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WHAT IS THE LONG-RUN DISTRIBUTION OF STOCHASTIC
GRADIENT DESCENT? A LARGE DEVIATIONS ANALYSIS

WAÏSS AZIZIANc,∗, FRANCK IUTZELER♯,
JÉRÔME MALICK∗, AND PANAYOTIS MERTIKOPOULOS⋄

Abstract. In this paper, we examine the long-run distribution of stochastic gradient
descent (SGD) in general, non-convex problems. Specifically, we seek to understand
which regions of the problem’s state space are more likely to be visited by SGD, and by
how much. Using an approach based on the theory of large deviations and randomly
perturbed dynamical systems, we show that the long-run distribution of SGD resembles
the Boltzmann–Gibbs distribution of equilibrium thermodynamics with temperature
equal to the method’s step-size and energy levels determined by the problem’s objective
and the statistics of the noise. In particular, we show that, in the long run, (a) the
problem’s critical region is visited exponentially more often than any non-critical region;
(b) the iterates of SGD are exponentially concentrated around the problem’s minimum
energy state (which does not always coincide with the global minimum of the objective);
(c) all other connected components of critical points are visited with frequency that is
exponentially proportional to their energy level; and, finally (d) any component of local
maximizers or saddle points is “dominated” by a component of local minimizers which is
visited exponentially more often.

1. Introduction

Even though stochastic gradient descent (SGD) has been around for more than 70 years
[61], it is still the method of choice for training a wide array of modern machine learning
architectures – from large language models to reinforcement learning and recommender
systems. This phenomenal success is largely owed to the method’s simplicity: given a smooth
function f : Rd → R and the associated optimization problem

minx∈Rd f(x) (Opt)

the SGD algorithm is given by the simple update rule

xn+1 = xn − ηĝn (SGD)

where η > 0 is the method’s step-size and ĝn, n = 0, 1, . . . is a stochastic gradient of f at xn.
By virtue of its wide applicability, (SGD) and its variants have been studied extensively

in the literature, for both convex and non-convex objectives. In the non-convex case (which
is the most relevant setting for machine learning), the basic, no-frills guarantees of (SGD)
boil down to bounds of the form E

[∑n
k=0∥∇f(xk)∥2

]
= O(

√
n) provided that η has been
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Figure 1: Graphical illustration of Theorems 1–4 for the Himmelblau test function
f(x1, x2) = (x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2. The figure to the left depicts the

loss landscape of f with several (deterministic) orbits of the gradient flow of f
superimposed for visual convenience. The figure in the middle highlights the 9
critical components of f as well as the “most likely” transitions between them: K1,
K3, K7 and K9 are minimizers (light blue), K5 is a global maximum (light purple),
and the rest are saddle points (light red). The figure to the right illustrates the
long-run distribution of 1000 samples of (SGD) run with η = 0.01 over a horizon
of 2× 104 iterations: the density landscape represents the observed distribution,
while the superimposed wireframe indicates our theoretical prediction.

chosen accordingly [37]. This guarantee suggests that the sequence xn eventually spends all
but a vanishing fraction of time near regions where ∇f is small, but it does not answer where
(SGD) ultimately settles down. In particular, the following crucial question remains open:

Which critical points of f (or components thereof ) are more likely
to be observed in the long run – and by how much?

This question is notoriously difficult because the loss landscape of f can be exceedingly
complicated – especially in deep learning problems with hundreds of millions (or even billions)
of parameters. Starting with the negative, f may contain a number of spurious saddle points
that is exponentially larger than the number of local minima, and the function values
associated with worst-case saddle points may be considerably worse than those associated
with worst-case local minima [10]. On the flip side, a more positive answer is provided by
the literature on the avoidance of saddle-points where, under different assumptions for the
method’s step-size and the structure of f , it has been shown that the time spent by xn in the
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vicinity of strict saddle points is (vanishingly) small; for a representative – but, by necessity,
incomplete – list of results, cf. [2, 4, 21, 26, 27, 31, 39, 52, 58, 69] and references therein.

Now, even though the above justifies the informal mantra that “SGD avoids saddle points”,
it does not answer which critical regions of f are most likely to be observed in the long run,
and by how much. This question has attracted significant interest in deep learning, but the
matter remains poorly understood: on the one hand, some works have shown that, in certain
stylized deep net models, most local minimizers are concentrated in an exponentially narrow
band of the problem’s global minimum [8, 33]; on the other hand, empirical studies suggest
that, even in this case, the long-run distribution of (SGD) may not be adequately captured
by the shape of the problem’s loss function [47].

Our contributions. Our goal in this paper is to quantify the long-run distribution of (SGD)
in the most general manner possible. To do so, we take an approach based on the theory
of large deviations [12] and randomly perturbed dynamical systems [20, 35], which enables
us to estimate the probability of “rare events” (such as xn moving against the gradient flow
of f for a protracted period of time). This allows us to characterize the events that occur
with high probability and establish the following hierarchy of results (stated formally as
Theorems 1–4 in Section 3):

(1) In the long run, the critical region of f is visited exponentially more often than any
non-critical region.

(2) The iterates of (SGD) are concentrated with exponentially high probability in the
vicinity of a region that minimizes a certain “energy functional” which depends on
f and the statistics of the noise in (SGD). Importantly, the ground state of this
functional does not necessarily coincide with the global minimum of f .

(3) Among the remaining connected components of critical points, each component is
visited with frequency which is exponentially proportional to its energy, according to
the Boltzmann–Gibbs distribution of statistical physics with temperature equal to
the method’s step-size.

(4) Every connected component of non-minimizing critical points of f – i.e., local maxi-
mizers or saddle points – is “dominated” by a component of local minimizers that is
visited exponentially more often.

Finally, we derive an explicit characterization of the invariant measure of (SGD) under
Gaussian noise and other noise models motivated by deep learning considerations.

Taken together, these properties resemble those of a canonical ensemble in statistical
physics: in a sense, each connected component of critical points can be seen as a “state”
of a statistical ensemble, and the step-size of (SGD) plays the role of the system’s (fixed)
temperature, which determines how easy it is to transit from one component to another.
We find this analogy particularly appealing as it provides a way of connecting ideas from
equilibrium thermodynamics to the long-run behavior of (SGD).

Related work. The main approaches used in the literature to examine the long-run distribu-
tion of (SGD) hinge on the study of a limiting stochastic differential equation (SDE), typically
associated with (a version of) the discrete Langevin dynamics or a diffusion approximation
of (SGD).

Starting with the former, Raginsky et al. [59] examined the law of the stochastic gradient
Langevin dynamics (SGLD), a variant of (SGD) with injected Gaussian noise of variance
2η/β for some inverse temperature parameter β > 0 (see also [18, 40] for some recent
follow-ups in this direction). Raginsky et al. [59] first showed that SGLD closely tracks an
associated diffusion process over finite time intervals; the law of this diffusion was then shown
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to converge to the Gibbs measure exp(−βf)/
∫
exp(−βf) at a geometric rate, fast enough

to ensure the convergence of the discrete-time dynamics to the same measure.
(SGD) can be recovered in the context of SGLD by setting the inverse temperature

parameter to β ∝ 1/η. Unfortunately however, the convergence rate of the SDE to its
invariant distribution is exponential in β, so it is too slow to compensate for the discretization
error in this case. As a result, the bounds between the discrete dynamics and the invariant
measure of the limiting diffusion become vacuous in the case of (SGD) – and similar
considerations apply to the related work of Majka et al. [51].1

Another potential approach to studying the long-run distribution of (SGD) consists of
approximating its trajectories via the solutions of a limiting SDE. A key contribution here
was provided by the work of Li et al. [42, 43] who showed that the tracking error between
the iterates of (SGD) and the solution of a certain SDE becomes vanishingly small in the
limit η → 0 over any finite time interval. However, in contrast to the Langevin case, the
convergence speed of the induced stochastic modified equation (SME) to its invariant measure
degrades exponentially as η → 0 [17], rendering this approach moot for a global description of
the invariant measure of (SGD). Though this strategy has been refined, either in the vicinity
of global minimizers [6, 45] or in regions where f is locally strongly convex [19, 41], this
diffusion approach still fails to capture the long run behavior of (SGD) in general non-convex
settings.

Nevertheless, the limiting SDE still provides valuable insights into certain aspects of the
dynamics of (SGD). In particular, a fruitful thread in the literature [28, 30, 56, 68] has
sought to estimate the escape rates of the approximating diffusion from local minimizers
through this approach. Interestingly, these works use some elements of the continuous-time
Freidlin–Wentzell theory [20], which is also the point of departure of our paper. That being
said, even though these results demonstrate how the structure of the objective function and
of the noise locally affect the dynamics of the SDE in a basin, they provide no information
on the long-run behavior of the (discrete-time) dynamics of (SGD); for a more technical
discussion, see Appendix A.

One last approach which has gained increased attention in the literature is that of
Dieuleveut et al. [13] and Lu et al. [49] who study (SGD) as a discrete-time Markov chain.
This allowed [13, 49] to derive conditions under which (SGD) is (geometrically) ergodic and,
in this way, to quantify the bias of the invariant measure under global growth conditions, i.e.,
the distance to the global minimum of f . Building further on this perspective, Gürbüzbalaban
et al. [23], Hodgkinson & Mahoney [25] and Pavasovic et al. [57] showed that, under general
conditions, the asymptotic distribution of the iterates of (SGD) is heavy-tailed; however,
these results only describe the distribution of (SGD) near infinity, and they provide no
information on which critical regions of f are more likely to be observed. Again, we provide
some more details on this in Appendix A.

Our approach and techniques. The linchpin of our approach is the theory of large deviations
of Freidlin & Wentzell [20] for Markov processes, originally developed for diffusion processes
in continuous time, and subsequently extended to subsampling in discrete time by Kifer
[35]; see also [11, 22] and [15, 16] for applications to stochastic approximation. However,
the starting point of all these works is the study of continuous-time diffusions on closed
manifolds; as far as we are aware, our paper provides the first extension of the theory of

1In more detail, the error term in Raginsky et al. [59, Eq. (3.1)] can no longer be controlled if η is small.
Similarly, the constants in the geometric convergence rate guarantees of Majka et al. [51, Theorems 2.1 and
2.5] would degrade as exp(−Ω(1/η)); as a result, the associated discretization errors would be of the order of
exp(Ω(1/η))), which cannot be controlled for small η.
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Freidlin & Wentzell to discrete-time systems that evolve over unbounded domains, and with
a general – possibly discrete – noise profile.

One of the key challenges that we need to overcome is that most of the potentials
introduced in [20, 35] become drastically less regular in our context; we remedy this issue
by refining the analysis and carefully studying the structure of the attractors of (SGD).
This allows us to salvage enough regularity and show that (SGD) spends most of its time
near its attractors (this is achieved by developing suitable tail-bounds for the time spent
away from critical points) and, ultimately, to estimate the transition probabilities of (SGD)
between different connected components of critical points. This involves a series of novel
mathematical tools and techniques, which we detail in Appendix D.

2. Preliminaries and blanket assumptions

2.1. Standing assumptions. In this section, we describe our assumptions for the objective
function f of (Opt) and the black-box oracle providing gradient information for (SGD). We
begin with the former, writing throughout X := Rd for the domain of f .

Assumption 1. The objective function f : X → R satisfies the following conditions:
(a) Coercivity: f(x)→∞ as ∥x∥ → ∞.
(b) Smoothness: f is C2-differentiable and its gradient is β-Lipschitz continuous, that is,

∥∇f(x′)−∇f(x)∥ ≤ β∥x′ − x∥ for all x, x′ ∈ X . (LG)

(c) Critical set regularity: The critical set

crit f := {x ∈ X : ∇f(x) = 0} (1)

of f consists of a finite number of smoothly connected components Ki, i = 1, . . . ,K.

These requirements are fairly standard in the literature: Assumption 1(a) guarantees that
(Opt) admits a solution and rules out infima at infinity (such as f(x) = e−x2); Assumption 1(b)
is a bare-bones regularity requirement for the analysis of gradient methods; and, finally,
Assumption 1(c) serves to exclude objectives with anomalous critical sets (e.g., exhibiting
kinks or other non-smooth features), so it is also quite mild from an operational standpoint.2

Regarding the gradient input to (SGD), we will assume throughout that the optimizer
has access to a stochastic first-order oracle (SFO), that is, a black-box mechanism returning
a stochastic estimate of the gradient of f at the point of interest. Formally, when queried at
x ∈ X , an SFO returns a random vector of the form

G(x;ω) = ∇f(x) + Z(x;ω) (SFO)

where
(a) ω is a random seed drawn from a compact subset Ω of Rm based on some (complete)

probability measure P.3

(b) Z(x;ω) is an umbrella error term capturing all sources of noise and randomness in
the oracle.

This oracle model is sufficiently flexible to account for all established versions of (SGD) in
the literature, including minibatch SGD (where ω represents the sampled minibatch), noisy
gradient descent (where the optimizer may artificially inject noise in the process to enhance
convergence), and Langevin Monte Carlo methods.

2This last requirement can be replaced by positing for example that f is definable in terms of some
semi-algebraic / o-minimal structure, see e.g., [9, 63] and Remark B.1 in Appendix B.

3The specific form of Ω is not important; in practice, random seeds from a target distribution are often
generated by inverse transform sampling from [0, 1]m.
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With all this in mind, we make the following blanket assumptions for (SFO):

Assumption 2. The error term Z : X × Ω→ Rd of (SFO) satisfies the following properties:
(a) Properness: E[Z(x;ω)] = 0 and cov(Z(x;ω)) ≻ 0 for all x ∈ X .
(b) Smooth growth: Z(x;ω) is C2-differentiable and satisfies the growth condition

sup
x,ω

∥Z(x;ω)∥
1 + ∥x∥

<∞ . (2)

(c) Sub-Gaussian tails: The tails of Z are bounded as

logE
[
e⟨p,Z(x;ω)⟩

]
≤ 1

2
σ2
∞∥p∥2 (3)

for some σ∞ > 0 and all p ∈ Rd.

Assumption 2(a) is standard in the literature and ensures that the gradient noise in
(SGD) has zero mean and does not vanish identically at any x ∈ X ; this requirement in
particular plays a crucial role in several incarnations of noisy gradient descent that have
been proposed to effectively escape saddle points of f [4, 21, 31, 58]. Assumption 2(b) is
a bit more technical but otherwise simply serves to impose a limit on how large the noise
may grow as ∥x∥ → ∞. Finally, Assumption 2(c) is also widely used in the literature: while
not as general as the (possibly fat-tailed) finite variance assumption E[∥Z(x;ω)∥2] ≤ σ2

∞, it
allows much finer control of the stochastic processes involved, leading in turn to more explicit
and readily interpretable results. We only note here that Assumption 2(c) can be relaxed
further by allowing the variance proxy σ2

∞ of Z(x;ω) to depend on x, possibly diverging
to infinity as ∥x∥ → ∞. To streamline our presentation, we defer the general case to the
appendix.

Our last blanket requirement is a stability condition ensuring that the signal-to-noise
ratio of (SFO) does not become too small at infinity. We formalize this as follows:

Assumption 3. The signal-to-noise ratio of G is bounded as

lim inf
∥x∥→∞

∥∇f(x)∥2

σ2
∞

> 16 log 6 · d . (4)

Assumption 3 is a technical requirement needed to establish a series of concentration bounds
later on, and the specific value of the lower bound serves to facilitate some computations
later on. In practice, ∇f is often norm-coercive – i.e., ∥∇f(x)∥ → ∞ as ∥x∥ → ∞ – so
this assumption is quite mild. Note also that Assumption 3, as Assumption 2(c), can be
extended to the case where the variance proxy σ2

∞ of G depends on x, possibly blowing up
at infinity; we postpone the relevant details to Appendix B.2.

Putting together all of the above, the SGD algorithm can be written in abstract recursive
form as

x+ ← x− η G(x;ω) . (5)
Thus, given a (possibly random) initialization x0 ∈ X and an i.i.d. sequence of random seeds
ωn ∈ Ω, n = 0, 1, . . . , the iterates xn of (SGD) are obtained by taking ĝn ← G(xn;ωn) and
iterating n← n+ 1 ad infinitum. To streamline notation, we will write Px0 for the law of xn

starting at x0, and we will refer to it as the law of (SGD).

2.2. Discussion of the assumptions. To illustrate the generality of our assumptions, we briefly
consider here the example of the regularized empirical risk minimization problem

f(x) =
1

n

n∑
i=1

ℓ(x; ξi) +
λ

2
∥x∥2 (6)
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where ξi, i = 1, . . . , n, are the training data of the model, ℓ(x; ξ) represents the loss of the
model x on the data point ξ, and λ > 0 is a regularization parameter. In this case, we have

Z(x;ω) = ∇ℓ(x; ξω)−
1

n

n∑
i=1

∇ℓ(x; ξi) (7)

where ω is sampled uniformly at random from {1, . . . , n}.
If ℓ is C2-differentiable, Lipschitz continuous and smooth – see e.g., [52] and references

therein – Assumption 1 and (a) and (b) are satisfied automatically. The error term Z(x;ω)
is also uniformly bounded so Assumption 2 and (b) and (c) are likewise verified (see e.g.,
Wainwright [65, Ex. 2.4]). Finally, we have ∥∇f(x)∥ = O(λ∥x∥), so Assumption 3 also holds.
Thus, this setting covers two wide classes of examples: linear models with non-convex losses
[18, 49] and smooth neural networks with normalization layers [44].4

3. Analysis and results

3.1. Invariant measures. The overarching objective of our paper is to understand the statistics
of the limiting behavior of (SGD). To that end, our point of departure will be the mean
occupation measure of xn, defined here as

µn(B) = E

[
1

n

n−1∑
k=0

1{xk ∈ B}

]
(8)

for every Borel B ⊆ X . In words, µn(B) simply measures the mean fraction of time that xn

has spent in B up to time n, so the long-run statistics of (SGD) can be quantified by the
limiting distribution limn→∞ µn.

If xn is ergodic, µn converges weakly to some measure µ∞, known as the invariant measure
of xn.5 Referring to the abstract representation (5) of (SGD), “invariance” simply means
here that µ∞ satisfies the defining property

x ∼ µ∞ =⇒ x+ ∼ µ∞ (9)

i.e., µ∞ is stationary under (SGD). Note however that ergodicity generally requires that
the noise has a density part [49]. More generally, even if xn is not ergodic, any (weak) limit
point of µn must still satisfy the invariance property (9) [14, 24], so this will be our principal
figure of merit.6

More precisely, our goal will be to quantify the long-run concentration of probability
mass near the components Ki of crit f : in particular, since each Ki generically has Lebesgue
measure zero, we will seek to estimate the probability mass µ∞(Ui) where µ∞ is invariant
under (SGD) and Ui is a sufficiently small neighborhood of Ki – typically a δ-neighborhood
of the form Ui ≡ Ui(δ) := {x ∈ X : dist(Ki, x) < δ} in the limit δ → 0. Doing this will allow
us to determine the probability that (SGD) is concentrated in the long run near one critical
component or another, as well as the degree of this concentration.

4Our assumptions can also be linked to the notion of dissipativity, which is standard in Markov chain
and sampling literature, see e.g., [18, 40, 49, 50, 59]. Considering the gradient oracle obtained by sampling
minibatches of size B, this setting fits into our framework with the relaxed version of Assumption 2 in
Appendix B provided B is chosen large enough, see Appendix B.2.

5Weak convergence means here that limn→∞
∫
φ dµn =

∫
φ dµ∞ for every bounded continuous function

φ : X → R.
6Existence always holds in our setting, cf. Lemma D.16 in Appendix D.3.
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3.2. A large deviation principle for SGD. Our strategy to achieve this will be to estimate the
long-run rates of transition between different regions of X under (SGD). Our first step in this
regard will be to establish a large deviation principle (LDP) for the process xn, n = 0, 1, . . . ,
in the spirit of the general theory of Freidlin & Wentzell [20]. This will in turn allow us to
quantify the probability of “rare events” in (SGD) – e.g., moving against the gradient flow of
f for a protracted period of time – and it will play a crucial role in the sequel.

Now, since the statistics of (SGD) are determined by those of (SFO), we begin by
considering the cumulant-generating functions (CGFs) of Z and G, viz.

KZ(x, p) := logE[exp(⟨p,Z(x;ω)⟩)] (10a)

KG(x, p) := logE[exp(⟨p,G(x;ω)⟩)]
= KZ(x, p) + ⟨∇f(x), p⟩

(10b)

where x ∈ X , p ∈ Rd, and ⟨p, v⟩ denotes the standard bilinear pairing between p ∈ Rd and
v ∈ X . To state our results, we will also require the associated Lagrangians

LZ(x, v) := K∗
Z(x,−v) (11a)

LG(x, v) := K∗
G(x,−v) = LZ(x, v +∇f(x)) (11b)

where “∗” denotes convex conjugation with respect to p in KZ(x, p) and KG(x, p).
The importance of the Lagrangian functions (11) is that they provide a large deviation

principle for Z and G. Namely, to leading order in n (and ignoring boundary effects), we
have

P

(
1

n

n∑
k=0

G(x;ωn) ∈ B

)
∼ exp

(
−n inf

v∈B
LG(x, v)

)
(12)

for every Borel B ∈ Rd (and likewise for Z and LZ), so the long-run statistics of the process
Sn =

∑n−1
k=0 G(x;ωk) are fully determined by LG [12]. In this regard, LG plays the role of a

“rate function” for Sn and quantifies the rate of occurrence of “rare events” in this context
[12].

Going back to (SGD), we have xn = x0 − η
∑n−1

k=0 G(xk;ωk), so a promising way to
understand the occupation measure of xn would be to try to derive a large deviation principle
for xn starting from (12). Unfortunately however, in contrast to Sn =

∑n−1
k=0 G(x;ωk), this

is not possible because (12) concerns i.i.d. samples drawn at a fixed point x ∈ X , while
the iterates of xn are highly auto-correlated. Instead, inspired by the theory of Freidlin &
Wentzell [20] for randomly perturbed dynamical systems, we will encode the entire trajectory
xn of (SGD) as a point in some infinite-dimensional space of curves, and we will derive a
large deviation principle for (SGD) directly in this space.

