prepare for the study of the symmetry of Gray images, we need the following Defi-
nition.

Definition 2. Let φs be the quasi-cyclic shift on (Fn
2 )

s given by: φs(x(1)|x(2)| . . . |x(s)) =

(σ(x(1))|σ(x(2))| . . . |σ(x(s))). A quasi-cyclic code C of index s and length ns over F2 is a subset
of (Fn

2 )
s such that φs(C) = C.

Proposition 5. Let λ be the Gray map defined above, σ is the cyclic shift and φ2 is the quasi-cyclic
shift on (Fn

2 )
2. Then, we have λ(σ(C)) = φ2(λ(C)).

Proof. Let c = (c0, c1, . . . , cn−1) ∈ En where ci = axi + cyi ∈ E and xi, yi ∈ Fn
2 for

i = 0, 1, . . . , n − 1. Therefore, we have

λ(σ(c)) = λ(cn−1, c0, c1, . . . , cn−2)

= (xn−1, x0, x1, . . . , xn−2, xn−1 + yn−1, x0 + y0, x1 + y1, . . . , xn−2 + yn−2),

and

φ2(λ(c)) = φ2(x0, x1, . . . , xn−1, x0 + y0, x1 + y1, . . . , xn−1 + yn−1)

= (xn−1, x0, x1, . . . , xn−2, xn−1 + yn−1, x0 + y0, x1 + y1, . . . , xn−2 + yn−2).

Hence, λ(σ(C)) = φ2(λ(C)).

Theorem 9. If C is a cyclic code of length n over E, then λ(C) is a binary quasi-cyclic code of index
2 and length 2n.

Proof. As C is a cyclic code of length n over E, then σ(C) = C. By taking λ for both sides
and using Proposition 5, we obtain: φ2(λ(C)) = λ(C). This implies that λ(C) is a binary
quasi-cyclic code of index 2 and length 2n.

Considering Λ as the permuted version of the above Gray map λ, we define Λ as
follows:

Λ(c0, c1, . . . , cn−1) = (λ(c0), λ(c1), . . . , λ(cn−1))
= (x0, x0 + y0, x1, x1 + y1, . . . , xn−1, xn−1 + yn−1)

(1)

where cj = axj + cyj ∈ E and xj, yj ∈ F2 for j = 0, 1, . . . , n − 1.
In the next results, we extend a few results from [10].

Proposition 6. For any c ∈ En, we have Λ(σ(c)) = σ2(Λ(c)), where Λ is the map defined in
Equation (1) and σ is the cyclic shift.
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Proof. Let c = (c0, c1, . . . , cn−1) ∈ En where cj = axj + cyj ∈ E and xj, yj ∈ Fn
2 for

j = 0, 1, . . . , n − 1. Then

Λ(σ(c)) = Λ(cn−1, c0, c1, . . . , cn−2)

= (xn−1, xn−1 + yn−1, x0, x0 + y0, x1, x1 + y1, . . . , xn−2, x + n − 2 + yn−2),

and

σ2(Λ(c)) = σ2(x0, x0 + y0, x1, x1 + y1, . . . , xn−1, xn−1 + yn−1)

= (xn−1, xn−1 + yn−1, x0, x0 + y0, x1, x1 + y1, . . . , xn−2, xn−2 + yn−2).

Hence, Λ(σ(C)) = σ2(Λ(C)).

Theorem 10. Let C be a cyclic code of length n over E. Then, Λ(C) is equivalent to a 2-quasicyclic
code of length 2n over F2.

Proof. As C is a cyclic code of length n over E, σ(C) = C. By taking Λ for both sides and
using Proposition 6, we obtain:σ2(Λ(C)) = Λ(C). This implies that Λ(C) is equivalent to a
2-quasicyclic code of length 2n over F2.

The following proposition discusses the special case if n is an odd. We applied
Theorem 1 from [11] in the next proposition.

Proposition 7. Let res(C) be a binary cyclic code of length n (odd) with generator g1(x) and let
tor(C) be a binary cyclic code of length n with generator g2(x) and g2(x)|g1(x). Then, the Gray
image is a binary cyclic code of length 2n with generator g1(x)g2(x) is equivalent to the (u, u + v)
sum of res(C) and tor(C).

The following simple example illustrates the previous proposition.