To make this idea precise, we first require a continuous-time surrogate for the sequence
of iterates of (SGD). Concretely, writing τn = nη for the “effective time” that has elapsed
up to the n-th iteration of (SGD), we define the continuous-time interpolation of xn as the
piecewise affine curve

X(t) = xn +
t− τn

η
(xn+1 − xn) (13)

for all n = 0, 1, . . . , and all t ∈ [τn, τn+1]. The resulting curve is continuous by construction,
so, for embedding purposes, we will consider the ambient spaces of continuous curves
truncated at some finite T ≥ 0:

CT := C([0, T ],X ) (14a)
CT (x) := {γ ∈ CT : γ(0) = x} (14b)

CT (x, x′) := {γ ∈ CT : γ(0) = x, γ(T ) = x′}. (14c)
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With these preliminaries in hand, and in analogy with the Lagrangian formulation of
classical mechanics, we define the (normalized) “action functional ” of LG as

ST [γ] =
∫ T

0

LG(γ(t), γ̇(t)) dt (15)

for all γ ∈ CT and with the convention ST [γ] = ∞ if γ is not absolutely continuous. In a
certain sense (to be made precise below), the functional ST [γ] is a “measure of likelihood”
for the curve γ, with lower values indicating higher probabilities. Accordingly, by leveraging
the so-called “least action principle” [12, 20, 36], it is possible to establish the following large
deviation principle for (SGD):

Proposition 1. Fix a time horizon T > 0, tolerance margins ε, δ > 0, and an action level
s > 0. In addition, write

ΓT (x0; s) := {γ ∈ CT (x0) : ST [γ] ≤ s} (16)

for the space of continuous curves starting at x0 and with action at most s. Then, for all
sufficiently small η, we have

Px0

(
sup

0≤t≤T
∥X(t)− γ(t)∥ < δ

)
≥ exp

(
−ST [γ] + ε

η

)
for all γ ∈ ΓT (x0; s)

(17a)

and, in addition,

Px0

(
sup

0≤t≤T
∥X(t)− γ(t)∥ > δ for all γ ∈ ΓT (x0; s)

)
≤ exp

(
−s− ε

η

)
.

(17b)

In words, Proposition 1 states that (a) the linear interpolation X(t) of xn stays close to
low-action trajectories with probability that is exponentially large in their action value; and
(b) the probability that X(t) strays far from said trajectories is exponentially small in their
action value. This is, in fact, the first rung in a hierarchy of large deviation principles that
ultimately quantify the probability of rare events in (SGD); because these results are fairly
technical to set up and prove (and not required for stating our main result), we defer the
relevant discussion and proofs to Appendix C.

3.3. Transition costs and the quasi-potential. Now, in view of the characterization (17a) and
(17b) of “rare trajectories” of (SGD), we will seek to derive below an analogous characteri-
zation for the “typical trajectories” of (SGD) in terms of S. To do this, we will associate
a certain transition cost to each pair of components Ki, Kj of crit f , and we will use these
costs to quantify how likely it is to observe xn near a component of critical points of f .

These costs are defined as follows: First, following Freidlin & Wentzell [20], define the
quasi-potential between two points x, x′ ∈ X as

B(x, x′) := inf{ST [γ] : γ ∈ CT (x, x′), T ∈ N} (18)

and the corresponding quasi-potential between two sets K,K′ ⊆ X as

B(K,K′) := inf{B(x, x′) : x ∈ K, x′ ∈ K′}. (19)

By construction, B(x, x′) is the action value of the “most probable” path from x to x′, so
it can be interpreted as the “action cost” of moving from x to x′. Accordingly, to capture
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the difficulty of xn leaving the vicinity of a given component of crit f and wandering off to
another, we will consider the cost matrix

Bij := B(Ki,Kj) (20)

where Ki,Kj , i, j = 1, . . . ,K, are any two components of critical points of f .
As we mentioned before, the transitions between components of crit f play a crucial role in

our analysis because this is where xn spends most of its time. To characterize the structure of
these transitions more precisely, it will be convenient to encode them in a complete weighted
directed graph G = (V, E), which we call the transition graph of (SGD), and which is defined
as follows:

(a) The vertex set of G is V = {1, . . . ,K}, i.e., G has one vertex per component of critical
points of f .

(b) The edge set of G is E={(i, j) : i, j = 1, . . . ,K, i ̸=j}, i.e., G has an edge per pair of
components of crit f .

(c) The weight of the directed edge (i, j) ∈ E is Bij .
To avoid degenerate cases, we will make the following assumption for the problem’s cost
matrix:

Assumption 4. Bij <∞ for all i, j = 1, . . . ,K.

This assumption is purely technical and mainly serves to streamline our presentation and
avoid complicated statements involving non-communicating classes of the cost matrix Bij ;
see Appendix D.5 for a more detailed discussion.

The last element we need for the statement of our results is the minimum total cost of
reaching a component Ki of crit f from any starting point. Since the most likely trajectories
of (SGD) are action minimizers, the “path of least resistance” to reach vertex i from vertex
j may not follow the edge (i, j) if the cost Bij is too high; instead, the relevant notion turns
out to be the minimum weight spanning tree pointing to i.7 Formally, writing Ti for the set
of spanning trees of G that point to i, we define the energy of Ki as

Ei = min
Ti∈Ti

∑
j,k∈Ti

Bjk. (21)

The terminology “energy” is explained below, where we show that, to leading order, the
long-run distribution of (SGD) around crit f follows the Boltzmann–Gibbs distribution for a
canonical ensemble with energy levels Ei at temperature η.

3.4. The long-run distribution of SGD. With all this in hand, we are finally in a position
to state our main results for the statistics of the asymptotic behavior of (SGD). We start
by showing that, in the long run, the probability of observing the iterates of (SGD) near a
component of crit f is exponentially proportional to its energy.

Theorem 1. Suppose that µ∞ is invariant under (SGD), fix a tolerance level ε > 0, and
let Ui ≡ Ui(δ), i = 1, . . . ,K, be δ-neighborhoods of the components of crit f . Then, for all
sufficiently small δ, η > 0, we have

|η logµ∞(Ui) + Ei −minj Ej | ≤ ε (22)

and ∣∣∣∣η log µ∞(Ui)
µ∞(Uj)

+ Ei − Ej

∣∣∣∣ ≤ ε. (23)

7We distinguish here between the notion of an out-tree and that of an in-tree. In an out-tree, edges point
away from the root; in an in-tree, edges point toward it [62].
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More compactly, with notation as above, we have:

µ∞(Ui) ∝ exp

(
−Ei +O(ε)

η

)
. (24)

Theorem 1 is the formal version of the statement that the long-run distribution of (SGD)
around the components of crit f follows an ε-approximate Boltzmann–Gibbs distribution
with energy levels Ei at temperature η [38]. However, since the critical set of f includes
both minimizing and non-minimizing components,8 a natural question that arises is whether
the non-minimizing components of f are selected against under µ∞. Our next result is a
consequence of Theorem 1 and shows that this indeed the case:

Theorem 2. Suppose that µ∞ is invariant under (SGD), and let K be a non-minimizing
component of f . Then, with notation as in Theorem 1, there exists a minimizing component
K′ of f and a positive constant c ≡ c(K,K′) > 0 such that

µ∞(U)
µ∞(U ′)

≤ exp

(
−c(K,K′) + ε

η

)
(25)

for all all sufficiently small η > 0 and all sufficiently small neighborhoods U and U ′ of K and
K′ respectively. In particular, in the limit η → 0, we have µ∞(U)→ 0.

This avoidance principle is particularly important because it shows that (SGD) is far less
likely to be observed near a non-minimizing components of crit f relative to a minimizing one.
In this regard, Theorem 2 complements a broad range of avoidance results in the literature
[21, 26, 27, 31, 52, 58] without requiring any of the “strict saddle” assumptions that are
standard in this context.

That being said, Theorems 1 and 2 leave open the possibility that the energy landscape of
(SGD) contains non-critical low-energy regions that nonetheless get a significant amount of
probability under (SGD); put differently, Theorems 1 and 2 do not rule out the eventuality
that, in the long run, xn may still be observed with non-vanishing probability far from
the critical region of f . Our next result addresses precisely this issue and shows that this
probability is exponentially small.

Theorem 3. Suppose that µ∞ is invariant under (SGD), and let U ≡ U(δ) be a δ-neighborhood
of crit f . Then there exists a constant c ≡ cδ > 0 such that, for all sufficiently small η > 0,
we have:

µ∞(U) ≥ 1− e−c/η. (26)

Taken together, Theorems 1–3 show that, in the long run, the iterates of (SGD) are
exponentially more likely to be observed in the vicinity of crit f rather than far from it, and
exponentially more likely to be observed near a minimum of f rather than a saddle-point (or
a local maximizer).

Our next result can be seen as joint consequence of Theorems 1 and 3 as it shows that the
long-run distribution of (SGD) is exponentially concentrated around the system’s ground
state

K0 =
⋃

i∈argminj Ej
Ki (27)

that is, the components of crit f with minimal energy. The precise statement is as follows:

8To remove any ambiguity, a component K of crit f is called (locally) minimizing if K = argminx∈U f(x)

for some neighborhood U of K; otherwise, we say that K is non-minimizing.
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Theorem 4. Suppose that µ∞ is invariant under (SGD), and let U0 ≡ U0(δ) be a δ-
neighborhood of the system’s ground state K0. Then there exists a constant c ≡ cδ > 0
such that, for all sufficiently small η > 0, we have:

µ∞(U0) ≥ 1− e−c/η. (28)

In words, Theorems 1–4 provide the following quantification of the limiting distribution of
xn: in the long run (a) the critical region of f is visited exponentially more often than any
non-critical region of f (Theorem 3); (b) in particular, the iterates of (SGD) are exponentially
concentrated around the problem’s ground state (Theorem 4); (c) among the mass that
remains, every component of f gets a fraction that is exponentially proportional to its
energy (Theorem 1); and, finally (d) every non-minimizing component is “dominated” by a
minimizing component that is visited exponentially more often (Theorem 2). Importantly,
the problem’s energy landscape is shaped by f , but not f alone: the statistics of (SFO) play
an equally important role, so we may have K0 ≠ argmin f ; we discuss this issue in detail in
Section 4.

The proofs of the above results are quite lengthy and elaborate, so we defer them to the
appendix and only provide below a roadmap describing the overall proof strategy, the main
technical challenges encountered, and the way they can be resolved.

3.5. Outline of the proof. As discussed in Section 3.2, the first step of the proof consists
in establishing a large deviation principle for (SGD). The LDP of Proposition 1 for the
interpolated process X(t) is obtained as a consequence of [20, Chap. 7] in Appendix C.2.
With this result in hand, our next step (which we carry out in Appendix C.3) is to deduce
an LDP for the “accelerated” SGD process xη

n, n = 0, 1, . . . , defined here as

xη
n = xn⌊1/η⌋ (29)

where ⌊1/η⌋ denotes the integer part of 1/η. As xη
n is a subsampled version of (SGD), it

essentially shares the same long-run behavior and invariant measures and, in addition, it has
a very important feature: there are sufficiently many time steps between two of its iterates
for an LDP to hold in the specified subinterval. [Intuitively, this is because it takes O(1/η)
steps of (SGD) to average out random fluctuations due to the noise.] In view of the above,
the rest of our proof focuses on the accelerated sequence xη

n.
The main thrust of the proof is contained in Appendix D and consists in adapting

the powerful machinery of [20, 35] to study the limiting behavior of xη
n. However, both

[20, 35] study continuous-time diffusion processes on closed manifolds, so there are some key
challenges to overcome:

• The unconstrained setting renders many elements of [20, 35] inapplicable. We remedy
this by showing that the time that (SGD) only spends a negligible amount of time away
from crit f .

• The generality of our assumptions on the noise makes the Lagrangians LG and LZ

non-smooth: more precisely, they must have bounded domains, on which they may
fail to be continuous. As a consequence, most of the objects introduced in [20, 35]
become drastically less regular – e.g., B defined in (18) – which again renders their
results inapplicable. We remedy this issue by refining the analysis, carefully studying
the structure of the attractors, and salvaging enough regularity to proceed.

The crux of the proof (Appendix D) is structured as follows:

(1) In Appendix D.2, we study the structure of the attractors of (SGD), as well as the
regularity of the Lagrangians and the quasi-potential near these attractors.
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(2) In Appendix D.3, we show that (SGD) spends most of its time near its attractors by
deriving a series of tail-bounds on the time spent away from crit f . These bounds are
obtained even for unbounded variance proxy through the construction of a Lyapunov
function from f and σ2

∞.
(3) In Appendix D.5, we estimate the transition probabilities of the process between

attractors: if the iterates of (SGD) are near Ki, the next component of critical points
that they visit is Kj with probability exp(−Bij/η). As such, low-weight paths in
the transition graph G of (SGD) represent the high-probability transitions of (SGD)
between components. We can then leverage the general theory of Freidlin & Wentzell
[20] to obtain Theorem 1.

(4) Finally, in Appendix D.6, we analyze the properties of minimizing components to
establish Theorems 2–4 .

Remark. We also note that, since weak limit points of the sequence of occupation measures
µn of (SGD) are invariant in the sense of (9), the results of Theorems 1–4 also apply to µn

if n is large enough. We make this observation precise in Appendix D.8. ◀

4. Examples and applications

In this last section, we explore the dependency of the transition costs and the energy
levels on the parameters of the problem in certain special cases.

4.1. Gaussian noise. We begin with the case of (truncated) Gaussian noise, where the
problem’s energy levels admit a particularly simple closed form. To ease notation, we present
here the computations in the case of Gaussian noise, and we defer the more intricate case of
truncated Gaussian noise to Appendix E.2.

To that end, assume that the gradient error Z(x, ω) in (SGD) follows a centered Gaussian
distribution with variance σ2 > 0 for all x ∈ X . The Lagrangian and the action functional
of the problem then become:

LG(x, v) =
∥v +∇f(x)∥2

2σ2
(30)

and

ST [γ] =
∫ T

0

∥γ̇(t) +∇f(γ(t))∥2

2σ2
dt (31)

for all x, v ∈ X and all γ ∈ CT . This expression shows that ST [γ] penalizes the deviation of
γ from the gradient flow of f : the closer γ̇(t) is to −∇f(γ(t)), the smaller the action. Then,
for the reverse path φ(t) = γ(T − t), we get

ST [φ] = ST [γ]− 2[f(γT )− f(γ0)]/σ
2. (32)

Note that if γ joins Ki to Kj , then φ joins Kj , so

Bji ≤ Bij − 2(fj − fi)/σ
2 (33)

where fi denotes the value of f on Ki, i = 1, . . . ,K. Exchanging i and j, we get equality in
(33), so the minimum in the definition (21) of Ei is reached for the same undirected tree,
namely the minimum-weight spanning tree with symmetric weights Bij + 2fi/σ

2 for all i, j.
As such, up to a constant, we get

Ei = 2fi/σ
2. (34)

Thus, invoking Theorem 1, we conclude that the probabiity distribution of (SGD) over
crit(f) is governed by the Boltzmann–Gibbs measure with energy levels given by (34)

Similarly, in the truncated Gaussian case, we have:
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Proposition 2. For any ε > 0, if Z(x, ω) follows a centered Gaussian distribution with
variance σ2 > 0 conditioned on being in a ball with large enough radius depending on ∇f(x)
and ε, then, up to a constant,

Ei = 2fi/σ
2 +O(ε) for all i = 1, . . . ,K . (35)

Proposition 2 is proven in Appendix E.2, where we also allow σ to depend on x via f(x).

4.2. Local dependencies. The modeling of the noise is crucial to the understanding of the
dynamics of (SGD). This has been often underlined, especially in the exit-time literature
[28, 30, 56, 68]. In particular, [56] showed experimentally that, in deep learning models, the
variance of the noise scales linearly with the objective function and also examined the effect
of this observation on the exit time from a local minima.

We explain here how this model of the noise influences the invariant measure of (SGD).
To that end, following Mori et al. [56], assume there is a positive-definite matrix H∗ such
that, locally near a minimizing Ki, log f is separable in the eigenbasis of H∗:9

log f(x) =
∑

λ∈eigH∗

gλ(xλ) (36)

where xλ denotes the projection of x on the eigenspace of λ.

Lemma 1. Suppose that Z(x, ω) satisfies

KZ(x, v) ≤
σ2f(x)

2
⟨v,H∗v⟩ for all x near Ki . (37)

Then, for small enough δ > 0 and all j ̸= i, we have

Ej ≥ 2min

 ∑
λ∈eigH∗

gλ(xλ)− gλi
λσ2

: x,dist(x,Ki) = δ

 (38)

where gλi is the value of gλ on Ki.

This result shows that the energy of each component of crit(f) is lower bounded by the
RHS of (38). This quantity scales as the reciprocal of the eigenvalues of H∗ so, as the
minimum becomes flatter (i.e., the eigenvalues of H∗ become smaller), the energy levels of
all other components become larger: thus, relative to component Ki, the other components
all become less probable. Moreover, note that the RHS of (38) only scales logarithmically
with the value of the objective function around Ki, i.e., the depth of the minimum: this
means that the “flatness” of the minimum plays a greater role in the relative probabilities of
the components than the depth.

This also shows that deepest minima do not necessarily correspond to the ground state
of the problem: if σ2 or the eigenvalues of H∗ is small enough compared to the noise level
outside the δ-neighborhood of Ki, then Ki will be the ground state of the system even if it is
not the deepest minimum; we provide a formal proof of this in Appendix E.3.

5. Concluding remarks

Our objective was to quantify the long-run distribution of SGD in a general, non-convex
setting. As far as we are aware, our paper provides the first description of the invariant
measure of (SGD), and in particular, its distribution over components of critical points. This
distribution is governed by energy levels that depend both on the objective function and
the statistics of the noise. An important challenge that remains is to estimate these energy

9Following [56], H∗ corresponds to the Hessian of f at Ki for deep learning models.
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levels in different settings; this would be a major step towards a better understanding of the
generalization properties of SGD.
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Appendix A. Further related work

A.1. Consequences of the diffusion approximation. The SDE approximation of SGD, intro-
duced by Li et al. [42, 43], has been a fruitful development in the understanding of some
aspects of the dynamics of SGD. For instance, Ziyin et al. [71] provide explicit descriptions
for the invariant measure of the diffusion approximation of SGD for diagonal linear neural
networks. Applications of this SDE approximation also include the study the dynamics of
SGD close to manifold of minimizers [6, 45]. Wojtowytsch [67] study the invariant measure
of the diffusion approximation: if the set of global minimizers form a manifold on which the
noise vanishes, they show that the invariant measure of the diffusion concentrates on this
manifold and moreover provide a description of the limiting measure on this manifold.

Another line of works focuses on the case where the objective function is scale-invariant
[44] and how this impacts the convergence of the dynamics of SGD: Wang & Wang [66]
describes the convergence of the SDE approximation with anisotropic constant noise to
the Gibbs measure, while Li et al. [46] shows that discrete-time SGD dynamics close to a
manifold of minimizers enjoy fast convergence to an invariant measure.

Finally, Mignacco & Urbani [54], Mignacco et al. [55], Veiga et al. [64] leverage dynamic
mean-field theory (DMFT) to study the behavior of the diffusion approximation of SGD.
The DMFT, or “path-integral” approach, comes from statistical physics and bears a close
resemblance to the Freidlin-Wentzell theory of large deviations for SDEs. However, this
methodology, as well as Mignacco & Urbani [54], Mignacco et al. [55], Veiga et al. [64], is
restricted to the continuous-time diffusion and remains at heuristic level.

Let us underline two points comparing these works to ours. While these works focus
on the learning behavior of the algorithm by considering specific statistical models and
specific losses, we focus on the optimization aspects and on covering general non-convex
objectives. Secondly, these results are either local or concern the asymptotic distribution
of the continuous-time approximation of (SGD), which do no provide information of the
asymptotic behaviour of the actual discrete-time dynamics.

A.2. On the heavy-tail character of the asymptotic distribution of SGD. A recent line of work
has focused on the heavy-tail character of the asymptotic distribution of (SGD) [23, 25, 57].
These works show that, under some broad conditions, the stationary distribution of (SGD)
is heavy-tailed: specifically, for some α > 0, the tails of the stationary distribution x∞ of
the iterates of (SGD) decays as P(∥x∞∥ ≥ z) = Θ(z−α) or P(u⊤x∞ ≥ z) = Θ(z−α) for all
u ∈ Rd. As such, these results concern the probability of observing the iterates of SGD at
very large distances from the origin. This is in contrast with our work, which focuses on the
distribution of the iterates of SGD near critical regions of the objective function. These two
types of results are thus orthogonal and complementary.
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A.3. SGD with a vanishing step-size. The long-run behavior of (SGD) is markedly different
when the method is run with a vanishing step-size ηn > 0 with limn→∞ ηn = 0. This was
the original version of (SGD) as proposed by Robbins & Monro [61] – and, in a slightly
modified form by Kiefer & Wolfowitz [34] – and, in contrast to the constant step-size case, the
vanishing step-size algorithm converges with probability 1. The first almost sure convergence
result of this type was obtained by Ljung [48] under the assumption that the iterates of
(SGD) remain bounded. This boundedness assumption was dropped by Benaïm [3] and
Bertsekas & Tsitsiklis [5] who showed that (SGD) with a vanishing step-size converges to
a component of crit f as long as ηn satisfies the Robbins–Monro summability conditions∑

n ηn = ∞ and
∑

n η
2
n < ∞; for a series of related results under different assumptions,

cf. [52, 53, 70] and references therein. In all these cases, ergodicity of the process is lost
(because of the vanishing step-size), so the limiting distribution of (SGD) depends crucially
on its initialization and other non-tail events. We are not aware of any results quantifying
the long-run distribution of (SGD) with a vanishing step-size.

Appendix B. Setup and Preliminaries

B.1. Notation. Throughout the sequel, we will write ⟨·, ·⟩ for the standard inner product
on X ≡ Rd and ∥·∥ for the induced (Euclidean) norm. To lighten notation, we will identify
X with its dual Rd ≡ X ∗, and we will not formally distinguish between primal and dual
vectors (though the distinction should be clear from the context). We will also write B(x, r)
(resp. B(x, r)) for the open (resp. closed) ball of radius r centered at x ∈ X , and we will
respectively denote the open and closed δ-neighborhoods of S ⊆∈ X as

Uδ(S) := {x ∈ X : dist(S, x) < δ} (B.1.1a)
Sδ := cl(Uδ(S)) = {x ∈ X : dist(S, x) ≤ δ} (B.1.1b)

B.2. Setup and assumptions. Before we begin our proof, we revisit and discuss our standing
assumptions. In particular, to extend the range of our results, we provide in the rest of this
appendix a weaker version of the blanket assumptions of Section 2, which we label with an
asterisk (“∗”) and which will be in force throughout the appendix.

We begin with our assumptions for the objective function f of (Opt).

Assumption 1∗ (Weaker version of Assumption 1). The objective function f : X → R satisfies
the following conditions:

(a) Coercivity: f(x)→∞ as ∥x∥ → ∞.
(b) Smoothness: f is C2-differentiable and its gradient is β-Lipschitz continuous, that is,

∥∇f(x′)−∇f(x)∥ ≤ β∥x′ − x∥ for all x, x′ ∈ X . (LG)

(c) Critical set regularity: The critical set

crit f := {x ∈ X : ∇f(x) = 0} (1)

of f consists of a finite number of essentially smoothly connected components Ki,
i = 1, . . . ,K.