Example 8. Let C be a linear cyclic code of length 3 over E with a generator matrix

G =


a a a
c 0 0
0 c 0
0 0 c

,

where rse(C) is a binary cyclic code of length 3 generated by (111) and tor(C) is a binary cyclic
code of length 3 generated by I3. Then,

λ(C) = {000000, 111111, 000100, 000010, 000001, 000110, 000101, 000011,

000111, 111011, 111101, 111110, 111001, 111010, 111100, 111000}.

is binary cyclic code of length 6.

5. Cyclic DNA Codes over E

The goal of DNA coding theory is to provide error-correcting codes for nucleic acid
systems. Deoxyribonucleic acid, or DNA, is a molecule made up of four units termed
nucleotides: adenine, thymine, guanine, and cystosine, represented by the letters A, T,
G, and C, respectively. These four units are combined to form double strands. Chains
of these nucleotides are connected by hydrogen bonds, holding them together. G and C
have three hydrogen bonds, whereas A and T have two. As a result, these joints form the
complementary base pairings {G, C} and {A, T}. The Watson–Crick complement is what
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it is known as. We express it as Tc = A and Cc = G, or alternatively as Ac = T and Gc = C.
Therefore, the set {A, T, G, C} is a bijection of this complement map.

Definition 3 ([8]). Let x = (x1x2 . . . xn) be given (i.e., xi ∈ {A, T, G, C}).
• The reverse of x, denoted by xR, is the codeword (xnxn−1 . . . x1).
• The complement of x, denoted by xC, is the codeword (xC

1 xC
2 . . . xC

n ).
• The reverse complement of x is xRC = (xR)C = (xC)R.

Theorem 11. Let C be a linear code over E then C is reversible code over E if and only if res(C)
and tor(C) are reversible codes over F2.

Proof. If C is a reversible code over E, we want to prove that res(C) and tor(C) are
both reversible. Let x ∈ res(C) then ax ∈ C and since C is reversible this implies that
a(xnxn−1 . . . x1) ∈ C then we obtain (xnxn−1 . . . x1) ∈ res(C) and this means res(C) is re-
versible. Let y ∈ tor(C) then cy ∈ C and as C is reversible this implies that c(ynyn−1 . . . y1) ∈
C then we have (ynyn−1 . . . y1) ∈ tor(C) and we conclude tor(C) is reversible. Conversely,
If res(C) and tor(C) are reversible then a res(C) and c tor(C) are reversible. We need to
show that C = a res(C) ⊕ c tor(C) is reversible. Let u = ax + cy ∈ a res(C) ⊕ c tor(C) then
u = a(xnxn−1 . . . x1) + c(ynyn−1 . . . y1) ∈ a res(C) ⊕ c tor(C). Hence, C is reversible.

In the following remark, we recall the conditions for binary cyclic codes to be re-
versible.

Remark 1. Let f̃ (x) denote the reciprocal of a polynomial f (x) of F2[x]. If res(C) and tor(C) are
[n, k] cyclic codes over F2 with generators polynomials g1(x) and g2(x), respectively, then they are
LCD codes if and only if g1(x) = g̃1(x) and g2(x) = g̃2(x) and all the monic irreducible factors of
g1(x) and g2(x) have same multiplicity in xn − 1 [12]. In particular, for n odd, res(C) and tor(C)
are LCD codes if and only if they are reversible codes [13].

Lemma 4. Let C be a cyclic code over E then C is a reversible code over E if and only if res(C) and
tor(C) are cyclic reversible codes over F2.

Proof. By combining Theorem 11 and Remark 1 we obtain the result.

Maps that make it simple to compute the complement must be defined before building
DNA codes over rings. This implies that the definition of the complement map must be
over finite rings.

Definition 4 ([8]). Let R be a ring of order 4 and f : {A, T, C, G} → R be a proper representation
map. It means f is bijective. A complement map ϕ over R is a bijection defined by ϕ( f (x)) = f (xC).

Since xC ̸= x and (xC)C = x, we can verify that ϕ(x) ̸= x and ϕ2(x) = x. ϕ is indicated
by ϕ(x) = xC. Since this ϕ is a bijection on R, defining this map ϕ is simple. Whether
there is a straightforward definition of ϕ is the question. In particular, we wish to define an
element α ∈ R such that xC = x + α.

Denote by r : E → E/J = F2, the map of reduction modulo J. Thus, r(0) = r(c) = 0
and r(a) = r(b) = 1. Let define f : {A, T, G, C} → E by f (A) = 0, f (T) = c, f (G) = a and
f (C) = b. Then, r( f (C)) = r( f (G)) = 1, and the others go to 0.

In the following theorem, we will define the basic condition for the code to be equal to
its complement.

Theorem 12. Let C be a linear code over E. This code is invariant under complementation (CC = C)
iff the code tor(C) contains the all-one codeword.
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Proof. The condition is necessary since 0C = cj where j denotes the all-one vector. We prove
the sufficient condition. Since C = a res(C)⊕ c tor(C) we want to prove that CC = C. Note,
first that if tor(C) contains j then tor(C) = tor(C), and, therefore, (c tor(C))C = c tor(C).

We compute

CC = (a res(C))C ⊕ (c tor(C))C

= (a res(C) + cj)⊕ c tor(C)

⊆ C.

Since the map x 7→ xC is one-to-one we see that |C| = |CC|. Hence, CC = C.

6. Numerical Results

In the following, we classify, up to equivalence, Cyclic codes up to length 7. All the
computations needed for this section were performed in Magma [14].

The generator matrices of the classified cyclic codes n = 6 and n = 7 can be found at:
https://www.kau.edu.sa/GetFile.aspx?id=317363&fn=Gen (accessed on 29 April 2024).

We use the following steps to classify cyclic codes up to length 7 over the ring E:

• The binary cyclic codes with lengths ranging from n = 2 to n = 7 were initially
identified.

• Second, all pairs C1 ⊂ C2 of cyclic codes were considered. The choice res(C) = C1 and
tor(C) = C2 was made to construct a cyclic code C over E.

• Third, we may build the generator matrices for the cyclic codes on the ring E after
determining res(C) and tor(C).

• Finally, we will just include the non-equivalent codes in the tables that follow.

6.1. Length 2 (5 Codes)

In Table 1 the main properties of length 2 are summarized.

Table 1. Cyclic codes of length 2.

Generator Matrix dH LSD SO QSD Type IV LCD Even Weight Distribution(
c c

)
2

√ √
[< 0, 1 >,< 2, 1 >](

c 0
0 c

)
1

√ √
[< 0, 1 >,< 1, 2 >,< 2, 1 >](

a a
c c

)
2

√ √ √ √ √
[< 0, 1 >,< 2, 3 >]a a

c 0
0 c

 1 [< 0, 1 >,< 1, 2 >,< 2, 5 >]


a 0
0 a
c 0
0 c

 1
√

[< 0, 1 >,< 1, 6 >,< 2, 9 >]

6.2. Length 3 (8 Codes)

In this length codes neither left self-dual nor Type IV. And In Table 2 the main proper-
ties of length 3 are summarized.

https://www.kau.edu.sa/GetFile.aspx?id=317363&fn=Gen
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Table 2. Cyclic codes of length 3.

Generator Matrix dH SO QSD LCD Even Weight Distribution(
c c c

)
3

√
[< 0, 1 >,< 3, 1 >](

c c 0
0 c c

)
2

√ √
[< 0, 1 >,< 2, 3 >]c 0 0

0 c 0
0 0 c

 1
√ √

[< 0, 1 >,< 1, 3 >,< 2, 3 >,< 3, 1 >]

(
a a a
c c c

)
3

√
[< 0, 1 >,< 3, 3 >]

a a a
c 0 0
0 c 0
0 0 c

 1 [< 0, 1 >,< 1, 3 >,< 2, 3 >,< 3, 9 >]


a a 0
0 a a
c c 0
0 c c

 2
√

[< 0, 1 >,< 2, 9 >,< 3, 6 >]


a a 0
0 a a
c 0 0
0 c 0
0 0 c

 1 [< 0, 1 >,< 1, 3 >,< 2, 15 >,< 3, 13 >]


a 0 0
0 a 0
0 0 a
c 0 0
0 c 0
0 0 c


1

√
[< 0, 1 >,< 1, 9 >,< 2, 27 >,< 3, 27 >]

6.3. Length 4 (14 Codes)

In this length codes are not left self-dual except for the sixth, codes are not Type IV
except for the sixth and seventh and codes are not LCD except for the fourteenth. Also, in
Tables 3 and 4 the main properties of length 4 are summarized.

Table 3. Cyclic codes of length 4.