The difference between Assumptions 1 and 1∗ is that, in the latter, the connected
components of crit f are only required to be essentially smoothly connected. Formally, this
means that, for any connected component K of crit f , and for any two points x, x′ ∈ K,
there exists (a) a continuous, almost everywhere differentiable curve γ : [0, 1]→ K such that
γ(0) = x, γ(1) = x′; and (b) a partition 0 = t0 < · · · < tn < · · · < tN = 1 of [0, 1] such that
γ is integrable on every closed interval of (tn−1, tn) for all n = 1, . . . , N .
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Remark B.1. The path-connectedness requirement of Assumption 1(c) is satisfied whenever
the connected components of crit f are isolated critical points, smooth manifolds, or finite
unions of closed manifolds. More generally, Assumption 1∗(c) is satisfied whenever f is
definable – in which case crit f is also definable, so each component can be connected by
piecewise smooth paths [9, 63]. The relaxation provided by Assumption 1∗(c) represents the
“minimal” set of hypotheses that are required for our analysis to go through. ◀

Moving forward, to align our notation with standard conventions in large deviations
theory, it will be more convenient to work with −Z(x;ω) instead of Z(x;ω) in our proofs.
To make this clear, we restate below Assumption 2 in terms of the noise process

U(x, ω) = −Z(x;ω) (B.2.1)

and we make use of this opportunity to relax the definition of the variance proxy of U.

Assumption 2∗ (Weaker version of Assumption 2). The noise term U : X × Ω→ Rd satisfies
the following properties:

(a) Properness: E[U(x, ω)] = 0 and cov(U(x, ω)) ≻ 0 for all x ∈ X .
(b) Smooth growth: U(x, ω) is C2-differentiable and satisfies the growth condition

sup
x,ω

∥U(x, ω)∥
1 + ∥x∥

<∞ . (2)

(c) Sub-Gaussian tails: The cumulant-generating function of U is bounded as

logE
[
e⟨p,U(x,ω)⟩

]
≤ 1

2
σ2
∞(f(x)) ∥p∥2 for all p ∈ Rd, (3∗)

where σ : R→ (0,∞) is continuous, bounded away from zero (inf σ2
∞ > 0), and grows

at infinity as σ2
∞(f(x)) = Θ(∥x∥s) for some s ∈ [0, 2], i.e.,

0 < lim inf
∥x∥→∞

σ2
∞(f(x))

∥x∥s
≤ lim sup

∥x∥→∞

σ2
∞(f(x))

∥x∥s
<∞ . (B.2.2)

Remark B.2. The difference between Assumptions 2 and 2∗ lies in the requirements for the
variance proxy σ2

∞ of the noise in (SGD). Because f is coercive, the dependence of σ2
∞

on f(x) allows for noise processes with an unbounded variance as ∥x∥ → ∞; the specific
functional dependence through f(x) instead of x is a modeling choice which we make because
it greatly simplifies the proof and our calculations. ◀

In this more general setting, we augment Assumption 3 with a technical condition that is
satisfied trivially when σ2

∞ is constant.

Assumption 3∗ (Weaker version of Assumption 3). The signal-to-noise ratio of G is bounded
as

lim inf
∥x∥→∞

∥∇f(x)∥2

σ2
∞(f(x))

> 16 log 6 · d . (4∗)

▶ Example B.1 (Example of Section 2.2, redux). In Section 2.2, we discussed the regularized
empirical risk minimization problem and mentioned that, under a dissipativity condition
and with a large enough batch size, it fits our framework. We now provide more details.

Consider the objective f given by

f(x) =
1

n

n∑
i=1

ℓ(x; ξi) +
λ

2
∥x∥2 (B.2.3)
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where ℓ(x; ξ) represents the loss of the model x on the data point ξ, ξi, i = 1, . . . , n, are the
training data and λ is the (positive) regularization parameter.

Let us assume that ℓ is non-negative, C2-differentiable, β-Lipschitz smooth and that the
resulting objective f is dissipative: there are α, β > 0 such that

⟨∇f(x), x⟩ ≥ α∥x∥2 − β . (B.2.4)

As is usually the case in practice, we consider the SFO obtained by sampling mini-batches of
size B. The noise term U(x, ω) is then given by

U(x, ω) =
1

B

B∑
b=1

∇ℓ(x; ξωb
)− 1

n

n∑
i=1

∇ℓ(x; ξi) (B.2.5)

with ω = (ω1, . . . , ωB) representing B indices from {1, . . . , n}.
All the terms

∇ℓ(x; ξωb
)− 1

n

n∑
i=1

∇ℓ(x; ξi) (B.2.6)

are uniformly bounded by O(∥x∥) by smoothness of ℓ. In particular, this implies that
Assumption 2∗(b) is satisfied.

Moreover, we also obtain that all the terms of the form Eq. (B.2.6) are O
(
∥x∥2

)
-sub-

Gaussian, and therefore, by independence we obtain that U(x, ω) is O
(
1
B ∥x∥

2
)
-sub-Gaussian.

Since ℓ is non-negative, f is lower-bounded by Ω(∥x∥2). It gives that U(x, ω) is actually
O
(
1
B f(x)

)
-sub-Gaussian and therefore Assumption 2∗(b) is satisfied with σ2

∞(t) ∝ t
B .

We now show that Assumption 3∗ can be satisfied by choosing B large enough. Indeed,
by dissipativity we have that

∥∇f(x)∥2 = ∥∇f(x)− αx∥2 + α2∥x∥2 + 2α⟨∇f(x)− αx, x⟩
≥ α2∥x∥2 − 2β = Ω(∥x∥2) , (B.2.7)

so that
∥∇f(x)∥2

σ2
∞(f(x))

≥ Ω

(
∥x∥2

f(x)/B

)
= Ω(B) . (B.2.8)

The second part of Assumption 3∗ is satisfied by non-negativity and smoothness of ℓ. ◀

In this framework, the iterates of (SGD), started at x ∈ X , are defined by the following
recursion: {

x0 ∈ X
xn+1 = xn − η∇f(xn) + ηUn , where Un = U(xn, ωn)

(B.2.9)

where (ωn)n≥0 is a sequence of random variables in Rm. We will denote by Px the law of the
sequence (ωn)n≥0 when the initial point is x and by Ex the expectation with respect to Px.

Assumptions 1∗ and 2∗ imply the following growth condition, that we assume holds with
the same constant for the sake of simplicity. There is M > 0 such that, for all x ∈ X , ω ∈ Ω,

∥∇f(x)∥ ≤M(1 + ∥x∥) and ∥U(x, ω)∥ ≤M(1 + ∥x∥) . (B.2.10)

We introduce the cumulant generating functions of the noise U(x, ω) and of the drift
−∇f(x) + U(x, ω), that we denote by H̄, H to avoid confusion. We also define their convex
conjugates, that we denote by L̄, L.
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Definition 1 (Hamiltonians and Lagrangians). Define, for x ∈ X , v ∈ Rd,

H̄(x, v) = logE[exp(⟨v,U(x, ω)⟩)]
H(x, v) = −⟨∇f(x), v⟩+ H̄(x, v)
L̄(x, v) = H̄(x, ·)∗(v)
L(x, v) = H(x, ·)∗(v) = L̄(x, v +∇f(x)) .

(B.2.11)

L̄ and L are thus respectively equal to the Lagrangians LZ(·, ·) and LG(·, ·).
Finally, Assumption 4 will be discussed in Appendix D.5.

B.3. Basic properties. In this section, we derive from our assumptions some basic conse-
quences, which will be useful throughout the proof.

We first state some properties of the Hamiltonian and the Lagrangian, which follow from
their definitions.

Lemma B.1 (Properties of H and L).
(1) H is C2 and H(x, ·) is convex for any x ∈ X .
(2) L(x, ·) is convex for any x ∈ X , L is lower semi-continuous (l.s.c.) on X × Rd.

(3) For any x ∈ X , v ∈ Rd, H(x, v) ≤ 2M(1 + ∥x∥)∥v∥2 and domL(x, ·) ⊂ B(0, 2M(1 +
∥x∥)).

(4) For any x ∈ X , v ∈ Rd, L(x, v) ≥ 0 and L(x, v) = 0 ⇐⇒ v = ∇f(x).

Proof. For the last point, since H(x, ·) is convex and differentiable,

L(x, v) = 0 ⇐⇒ 0 ∈ ∂vL(x, v) ⇐⇒ v ∈ ∂vH(x, 0) ⇐⇒ v = ∇vH(x, 0) , (B.3.1)

and, since the noise has zero mean, ∇vH(x, 0) = ∇f(x). ■

Lemma B.2 (Growth of the iterates). For any x0 ∈ X , η0 > 0, for every η ∈ (0, η0], for any
N ≥ 1, 0 ≤ n ≤ N⌈η−1⌉,

∥xn∥ ≤ e2M(1+η0)N (1 + ∥x0∥) . (B.3.2)

Proof. By the triangular inequality, for any n ≥ 0, we have that

∥xn+1∥ ≤ ∥xn∥+ η∥∇f(xn)∥+ η∥Un∥
≤ ∥xn∥+ 2ηM(1 + ∥xn∥)
= (1 + 2ηM)∥xn∥+ 2ηM (B.3.3)

where we used the growth condition on ∇f and U. One can then solve this recursion to show
that, for any n ≥ 0,

∥xn∥ ≤ (1 + 2ηM)n(1 + ∥x0∥) . (B.3.4)

The result then follows by noticing that, for 0 ≤ n ≤ N⌈η−1⌉,

(1 + 2ηM)n ≤ (1 + 2ηM)N⌈η−1⌉

≤ e2MNη⌈η−1⌉

≤ e2MN(1+η) . ■

Lemma B.3. For any x0 ∈ X , for every η ∈ (0, (4M)−1], for any N ≥ 1, 0 ≤ n ≤ N⌈η−1⌉,

∥xn∥ ≥ e−(4M+1)N∥x0∥ − 1 . (B.3.5)
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Proof. By the triangular inequality, for any n ≥ 0, we have that

∥xn+1∥ ≥ ∥xn∥ − η∥∇f(xn)∥ − η∥Un∥
≤ ∥xn∥ − 2ηM(1 + ∥xn∥)
= (1− 2ηM)∥xn∥ − 2ηM (B.3.6)

where we used the growth condition on ∇f and U. One can then solve this recursion to
obtain that, for any n ≥ 0,

∥xn∥ ≥ (1− 2ηM)n∥x0∥ − 1 . (B.3.7)

The result then follows by noticing that, for 0 ≤ n ≤ N⌈η−1⌉,

(1− 2ηM)n ≥ (1− 2ηM)N⌈η−1⌉

≥ e−4MNη⌈η−1⌉

≤ e−4MN(1+η) (B.3.8)

where we used the fact that log(1− x) ≥ −2x on [0, 1/2] since 2ηM ≤ 1/2. ■

Appendix C. A large deviation principle for SGD

C.1. Preliminaries. The goal of this section is to provide large deviation principles for
continuous and discrete trajectories related to our algorithm of interest (SGD). From the
sequences (xn)n≥0 and (ωn)n≥0, we define three sequences: one discrete (in lowercase) and
two continuous (in uppercase):

(a) The discrete “rescaled” trajectory

xη
n := xn⌊1/η⌋ . (C.1.1a)

(b) The continuous “interpolated” trajectory, defined for any n ≥ 0, t ∈ [ηn, η(n+ 1)] by

Xt = xn +

(
t

η
− n

)
(xn+1 − xn) (C.1.1b)

(c) The continuous “discretized noise” trajectory, defined by Z0 = x0 and for any t > 0

Żt = −∇f(Zt) + U(Zt, ω⌊t/η⌋) (C.1.1c)

Note that all three sequences are “accelerated” by a factor 1/η compared to the original
sequences appearing in (SGD). In this section, we establish a large deviation principle for
the discrete rescaled sequence (xη

n)n≥0. To do so, we build upon Freidlin & Wentzell [20,
Chap. 7] to obtain a large deviations principle on (Zt)t≥0 and then transfer it to (Xt)t≥0

which enables us to obtain a discrete large deviation principle for (xη
n)n≥0.

We equip the space of continuous functions CT := C([0, T ],X ) with the distance induced
by the uniform norm

dist[0,T ](γ, φ) := sup
t∈[0,T ]

∥γt − φt∥ . (C.1.2)

In order to use it as a proxy later, we will now bound the distance between the (continuous)
“interpolated” trajectory and the “discretized noise” trajectory. To do so, we will first bound
the latter.

Lemma C.1 (Growth of the trajectory). For any x0 ∈ X , η > 0, t ≥ 0, we have ∥Zt∥ ≤
e2Mt(∥x0∥+ 2Mt).
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Proof. Using the definition of Zt in (C.1.1c) and the growth condition (B.2.10) on ∇f and
U, we have that

∥Żt∥ =
∥∥−∇f(Zt) + U(Zt, ω⌊t/η⌋)

∥∥ ≤ 2M(1 + ∥Zt∥) . (C.1.3)

Hence, for any t ≥ 0,

∥Zt∥ ≤ ∥z0∥+
∫ t

0

2M(1 + ∥Zs∥) ds = ∥z0∥+ 2Mt+

∫ t

0

2M∥Zs∥ ds . (C.1.4)

Invoking Grönwall’s lemma then yields the result. ■

The following lemma states that the distance between the “interpolated” and “discretized
noise” trajectories is bounded by a factor proportional to the stepsize η.

Lemma C.2. Fix K ⊂ X compact, η0 > 0, T > 0. Then, there exists some constant
c = c(K, η0, T, f,U,Ω) < +∞ such that, for any x0 ∈ K, η ∈ (0, η0], t ∈ [0, T ],

dist[0,T ](X,Z) ≤ c η . (C.1.5)

Proof. Before starting, notice that Lemmas B.2 and C.1 imply that there is some compact
set K′ that depends on K, T , η0 and M such that, for any x0 ∈ K, η ∈ (0, η0], t ∈ [0, T ], Xt

and Zt belong to K′. In particular, U is therefore Lipschitz-continuous on K′ × Ω so that,
for any ω ∈ Ω, x 7→ −∇f(x) + U(x, ω) is Lipschitz-continuous on K′ with constant L and
bounded with constant B.

Let us now estimate the derivative of the interpolated trajectory Xt, which is piecewise
differentiable by definition (see Eq. (C.1.1b)). For any t ∈ [0, T ] such that t ∈ (ηn, η(n+ 1))
for some n ≥ 0, we have that∥∥∥Ẋt −

(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)∥∥∥
=

∥∥∥∥xn+1 − xn

η
−
(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)∥∥∥∥
=
∥∥(−∇f(Xηn) + U(Xηn, ωn))−

(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)∥∥
≤ L∥Xηn −Xt∥ (C.1.6)

where we used the L-Lipschitz-continuity of x 7→ −∇f(x)+U(x, ω) on K′ uniformly in ω ∈ Ω.
Since this map is also bounded by B, we have that∥∥∥Ẋt −

(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)∥∥∥ ≤ L∥Xηn −Xt∥ ≤ L∥xn − xn+1∥ ≤ LBη . (C.1.7)

Moreover, the L-Lipschitz-continuity of x 7→ −∇f(x) + U(x, ω) also gives us that

∥Żt −
(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)
∥

= ∥−∇f(Zt) + U(Zt, ω⌊t/η⌋)−
(
−∇f(Xt) + U(Xt, ω⌊t/η⌋)

)
∥

≤ L∥Zt −Xt∥ . (C.1.8)

Putting everything together and integrating Xt − Zt from 0 to t yields (since Xt is
absolutely continuous), for any t ∈ [0, T ],

∥Xt − Zt∥ ≤ ∥X0 − z0∥+
∫ t

0

∥Ẋs − Żs∥ ds ≤ LBη + L

∫ t

0

∥Xs − Zs∥ ds (C.1.9)

where we used that z0 = X0 = x0 by definition of the trajectories. Finally, Grönwall’s lemma
then yields the result. ■
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C.2. Large deviation principle for interpolated trajectories. From the Lagrangian defined in
(B.2.11), we define, on CT = C([0, T ],X ), the normalized action functional S[0,T ] as

S[0,T ](γ) =

{∫ T

0
L(γt, γ̇t) dt if γ is absolutely continuous,

∞ otherwise,
(C.2.1)

following Freidlin & Wentzell [20, Chap. 3.2], as a manner to quantify how “probable” a
trajectory is.

We first show that the set

ΓK
[0,T ](s) := {γ ∈ C([0, T ],X ) : γ0 ∈ K,S[0,T ](γ) ≤ s} (C.2.2)

of trajectories with bounded action functional is compact and S[0,T ] is lower semi-continuous.

Lemma C.3. Fix T > 0. For any K ⊂ X compact, s ≥ 0, the set ΓK
[0,T ](s) is compact and

S[0,T ] is l.s.c. on C([0, T ],X ).

Proof. Let us first check that S[0,T ] is l.s.c. on C([0, T ],X ) by applying Ioffe et al. [29,
§9.1.4, Thm. 3]: (t, x, v) 7→ L(x, v) is a normal integrand since (x, v) 7→ L(x, v) is l.s.c. by
construction, quasiregular since L(x, ·) is convex for any x ∈ X and satisfies the growth
condition because it is non-negative (see Lemma B.1). Hence, S[0,T ] is l.s.c. on C([0, T ],X ).

The compactness of ΓK
[0,T ](s) follows from the idea of proof as Freidlin & Wentzell [20,

Chap. 7, Lemma 4.2] but with the added difficulty that the gradient ∇f and the noise U
are not uniformly bounded. Take γ ∈ ΓK

[0,T ](s). Since S[0,T ](γ) ≤ s < +∞, it means that
L(γt, γ̇t) < +∞ for almost every t so that by Lemma B.1, almost everywhere,

∥γ̇t∥ ≤ 2M(1 + ∥γt∥) . (C.2.3)

Grönwall’s lemma then yields that, for any t ∈ [0, T ],

∥γt∥ ≤ e2MT (∥γ0∥+ 2MT ) (C.2.4)

which is bounded uniformly in γ ∈ ΓK
[0,T ](s) since γ0 is in K compact. Hence, ∥γ̇t∥ is also

uniformly bounded by Eq. (C.2.3). Therefore, the functions in ΓK
[0,T ](s) are equicontinuous

and uniformly bounded and, ΓK
[0,T ](s) is closed by l.s.c. of S[0,T ], so that, by the Arzelà-Ascoli

theorem, ΓK
[0,T ](s) is compact. ■

The following result establishes the fact that the functional η−1S[0,T ] is the action func-
tional in C([0, T ],X ) of the interpolated process (Xt)t∈[0,T ] of the algorithm started at x0,
uniformly with respect to the initial point x0 in any compact set K ⊂ X , as η → 0. This
enables to build on Freidlin & Wentzell [20, Chap. 7, Thm. 4.1′] to provide a large deviation
principle for the interpolated trajectory (Xt)t∈[0,T ], meaning that for η small enough, it will
be (a) close to probable trajectories with a probability exponentially big in their action
functional; and (b) far from the most probable trajectories with a probability exponentially
small in their action value.

Proposition C.1. Fix T > 0. For any s, δ, ε > 0, K ⊂ X compact, there exists η0 > 0 such
that, for any η ∈ (0, η0], for any x0 ∈ K, we have that

Px0

(
dist[0,T ](X, γ) < δ

)
≥ exp

(
−
S[0,T ](γ) + ε

η

)
(C.2.5a)

Px0

(
dist[0,T ](X,Γ

{x0}
[0,T ](s)) > δ

)
≤ exp

(
−s− ε

η

)
(C.2.5b)

for all γ ∈ Γ
{x0}
[0,T ](s).
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Proof. Our strategy is to apply Freidlin & Wentzell [20, Chap. 7, Thm. 4.1′] to the process
(Zt)t∈[0,T ] and use Lemma C.2 to transfer the result to (Xt)t∈[0,T ] (both starting from x0).
However, this theorem requires b(x, ω) := −∇f(x) + U(x, ω) to be uniformly bounded as
well as its derivative. To avoid this issue, note that, for a fixed compact set K, s > 0, and all
η ≤ 1, the trajectories of ΓK

[0,T ](s) and of the process (Zt)t∈[0,T ] are contained in a compact
set K′ by the compactness of ΓK

[0,T ](s) and Lemma C.1.
Now, consider b′ : X×Rm → X twice differentiable that coincides with b on K′×Ω but that

is uniformly bounded along with its derivative. Define H′(x, v) = logE[exp(⟨v, b′(x, ω)⟩)]
which is still differentiable and satisfies “Condition F” of Freidlin & Wentzell [20, Chap. 7.4]
by Freidlin & Wentzell [20, Chap. 7, Lem. 4.3] and i.i.d. assumption. Hence, Freidlin &
Wentzell [20, Chap. 7, Thm. 4.1′] yields that, with K and s fixed above, for any δ, ε > 0,
there exists η0 > 0 such that, for any η ∈ (0, η0], for any x0 ∈ K, γ ∈ Γ

{x0}
[0,T ](s),

Px0

(
dist[0,T ](Z, γ) < δ

)
≥ exp

(
−
S[0,T ](γ) + ε

η

)
(C.2.6a)

Px0

(
dist[0,T ](Z,Γ

{x0}
[0,T ](s)) > δ

)
≤ exp

(
−s− ε

η

)
. (C.2.6b)

To obtain the result for the process (Xt)t∈[0,T ], fix δ > 0. By Lemma C.2, there exists η0 > 0
such that, for any η ∈ (0, η0], for any initial point x0 ∈ K, dist[0,T ](X,Z) < δ. Combining
this with the previous result on (Zt)t∈[0,T ] yields that, for any δ, ε > 0, there exists η0 > 0

such that, for any η ∈ (0, η0], for any x0 ∈ K, γ ∈ Γ
{x0}
[0,T ](s),

Px0

(
dist[0,T ](X, γ) < 2δ

)
≥ exp

(
−
S[0,T ](γ) + ε

η

)
(C.2.7a)

and

Px0

(
dist[0,T ](X,Γ

{x0}
[0,T ](s)) > 2δ

)
≤ exp

(
−s− ε

η

)
(C.2.7b)

which concludes the proof. ■

C.3. Large deviation principle for discrete trajectories. We now leverage the previous section
to show a LDP for the discrete rescaled trajectories (xη

n)n≥0 defined in Eq. (C.1.1a). To do
so, we will use the results of the previous section by considering a finite number of points
(Xn)n≥0 from the continuous interpolation.

For some N > 0, we will first equip XN with the distance

distN (ξ, ζ) = max
0≤n≤N−1

∥ξn − ζn∥ (C.3.1)

and bound the difference between the discrete rescaled trajectory and the continuous
interpolation.

Lemma C.4. Fix K ⊂ X compact, η0 > 0, N ≥ 1. Then, there exists some constant
c = c(K, η0, N, f,U,Ω) < +∞ such that, for any x0 ∈ K, η ∈ (0, η0],

distN (xη, (Xn)0≤n≤N−1) = max
0≤n≤N−1

∥xη
n −Xn∥ ≤ cη . (C.3.2)

Proof. By Lemma B.2, there is some compact set K′ that depends on K, N , η0 and M such
that, for any x0 ∈ K, η ∈ (0, η0], n ≤ ⌈1/η⌉N , xn belongs to K′. In particular, for almost
every t ∈ [0, N − 1], we have, that,

Ẋt =
x⌊t/η⌋+1 − x⌊t/η⌋

η
= −∇f(x⌊t/η⌋) + U(x⌊t/η⌋, ω⌊t/η⌋) (C.3.3)
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with x⌊t/η⌋ belonging to K′ since
⌊

t
η

⌋
≤
⌊
N−1
η

⌋
≤
⌈
N
η

⌉
. Hence, the norm of Ẋt is bounded

by some constant B for almost every t ∈ [0, N − 1] uniformly in x0 ∈ K, η ∈ (0, η0] by the
growth condition in (b).