Generator Matrix dH SO QSD Even Weight Distribution(
c c c c

)
4

√ √
[< 0, 1 >,< 4, 1 >](

a a a a
c c c c

)
4

√ √
[< 0, 1 >,< 4, 3 >](

c 0 c 0
0 c 0 c

)
2

√ √
[< 0, 1 >,< 2, 2 >,< 4, 1 >]c c 0 0

0 c c 0
0 0 c c

 2
√ √

[< 0, 1 >,< 2, 6 >,< 4, 1 >]

a a a a
c 0 c 0
0 c 0 c

 2
√ √

[< 0, 1 >,< 2, 2 >,< 4, 5 >]


a 0 a 0
0 a 0 a
c 0 c 0
0 c 0 c

 2
√ √ √

[< 0, 1 >,< 2, 6 >,< 4, 9 >]
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Table 3. Cont.

Generator Matrix dH SO QSD Even Weight Distribution
a a a a
c c 0 0
0 c c 0
0 0 c c

 2
√ √ √

[< 0, 1 >,< 2, 6 >,< 4, 9 >]


a 0 a 0
0 a 0 a
c c 0 0
0 c c 0
0 0 c c

 2 [< 0, 1 >,< 2, 10 >,< 3, 8 >,< 4, 13 >]


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 1
√ √

[< 0, 1 >,< 1, 4 >,< 2, 6 >,< 3, 4 >,< 4, 1 >]


a a a a
c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 1 [< 0, 1 >,< 1, 4 >,< 2, 6 >,< 3, 4 >,< 4, 17 >]


a 0 a 0
0 a 0 a
c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c


1 [< 0, 1 >,< 1, 4 >,< 2, 14 >,< 3, 20 >,< 4, 25 >]

Table 4. cyclic codes of length 4.

Generator Matrix dH SO QSD Even Weight Distribution
a a 0 0
0 a a 0
0 0 a a
c c 0 0
0 c c 0
0 0 c c


2 [< 0, 1 >,< 2, 18 >,< 3, 24 >,< 4, 21 >]



a a 0 0
0 a a 0
0 0 a a
c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c


1 [< 0, 1 >,< 1, 4 >,< 2, 30 >,< 3, 52 >,< 4, 41 >]



a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a
c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c


1 [< 0, 1 >,< 1, 12 >,< 2, 54 >,< 3, 108 >,< 4, 81 >]
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6.4. Length 5 (Eight Codes)

In this length codes neither left self-dual nor Type IV, codes are not QSD except for
the fourth and codes are not Even except for the third. Also, in Tables 5 and 6 the main
properties of length 5 are summarized.

Table 5. Cyclic codes of length 5.

Generator Matrix dH SO LCD Weight Distribution(
c c c c c

)
5

√
[< 0, 1 >,< 5, 1 >](

a a a a a
c c c c c

)
5

√
[< 0, 1 >,< 5, 3 >]

c c 0 0 0
0 c c 0 0
0 0 c c 0
0 0 0 c c

 2
√

[< 0, 1 >,< 2, 10 >,< 4, 5 >]


c 0 0 0 0
0 c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c

 1
√

[< 0, 1 >,< 1, 5 >,< 2, 10 >,< 3, 10 >,< 4, 5 >,< 5, 1 >]


a a a a a
c 0 0 0 0
0 c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c

 1 [< 0, 1 >,< 1, 5 >,< 2, 10 >,< 3, 10 >,< 4, 5 >,< 5, 33 >]



a a 0 0 0
0 a a 0 0
0 0 a a 0
0 0 0 a a
c c 0 0 0
0 c c 0 0
0 0 c c 0
0 0 0 c c


2

√
[< 0, 1 >,< 2, 30 >,< 3, 60 >,< 4, 105 >,< 5, 60 >]

Table 6. Cyclic codes of length 5.

Generator Matrix dH SO LCD Weight Distribution

a a 0 0 0
0 a a 0 0
0 0 a a 0
0 0 0 a a
c 0 0 0 0
0 c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c


1 [< 0, 1 >,< 1, 5 >,< 2, 50 >,< 3, 130 >,< 4, 205 >,< 5, 121 >]



a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 a 0
0 0 0 0 a
c 0 0 0 0
0 c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c


1

√
[< 0, 1 >,< 1, 15 >,< 2, 90 >,< 3, 270 >,< 4, 405 >,< 5, 243 >]
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6.5. Length 6 (35 Codes)

In this length codes are not left self-dual except G20, codes are not QSD except G15,
G16, G18 and G20, codes are not Type IV except G16 and G20 and codes are not LCD except
G10,G28 and G35 . Also, in Tables 7 and 8 the main properties of length 6 are summarized.