Therefore, for any 0 ≤ n ≤ N − 1, since xη
n = xn⌊1/η⌋ = Xnη⌊1/η⌋, we have that

∥xη
n −Xn∥ ≤ Bn|1− η⌊1/η⌋| ≤ BNη (C.3.4)

which concludes the proof. ■

Now, for N ≥ 0, ξ = (ξ0, . . . , ξN−1) ∈ XN , let us define the normalized discrete action
functional

AN (ξ) :=

N−2∑
n=0

ρ(ξn, ξn+1) (C.3.5)

where the cost of moving from one iteration to the next is defined for any x, x′ ∈ X from the
previous continuous normalized action functional (cf. Eq. (C.2.1)) with horizon 1 as

ρ(x, x′) := inf{S0,1(γ) : γ ∈ C([0, 1],X ), γ0 = x, γ1 = x′} . (C.3.6)

Again, we show that the set of discrete trajectories with low action functional

ΓK
N (s) := {ξ ∈ XN : ξ0 ∈ K,AN (ξ) ≤ s} (C.3.7)

is compact and AN is l.s.c..

Lemma C.5. Fix N ≥ 0. For any K ⊂ X compact, s ≥ 0, the set ΓK
N (s) is compact and AN

is l.s.c. on XN .

Proof. First, let us show that, for s ≥ 0, K ⊂ X , the set {(x, x′) ∈ K × X : ρ(x, x′) ≤ s}
is compact. Let (xk, x′k)k≥0 be a sequence in K × X such that ρ(xk, x′k) ≤ s for all
k ≥ 0. Then, for any k ≥ 0, there exists γk ∈ C([0, 1],X ) such that γk

0 = xk, γk
1 = x′k

and S0,1(γk) ≤ ρ(xk, x′k) + (1 + k)−1. In particular, for any k ≥ 0, γk belongs to {γ ∈
C([0, 1],X ) : γ0 ∈ K,S0,1(γ) ≤ s+ 1} which is compact by Lemma C.3. Hence, there exists a
subsequence that converges uniformly to some γ ∈ C([0, 1],X ). Without loss of generality,
assume that γk → γ as k →∞. In particular, (xk, x′k) converges to (γ0, γ1) as k →∞ with
γ0 belonging to K. Then, by l.s.c. of S0,1, we have that S0,1(γ) ≤ lim infk→∞ ρ(xk, x′k) ≤ s
so that ρ(γ0, γ1) ≤ s. Therefore, we have shown that {(x, x′) ∈ K × X : ρ(x, x′) ≤ s} is
compact.

As a consequence ρ is l.s.c. on X ×X : indeed, for any s ≥ 0, any convergence sequence of
points of {(x, x′) ∈ X ×X : ρ(x, x′) ≤ s} must be included in {(x, x′) ∈ K×X : ρ(x, x′) ≤ s}
for some K ⊂ X compact, which is closed and therefore contains the limit point of any such
sequences. AN is then immediately l.s.c. on XN .

Finally, the compactness of ΓK
N (s) follows by induction on N . For N = 1, ΓK

1 (s) =
{(x, x′) ∈ X ×X : ρ(x, x′) ≤ s} which is compact by the previous argument for any compact
set K. Now, assume that ΓK

N (s) is compact for some N ≥ 1. As a consequence, the set

K′ := {x ∈ X : ∃(ξ0, . . . , ξN−2) ∈ XN−1 , (ξ0, . . . , ξN−2, x) ∈ ΓK
N (s)} (C.3.8)

is compact as well. Hence, ΓK
N+1(s) is included in teh product of compact sets ΓK

N−1(s)×ΓK′

1 (s)

and is therefore bounded. Moreover, ΓK
N+1(s) is closed by l.s.c. of AN and therefore compact.

This concludes the proof by induction and the proof of the lemma. ■

We will first provide a discrete analogue of Proposition C.1 for the interpolated trajectory at
times n = 0, . . . , N−1, with η−1AN the action functional in XN of the process (Xn)0≤n≤N−1,
uniformly with respect to the starting point x0 in any compact set K ⊂ X , as η → 0.
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Proposition C.2. Fix N ≥ 0. For any s, δ, ε > 0, K ⊂ X compact, there exists η0 > 0 such
that, for any η ∈ (0, η0], for any x0 ∈ K, ξ ∈ Γ

{x0}
N (s), we have that

Px0
(distN ((Xn)0≤n≤N−1, ξ) < δ) ≥ exp

(
−AN (ξ) + ε

η

)
(C.3.9a)

and

Px0

(
distN ((Xn)0≤n≤N−1,Γ

{x0}
N (s)) > δ

)
≤ exp

(
−s− ε

η

)
. (C.3.9b)

for all ξ ∈ Γ
{x0}
N (s)

Proof. Invoke the first part of Proposition C.1 with T ← N − 1 and s← s+ ε. There exists
η0 > 0 such that, for any η ∈ (0, η0], for any x0 ∈ K, γ ∈ Γ

{x0}
0,N (s+ ε),

Px0(dist0,N−1(X, γ) < δ) ≥ exp

(
−S0,N−1(γ) + ε

η

)
. (C.3.10)

Take η ∈ (0, η0], x0 ∈ K, ξ ∈ Γ
{x0}
N (s). Then, there exists γ ∈ Γx0

0,N (s + ε), for any
0 ≤ n ≤ N − 1, γn = ξn, cf. (C.3.6). Hence,

Px0
(distN ((Xn)0≤n≤N−1, ξ) < δ) ≥ Px0

(dist0,N−1(X, γ) < δ)

≥ exp

(
−S0,N−1(γ) + ε

η

)
≥ exp

(
−AN (ξ) + 2ε

η

)
(C.3.11)

which prove the first part of the result.
For the second part, we have similarly from Proposition C.1 with T ← N − 1 and δ ← δ/2

that for any η ∈ (0, η0], for any x0 ∈ K,

Px0

(
dist0,N−1(X,Γ

{x0}
0,N−1(s)) > δ/2

)
≤ exp

(
−s− ε

η

)
. (C.3.12)

Now, note that if dist0,N−1(X,Γ
{x0}
0,N−1(s)) < δ, then there must exist γ ∈ Γ

{x0}
0,N−1(s) such that

dist0,N−1(X, γ) ≤ δ. Consider the discrete path ξ ∈ XN defined by ξn = γn for 0 ≤ n ≤ N−1.
Then, by construction, AN (ξ) ≤ S0,N−1(γ) ≤ s and distN ((Xn)0≤n≤N−1, ξ) ≤ δ. Thus,

dist0,N−1(X,Γ
{x0}
0,N−1(s)) < δ =⇒ distN ((Xn)0≤n≤N−1,Γ

{x0}
N (s)) ≤ δ . (C.3.13)

Putting all together, we have that

Px0

(
distN ((Xn)0≤n≤N−1,Γ

{x0}
N (s)) > δ

)
≤ Px0

(
dist0,N−1(X,Γ

{x0}
0,N−1(s) ≥ δ)

)
≤ Px0

(
dist0,N−1(X,Γ

{x0}
0,N−1(s) > δ/2)

)
≤ exp

(
−s− ε

η

)
(C.3.14)

which concludes our proof. ■

Finally, we end up with a large deviation principle on the discrete rescaled iterates
(xη

n)0≤n≤N−1 = (xn⌊η−1⌋)0≤n by leveraging Lemma C.4. In the following result, the functional
η−1AN is thus the action functional in XN of the process (xη

n)0≤n≤N−1 uniformly with
respect to the starting point x0 in any compact set K ⊂ X , as η → 0.
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Corollary C.1. Fix N ≥ 0. For any s, δ, ε > 0, K ⊂ X compact, there exists η0 > 0 such
that, for any η ∈ (0, η0], for any x0 ∈ K, ξ ∈ Γ

{x0}
N (s), we have that

Px0(distN (xη, ξ) < δ) ≥ exp

(
−AN (ξ) + ε

η

)
(C.3.15a)

and

Px0

(
distN (xη,Γ

{x0}
N (s)) > δ

)
≤ exp

(
−s− ε

η

)
. (C.3.15b)

for all ξ ∈ Γ
{x0}
N (s).

Proof. Fix δ > 0. Choose η0 such that both Proposition C.2 and Lemma C.4 hold with
cη ≤ δ. Then for any η ∈ (0, η0], for any x0 ∈ K, ξ ∈ Γ

{x0}
N (s), ξ ∈ Γ

{x0}
N (s), we have that

Px0
(distN ((Xn)0≤n≤N−1, ξ) < δ) ≥ exp

(
−AN (ξ) + ε

η

)
. (C.3.16)

Now, if distN ((Xn)0≤n≤N−1, ξ) < δ and distN (xη, (Xn)0≤n≤N−1) ≤ δ, then distN (xη, ξ) <
2δ. Thus,

Px0
(distN (xη, ξ) < 2δ) ≥ Px0

(distN ((Xn)0≤n≤N−1, ξ) < δ) ≥ exp

(
−AN (ξ) + ε

η

)
. (C.3.17)

The second part can be obtained similarly. ■

To summarize this part on large deviations principles, we state a corollary containing all
the results that will be needed in the following sections.

Corollary C.2. Fix N ≥ 0. Then:

• For all s > 0, the set

ΓK
N (s) := {ξ ∈ XN : ξ0 ∈ K,AN (ξ) ≤ s} (C.3.18)

is compact and AN is l.s.c. on XN .

• For all s, δ, ε > 0, K ⊂ X compact, there exists η0 > 0 such that, for any η ∈ (0, η0],
for all x0 ∈ K, n ≤ N , ξ ∈ Γ

{x0}
n (s), we have that

Px0
(distn(x

η, ξ) < δ) ≥ exp

(
−An(ξ) + ε

η

)
(C.3.19a)

and

Px0

(
distn(x

η,Γ{x0}
n (s)) > δ

)
≤ exp

(
−s− ε

η

)
. (C.3.19b)

Appendix D. Attractors and limiting measures via large deviations

We now take inspiration from the framework of Kifer [35] in order to relate the sets of
critical points to the sets where points can move at no cost. Then, we relate the probability of
SGD moving to neighborhoods of critical sets to the probability of being close to well-chosen
paths, which enables us to use the results of the previous section. Finally, we build upon
these results to provide bounds on the limiting measure of SGD.
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D.1. Setup. We first need to define the gradient flow of f .

Definition 2. Define, for x ∈ X , the flow Θ of −∇f starting at x, i.e.,

Θ̇t(x) = −∇f(Θt(x)) with Θ0(x) = x (D.1.1)

and let F (x) be the value of this flow at time 1, i.e.,

F (x) = Θ1(x) . (D.1.2)

Lemma D.1 (Properties of the flow). Θ is well-defined and continous in both time and space,
and, for any T ≥ 0, γ ∈ C([0, T ],X ) such that γ0 = x,

S0,T (γ) = 0 ⇐⇒ γt = Θt(x) for all t ∈ [0, T ] . (D.1.3)

Proof. The well-definition and continuity of Θ are a consequence of f being twice continuously
differentiable and of the global Cauchy-Lipschitz (Picard–Lindelöf) theorem for ordinary
differential equation (ODE). The equivalence follows from the uniqueness of the flow and
Lemma B.1 since

S0,T (γ) = 0 ⇐⇒ L(γt, γ̇t) = 0 almost everywhere
⇐⇒ γ̇t = −∇f(γt) almost everywhere (D.1.4)

and thus, by extending γ̇ by continuity, both γ and Θ satisfy the same ODE with the same
initial condition and are thus equal for all t by uniqueness of the solutions. ■

The following lemma translates this for F .

Lemma D.2 (Properties of F ). F is well-defined and continuous and, for any x, x′ ∈ X ,

ρ(x, x′) = 0 ⇐⇒ x′ = F (x) . (D.1.5)

Proof. The implication (⇐) is immediate by definition of F and Lemma D.1. Now for
the reverse, assume that ρ(x, x′) = 0. Following the proof of Lemma D.1, there exists
γ ∈ C([0, 1],X ) such that γ0 = x, γ1 = x′ and S0,1(γ) = 0. By Lemma D.1, γt = Θt(x) for
all t ∈ [0, 1] and thus x′ = Θ1(x) = F (x). ■

D.2. Attractors. Let us first formalize the minimum-energy displacement between two points.

Definition 3 (Kifer [35, §1.5]). Define, for x, x′ ∈ X ,

B(x, x′) = inf
{
S[0,T ](γ) : γ ∈ C([0, T ],X ), γ0 = x, γT = x′, T ∈ N, T ≥ 1

}
= inf

{
AN (ξ) : ξ ∈ XN , ξ0 = x , ξN−1 = x′, N ≥ 1

}
. (D.2.1)

The fact that these two expressions coincide directly come from the definition of ρ.
This enables us to define an equivalence relation for the critical points of f by grouping

points connected by a null-energy path.

Proposition D.1. The relation ∼ defined for any x, x′ ∈ crit f as

x ∼ x′ ⇐⇒ B(x, x′) = B(x′, x) = 0 (D.2.2)

is an equivalence relation on crit f .

Proof. • Reflexivity: B(x, x) = 0 by Lemma D.1 since the flow started at x ∈ crit f is
constant.

• Symmetry: this follows from the definition of ∼.
• Transitivity: for any x, x′, x′′ ∈ crit f , we have by construction of B that

B(x, x′′) ≤ B(x, x′) +B(x′, x′′) . (D.2.3)

Therefore, if x ∼ x′ and x′ ∼ x′′, then B(x, x′′) = 0. B(x′′, x) = 0 follows with a
symmetric argument and thus x ∼ x′′. ■
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Near critical points of f , the Lagrangian L̄ is actually very regular.

Lemma D.3. For any x ∈ X , there exists δ > 0 such that L̄ is finite and jointly Lipschitz
continuous on B(x, δ)× B(0, δ).

Moreover, the following supremum is finite:

sup

{
L(x′, v)

∥v∥2
: x′ ∈ B(x, δ) ∩ crit f , v ∈ B(0, δ)

}
<∞ . (D.2.4)

Proof. Take x ∈ X . We apply the implicit function theorem to the equation

∇vH̄(x′, w) = v , (D.2.5)

in the variables (x′, v, w) ∈ X × Rd × Rd.
We derive that

∇vH̄(x′, v) =
E[U(x′, ω) exp(⟨v,U(x′, ω)⟩)]

E[exp(⟨v,U(x′, ω)⟩)]
(D.2.6)

and thus (x, 0, 0) is solution of (D.2.5) since

∇vH̄(x, 0) = E[U(x, ω)] = 0 . (D.2.7)

Moreover, Hessv H̄(x, 0) = E[U(x, ω)U(x, ω)⊤] which is positive definite and thus invertible
by the blanket assumptions.

Hence, we can apply the implicit function theorem to get that there exists δ > 0,
w : B(x, δ)× B(0, δ)→ Rd C2 such that, for any x′ ∈ B(x, δ), v ∈ B(0, δ),

∇vH̄(x′, w(x′, v)) = v . (D.2.8)

Therefore, for any x′ ∈ B(x, δ), v ∈ B(0, δ), since L̄(x′, v) = H̄(x′, ·)∗(v), we have

L̄(x′, v) = ⟨v, w(x′, v)⟩ − H̄(x′, w(x′, v)) , (D.2.9)

which is finite and C2 on B(x, δ) × B(0, δ). Therefore, L̄ is actually L-jointly Lipschitz
continuous on B(x, δ/2)× B(0, δ/2).

For the second part of the lemma, note that the implicit function theorem also ensures
that there is V ⊂ Rd a neighborhood of 0 such that, for any x′ ∈ B(x, δ), v ∈ B(0, δ), w(x′, v)
is the unique solution of Eq. (D.2.5) in V. But, for any x′ ∈ B(x, δ) and v = 0, w = 0
is a solution of Eq. (D.2.5) in V so that necessarily w(x′, 0) = 0, and, as a consequence,
∇vL̄(x′, 0) = 0.

Hence, for any x′ ∈ B(x, δ/2), v ∈ B(0, δ/2),

L̄(x′, v) = L̄(x′, v)− L̄(x′, 0)− ⟨v,∇vL̄(x′, 0)⟩

≤ 1

2
sup

B(x,δ/2)×B(0,δ/2)

∥∥Hessv L̄
∥∥∥v∥2 . (D.2.10)

To conclude, it suffices to note that, for any x′ ∈ B(x, δ) ∩ crit f , ∇f(x) = 0 and therefore
L(x′, ·) and L̄(x′, ·) coincide. ■

Lemma D.4. There exists an open neighborhood N ⊂ (X )2 of (crit f)2 such that ρ is finite
and continuous on N .

Proof. Take x ∈ X such that ∇f(x) = 0. We show that there exists a neighborhood of (x, x)
on which ρ is finite and continuous.

By Lemma D.3, there exists δ > 0 such that L̄ is finite and L-jointly Lipschitz continuous
on B(x, δ)× B(0, δ). In particular, for any x′ ∈ B(x, δ), v ∈ B(0, δ),

L̄(x′, v) ≤ L∥v∥ . (D.2.11)
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By continuity of ∇f , there is δ′ > 0, δ′ < δ such that, for every x′ ∈ B(x, δ′), ∥∇f(x′)∥ ≤ δ/4.
Then, for any x′ ∈ B(x, δ′), v ∈ B(0, δ/2),

L(x′, v) = L̄(x′, v +∇f(x′))

≤ L(∥v +∇f(x′)∥)
≤ L(∥v∥+ δ/4) . (D.2.12)

Take x′
i in B(x, δ′) for i = 1, . . . , 4 and ε > 0. By definition of ρ, there exists γ ∈ C([0, 1],X )

such that γ0 = x′
1, γ1 = x′

2, S0,1(γ) ≤ ρ(x′
1, x

′
2) + ε.

For 0 < s1 < 1 small enough and 0 < s2 < 1 close enough to 1, we have that γt belongs
to B(x, δ′) for any t ∈ [0, s1] ∪ [s2, 1]. Now we can define φ ∈ C([0, 1],X ) that connects x′

3 to
x′
4 by

φt =


x′
3 + (t/s1)(γs1 − x′

3) if t ∈ [0, s1],
γt if t ∈ [s1, s2]

γs2 + ((t− s2)/(1− s2))(x
′
4 − γs2) if t ∈ [s2, 1].

(D.2.13)

Since φ is a continuous path between x′
3 and x′

4, we have that

ρ(x′
3, x

′
4) ≤ S0,1(φ) . (D.2.14)

For s1 small enough and s2 close enough to 1, φ belongs to B(x, δ′) on [0, s1] ∪ [s2, 1] and
thus, its cost can be bounded as

S0,1(φ) ≤ L(∥γs1 − x′
3∥+ s1δ/4) + S0,1(γ) + L(∥γs2 − x′

4∥+ (1− s2)δ/4) (D.2.15)

where we used that γs1 , γs2 , x′
3, x′

4 all belong to B(x, δ′).
Now, take (x′

3, x
′
4) sufficient close to (x′

1, x
′
2), and s1 small enough and s2 close enough

to 1, so that L(∥γs1 − x′
3∥+ s1δ/4) + L(∥γs2 − x′

4∥+ (1− s2)δ/4) ≤ ε. Putting everything
together yields that

ρ(x′
3, x

′
4) ≤ S0,1(φ) ≤ S0,1(γ) + ε ≤ ρ(x′

1, x
′
2) + 2ε . (D.2.16)

Exchanging the roles of (x′
1, x

′
2) and (x′

3, x
′
4) yields the reverse inequality and thus, ρ is

continuous on B(x, δ)2. ■

The following lemma relates the Lagrangian to the gradient and our noise structure.

Lemma D.5. For any x ∈ X , v ∈ Rd,

L(x, v) ≥ ∥v +∇f(x)∥
2

2σ2
∞(f(x))

. (D.2.17)

Proof. For any x ∈ X , v ∈ Rd, we have that

H(x, v) = −⟨v,∇f(x)⟩+ H̄(x, v) ≤ −⟨v,∇f(x)⟩+ 1

2
σ2
∞(f(x))∥v∥2 . (D.2.18)

Taking the conjugate then yields that

L(x, v) ≥ ∥v +∇f(x)∥
2

2σ2
∞(f(x))

. (D.2.19)
■

Now, let us define a potential function U∞ on X that uses the minimal displacement
energy between two points that will be heavily used in the proofs.

Definition 4 (Potential). Define, for x ∈ X
U∞(x) = 2α∞(f(x)) (D.2.20)

where α∞ : X → R is a twice continuously differentiable primitive of 1/σ2
∞.
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Lemma D.6. For any x, x′ ∈ X ,

U∞(x′)− U∞(x) ≤ 2B(x, x′) . (D.2.21)

Proof. By Definition 3, there exists T ≥ 1, γ ∈ C([0, T ],X ) such that γ0 = x, γT = x′ and
S[0,T ](γ) ≤ B(x, x′) + ε. Then, we have that,

U∞(x′)− U∞(x) = 2

∫ T

0

⟨γ̇t,∇f(γt)⟩
σ2
∞(f(γt))

dt

≤
∫ T

0

∥γ̇t +∇f(γt)∥2

σ2
∞(f(γt))

dt

≤
∫ T

0

L(γt, γ̇t) dt = 2S[0,T ](γ) (D.2.22)

where we used Lemma D.5 in the last inequality. Finally, out choice of γ implies that

U∞(x′)− U∞(x) ≤ 2(B(x, x′) + ε) (D.2.23)

which concludes the proof. ■

Lemma D.7 (Equivalence classes are closed). Equivalence classes of ∼ are closed in X . As a
consequence, equivalence classes are compact.

Proof. Let x ∈ crit f , and take any sequence (x′
k)k≥0 in crit f such that x ∼ x′

k for every
k ≥ 0 and which converges to some x′ ∈ X . To show that the equivalence classes are closed,
we need to show that x ∼ x′; then compacity follow directly since the equivalence classes are
subsets of crit f which is compact by assumption.

Since crit f is closed, it holds that x′ belongs to crit f . We now show that both B(x, x′)
and B(x′, x) are null. We only show that B(x, x′) = 0 since the proof for the other equality
is symmetric.