Table 7. Cyclic codes of length 6.

Generator Matrix dH SO Even Weight Distribution

G1 6
√ √

[< 0, 1 >,< 6, 1 >]

G2 3
√

[< 0, 1 >,< 3, 2 >,< 6, 1 >]

G3 4
√ √

[< 0, 1 >,< 4, 3 >]

G4 6
√ √

[< 0, 1 >,< 6, 3 >]

G5 2
√ √

[< 0, 1 >,< 2, 3 >,< 4, 3 >,< 6, 1 >]

G6 3 [< 0, 1 >,< 3, 2 >,< 6, 5 >]

G7 2
√

[< 0, 1 >,< 2, 3 >,< 3, 8 >,< 4, 3 >,< 6, 1 >]

G8 2
√ √

[< 0, 1 >,< 2, 6 >,< 4, 9 >]

G9 2
√ √

[< 0, 1 >,< 2, 3 >,< 4, 3 >,< 6, 9 >]

G10 3 [< 0, 1 >,< 3, 6 >,< 6, 9 >]

G11 4
√ √

[< 0, 1 >,< 4, 9 >,< 6, 6 >]

G12 2
√ √

[< 0, 1 >,< 2, 15 >,< 4, 15 >,< 6, 1 >]

G13 2 [< 0, 1 >,< 2, 3 >,< 3, 8 >,< 4, 3 >,< 6, 17 >]

G14 2
√ √

[< 0, 1 >,< 2, 3 >,< 4, 15 >,< 6, 13 >]

G15 1
√

[< 0, 1 >,< 1, 6 >,< 2, 15 >,< 3, 20 >,
< 4, 15 >,< 5, 6 >,< 6, 1 >]

G16 2
√ √

[< 0, 1 >,< 2, 15 >,< 4, 15 >,< 6, 33 >]

G17 2 [< 0, 1 >,< 2, 3 >,< 3, 12 >,
< 4, 19 >,< 5, 20 >,< 6, 9 >]

G18 2
√

[< 0, 1 >,< 2, 3 >,< 3, 8 >,
< 4, 15 >,< 5, 24 >,< 6, 13 >]

G19 2 [< 0, 1 >,< 2, 6 >,< 4, 21 >,< 5, 24 >,< 6, 12 >]

G20 2
√ √

[< 0, 1 >,< 2, 9 >,< 4, 27 >,< 6, 27 >]

G21 1 [< 0, 1 >,< 1, 6 >,< 2, 15 >,< 3, 20 >,
< 4, 15 >,< 5, 6 >,< 6, 65 >]

G22 2 [< 0, 1 >,< 2, 15 >,< 4, 39 >,< 5, 48 >,< 6, 25 >]

G23 2 [< 0, 1 >,< 2, 9 >,< 3, 8 >,
< 4, 51 >,< 5, 24 >,< 6, 35 >]

G24 1 [< 0, 1 >,< 1, 6 >,< 2, 15 >,< 3, 36 >,
< 4, 63 >,< 5, 54 >,< 6, 81 >]

G25 1 [< 0, 1 >,< 1, 6 >,< 2, 15 >,< 3, 20 >,
< 4, 63 >,< 5, 102 >,< 6, 49 >]

G26 2 [< 0, 1 >,< 2, 21 >,< 3, 24 >,
< 4, 75 >,< 5, 72 >,< 6, 63 >]

G27 2 [< 0, 1 >,< 2, 9 >,< 3, 24 >,
< 4, 99 >,< 5, 72 >,< 6, 51 >]

G28 2 [< 0, 1 >,< 2, 18 >,< 3, 12 >,
< 4, 81 >,< 5, 108 >,< 6, 36 >]

G29 1 [< 0, 1 >,< 1, 6 >,< 2, 27 >,< 3, 68 >,
< 4, 135 >,< 5, 150 >,< 6, 125 >]
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Table 8. Cyclic codes of length 6.