As x′ is a critical point of f , we have by Lemma D.4, ρ(·, x′) is finite and continuous on a
neighborhood of x′. Moreover, since x′ is a critical point, we have x′ = F (x′) (see Eq. (D.1.2))
and thus ρ(x′, x′) = ρ(x′, F (x′)) = 0 by Lemma D.2. Therefore, for any ε > 0 there is a
neighborhood of x′ on which ρ(·, x′) ≤ ε. Take k large enough so that x′

k belongs to this
neighborhood. Since x ∼ x′

k, there exists N ≥ 1, ξ ∈ (X )N such that ξ0 = x, ξN−1 = x′
k and

AN (ξ) ≤ ε. Then, the path ζ := (ξ0, . . . , ξN−1, x
′) ∈ (X )N+1 and satisfies ζ0 = x, ζN = x′

and
AN+1(ζ) ≤ AN (ξ) + ρ(x′

k, x
′) ≤ 2ε . (D.2.24)

Hence, we have shown that, for any ε > 0, B(x, x′) ≤ 2ε so that B(x, x′) = 0. ■

Lemma D.8. For any set C ⊂ crit f , there is r0 > 0 such that, for any 0 < r ≤ r0,

Wr(C) := {x ∈ X : ρ(x, C) < r, ρ(C, x) < r} (D.2.25)

is open and contains C.

Proof. For any x ∈ C, ∇f(x) = 0 and therefore x is a fixed point of Θ. Lemma D.2 then
implies that ρ(x, x) = 0. Hence, Wr(C) indeed contains C. The fact that Wr(C) is open for
r > 0 small enough follows from the continuity of ρ close to crit f × crit f (Lemma D.4),
which is compact. ■

This lemma is adapted and significantly expanded from Kifer [35, §1.5, Lem. 5.2] to
handle both the unboundedness of the space and the fact that B is neither l.s.c. nor upper
semi-continuous (u.s.c.).
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Lemma D.9. Let K be an equivalence class of ∼. Then, for any ε > 0, there is some N ≥ 1
such that, for any x, z ∈ K, there is ξ ∈ (X )N such that ξ0 = x, ξN−1 = z, AN (ξ) < ε and
max0≤n<N d(ξn,K) < ε.

Proof. By Lemma D.7, K is a compact set. Moreover, K is made of critical points of f so
that by Lemma D.4, ρ is finite and continuous on a neighborhood of K×K. By compactness
of K ×K, ρ is actually uniformly continuous on a neighborhood of K ×K so, in particular,
for any ε > 0, there exists δ > 0 such that, for any xi ∈ X with d(xi,K) < δ for i = 1, . . . , 4
such that ∥x1 − x2∥ < δ, ∥x3 − x4∥ < δ,

|ρ(x1, x3)− ρ(x2, x4)| < ε . (D.2.26)

By compactness of K, there exists a finite number of points xi ∈ K, i ∈ I such that

K ⊂
⋃
i∈I

B(xi, δ) . (D.2.27)

We first show that the result holds for the points xi before explaining why it actually
suffices for the general case.

Fix i, j ∈ I. Since xi ∼ xj , B(xi, xj) = 0 and therefore there exists sequences ξk ∈ (X )Nk

with ξk0 = xi, ξkNk−1 = xj such that ANk
(ξk)→ 0 as k →∞. For the sake of contradiction,

assume that from some k, there always exists 0 ≤ n < Nk such that d(ξkn,K) ≥ ε. Define nk

as the smallest n such that it happens, which is necessarily greater or equal to 1. Note that,
by definition, ξknk−1 satisfies d(ξknk−1,K) ≤ ε.

Define K′ := {x ∈ X : d(x,K) ≤ ε} which is compact. However, for k large enough,
ρ(ξknk−1, ξ

k
nk
) ≤ ANk

(ξk) ≤ 1 so that (ξknk−1, ξ
k
nk
) belongs to ΓK′

2 (1), which is compact by
Corollary C.2. Therefore, one can extract a subsequence from (ξknk−1, ξ

k
nk
, )k≥1 that converges

to some (x, z) ∈ X that satisfies d(z,K) ≥ ε. Moreover, by l.s.c. of ρ, one has that

ρ(x, z) ≤ lim inf
k→∞

ρ(ξknk−1, ξ
k
nk
)

≤ lim inf
k→∞

ANk
(ξk) = 0 , (D.2.28)

so that ρ(x, z) = 0. We now show that x = z and that it is a critical point. By Lemma D.6,
we have that

U∞(ξknk−1)− U∞(xi) ≤ 2B(xi, ξ
k
nk−1) ≤ 2ANk

(ξk) (D.2.29a)

U∞(xj)− U∞(ξknk
) ≤ 2B(xj , ξ

k
nk
) ≤ 2ANk

(ξk) , (D.2.29b)

so, taking the limit k →∞ yields

U∞(x)− U∞(xi) ≤ 0 (D.2.30a)
U∞(xj)− U∞(z) ≤ 0 . (D.2.30b)

However, the fact that xi and xj are equivalent and Lemma D.6 imply that U∞(xi) =
U∞(xj) so that U∞(x) ≤ U∞(z). Since α∞ is increasing, we have that f(x) ≤ f(z).

But we have that ρ(x, z) = 0 so that z = Θ1(x). Therefore, if ∇f(x) ̸= 0, we would have

f(z)− f(x) = −
∫ 1

0

∥∇f(Θt(x)∥2 dt < 0 , (D.2.31)

which would be a contradiction. Therefore, ∇f(x) = 0 and x = z. Since x is a critical point,
to show that it belongs to K, it suffices to show that xi ∼ x.

Take δ > 0. By Lemma D.8, for δ small enough, Wδ({x}) is an open neighborhood of x.
Since ξknk

converges to x, for k large enough, ξknk
belongs to Wδ({x}). (ξk0 , . . . , ξ

k
nk
, x) and
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(x, ξknk
, . . . , ξkNk−1) are, respectively, paths from xi to x and from x to xj with action cost of

at most ANk
(ξk) + ε so that, for k large enough, B(xi, x) ≤ 2ε and B(x, xj) ≤ 2ε.

Hence, we have shown that B(xi, x) = B(x, xj) = 0. Then, we also have

0 ≤ B(x, xi) ≤ B(x, xj) +B(xj , xi) = 0 , (D.2.32)

and therefore x ∼ xi and thus x belongs to K. This is a contradiction.
Therefore, there must exist some sequence ξi,j ∈ (X )Ni,j with ξi,j0 = xi, ξ

i,j
Ni,j−1 = xj such

that ANi,j (ξ
i,j) < ε and max0≤n<Ni,j d(ξ

i,j
n ,K) < ε.

Finally, for the general class, consider x, z ∈ K. By Eq. (D.2.27), there exists i, j ∈ I such
that x ∈ B(xi, δ), z ∈ B(xj , δ). Consider ξ ∈ (X )Ni,j a modification of ξi,j defined by

ξn =


x if n = 0,

ξi,jn if 0 < n < Ni,j − 1,
z if n = Ni,j − 1,

(D.2.33)

that still satisfies max0≤n<Ni,j
d(ξn,K) < ε. Then, by uniform continuity of ρ, one has that

ANi,j
(ξ) < ANi,j

(ξi,j) + 2ε ≤ 3ε , (D.2.34)

which concludes the proof. ■

The following lemma is inspired by Alongi & Nelson [1, Prop. 3.3.11].

Lemma D.10. Equivalence classes are connected.

Proof. Fix K an equivalence class of ∼.
For the sake of contradiction, assume that there are U , V disjoint open sets of X such

that both U ∩ K and V ∩ K are non-empty and K = (U ∪ V) ∩ K.
Take x ∈ U ∩ K and x′ ∈ V ∩ K. By Lemma D.9, there exists a sequence of paths

ξk ∈ (X )Nk with ξk0 = x, ξkNk−1 = x′ for k ≥ 0 such that ANk
(ξk) → 0 as k → ∞ and

max0≤n<Nk
d(ξkn,K)→ 0 as k →∞. Define ak as the last point of ξk that belongs to U and

bk as the successor of ak in ξk. Formally, ak and bk are defined by ak = ξkik and bk = ξkik+1

where ik = max{i < Nk : ξki ∈ U}.
By construction, both d(ak,K) and d(bk,K) go to zero as k → ∞. In particular, both

sequences lie in U1(K) from some point onward, which is relatively compact, so they admit
convergent subsequences. Without loss of generality, thus assume that ak → a and bk → b
as k →∞ and a, b belong to K.

Since ak belongs to U for all k ≥ 0, ak is never in V so that a does not belong to V either.
Since a belongs to K, it must thus belong to U . Similarly, b must belong to V.

However, by construction, we have that ρ(ak, bk) ≤ ANk
(ξk) → 0 as k → ∞ so that

ρ(ak, bk) converges to 0 as k → ∞ as well. By l.s.c. of ρ (Corollary C.2 with N = 1),
ρ(a, b) = 0 so that b = F (a) by Lemma D.2. But since a belongs to K, it is a critical point of
f and therefore a = F (a). Hence a = b with a ∈ U and b ∈ V, which is a contradiction. ■

Lemma D.11. Any connected component of crit f is included in a single equivalence class.

Proof. Let K be a connected component of crit f and fix x, x′ ∈ K. We begin by considering
a stronger version of Assumption 1(c), namely that there exists γ ∈ C([0, 1],K) absolutely
continuous such that γ0 = x, γ1 = x′, i.e., such that γ is differentiable almost everywhere
with

∫ 1

0
∥γ̇t∥ dt <∞. We show that x ∼ x′, i.e., that B(x, x′) = B(x′, x) = 0.

Let us begin by showing that B(x, x′) = 0.
Since crit f is compact and K is closed as connected component of a closed set, K is

compact. By invoking Lemma D.3 at every point of K and extracting a finite covering from
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the family of balls obtained, we have that, there exists δ > 0, L > 0 such that, for every
x ∈ K, v ∈ B(0, δ),

L(x, v) ≤ L∥v∥2 . (D.2.35)

Fix ε ∈ (0, δ) and define, for any t ∈ [0, 1],

λt :=

∫ t

0

max(∥γ̇s∥, 1)
ε

ds . (D.2.36)

We have that λ is an increasing bijection from [0, 1] to [0, λ1] and is absolutely continuous
with λ̇t = max(∥γ̇t∥, 1)/ε almost everywhere. Consider τ : [0, λ1] → [0, 1] the inverse of
λ, which is absolutely continuous with τ̇t = ε/max(∥γ̇τt∥, 1) almost everywhere. Define
φ ∈ C([0, λ1],X ) by φt = γτt for any t ∈ [0, λ1]. Then, φ is absolutely continuous and, for
any t ∈ [0, λ1],

φ̇t = γ̇τt τ̇t =
εγ̇τt

max(∥γ̇τt∥, 1)
(D.2.37)

which has norm less than ε < δ.
Therefore, we have that,

S0,λ1
(φ) =

∫ λ1

0

L(φt, φ̇t) dt

≤ L

∫ λ1

0

∥φ̇t∥2 dt

≤ εL

∫ λ1

0

∥φ̇t∥ dt

= εL

∫ λ1

0

τ̇t∥γ̇τt∥ dt

= εL

∫ 1

0

∥γ̇t∥ dt (D.2.38)

where the last equality is obtained by the change of variable t← τt. Thus, we have shown
that, for any ε ∈ (0, δ),

B(x, x′) ≤ εL

∫ 1

0

∥γ̇t∥ dt (D.2.39)

with
∫ 1

0
∥γ̇t∥ dt <∞ by construction so that B(x, x′) = 0.

Reversing the roles of x and x′ and considering the path (γ1−t)t∈[0,1] then yields that
B(x′, x) = 0. Therefore, we have shown that if there exists γ ∈ C([0, 1],K) absolutely
continuous such that γ0 = x, γ1 = x′, then x ∼ x′.

We now relax our assumption on the paths from absolute continuity to piecewise absolute
continuity (Assumption 1∗). For x, x′ ∈ K, by assumption, there exists γ ∈ C([0, 1],K) such
that γ0 = x, γ1 = x′ and such that it is piecewise absolutely continuous: γ is differentiable
almost everywhere and there exists 0 = t0 < t1 < · · · < tN = 1 such that γ̇ is integrable
on every closed interval of (tn, tn+1) for n = 0, . . . , N − 1. Take 0 ≤ n < N − 1 and
tn < s < t < tn+1. γ restricted to [s, t] is absolutely continuous so that, by the previous
case, all the points of {γsalt : u ∈ [s, t]} are included in a single equivalence class K. Taking
s → tn and t → tn+1 yields that {γsalt : u ∈ (tn, tn+1)} is included in K. Moreover, by
continuity of γ, γtn and γtn+1 belong to the closure of K, which is closed by Lemma D.7, so
that γtn and γtn+1 belong to K as well. Therefore, γtn ∼ γtn+1 . By transitivity, we obtain
that x = γ0 ∼ γt1 ∼ · · · ∼ γtN−1

∼ γ1 = x′ so that x ∼ x′. ■
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Combining Lemmas D.10 and D.11, we have shown that any connected component of
crit f is included in a single equivalence class and since they are connected, two distinct
connected components of crit f cannot belong to the same equivalent class; hence, we have
that they coincide.

Corollary D.1. Under the assumptions of Lemma D.11, the equivalence classes of ∼ are
exactly connected components of crit f .

We end this section by providing a sufficient condition for B(x, x′) to be finite.

Lemma D.12. Consider x, x′ ∈ X and assume that there exists T > 0, γ ∈ C1([0, T ],X ) such
that γ0 = x, γT = x′ and such that, for every t ∈ [0, T ], ∇f(γt) is in the interior of the
closed convex hull of the support of U(γt, ω), i.e.,

∇f(γt) ∈ int conv suppU(γt, ω) . (D.2.40)

Then, B(x, x′) <∞.

Proof. By Brown [7, Thm. 3.6], Eq. (D.2.40) implies that, for every t ∈ [0, T ], ∇f(γt) belongs
to ∇pH̄(γt,X ). Therefore, as in the proof of Lemma D.3, invoking the implicit function
theorem on the equation

∇pH̄(x, p) = ∇f(x) + v (D.2.41)
we obtain that there exists δ(γt) > 0, p : B(γt, δ(γt))× B(0, δ(γt))→ X such that,

∇pH̄(x, p(x, v)) = ∇f(x) + v , (D.2.42)

or, equivalently
∇pH(x, p(x, v)) = v . (D.2.43)

Therefore, as in the proof of Lemma D.3, we obtain that L is continuous on B(γt, δ(γt)/2)×
B(0, δ(γt)/2) and therefore bounded by M(γt) > 0. Since γ is continuous, {γt : t ∈ [0, T ]} is
compact and therefore, by extracting a finite covering from⋃

t∈[0,T ]

B(γt, δ(γt)/2) , (D.2.44)

we obtain that there exists δ > 0 and M > 0 such that, for every t ∈ [0, T ], L(γt, ·) is finite
and bounded by M on B(γt, δ). Choosing a φ reparametrization of γ, which is C1, such that
∥φ̇t∥ < δ for every t ∈ [0, S], we thus obtain a path such that

S0,S(φ) =
∫ T

0

altL(φt, φ̇t) dt ≤MS <∞ , (D.2.45)

which implies that B(x, x′) <∞. ■

D.3. Lyapunov condition.

Definition 5 (Stopping times for the accelerated process). For any set S ⊂ X , we define the
hitting and exit times of S:

σS := inf{n ≥ 1 : xη
n ∈ S} (D.3.1a)

τS := inf{n ≥ 0 : xη
n /∈ S} . (D.3.1b)

We will need the following concentration lemma and its corollary.

Lemma D.13 (Part of the proof of [60, Th. 1.19]). Let X be a random variable in Rd such
that, for all v ∈ Rd,

logE[exp(⟨v,X⟩)] ≤ ∥v∥
2

2
. (D.3.2)
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Then, for all t > 0, we have

P
(
∥X∥2 ≥ t

)
≤ 6d exp

(
− t

8

)
. (D.3.3)

Corollary D.2. In the context of Lemma D.13, it holds that

E
[
∥X∥2

]
≤ 16d log 6 . (D.3.4)

Proof. Since ∥X∥2 is non-negative, its expectation can be written as

E
[
∥X∥2

]
=

∫ +∞

0

P
(
∥X∥2 > t

)
dt

≤ 8d log 6 +

∫ +∞

8d log 6

P
(
∥X∥2 > t

)
dt . (D.3.5)

Invoking Lemma D.13 then yields that

E
[
∥X∥2

]
≤ 8d log 6 + 6d

∫ +∞

8d log 6

exp

(
− t

8

)
dt ≤ 8d log 6 + 8 , (D.3.6)

which concludes the proof since 1 ≤ d log 6. ■

Lemma D.14 (Lyapunov condition). Define U∞ as in Lemma D.6. Then, there exists K ⊂ X
compact, η0 > 0, c > 0 such that, for any η ≤ η0, n ≥ 0, if xn /∈ K, then, almost surely,

U∞(xn+1)− U∞(xn) ≤ η

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− ∥∇f(xn)∥2

σ2
∞(f(xn))

)
≤ η

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− (16d log 6 + c)

)
. (D.3.7)

Proof. By Assumption 3∗∗, there is R ≥ 1
2 , c > 0 such that, for any x ∈ X such that

∥x∥ ≥ R, 
f(x) ≥ c

c ≤ σ2
∞(f(x))
∥x∥s ≤ c−1

∥∇f(x)∥2

σ2
∞(f(x)) ≥ 16d log 6 + c .

(D.3.8)

Then, define K := B(0, 2R+ 1).
By definition, U∞ is twice continuously differentiable and, its Hessian satisfies, for any

x ∈ X ,

HessU∞(x) ≼
2Hess f(x)

σ2
∞(f(x))

≼
2β(f)

σ2
∞(f(x))

I . (D.3.9)

For the sake of clarity, for any n ≥ 0, denote by δxn the quantity

δxn =
xn+1 − xn

η
. (D.3.10)

For any n ≥ 0, we now have

U∞(xn+1)− U∞(xn) ≤ η⟨∇U∞(xn), δxn⟩

+
η2

2
∥δxn∥2 sup

t∈[0,1]

2β(f)

σ2
∞(f(xn + t(xn+1 − xn)))

. (D.3.11)

We first focus on bounding the last term. First note that, by the blanket assumptions,
∥xn+1 − xn∥ ≤ 2ηM(1 + ∥xn∥) so that, For any t ∈ [0, 1], η ≤ (4M)−1,

∥xn + t(xn+1 − xn)∥ ≥ ∥xn∥ − ∥xn+1 − xn∥
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≥ ∥xn∥ − 2ηM(1 + ∥xn∥)

≥ 1

2
(∥xn∥ − 1) . (D.3.12)

If xn is outside of K, we have that ∥xn∥ ≥ 2R+1 and thus ∥xn+t(xn+1−xn)∥ ≥ R. Moreover,
since R ≥ 1

2 , xn being outside of K also implies that 1
2∥xn∥ ≥ 1 and so ∥xn+ t(xn+1−xn)∥ ≥

1
4∥xn∥. By the definition of R, we thus have

σ2
∞(f(xn + t(xn+1 − xn))) ≥ c∥xn + t(xn+1 − xn)∥s

≥ c

(
1

4

)s

∥xn∥s

≥ c2

4s
σ2
∞(f(xn)) . (D.3.13)

Thus, if xn /∈ K, Eq. (D.3.9) yields that

U∞(xn+1)− U∞(xn) ≤ η⟨∇U∞(xn), δxn⟩+ η2
4sβ(f)

c2σ2
∞(f(xn))

∥δxn∥2 . (D.3.14)

Now, we can rewrite the inner product as

⟨∇U∞(xn), δxn⟩ =
2⟨∇f(xn), δxn⟩
σ2
∞(f(xn))

=
∥δxn +∇f(xn)∥2

σ2
∞(f(xn))

− ∥∇f(xn)∥2

σ2
∞(f(xn))

− ∥δxn∥2

σ2
∞(f(xn))

. (D.3.15)

Plugging this into Eq. (D.3.14) and assuming that η ≤ c2

4sβ(f) , we obtain

U∞(xn+1)− U∞(xn) ≤ η

(
∥δxn +∇f(xn)∥2

σ2
∞(f(xn))

− ∥∇f(xn)∥2

σ2
∞(f(xn))

)
≤ η

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− ∥∇f(xn)∥2

σ2
∞(f(xn))

)
(D.3.16)

where we unrolled δxn in the last inequality. Using again that xn /∈ K, we obtain

U∞(xn+1)− U∞(xn) ≤ η

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− (16d log 6 + c)

)
(D.3.17)

which concludes the proof. ■

We will reuse, in later sections, the following fact that we thus state as a lemma: the
sequence of iterates of SGD is (weak) Feller (see e.g., [24, Def. 4.4.2]).

Lemma D.15. The Markov chain (xn)n≥0 is (weak) Feller.

Proof. since both ∇f and U are continuous, for any g : X → R continuous and bounded, the
function.

x ∈ X 7−→ Ex[g(x1)] = Ex[g(x− η∇f(x) + ηU(x, ω))] (D.3.18)
is still continuous and bounded. Therefore, the Markov chain (xn)n≥0 is weak-Feller. ■

Lemma D.16. There is η0 > 0 such that, for any η ≤ η0, there exists an invariant probability
measure for (xn)n≥0.

Proof. We invoke a general result on weak-Feller Markov chains that satisfy a Lyapunov
condition, e.g., Hernández-Lerma & Lasserre [24, Thm. 7.2.4] or Douc et al. [14, Thm. 12.3.6].

First, Lemma D.15 ensures that (xn)n≥0 is weak-Feller.
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Moreover, by Lemma D.14, there exists K ⊂ X compact, η0 > 0, c > 0 such that, for any
η ≤ η0, x0 = x /∈ K,

U∞(x1)− U∞(x) ≤ η

(
∥U(x, ω0)∥2

σ2
∞(f(x))

− (16d log 6 + c)

)
. (D.3.19)

Passing to the expectation yields that, for any x /∈ K,

Ex[U∞(x1)]− U∞(x) ≤ η

(
Ex

[
∥U(x, ω0)∥2

]
σ2
∞(f(x))

− (16d log 6 + c)

)
. (D.3.20)

Appplying Corollary D.2 with X ← U(x,ω0)√
σ2
∞(f(x))

(the conditions of application are verified

from Assumption 2∗(c)) yields that

Ex[U∞(x1)]− U∞(x) ≤ −ηc . (D.3.21)

Hence, for any x ∈ X , it holds

Ex[U∞(x1)]− U∞(x) ≤ −ηc+ 1{x ∈ K}
(
sup
x′∈K

Ex′ [U∞(x′)]− inf
X

U∞ + ηc

)
, (D.3.22)

with U∞ which is not identically equal to its minimum since f is coercive.
Therefore, we can apply Hernández-Lerma & Lasserre [24, Thm. 7.2.4] with U∞− infX U∞,

that guarantees that there exists an invariant probability measure for (xn)n≥0. ■

Lemma D.17. There exists a compact set D ⊂ X , η0 > 0, such that for any compact set
D′ ⊂ X such that D ⊂ D′, there exists a, b > 0, such that

∀η ≤ η0 , x ∈ D′ \ D , n ≥ 0 , Px(σD > n) ≤ exp

(
−an

η
+

b

η

)
. (D.3.23)

Proof. This result is a consequence of Lemma D.14: there exists K ⊂ X compact, η0 > 0,
c > 0 such that, for any η ≤ η0, n ≥ 0, if xn /∈ K, then, almost surely,

U∞(xn+1)− U∞(xn) ≤ η

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− (16d log 6 + c)

)
. (D.3.24)

First, let us choose D. There is some R > 0 such that K ⊂ B(0, R). Define R̃ := e4M+1(R+1)

and D := B(0, R̃). With η ≤ (4M)−1, if, for some n ≥ 0, xn is not in D, by Lemma B.3, for
any k ≤ ⌈η−1⌉, xn+k has norm greater or equal to R and thus xn+k is not in K either.