Generator Matrix dH SO Even Weight Distribution

G30 2 [< 0, 1 >,< 2, 27 >,< 3, 48 >,
< 4, 159 >,< 5, 192 >,< 6, 85 >]

G31 1 [< 0, 1 >,< 1, 6 >,< 2, 27 >,< 3, 132 >,
< 4, 327 >,< 5, 342 >,< 6, 189 >]

G32 1 [< 0, 1 >,< 1, 6 >,< 2, 39 >,< 3, 116 >,
< 4, 303 >,< 5, 390 >,< 6, 169 >]

G33 2 [< 0, 1 >,< 2, 45 >,< 3, 120 >,
< 4, 315 >,< 5, 360 >,< 6, 183 >]

G34 1 [< 0, 1 >,< 1, 6 >,< 2, 75 >,< 3, 260 >,
< 4, 615 >,< 5, 726 >,< 6, 365 >]

G35 1 [< 0, 1 >,< 1, 18 >,< 2, 135 >,< 3, 540 >,
< 4, 1215 >,< 5, 1458 >,< 6, 729 >]

6.6. Length 7 (26 Codes)

In this length, we have 18 equivalent codes, and they are G3 equivalent to G4, G5
equivalent to G6, G7 equivalent to G8, G10 equivalent to G11, G13 equivalent to G14, G16
equivalent to G17, G18 equivalent to G19, G20 equivalent to G21 and finally G22 equivalent
to G23. In this length codes neither left self-dual nor Type IV, codes are not QSD except
G12, G13 and G14, codes are not Even except G3, G4, G9, G10 and G11 and codes are not LCD
except G2, G24 and G26 . In the Table 9, we will only list the non-eqivalent codes.

Table 9. Cyclic codes of length 7.

Generator Matrix dH SO Weight Distribution

G1 7
√

[< 0, 1 >,< 7, 1 >]

G2 7 [< 0, 1 >,< 7, 3 >]

G3 4
√

[< 0, 1 >,< 4, 7 >]

G5 3
√

[< 0, 1 >,< 3, 7 >,< 4, 7 >,< 7, 1 >]

G7 3 [< 0, 1 >,< 3, 7 >,< 4, 7 >,< 7, 17 >]

G9 2
√

[< 0, 1 >,< 2, 21 >,< 4, 35 >,< 6, 7 >]

G10 4
√

[< 0, 1 >,< 4, 21 >,< 6, 42 >]

G12 1
√

[< 0, 1 >,< 1, 7 >,< 2, 21 >,< 3, 35 >,
< 4, 35 >,< 5, 21 >,< 6, 7 >,< 7, 1 >]

G13 3
√

[< 0, 1 >,< 3, 7 >,< 4, 21 >,< 5, 42 >,< 6, 42 >,< 7, 15 >]

G15 1 [< 0, 1 >,< 1, 7 >,< 2, 21 >,< 3, 35 >,
< 4, 35 >,< 5, 21 >,< 6, 7 >,< 7, 129 >]

G16 3 [< 0, 1 >,< 3, 21 >,< 4, 21 >,< 5, 126 >,< 6, 42 >,< 7, 45 >]

G18 2 [< 0, 1 >,< 2, 21 >,< 4, 91 >,< 5, 168 >,< 6, 175 >,< 7, 56 >]

G20 1 [< 0, 1 >,< 1, 7 >,< 2, 21 >,< 3, 35 >,
< 4, 147 >,< 5, 357 >,< 6, 343 >,< 7, 113 >]

G22 1 [< 0, 1 >,< 1, 7 >,< 2, 21 >,< 3, 91 >,
< 4, 371 >,< 5, 693 >,< 6, 567 >,< 7, 297 >]

G24 2 [< 0, 1 >,< 2, 63 >,< 3, 210 >,< 4, 735 >,
< 5, 1260 >,< 6, 1281 >,< 7, 546 >]

G25 1 [< 0, 1 >,< 1, 7 >,< 2, 105 >,< 3, 455 >,
< 4, 1435 >,< 5, 2541 >,< 6, 2555 >,< 7, 1093 >]

G26 1 [< 0, 1 >,< 1, 21 >,< 2, 189 >,< 3, 945 >,
< 4, 2835 >,< 5, 5103 >,< 6, 5103 >,< 7, 2187 >]
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7. Conclusions and Open Problems

In this work, we have studied cyclic codes over the non-unital ring E. We have given
criteria for a cyclic code over E to be self-dual, left self-dual, or right self-dual. We have
derived an algorithm to classify cyclic codes of a given length, based on the classification of
cyclic binary codes of that length. A Gray map allows us to construct quasi-cyclic codes of
index 2 from cyclic codes over E. In the future, we plan to study the same questions over
other non-unitary rings, possibly of characteristics larger than 2.
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