Now, fix N ≥ 0 and consider the event {σD > N} with x0 = x ∈ D′ \D. This means that,
for any 0 ≤ n ≤ N , xη

n is outside of D and so, for any 0 ≤ n ≤ N⌊η−1⌋, xn is not in K.
Summing Eq. (D.3.24) over n = 0, . . . , N⌊η−1⌋ − 1 yields

U∞(xη
N )− U∞(x0) = U∞(xN⌊η−1⌋)− U∞(x0)

≤ η

N⌊η−1⌋−1∑
n=0

(
∥U(xn, ωn)∥2

σ2
∞(f(xn))

− (16d log 6 + c)

)
. (D.3.25)

Define ∆ := supD′\D U∞ − infX\D U∞ which is finite since f is coercive. By definition, we
have that U∞(xη

N )− U∞(x0) ≥ −∆.
Therefore, on the event {σD > N}, we have

N⌊η−1⌋−1∑
n=0

∥U(xn, ωn)∥2

σ2
∞ ◦ f(xn)

≥ N⌊η−1⌋(16d log 6 + c)− ∆

η
. (D.3.26)
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Now, on the whole event, consider the random variable X ∈ RN⌊η−1⌋d defined by

(Xnd + 1, . . . , X(n+1)d) =
U(xn, ωn)√
σ2
∞ ◦ f(xn)

for n = 0, . . . , N⌊η−1⌋ − 1 , (D.3.27)

we have that Px(σD > N) ≤ Px
(
∥X∥2 ≥ N⌊η−1⌋(16d log 6 + c)− ∆

η

)
.

Since, for any v ∈ Rd,

logE

[
exp

(〈
v,

U(xn, ωn)√
σ2
∞ ◦ f(xn)

〉)∣∣∣∣∣x0, x1, . . . , xn

]
≤ ∥v∥

2

2
, (D.3.28)

the random variable X satisfies the assumptions of Lemma D.13 with d← N⌊η−1⌋d.
First, suppose that t := N⌊η−1⌋(16d log 6+ c)− ∆

η is non-negative. Applying Lemma D.13
with this t yields that

Px(σD > N) ≤ Px
(
∥X∥2 ≥ N⌊η−1⌋(16d log 6 + c)− ∆

η

)
≤ 6N⌊η−1⌋d exp

(
−
N⌊η−1⌋(16d log 6 + c)− ∆

η

8

)

= exp

(
−
N⌊η−1⌋(8d log 6 + c)− ∆

η

8

)
. (D.3.29)

If t, defined above, is negative, then in particular ∆
η ≥ N⌊η−1⌋c so that this bounds still

(trivially) holds.
Finally, in particular, for η ≤ 1/2, ⌊η−1⌋ ≥ (2η)−1 so we obtain

Px(σD > N) ≤ exp

(
−N(8d log 6 + c)

16η
+

∆

8η

)
(D.3.30)

and our proof is complete. ■

D.4. Preliminary estimates and lemmas. We will use the following lemma, which corresponds
to Kifer [35, Lem. 5.3].

Lemma D.18. Let K ⊂ X be a compact set such that K ∩ crit f = ∅. Then there exists c > 0,
N ≥ 1, η0 > 0, such that, for any n > N , x ∈ K, η ≤ η0,

Px

(
σX\K > n

)
= Px(τK > n) ≤ exp(−c(n−N)/η) . (D.4.1)

Proof. The proof is exactly the same as the proof Kifer [35, Lem. 5.3], which only uses the
l.s.c. of AN (Corollary C.2). ■

The following lemma provides a convenient reformulation of the results of Lemma D.17
and Lemma D.18.

Lemma D.19.
• There exists D ⊂ X a compact set, η0 > 0, such that for any D′ ⊂ X compact set such

that D ⊂ D′, there exists α0, a, b > 0 such that,

∀η ≤ η0, α ≤ α0, x ∈ D′ \ D , Ex

[
e

ασD
η

]
≤ e

aα
η +b . (D.4.2)

• For any K ⊂ X compact such that K ∩ crit f = ∅, there exists η0, α0, a, b > 0 such that,

∀η ≤ η0, α ≤ α0, x ∈ K , Ex

[
e

ατK
η

]
≤ e

aα
η +b . (D.4.3)
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Proof. The proofs of both statements are very similar, so we prove only the second one for
notational convenience. Fix K ⊂ X compact such that K ∩ crit f = ∅. By Lemma D.18,
there exists c > 0, N ≥ 1 such that, for any n > N , x ∈ K, η ≤ η0,

Px(τK > n) ≤ exp(−c(n−N)/η) . (D.4.4)

Let us first bound Ex

[
exp
(

α(τK−N)
η

)]
. We have that

Ex

[
exp

(
α(τK −N)

η

)]
=

∫ ∞

0

Px

(
exp

(
α(τK −N)

η

)
> t

)
dt

≤ e
α
η +

∫ ∞

e
α
η

Px

(
τK > N +

η log t

α

)
dt

≤ e
α
η +

∫ ∞

e
α
η

Px

(
τK > N +

⌊
η log t

α

⌋)
dt

≤ e
α
η +

∫ ∞

e
α
η

exp

(
− c

η

⌊
η log t

α

⌋)
dt , (D.4.5)

where we used Eq. (D.4.4) in the last inequality.
Lower bounding ⌊s⌋ by s− 1, we obtain that

Ex

[
exp

(
α(τK −N)

η

)]
≤ e

α
η +

∫ ∞

e
α
η

exp

(
− c

η

η log t

α
+

c

η

)
dt

= e
α
η +

∫ ∞

e
α
η

e
c
η t−

c
α dt . (D.4.6)

Performing the change of variable s← e−
α
η t, we obtain that

Ex

[
exp

(
α(τK −N)

η

)]
≤ e

α
η

(
1 +

∫ ∞

1

s−
c
α ds

)
. (D.4.7)

When α ≤ c/2, we obtain that

Ex

[
exp

(
α(τK −N)

η

)]
≤ e

α
η

(
1 +

∫ ∞

1

s−2 ds

)
, (D.4.8)

and therefore,

Ex

[
exp

(
ατK
η

)]
≤ e

(N+1)α
η

(
1 +

∫ ∞

1

s−2 ds

)
, (D.4.9)

which concludes the proof. ■

The following lemma upper-bounds the probability of exiting a large neighborhood of the
critical points before visiting a smaller one critical points.

Lemma D.20. Consider crit f ⊂ U ⊂ D ⊂ X with U an open set and D a compact set. There
exists D′ ⊂ X compact set such that D ⊂ D′, ∆ > 0, η0 > 0 such that, for any η ≤ η0,
x ∈ D,

Px

(
τD′ < σU

)
≤ exp

(
−∆

η

)
. (D.4.10)

Proof. Define D′ := {x ∈ X : f(x) ≤ supD f + 1} and let U∞ be as in Lemma D.6.
Since α∞ is (stricly) increasing as its derivative is (stricly) positive by definition, we have

∆ := α∞

(
sup
D

f + 1

)
− α∞

(
sup
D

f

)
> 0 . (D.4.11)
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By Lemma D.18 applied to K ← D′
δ \ U , there exists c > 0, N0 ≥ 1, η0 > 0 such that for

any n > N0, x ∈ D′
δ \ U , η ≤ η0,

Px

(
τD′

δ\U > n
)
≤ exp(−c(n−N0)/η) . (D.4.12)

Defining N :=
⌈
∆
c

⌉
+N0, which is greater or equal than 1, we obtain that, for any η ≤ η0,

x ∈ D′
δ \ U ,

Px

(
τD′

δ\U ≥ N
)
≤ exp

(
−∆

η

)
. (D.4.13)

Note that this inequality actually holds for any x ∈ D′
δ.

We now bound Px

(
τD′

δ
> σU

)
for x ∈ D by distinguishing the cases where τD′

δ
< N and

τD′
δ
≥ N . For any x ∈ D, we have that

Px

(
τD′

δ
< σU

)
≤ Px

(
τD′

δ
< σU , τD′

δ
< N

)
+ Px

(
τD′

δ
< σU , τD′

δ
≥ N

)
≤ Px

(
τD′

δ
< N

)
+ Px

(
τD′

δ\U ≥ N
)

≤ Px

(
τD′

δ
< N

)
+ exp

(
−∆

η

)
(D.4.14)

where we used Eq. (D.4.13).
We now focus on bounding the first term. For this, we first show that τD′

δ
< N implies

that
distN

(
xη,Γ

{x}
N (∆/4)

)
> δ/2 . (D.4.15)

For the sake of contradiction, suppose that this inequality does not hold. Therefore, there
must exist ξ ∈ Γ

{x}
N (∆/4) such that distN (xη, ξ) < δ. In particular, there is some n < N

such that ξn /∈ D′, so that, by Definition 3,

AN (ξ) ≥ An+1(ξ) ≥ B(ξ0, ξn) . (D.4.16)

By Lemma D.6, we have that

B(ξ0, ξn) ≥
1

2
(U∞(ξn)− U∞(ξ0))

≥ 1

2

(
α∞

(
inf

X\D′
f

)
− α∞

(
sup
D′

f

))
, (D.4.17)

since α∞ is increasing. By construction of D′, we have further that

B(ξ0, ξn) ≥
1

2

(
α∞

(
sup
D

f + 1

)
− α∞

(
sup
D

f)

))
=

∆

2
, (D.4.18)

so that AN (ξ) ≥ ∆/2, which is a contradiction with ξ ∈ Γ
{x}
N (∆/4).

Therefore, we have that

P
(
τD′

δ
< N

)
≤ P

(
distN

(
xη,Γ

{x}
N (∆/4)

)
> δ/2

)
≤ exp

(
−∆

8η

)
(D.4.19)

where we invoked Corollary C.2 with δ ← δ/2, s← ∆/2, ε← ∆/8. ■

The following lemma is key to our analysis: it shows that SGD spends most of its time
near its critical points.
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Lemma D.21. Consider crit f ⊂ U ⊂ D ⊂ X with U an open set and D a compact set. Then,
there is some η0, α0, a, b > 0 such that,

∀η ≤ η0, α ≤ α0, x ∈ D , Ex

[
e

ασU
η

]
≤ e

aα
η +b . (D.4.20)

Proof. Fix ε > 0. Without loss of generality, assume that D is large enough to include the
compact set given by the first item of Lemma D.19 (note that the guarantee of the first item
of Lemma D.19 still holds even if D is larger).

Apply Lemma D.20 with U ← U , D ← D and denote by D̃ the obtained compact and
η0,∆ > 0 such that, for every η ≤ η0, x ∈ D,

Px(τD̃ < σU ) ≤ exp

(
−∆

η

)
. (D.4.21)

Define r := supx∈D̃∥x∥ and R = e8M (1 + r). Assuming that η ≤ 1, by Lemma B.2, for
any x ∈ D̃, the next two iterates of (xη

n)n≥0 satisfies ∥xη
1∥ ≤ R and ∥xη

2∥ ≤ R. Define
D′ := B(0, R).

We invoke both items of Lemma D.19 with K ← D̃ \ U and denote by c > 0 a constant
that satisfies the bounds of both items. In the rest of the proof, we consider η and α smaller
than the bounds given by this lemma.

Our goal is to bound, for any N ≥ 0, the quantity,

sN (α, η) := sup
x∈D

Ex

[
exp

(
ασN

U
η

)]
, where σN

U := min(N, σU ) . (D.4.22)

Note that, by construction, sN (α, η) is finite.
Take x ∈ D. In particular, Lemma D.19 implies that τD̃\U < +∞ almost surely for all

x ∈ D.

exp

(
ασN

U
η

)
= 1{xη

τD̃\U
∈ U} exp

(
ατD̃\U

η

)

+ 1{xη
τD̃\U

/∈ Dδ} exp
(
ατD̃\U

η

)
exp

α
(
σN
U − τD̃\U

)
η


≤ 1{xη

τD̃\U
∈ U} exp

(
ατD̃\U

η

)

+ 1{xη
τD̃\U

/∈ Dδ} exp
(
ατD̃\U

η

)
exp

αmin
(
σU − τD̃\U , N

)
η

 (D.4.23)

so that we can apply the strong Markov property to the Markov chain (xη
n)n≥0 with stopping

time τD̃\U to obtain that

Ex

[
exp

(
ασN

U
η

)]
≤ Ex

[
1{xη

τD̃\U
∈ U} exp

(
ατD̃\U

η

)
+ 1{xη

τD̃\U
/∈ Dδ} exp

(
ατD̃\U

η

)
Exη

τD̃\U

[
exp

(
ασN

U
η

)]]
(D.4.24)

We now bound

1{xη
τD̃\U

/∈ Dδ}Exη
τD̃\U

[
exp

(
ασN

U
η

)]
= Exη

τD̃\U

[
1{xη

0 /∈ Dδ} exp
(
ασN

U
η

)]
(D.4.25)
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Since x is in D, by definition, τD̃\U is at least equal to 1 and xη
τD̃\U−1 is still in D̃. By

definition of D′, xη
τD̃\U

must still be in D′. Therefore, the guarantee of Lemma D.19 applies
and, since in particular it implies that σD is finite almost surely when the chain is started at
xη
τD̃\U

, we can apply the strong Markov property to obtain that

Exη
τD̃\U

[
1{x0 /∈ D̃} exp

(
ασN

U
η

)]
≤ Exη

τD̃\U

[
1{x0 /∈ D̃} exp

(
ασD

η

)
Exη

σD

[
exp

(
ασN

U
η

)]]
≤ sN (α, η)Exη

τD̃\U

[
1{x0 /∈ D̃} exp

(
ασD

η

)]
(D.4.26)

where, for the second inequality, we used the definition of sN (α, η) and the fact that xσD is
in D.

Now, to bound the remaining expectation, note that x0 does not belong to D̃ and, a
fortiori, does not belong to D. Therefore, σD depends only on (xη

n)n≥1 and the (weak)
Markov property implies that

Exη
τD̃\U

[
1{x0 /∈ D̃} exp

(
ασD

η

)]
≤ Exη

τD̃\U

[
1{x0 /∈ D̃}Ex1

[
exp

(
α(1 + σD)

η

)]]
≤ exp

(
α(1 + c)

η

)
Exη

τD̃\U

[
1{x0 /∈ D̃}

]
, (D.4.27)

by Lemma D.19, since the xη
τD̃\U−1 is still in D̃ so that x1 of the chain started at xη

τD̃\U
is

still in D′.
Lemma D.20 then implies that,

Exη
τD̃\U

[
1{x0 /∈ D̃} exp

(
ασD′

η

)]
≤ exp

(
α(1 + a)−∆

η
+ b

)
(D.4.28)

Combining these bounds with Eq. (D.4.24) then gives

Ex

[
exp

(
ασN

U
η

)]
≤
(
1 + sN (α, η) exp

(
α(1 + a)−∆

η
+ b

))
Ex

[
exp

(
ατD̃\U

η

)]
≤
(
1 + sN (α, η) exp

(
α(1 + a)−∆

η
+ b

))
exp

(
aα

η
+ b

)
, (D.4.29)

by Lemma D.19. Since this inequality is valid for any x ∈ D, we have shown that

sN (α, η) ≤
(
e

aα
η +b + sN (α, η)e

α(1+2a)−∆
η +b

)
. (D.4.30)

For α ≤ ∆/(2(1 + 2a)) and η small enough,

e
α(1+2a)−∆

η +b ≤ e−
∆
2η+b ≤ 1

2
, (D.4.31)

and we obtain that
sN (α, η) ≤ 2e

aα
η +b . (D.4.32)

Taking N → +∞ and using Fatou’s lemma yields that

sup
x∈D

Ex

[
exp

(
ασU

η

)]
≤ 2e

aα
η +b , (D.4.33)

which concludes the proof. ■
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D.5. Estimates of the invariant measure. Define, for sets A,B ⊂ X ,

B(A,B) := inf{B(x, z) : x ∈ A, z ∈ B} . (D.5.1)

Recall that for any i, j, we define

Bi,j = B(Ki,Kj) = inf{B(x, z) : x ∈ Ki, z ∈ Kj} . (D.5.2)

Recall that, to avoid degenerate cases, we assume that Assumption 4 holds, that is,

Bij <∞ for all i, j = 1, . . . ,K. (D.5.3)

With Lemma D.12, this assumption is satisfied in particular if the following condition holds:
for any i, j = 1, . . . ,K, there exists a C1 path γ joining Ki and Kj such that, for all t, ∇f(γt)
belongs to the interior of the closed convex hull of the support of the noise U(γt, ω):

∇f(γt) ∈ int conv suppU(γt, ω) , (D.5.4)

This means there is a sufficient level of noise for the probability of going from Ki to Kj with
at least one path to be non-zero (though it can be vanishingly small). Note that it does not
constrain the nature of the noise itself — which can be discrete, continuous or else —, only
the support of its distribution.

Moreover, if Assumption 4 did not hold, the same analysis as in this section could still
be carried out. We would consider the components of the graph G connected by edges with
finite weights proceed with the proof on each of them, and obtain the same results on each
of these components. To keep the complexity of the proof reasonable, we will not consider
this case here.

We adapt to our context Kifer [35, Lem. 5.4] and simplify it using ideas from Freidlin &
Wentzell [20, Chap. 6].

Definition 6 (Freidlin & Wentzell [20, Chap. 6,§2]). For i, j,

B̃i,j := inf

AN (ξ) : N ≥ 1, ξ ∈ XN , ξ0 ∈ Ki, ξN−1 ∈ Kj , ξn /∈
⋃
l ̸=i,j

Kl for n = 1, . . . , N − 2

 .

(D.5.5)

We now defined an important object: the law of the (accelerated) iterated at the first
time they reach some set V (typically a neighborhood of the critical set), following e.g., Douc
et al. [14, Chap. 3.4].

Definition 7 (Kifer [35, Prop. 5.3]). For V open set, with hitting time (of the accelerated
sequence) σV := inf{n ≥ 1 : xη

n ∈ V} , (as in Definition 5), denote the law of xη
σV

started at
x by QV(x, ·) and the corresponding N -step transition probability by QN

V (x, ·).

In words, QV(x, ·) is the distributions of the xη started at x at the first time they reach V .
Typically, QV(x,U) is the probability that U ⊂ V is reached first among V. Then, QN

V (x, ·)
is the distribution of the xη started at x at the N -th time they reach V.

We first give estimates of the transition probabilities using the B̃i,j . We will then translate
them to Bi,j .

Lemma D.22. For any ε > 0, for any small enough neighborhoods Vi of Ki, i = 1, . . . ,K ,
there is some η0 > 0 such that for all i, j, x ∈ Vi, 0 < η < η0,

QV(x,Vj) ≤ exp

(
− B̃i,j

η
+

ε

η

)
. (D.5.6)

where we defined V :=
⋃K

i=1 Vi.
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Proof. Assume that, without loss of generality, ε is small enough so that Lemma D.8 with
r ← ε can be applied to every Ki, i = 1, . . . ,K. Denote byWi, i = 1, . . . ,K the corresponding
neighborhoods of Ki.

Since these Wi’s are open neighborhoods of the Ki’s, there exists δ > 0 such that
U2δ(Ki) ⊂ Wi for all i = 1, . . . ,K. Require then that Vi be contained in Uδ(Ki) so that
Uδ(Vi) ⊂ Wi for all i = 1, . . . ,K. Moreover, assume that δ > 0 is small enough so that the
neighborhoods Uδ(Ki), i = 1, . . . ,K are pairwise disjoint.

Define 0 < δ′ ≤ δ such that U ′
δ(Ki) is contained in Vi for all i = 1, . . . ,K.

Fix i, j ∈ I and consider ξ ∈ (X )N such that ξ0 ∈ U ′
δ(Vi) ⊂ Wi, ξN−1 ∈ U ′

δ(Vj) ⊂ Wj

and ξn ∈ Uδ′
(
X \

⋃
l ̸=i,j Vl

)
for all n = 1, . . . , N − 2. By the choice of δ′, ξn cannot be in⋃

l ̸=i,j Kl for any n = 1, . . . , N − 2.
By definition ofWi andWj , there are x ∈ Ki, x′ ∈ Kj such that ρ(x, ξ0) < ε, ρ(ξN−1, x

′) <
ε. Therefore, the path ζ ∈ (X )N+2 defined as ζ = (x, ξ0, ξ1, . . . , ξN−1, x

′) satisfies

AN (ξ) ≥ AN+2(ζ)− 2ε . (D.5.7)

and, by definition of B̃i,j , we thus obtain,

AN (ξ) ≥ AN+2(ζ)− 2ε ≥ B̃i,j − 2ε . (D.5.8)

Fix x ∈ Vi. Let us now bound the probability

QV(x,Vj) = Px

(
xη
σV
∈ Vi

)
. (D.5.9)

We have, for any N ≥ 0,

Px

(
xη
σV
∈ Vi

)
≤ Px

(
xη
σV
∈ Vi, σV < N

)
+ Px(σV ≥ N) . (D.5.10)

We first bound the second probability using Lemma D.21 applied to U ← Vi. Take N such
that α0(a−N) + η0b ≤ −B̃i,j . Then, by Markov’s inequality and Lemma D.21, it holds that
for all η ≤ η0

Px(σV ≥ N) ≤ Px

(
exp

(
α0σV

η

)
≥ exp

(
α0N

η

))
≤ exp

(
α0(a−N)

η
+ b

)
≤ exp

(
−B̃i,j

η

)
. (D.5.11)

We now bound the term Px

(
xη
σV
∈ Vj , σV < N

)
for this choice of N .

For this, we show that xη
σV
∈ Vj with σV < N implies that

distN

(
xη,Γ

{x}
N

(
B̃i,j − 3ε

))
>

δ′

2
. (D.5.12)

Indeed, on the event xη
σV
∈ Vj with σV < N , there is some N ′ ≤ N such that σV = N ′−1. If

distN

(
xη,Γ

{x}
N

(
B̃i,j − 3ε

))
> δ′

2 did not hold, this would mean that there exists ξ ∈ (X )N ′

such that distN ′(xη, ξ) < δ′, ξ0 = x and, AN ′(ξ) ≤ B̃i,j − 3ε. In particular, ξ would also
satisfy ξN ′−1 ∈ Uδ′(Vj), ξn ∈ Uδ′(X \ V) for all n = 1, . . . , N ′ − 2. This would be in direct
contradiction of Eq. (D.5.8).

Therefore, we have that

Px

(
xη
σV
∈ Vj , σV < N

)
≤ Px

(
distN

(
xη,Γ

{x}
N

(
B̃i,j − 3ε

))
>

δ′

2

)
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≤ exp

(
− B̃i,j − 4ε

η

)
, (D.5.13)

by Corollary C.2.
Combining this bound with Eq. (D.5.11) yields

Px(x
η
σV
∈ Vj) ≤ exp

(
− B̃i,j − 4ε

η

)
+ exp

(
−B̃i,j

η

)
, (D.5.14)

which concludes the proof. ■

Lemma D.23. For any ε > 0,for any neighborhoods Vi of Ki, i = 1, . . . ,K small enough,
there exists N ≥ 0, η0 > 0 such that for all i, j, x ∈ Vi, 0 < η < η0,

QN
V (x,Vj) ≥ exp

(
− B̃i,j

η
− ε

η

)
. (D.5.15)

Proof. For any i, j, there exists Ni,j ≥ 1, ξi,j ∈ (X )Ni,j such that ξi,j0 ∈ Ki, ξ
i,j
Ni,j−1 ∈ Kj ,

ξi,jn /∈
⋃

l ̸=i,j Kl for all n = 1, . . . , Ni,j − 2 and ANi,j
(ξi,j) ≤ B̃i,j + ε. Define δi,j :=

min
{
d(ξi,jn ,

⋃
l ̸=i,j Kl) : n = 1, . . . , Ni,j − 2

}
and δ := mini,j∈I δi,j . By construction, it holds

that δ > 0.
Require that Vi be contained in Wi ∩ Uδ/2(Ki) for all i = 1, . . . ,K. Now, given such Vi

neighborhoods of Ki, i = 1, . . . ,K, there exists 0 < δ′ ≤ δ/2 such that U ′
δ(Ki) is contained

in Vi for all i = 1, . . . ,K.
Apply Lemma D.9 to Ki, i = 1, . . . ,K with ε← min(ε, δ′/2) and denote by Ni the bound

on the length of paths obtained. Define

N := max
i∈I

Ni + 1 . (D.5.16)

Fix i, j ∈ I and x ∈ Vi. Since Vi ⊂ Wi, there exists z ∈ Ki such that ρ(x, z) < ε.
Moreover, note that ρ(z, z) = 0 since z is a critical point of f .

By Lemma D.9, there exists n ≤ N , ξ ∈ (X )n such that ξ0 = z, ξN−1 = ξi,j0 , ξk ∈ Uδ′/2(Ki)
for all k = 1, . . . , n− 2 and An(ξ) < ε.

Considering the concatenation

ζ :=

x, z, z, . . . , z︸ ︷︷ ︸
N−n times

, ξ0, ξ1, . . . , ξn−2, ξn−1, ξ
i,j
1 , . . . , ξi,jNi,j−1

 (D.5.17)

which is a path of length N +Ni,j made of x ∈ Vi, then exactly N points in Uδ′/2(Ki) then
Ni,j−2 in X \Uδ/2(V) and ξi,jNi,j−1 ∈ Kj . Moreover, by construction, AN+Ni,j

(ζ) ≤ B̃i,j +3ε.
Therefore, if

distN+Ni,j (x
η, ζ) < δ′/2 , (D.5.18)

with xη
0 = x, then xη

1 , . . . , x
η
N are in Uδ′(Ki) ⊂ Vi and, since δ′ ≤ δ/2, xη

N+1, . . . , x
η
N+Ni,j−2

are not in Uδ/4(V), and therefore not in V . Moreover, xη
N+Ni,j−1 would be in Uδ′/2(Kj) ⊂ Vj .

Thus, all the paths xη satisfying (D.5.18) with xη
0 = x are started at x and their N -th

point that fall into V belongs to Vj .
Therefore, using the definition of QN

V , we have that

QN
V (x,Vj) ≥ Px

(
distN+Ni,j

(xη, ζ) < δ′/2
)

≥ exp

(
− B̃i,j + 4ε

η

)
, (D.5.19)
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by Corollary C.2. ■

Lemma D.24. For any i, j ∈ I,

Bi,j = min

{
n−2∑
l=0

B̃il,il+1
: i0 = i, in−1 = j, il ∈ I for l = 1, . . . , n− 2 , n ≥ 1

}

= min

{
K−2∑
l=0

B̃il,il+1
: i0 = i, iK−1 = j, il ∈ I for l = 1, . . . ,K − 2

}
. (D.5.20)

Proof. It suffices to show that

Bi,j = min

{
n−2∑
l=0

B̃il,il+1
: i0 = i, in−1 = j, il ∈ I for l = 1, . . . , n− 2 , n ≥ 1

}
. (D.5.21)

The statement of the lemma then follows from the fact that B̃l,l = 0 for all l ∈ I and that
shortest paths on graphs can be chosen not to visit the same node twice.

For the inequality (≥), notice that any path between Ki and Kj can be decomposed into
a concatenation of paths between Ki and Ki1 , Ki1 and Ki2 , . . . , Kin−1

and Kj for some
i1, . . . , in−1 ∈ I that do not enter any other equivalence class in between. Therefore, the
inequality (≥) follows from the definition of Bi,j and B̃il,il+1

.
We now focus on (≤).
Fix ε. Take n ≥ 1, i0 = i, in−1 = j, il ∈ I for l = 1, . . . , n−2. There are paths ξ0, . . . , ξn−2

of lengths N0, . . . , Nn−2 such that ξl0 ∈ Kil , ξlNl−1 ∈ Kil+1
, ANl

(ξl) ≤ B̃il,il+1
+ ε/n for

l = 0, . . . , n− 2.
By Lemma D.9, for all l = 0, . . . , n− 2, ξlNl−1 and ξl+1

0 can be connected by path of cost
at most ε/n. Therefore concatenating all these paths yield ζ of length N with ζ0 ∈ Ki,
ζN−1 ∈ Kj and AN (ζ) ≤

∑n−2
l=0 B̃il,il+1

+ 2ε. Since AN (ζ) ≥ Bi,j , we obtain the desired
result. ■

Notation 1. We will write, for non-decreasing f : R→ R,

a ≍ f(b± c) ⇐⇒ f(b− c) ≤ a ≤ f(b+ c) . (D.5.22)

Proposition D.2. For any ε > 0 and any small enough neighborhoods Vi of Ki, i = 1, . . . ,K,
there exists N ≥ 0, η0 > 0 such that for all i, j, x ∈ Vi, 0 < η < η0,

QN
V (x,Vj) ≍ exp

(
−Bi,j

η
± ε

η

)
. (D.5.23)

Proof. Let us first start with (≥).
Let N satisfy the conditions of Lemma D.23 and define N ′ := (K − 1)N . For any i, j ∈ I,

by Lemma D.24, there exist i0 = i, iK−1 = j, il ∈ I for l = 1, . . . ,K − 2 such that

Bi,j =

K−2∑
l=0

B̃il,il+1
. (D.5.24)

Therefore, we have that the probability of reaching Vj from x ∈ Vi in N ′ = (K − 1)N
steps is greater than the probability of reaching sequentially the Vil+1

from any point x ∈ Vil ,
i.e.,

inf
x∈Vi

QN ′

V (x,Vj) ≥
K−2∏
l=0

inf
x∈Vil

QN
V (x,Vil+1

)
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≥
K−2∏
l=0

exp

(
−
B̃il,il+1

η
− ε

η

)
= exp

(
−Bi,j

η
− (K − 1)ε

η

)
(D.5.25)

where we used Lemma D.23 to get the second inequality.
Now for the reverse inequality (≤). Take i, j ∈ I and denote i0 = i, iN ′−1 = j. By

Lemma D.22, we have that

sup
x∈Vi

QN ′

V (x,Vj) ≤
∑

i1,...,iK−2∈I

K−2∏
l=0

sup
x∈Vil

QN
V (x,Vil+1

)

≤
∑

i1,...,iK−2∈I

K−2∏
l=0

exp

(
−
B̃il,il+1

η
+

ε

η

)

≤
∑

i1,...,iK−2∈I

exp

(
−
∑N ′

l=0 B̃il,il+1

η
+

(K − 1)ε

η

)
. (D.5.26)

Using Lemma D.24, we obtain that

sup
x∈Vi

QN ′

V (x,Vj) ≤
∑

i1,...,iK−2∈I

exp

(
−Bi,j

η
+

(K − 1)ε

η

)

= KK−2 exp

(
−Bi,j

η
+

(K − 1)ε

η

)
(D.5.27)

which concludes the proof. ■

Let us now give our first estimates on the invariant measure.

Definition 8 ([20, Chap. 6,§4]). Define, for every i ∈ I,

Ei = E(Ki) := min
T∈Ti

∑
(j→l)∈T

Bj,l , (D.5.28)

where Ti denotes the set of trees rooted at i in the complete graph on I.

Proposition D.3. For any µV invariant probability measure for QV , the induced chain on V,
in the setting of Proposition D.2, for any i ∈ I,

µV(Vi) ≍ exp

(
−E(Ki)−minj∈I E(Kj)

η
± ε

η

)
. (D.5.29)

Proof. If µV is an invariant measure of QV , then it is an invariant measure of QN
V for any N

given by Proposition D.2.
Freidlin & Wentzell [20, Chap .6, Lem. 3.1-3.2] combined with Proposition D.2 then give

exp(−(2 card I + 2)ε/η)
exp(−E(Ki)/η)∑
j∈I exp(−E(Kj)/η)

≤ µV(Vi)

≤ exp((2 card I + 2)ε/η)
exp(−E(Ki)/η)∑
j∈I exp(−E(Kj)/η)

. (D.5.30)

For η small enough, it holds that∑
j∈I

exp(−E(Kj)/η) ≍ exp

(
−min

j∈I
E(Kj)/η ± ε/η

)
, (D.5.31)

which concludes the proof. ■



48 W. AZIZIAN, F. IUTZELER, J. MALICK, AND P. MERTIKOPOULOS

We now state a result that links invariant measures of (xη
n)n and QV . It is a consequence

of Douc et al. [14, Thm. 3.6.5].

Lemma D.25. There is η0 > 0 such that, for 0 < η ≤ η0, if (xη
n)n has an invariant probability

measure µ∞, then, for any V measurable neighborhood of crit f , we have that µ∞(V) > 0
and µV , the restriction of µ∞/µ∞(V) to V is an invariant measure for the induced chain on
V and, for any measurable set E ⊂ X ,

µ∞(E)

µ∞(V)
=

∫
V

dµV(x)Ex

[
σV−1∑
n=0

1{xη
n ∈ E}

]
. (D.5.32)

Proof. We invoke the first item of Lemma D.19: there exists D ⊂ X a compact set, η0 > 0,
such that for any D′ ⊂ X compact set such that D ⊂ D′, there exists α0 > 0 such that,

∀η ≤ η0, x ∈ D′ , Ex

[
e

α0σD
η

]
< +∞ . (D.5.33)

Without loss of generality, at the potential expense of expanding D, assume that V ⊂ D.
By applying Lemma D.21 to U ← V and D ← D, we get that there is some η0, α0, > 0

such that, for any η ≤ η0, x ∈ D,

Ex

[
e

ασV
η

]
< +∞ . (D.5.34)

In particular, we have that Px(σV <∞) = 1 for any x ∈ D, and a fortiori for any x ∈ V.
Let us now show that, for any x ∈ X , Px(σV <∞) = 1. Fix x ∈ X . By choosing D′ large

enough to contain both D and x, Eq. (D.5.33) implies that, with x0 = x, σD <∞ almost
surely. Therefore, by the strong Markov property, it holds that,

Px(σV <∞) ≥ inf
z∈D

Pz(σV <∞) = 1 . (D.5.35)

Therefore the assumptions of Douc et al. [14, Thm. 3.6.5] are satisfied as well as its first
item which yields the result. ■

We reach the next proposition, which is the first part of our main result. It is an adaptation
of Freidlin & Wentzell [20, Thm. 4.1] to the discrete time setting.

Proposition D.4. For any ε > 0, for any V1, . . . ,VK measurable neighborhoods of K1, . . . ,KK

small enough, there exists η0 > 0 such that for any 0 < η < η0, µ∞ invariant probability
measure for (xη

n)n, for any i ∈ I,

µ∞(Vi) ≍ exp

(
−E(Ki)−minj∈I E(Kj)

η
± ε

η

)
. (D.5.36)

Proof. Let us first provide estimates for the unnormalized measure defined by, for any
measurable set E,

µ̃(E) :=

∫
E

dµV(x)Ex

[
σV−1∑
n=0

1{xη
n ∈ E}

]
. (D.5.37)

By definition of σV , in the sequence of points xη
0 , . . . , x

η
σV−1, only xη

0 can be in V . Therefore,
for any i, j ∈ I, x ∈ Vj ,

Ex

[
σV−1∑
n=0

1{xη
n ∈ Vi}

]
=

{
1 if i = j ,

0 otherwise .
(D.5.38)

Thus, we have that,

µ̃(Vi) = µV(Vi)
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≍ exp

(
−E(Ki)−minj∈I E(Kj)

η
± ε

η

)
, (D.5.39)

by Proposition D.3. It now remains to estimate the normalization constant µ̃(X ). On the
one hand, we have that

µ̃(X ) ≥ max
i∈I

µ̃(Vi)

≥ max
i∈I

exp

(
−E(Ki)−minj∈I E(Kj)

η
− ε

η

)
= exp

(
− ε

η

)
. (D.5.40)

On the other hand, by Lemma D.21 applied with U ← V and D ← clV (choosing V small
enough so that is bounded), the quantity

c := sup{Ex[σV ] : x ∈ V, 0 < η ≤ η0} (D.5.41)

is finite. Therefore, we have that

µ̃(X ) =
∫
X

dµV(x)Ex[σV ]

≤ c

∫
X

dµV(x) = c , (D.5.42)

which, along with choosing η0 small enough so that c ≤ exp(ε/η), concludes the proof. ■

We will need the following lemma to prove the second part of our main result.

Lemma D.26. For any ε > 0, for any V1, . . . ,VK measurable neighborhoods of K1, . . . ,KK

small enough, D measurable set, δD > 0, there exists η0 > 0 such that, for any 0 < η < η0,
for any i ∈ I, x ∈ Vi,

Px

(
σD−δD

< σV

)
≤ exp

(
−B(Ki, D)− ε

η

)
, (D.5.43)

where
D−δD := {z ∈ D : d(z,X \D) ≥ δD} . (D.5.44)

Proof. The requirement on the Vi are the same in the proof of Lemma D.22 but we restate
them here for completeness.

Assume that, without loss of generality, ε is small enough so that Lemma D.8 with r ← ε
can be applied to every Ki, i = 1, . . . ,K. Denote by Wi, i = 1, . . . ,K the corresponding
neighborhoods of Ki. Since these Wi’s are neighborhoods of the Ki’s, there exists δ > 0 such
that U2δ(Ki) ⊂ Wi for all i = 1, . . . ,K. Require then that Vi be contained in Uδ(Ki) so that
Uδ(clVi) ⊂ Wi for all i = 1, . . . ,K. Moreover, assume that δ > 0 is small enough so that the
neighborhoods Uδ(Ki), i = 1, . . . ,K are pairwise disjoint and that δ ≤ δD. Define 0 < δ′ ≤ δ
such that U ′

δ(Ki) is contained in Vi for all i = 1, . . . ,K.
Fix i ∈ I and consider ξ ∈ (X )N such that ξ0 ∈ U ′

δ(clVi), ξN−1 ∈ U ′
δ(D−δD). By

construction, ξ0 ∈ Uδ(Vi) ⊂ Wi. Therefore, there exists x ∈ Ki such that ρ(x, ξ0) < ε.
Moreover, since δ′ ≤ δ ≤ δD, U ′

δ(D−δD ) ⊂ D so that ξN−1 ∈ D.
Define ζ := (x, ξ0, . . . , ξN−1) which is a path from Ki to D so that

AN (ξ) ≥ AN+1(ζ)− ε ≥ B(Ki, D)− ε . (D.5.45)

We now follow the same outline as for the proof of Lemma D.22. Fix x ∈ Vi. For any
N ≥ 0, we have that

Px

(
σD−δD

< σV

)
≤ Px

(
σD−δD

< σV , σV < N
)
+ Px(σV ≥ N) . (D.5.46)
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For some N large enough, Lemma D.21 yields

Px(σV ≥ N) ≤ exp

(
−B(Ki, D)− ε

η

)
. (D.5.47)

We now bound Px

(
σD−δD

< σV , σV < N
)

for this choice of N . For this, it suffices to note

that σD−δD
< σV , σV < N implies that distN

(
xη,Γ

{x}
N (ξ − 2ε)

)
> δ′

2 . Then, applying
Corollary C.2 yields

Px

(
σD−δD

< σV , σV < N
)
≤ exp

(
−B(Ki, D)− 3ε

η

)
, (D.5.48)

which concludes the proof. ■

We can use this lemma to upper-bound the µ∞(D).

Lemma D.27. For any ε > 0, any bounded measurable set D, there exists η0 > 0 such that
for any 0 < η < η0, µ∞ invariant probability measure for (xη

n)n, for any i ∈ I,

µ∞(D−δD ) ≤ exp

(
−mini∈I{E(Ki) +B(Ki, D)} −mini∈I E(Ki)

η
+

ε

η

)
, (D.5.49)

where
D−δD := {z ∈ X : d(z,X \D) ≥ δD} . (D.5.50)

Proof. Using V1, . . . ,VK measurable neighborhoods of K1, . . . ,KK small enough given by
Lemma D.26, we provide an estimate for the weight of D for the unnormalized measure µ̃
defined in the proof of Proposition D.4, i.e., for

µ̃(D−δD ) :=

∫
V

dµV(x)Ex

[
σV−1∑
n=0

1{xη
n ∈ D−δD}

]
, (D.5.51)

and the result will follow from the estimate on the normalization constant µ̃(X ) obtained in
the proof of Proposition D.4.

By Lemma D.21 applied with U ← V and D ← clV ∪D (choosing V small enough so that
is bounded), the quantity

c := sup{Ex[σV ] : x ∈ V ∪D, 0 < η ≤ η0} (D.5.52)

is finite.
Fix i ∈ I and x ∈ Vi. If σD−δD

≥ σV , then
∑σV−1

n=0 1{xη
n ∈ D−δD} would be 0 so, we have

that

Ex

[
σV−1∑
n=0

1{xη
n ∈ D−δD}

]
= Ex

[
1{σD−δD

< σV}
σV−1∑
n=0

1{xη
n ∈ D−δD}

]
≤ Ex

[
1{σD−δD

< σV}σV

]
= Ex

[
1{σD−δD

< σV}
(
σD−δD

+ Exη
σD−δD

[σV ]

)]
, (D.5.53)

where we used the strong Markov property. Bounding σD−δD
by σV on the event {σD−δD

<

σV}, we obtain that

Ex

[
σV−1∑
n=0

1{xη
n ∈ D−δD}

]
≤ Ex

[
1{σD−δD

< σV}
(
σV + Exη

σV
[σV ]

)]
≤ 2cPx

(
σD−δD

< σV

)
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≤ 2c exp

(
−B(Ki, D)− ε

η

)
, (D.5.54)

where we invoked Lemma D.26 for the last inequality.
Combining this bound and Proposition D.3, we obtain that

µ̃(D−δD ) ≤ 2c
∑
i∈I

µV(Vi) exp
(
−B(Ki, D)− ε

η

)
≤ 2c card I exp

(
−mini∈I{E(Ki) +B(Ki, D)} −mini∈I E(Ki)

η
+

2ε

η

)
, (D.5.55)

which concludes the proof. ■

D.6. Convergence and stability. Let us first begin by showing that, for every initial point,
the flow of f converges to one of the Ki.

Lemma D.28. For any x ∈ X , there is i ∈ I such that

lim
t→+∞

d(Θt(x),Ki) = 0. (D.6.1)

Proof. Fix x ∈ X . For any t ≥ 0, Θt(x) belongs to {z ∈ X : f(z) ≤ f(x)}, which is compact
by coercivity of f . Therefore, the set of accumulation points of (Θt(x))t≥0 is non-empty,
connected and included in crit f . Therefore, since the Ki, for i ∈ I, are the connected
components of crit f , there is i ∈ I such that the accumulation points of (Θt(x))t≥0 all
belong to Ki.

If d(Θt(x),Ki) did not converge to 0, there would be a subsequence that would converge
to some point out of any Ki, which would be a contradiction. Therefore, d(Θt(x),Ki) must
converge to 0. ■

Let us restate the definition of minimizing component that we introduced in the main
text.

Definition 9. For any i ∈ I, we say that Ki is a minimizing component if there exists U a
neighborhood of Ki such that,

argmin
x∈U

f(x) = Ki . (D.6.2)

Ki is called minimizing otherwise.

We now state a standard definition for asymptotic stability.

Definition 10. A connected component of the critical points Ki, for some i ∈ I, is said to be
asymptotically stable if there exists U a neighborhood of Ki such that, for any x ∈ U , Θt(x)
converges to Ki.

The notions of minimizing component and asymptotic stability are equivalent in our
context.

Lemma D.29. For any i ∈ I, Ki is a minimizing component if and only if it is asymptotically
stable.

Proof. We start with the direct implication. Assume that Ki is a minimizing component.
Therefore, there exists δ > 0 such that

argmin
x∈clUδ(Ki)

f(x) = Ki . (D.6.3)

Moreover, assume that δ is small enough so that, clUδ(Ki) ∩ crit f = Ki.
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Then, for any x ∈ Uδ(Ki), f(x) < f(Ki) and, for any x ∈ X \ clUδ(Ki), f(x) > f(Ki). By
continuity of f , compactness of clUδ(Ki) \ Uδ/2(Ki) and definition of minimizing component,
we have that

min
x∈clUδ(Ki)\Uδ/2(Ki)

f(x) > f(Ki) . (D.6.4)

Define δ′ := 1
2 minx∈clUδ(Ki)\Uδ/2(Ki){f(x)− f(Ki)} and

V :=
{
x ∈ Uδ/2(Ki) : f(x) < f(Ki) + δ′

}
, (D.6.5)

which is a neighborhood of Ki by continuity of f .
We now show that trajectories of the flow starting in V converge to Ki. Take x ∈ V . Since

f(Θt(x)) is non-increasing, then (Θt(x))t remains in V by construction. By Lemma D.28,
(Θt(x))t converges to some component of the critical points, which must be Ki since V is
disjoint from the other components.

We now show the converse implication. Since Ki is a connected component of crit f , f is
constant on Ki. Denote by f∗

i this value. Take δ > 0 small enough such that Uδ(Ki)∩crit f =
Ki and such that, for any x ∈ Uδ(Ki), (Θt(x))t converges to Ki. Take x ∈ Uδ(Ki) \ Ki. We
show that f(x) > f∗

i . For any t > 0,

f(Θt(x))− f(Ki) = −
∫ t

0

∥∇f(Θs(x))∥2 ds , (D.6.6)

which must (strictly) negative since x is not a critical point of f . Since f(Θt(x)) is non-
increasing in t and lower-bounded — because infX f > −∞ by coercivity of f —, it must
converge as t → +∞ and its limit satisfies limt→+∞ f(Θt(x)) < f(x). Moreover, (Θt(x))t
converges to Ki so that all its accumulation points belong to Ki and have the same objective
value f∗

i . Hence, we have that limt→+∞ f(Θt(x)) = f∗
i and f∗

i < f(x). ■

In the following, we will thus use the terms minimizing component and asymptotically
stable interchangeably.

The next lemma shows that if Ki is not asymptotically stable, then it is unstable in the
sense of Freidlin & Wentzell [20, Chap. 6,§4].

Lemma D.30. If Ki is not asymptotically stable, then there exists j ∈ I such that Bi,j = 0.

Proof. If Ki is not asymptotically stable, then, for every n ≥ 1, there exists xn ∈ U1/n(Ki)
such that Θt(xn) does not converge to Ki. By Lemma D.28, there exists jn ∈ I such that
(Θt(xn))t converges to Kjn . Since I is finite, there exists j ∈ I such that jn = j for infinitely
many n. Replacing (xn)n≥1 by a subsequence, we can assume that (Θt(xn))t converges to
Kj for all n ≥ 1.

We now show that Bi,j = 0.
Fix ε > 0 and considerWε(Ki),Wε(Kj) which are neighborhoods of Ki,Kj by Lemma D.8.

Since (xn)n≥1 converges to Ki, there exists n such that xn ∈ Wε(Ki). In turn, since Θt(xn)
converges to Kj , there exists T > 0, which we can choose integer, such that, ΘT (xn) ∈ Wε(Kj).
Therefore, there exists x ∈ Ki and z ∈ Kj such that ρ(x, xn) < ε and ρ(ΘT (xn), z) < ε.
Consider the discrete path ξ ∈ X T+3 defined by ξ0 = x, ξn = Θn−1(x) for all 1 ≤ n ≤ T + 1
and ξT+2 = z. By Lemma D.2, we have that

AT+3(ξ) = ρ(x, xn) + ρ(ΘT (x), z) < 2ε , (D.6.7)

and therefore, since ξ0 ∈ Ki and ξT+2 ∈ Kj , Bi,j < 2ε. ■

The following lemma is now a straightforward adaptation of Freidlin & Wentzell [20,
Chap. 6, Lemma 4.2].
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Lemma D.31. If Ki is not asymptotically stable, then there exists j ∈ I such that Bi,j = 0
and such that, for any l ∈ I, Bj,l > 0.

Proof. For the sake of contradiction, assume that such a j does not exist. Then we build
an infinite sequence j0 = i, j1, . . . such that Bjn,jn+1

= 0 for all n ≥ 0. By definition of
equivalence classes, any j cannot appear twice in this sequence. But since I is finite, this is
a contradiction. ■

We now reach our final result on unstable equivalence classes: they have negligible weight
in the invariant measure.

Lemma D.32. If Ki is not asymptotically stable, or, equivalently, non-minimizing, then there
exists j ∈ I such that Kj is asymptotically stable, Bi,j = 0 and,

Ej < Ei (D.6.8)

Proof. By Lemma D.31, there exists j ∈ I such that Bi,j = 0 and such that, for any l ∈ I,
Bj,l > 0. Lemma D.30 implies in particular that Kj must be asymptotically stable

It remains to show that Ej < Ei. Take T ∈ Ti such that

Ei =
∑

(l→k)∈T

Bl,k . (D.6.9)

j has an outgoing edge in T and denote by j′ the other end of that edge. Now, consider the
tree T ′ ∈ Tj obtained from T by removing the outgoing edge from j to i′ and adding an edge
from i to j. Then, by definition of Ej ,

Ej ≤
∑

(l→k)∈T ′

Bl,k =
∑

(l→k)∈T

Bl,k −Bj,j′ +Bi,j . (D.6.10)

But, by definition of j, Bi,j = 0 and Bj,j′ > 0. Therefore, Ej < Ei. ■

We now show the second part of our main result: the invariant measure concentrates on
the ground states, which are asymptotically stable by Lemma D.32.

For this, we need the following lemma.

Lemma D.33. For any i ∈ I such that Ki is minimizing, there exists δ > 0 such that, for
any 0 < δ′ ≤ δ,

B(Ki,X \ U ′
δ(Ki)) > 0 . (D.6.11)

Proof. Since Ki is minimizing, there exists δ > 0 such that, for any x ∈ Uδ(Ki), f(x) > fi
where fi is the value of f on Ki. Take δ′ ≤ δ, U := U ′

δ(Ki) and

∆ := min{U∞(x)− α∞(fi) : x ∈ X , d(x,Ki) = δ′/2} . (D.6.12)

Then, by the continuity of U∞ and the fact that α∞ is (strictly) increasing, we have that
∆ > 0. To conclude the proof of this lemma, we now show that B(Ki,X \ U) ≥ ∆

2 . Consider
some T > 0 and γ ∈ C([0, T ],X ) such that γ0 ∈ Ki and γT ∈ X \W . By continuity of γ and
d(·,Ki), there exists t ∈ [0, T ] such that d(γt,Ki) = δ′/2. By the same computation as in
Lemma D.6, we have that

∆ ≤ U∞(γt)− U∞(γ0)

= 2

∫ t

0

⟨γ̇s,∇f(γs)⟩
σ2
∞(f(γs))

≤ 2S[0,t](γ)
≤ 2S[0,T ](γ) . (D.6.13)

Since this is valid for any γ, we obtain that B(Ki,X \ U) ≥ ∆
2 . ■
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The next proposition shows that the invariant measure concentrates exponentially on
states that are asymptotically stable (and contain the ground states).

Proposition D.5. Consider J ⊂ I such that, for all i ∈ J , Ki is minimizing and, such that, J
contains argmini∈I Ei. Consider Vi small enough neighborhoods of Ki for i ∈ J . Then, there
exists c > 0, η0 > 0 such that, for any η ≤ η0, for any µ∞ invariant measure of (xη

n)n≥0,

µ∞

(
X \

⋃
i∈J

Vi

)
≤ e−

c
η . (D.6.14)

Proof. Take δ > 0 small enough so that, for any i ∈ J , Uδ(Ki) ⊂ Vi and

d(Ki,X \ Uδ(Ki)) > 0 . (D.6.15)

This is possible by Lemma D.33.
Define

D := X \
⋃
i∈J

Uδ/2(Ki) . (D.6.16)

With the notations of Lemma D.27, we show that

X \
⋃
i∈J

Vi ⊂ D−δ/2 . (D.6.17)

Indeed, take x ∈ X \
⋃

i∈J Vi. Then, for any i ∈ J , it holds that d(x,Ki) ≥ δ and so, we have

d(x,X \D) = d

(
x,X \

⋃
i∈J

Uδ/2(Ki)

)
≥ δ

2
. (D.6.18)

Hence x ∈ D−δ/2 and, it suffices to bound µ∞(D−δ/2) to show the result.
Moreover, for any i ∈ J ,

B(Ki, D) ≥ B(Ki,X \ Uδ/2(Ki)) > 0 , (D.6.19)

so that the quantity

c := min

(
min
i/∈J

Ei −min
i∈I

Ei,min
i∈J

B(Ki, D)

)
(D.6.20)

is positive.
Apply Lemma D.27 with δD ← δ/2, ε← c/2 to get that, for any η ≤ η0,

µ∞(D−δ/2) ≤ exp

(
−mini∈I{E(Ki) +B(Ki, D)} −minj∈I E(Kj)

η
+

c

2η

)
. (D.6.21)

But, for any i ∈ I, the exponent can be estimated as

{E(Ki) +B(Ki, D)} −min
j∈I

E(Ki) ≥

{
E(Ki)−minj∈I E(Kj) if i /∈ J

B(Ki, D) if i ∈ J ,
(D.6.22)

which is always positive, even in the first case, since argminj∈I E(Kj) ⊂ J . Therefore, it
holds that

min
i∈I
{E(Ki) +B(Ki, D)} −min

j∈I
E(Kj)− ε ≥ c− ε =

c

2
, (D.6.23)

which concludes the proof. ■



THE LONG-RUN DISTRIBUTION OF STOCHASTIC GRADIENT DESCENT 55

D.7. Main results. In this section, we restate the main results Theorems 1–4 and provide
their proofs. They are now mostly corollaries of the results of Appendices D.5 and D.6.

Theorem D.1. Suppose that µ∞ is invariant under (SGD), fix a tolerance level ε > 0, and
let Ui ≡ Ui(δ), i = 1, . . . ,K, be δ-neighborhoods of the components of crit f . Then, for all
sufficiently small δ, η > 0, we have

|η logµ∞(Ui) + Ei −minj Ej | ≤ ε (D.7.1)

and ∣∣∣∣η log µ∞(Ui)
µ∞(Uj)

+ Ei − Ej

∣∣∣∣ ≤ ε. (D.7.2)

More compactly, with notation as above, we have:

µ∞(Ui) ∝ exp

(
−Ei +O(ε)

η

)
. (D.7.3)

Proof. Note that if µ∞ is invariant for (SGD), it is a fortiori invariant for the accelerated
process (xη

n)n≥0. This result is then a direct consequence of Proposition D.4 (Appendix D.5).
■

Theorem D.2. Suppose that µ∞ is invariant under (SGD), and let K be a non-minimizing
component of f . Then, with notation as in Theorem 1, there exists a minimizing component
K′ of f and a positive constant c ≡ c(K,K′) > 0 such that

µ∞(U)
µ∞(U ′)

≤ exp

(
−c(K,K′) + ε

η

)
(D.7.4)

for all all sufficiently small η > 0 and all sufficiently small neighborhoods U and U ′ of K and
K′ respectively. In particular, in the limit η → 0, we have µ∞(U)→ 0.

Proof. Let K = Ki be a non-minimizing component. By Lemma D.32, there exists j ∈ I
such that Ej < Ei. The statement then follows from Theorem 1. ■

Theorem D.3. Suppose that µ∞ is invariant under (SGD), fix a tolerance level δ > 0, and
let U ≡ U(δ) be a δ-neighborhood of crit f . Then there exists a constant c ≡ cδ > 0 such that,
for all sufficiently small η > 0, we have:

µ∞(U) ≥ 1− e−c/η. (D.7.5)

Proof. We actually show a slighly stronger result. Define J := {i ∈ I : Ki is minimizing}.
We prove that there exists U neighborhood of

⋃
i∈J Ki, a constant c > 0, such that, for all η

small enough,

µ∞

(
X \

⋃
i∈J

Vi

)
≤ e−

c
η . (D.7.6)

This is then a consequence of Proposition D.5 (Appendix D.6) with J ← J . Note J contain
the ground states since they are minimizing by Lemma D.32. ■

Theorem D.4. Suppose that µ∞ is invariant under (SGD), fix a tolerance level δ > 0, and
let U0 ≡ U0(δ) be a δ-neighborhood of the system’s ground state K0. Then there exists a
constant c ≡ cδ > 0 such that, for all sufficiently small η > 0, we have:

µ∞(U0) ≥ 1− e−c/η. (D.7.7)

Proof. It suffices to apply Proposition D.5 (Appendix D.6) with J as the set of ground states
argmini∈I Ei. They are necessarily minimizing by Lemma D.32. ■
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D.8. Extension: the mean occupation measures. We now state and prove analogue of
Theorems 1–4 for the mean occupation measure µn.

For this we will need a strengthened version of Assumption 3∗, viz.

Assumption 3∗∗ (Variant of Assumption 3∗). The signal-to-noise ratio of G satisfies

∥∇f(x)∥2

σ2
∞(f(x))

→∞ as ∥x∥ → ∞ . (4∗∗)

In this section, we will posit that Assumption 3∗∗ holds in addition to Assumptions 1∗, 2∗
and 4. We then have the following series of results for the occupation measure µn of (SGD).

Theorem 1∗ (Occupation variant of Theorem 1). Fix a tolerance level ε > 0, and let
Ui ≡ Ui(δ), i = 1, . . . ,K, be δ-neighborhoods of the components of crit f . Then, for all
sufficiently small δ, η > 0 and large enough n, we have

|η logµn(Ui) + Ei −minj Ej | ≤ ε (D.8.1)

and ∣∣∣∣η log µn(Ui)
µn(Uj)

+ Ei − Ej

∣∣∣∣ ≤ ε. (D.8.2)

More compactly, with notation as above, we have:

µn(Ui) ∝ exp

(
−Ei +O(ε)

η

)
. (D.8.3)

Theorem 2∗ (Occupation variant of Theorem 2). Let K be a non-minimizing component of
f . Then, with notation as in Theorem 1, there exists a minimizing component K′ of f and a
positive constant c ≡ c(K,K′) > 0 such that

µn(U)
µn(U ′)

≤ exp

(
−c(K,K′) + ε

η

)
(D.8.4)

for all all sufficiently small η > 0, n large enough and all sufficiently small neighborhoods U
and U ′ of K and K′ respectively.

Theorem 3∗ (Occupation variant of Theorem 3). Fix a tolerance level δ > 0, and let U ≡ U(δ)
be a δ-neighborhood of crit f . Then there exists a constant c ≡ cδ > 0 such that, for all
sufficiently small η > 0 and large enough n, we have:

µn(U) ≥ 1− e−c/η. (D.8.5)

Theorem 4∗ (Occupation variant of Theorem 4). Fix a tolerance level δ > 0, and let
U0 ≡ U0(δ) be a δ-neighborhood of the system’s ground state K0. Then there exists a constant
c ≡ cδ > 0 such that, for all sufficiently small η > 0 and large enough n, we have:

µn(U0) ≥ 1− e−c/η. (D.8.6)

We begin with a preliminary lemma which shows that, under Assumption 3∗∗, the sequence
of mean occupation measure (µn)n≥0 is tight (see e.g., Kallenberg [32, Chap. 23]).

Lemma D.34. The sequence of mean occupation measures (µn)n≥0 is tight.

The proof of this lemma first follows the proof of Lemma D.16 and then relies on the
same reasoning as the proof of Douc et al. [14, Thm. 12.3.3].
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Proof. By Lemma D.14, there exists K ⊂ X compact, η0 > 0, c > 0 such that, for any
η ≤ η0, x0 = x /∈ K,

U∞(x1)− U∞(x) ≤ η

(
∥U(x, ω0)∥2

σ2
∞(f(x))

− ∥∇f(x)∥
2

σ2
∞(f(x))

)
. (D.8.7)

Passing to the expectation yields that, for any x /∈ K,

Ex[U∞(x1)]− U∞(x) ≤ η

(
Ex

[
∥U(x, ω0)∥2

]
σ2
∞(f(x))

− ∥∇f(x)∥
2

σ2
∞(f(x))

)
. (D.8.8)

Appplying Corollary D.2 with X ← U(x,ω0)√
σ2
∞(f(x))

(the conditions of application are verified

from Assumption 2∗(c)) yields that

Ex[U∞(x1)]− U∞(x) ≤ −η ∥∇f(x)∥
2

σ2
∞(f(x))

+ η × 16d log 6 . (D.8.9)

Hence, for any x ∈ X , we have

Ex[U∞(x1)]− U∞(x) ≤ 1{x ∈ K}
(
sup
x′∈K

Ex′ [U∞(x′)]− inf
X

U∞

)
− 1{x /∈ K}

(
η
∥∇f(x)∥2

σ2
∞(f(x))

− η × 16d log 6

)
, (D.8.10)

or, after rearranging,

Ex[U∞(x1)]− 1{x ∈ K}
(
sup
x′∈K

Ex′ [U∞(x′)]− inf
X

U∞

)
+ 1{x /∈ K}

(
η
∥∇f(x)∥2

σ2
∞(f(x))

− η × 16d log 6

)
≤ U∞(x) . (D.8.11)

Since the function

x 7→ − 1{x ∈ K}
(
sup
x′∈K

Ex′ [U∞(x′)]− inf
X

U∞

)
+ 1{x /∈ K}

(
η
∥∇f(x)∥2

σ2
∞(f(x))

− η × 16d log 6

)
(D.8.12)

is measurable, lower-bounded and goes to infinity as ∥x∥ → ∞ by Assumption 3∗∗, one can
then apply the same computations as in the proof of Douc et al. [14, Thm. 12.3.3] to obtain
that the sequence of occupation measures (µn)n≥0 is tight. ■

We now prove Theorem 1∗ by adapting the proof of Theorem 1. Since the process is
exactly the same for Theorems 2∗–4∗, we omit their proofs.

Proof of Theorem 1∗. We show that, for sufficiently small δ, η > 0, for any i ∈ I, we have
that

exp

(
−Ei −minj Ej + ε

η

)
≤ lim inf

n→∞
µn(Ui)

≤ lim sup
n→∞

µn(Ui)

≤ exp

(
−Ei −minj Ej − ε

η

)
(D.8.13)

and the results in the statement will follow with 2ε in place of ε.
We apply Proposition D.4 (Appendix D.5): take δ small enough so Proposition D.4 can

be applied with both the neighborhoods U1, . . . ,UK and clU1, . . . , clUK . One then obtain
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η0 > 0 such that, for all 0 < η < η0 and any µ∞ invariant probability measure for (xη
n)n, for

any i ∈ I,

µ∞(Ui) ≥ exp

(
−E(Ki)−minj∈I E(Kj)

η
− ε

η

)
µ∞(clUi) ≤ exp

(
−E(Ki)−minj∈I E(Kj)

η
+

ε

η

)
.

(D.8.14)

We now prove that Eq. (D.8.13) holds. Fix i ∈ I. By Lemma D.34, the sequence of
mean occupation measures (µn)n≥0 is tight, so that, by Prohorov theorem [32, Thm. 23.2],
it is sequentially compact for the weak topology, or, in other terms, for the convergence in
distribution. Therefore, (µn)n≥0 admits a weak accumulation point which is a probability
distribution and that we denote by ν. Applying Portmanteau theorem [32, Thm. 5.25] to
the open set Ui and the closed set clUi yields that

ν(Ui) ≤ lim inf
n→∞

µn(Ui) ≤ lim sup
n→∞

µn(clUi) ≤ ν(clUi) . (D.8.15)

Since (xn)n≥0, the sequence of iterates of SGD, is (weak) Feller by Lemma D.15, ν is
actually invariant for (xn)n≥0, by, e.g., Douc et al. [14, Prop. 12.3.1], and a fortiori invariant
for the accelerated process (xη

n)n≥0. Combining Eq. (D.8.14) with Eq. (D.8.15) gives the
result Eq. (D.8.13). ■

Appendix E. Potential for the invariant measure

E.1. Gaussian noise. Though it does not formally fit into our setting, let us first begin with
the case where the noise is Gaussian. Since it is unbounded, our assumptions are not satisfied
and our theorems describing the invariant measure do not apply. However, all the objects we
consider are still well-defined, and, in that case, it is possible to compute the Ei explicitely.
Moreover, this section serves as a blueprint for the truncated Gaussian case of the next
section.

Assume that, for every x ∈ X , U(x, ω) follows a centered Gaussian distribution with
covariance σ2(f(x))I for some continuous function σ2 : R→ (0,+∞).

Akin to U∞ in Appendix D, a key role is played by the function U : X → R defined by

U(x) := 2α(f(x)) with α : R→ R a primitive of 1/σ2 . (E.1.1)

Since the noise is Gaussian, the Lagrangian and Hamiltonian have explicit expressions:
for every x, p, v ∈ X ,

H(x, p) = −⟨∇f(x), p⟩+ 1

2
σ2(f(x))∥p∥2 (E.1.2a)

L(x, v) = ∥v +∇f(x)∥
2σ2(f(x))

. (E.1.2b)

This expression of L make it clear that the action function penalizes the deviation of a path
from the flow: for a path γ ∈ C([0, T ]) for some T > 0,

ST (γ) =
∫ T

0

∥γ̇t +∇f(γt)∥2

2σ2(f(γt))
dt . (E.1.3)

The computation of the Ei relies on the following observation. Take a path γ ∈ C([0, T ])
for some T > 0 and consider φ defined by φt = γT−t for t ∈ [0, T ]. Then, the action cost of
φ is given by,

ST (φ) =
∫ T

0

∥−γ̇t +∇f(γt)∥2

2σ2(f(γt))
dt



THE LONG-RUN DISTRIBUTION OF STOCHASTIC GRADIENT DESCENT 59

=

∫ T

0

∥γ̇t +∇f(γt)∥2

2σ2(f(γt))
dt−

∫ T

0

2⟨γ̇t,∇f(γt)⟩
σ2(f(γt))

dt

= ST (γ)−
∫ T

0

⟨γ̇t,∇U(γt)⟩ dt , (E.1.4)

since ∇U(x) = 2∇α(f(x))∇f(x). Therefore, we get that

ST (φ) = ST (γ)− (U(γT )− U(γ0)) . (E.1.5)

Take i, j ∈ I. This equality then translates to a relation between Bi,j and Bj,i: considering
γ ∈ C([0, T ]) such that γ0 ∈ Ki, γT ∈ Kj and taking the infimum over all such paths, we get
that

Bj,i ≤ Bi,j + (Uj − Ui) . (E.1.6)
where, since f is constant on Ki and Kj , we denote by Ui and Uj the values of U on Ki and
Kj respectively.

Reversing the roles of i and j and applying the same argument shows that this inequality
is an equality:

Bj,i + Uj = Bi,j + Ui . (E.1.7)
Denote by Ci,j this common value. Crucially, Ci,j is symmetric in i and j.

Consider now T ∗ a minimum weight spanning tree on the complete but now undirected
graph on I with weights (Ci,j)i,j . We show that the minima in the Ei are attained T ∗, or
more precisely, a directed version of it.

Fix i and consider T ∈ Ti a spanning tree rooted at i. We have that, since any node j is
the origin of exactly one edge in T ,∑

(j→l)∈T

Bj,l +
∑
j∈I

Uj =
∑

(j→l)∈T

(Bj,l + Uj) + Ui

=
∑

(j→l)∈T

Cj,l + Ui . (E.1.8)

But by definition of T ∗, this sum is at least greater than
∑

(j↔l)∈T∗ Cj,l so that we have∑
(j→l)∈T

Bj,l +
∑
j∈I

Uj ≥
∑

(j↔l)∈T∗

Cj,l + Ui , (E.1.9)

and taking Ti an oriented version of T ∗ rooted at i, the equality is attained. Therefore, we
have that

Ei =
∑

(j→l)∈Ti

Bj,l −
∑
j∈I

Uj + Ui , (E.1.10)

or, in short, Ei = Ui + c where c > 0 is independent of i.
Therefore, the mass distribution over critical points is governed by a Gibbs measure with

potential U .
Let us now mention two particular cases.
• If σ2 is constant, then U = 2f

σ2 .
• It σ2 is linear, i.e., of the form σ2(f(x)) = σ2

1(f(x) + σ2
0), then U = 2

σ2
1
log(f + σ2

0).

E.2. Truncated Gaussian noise. To fit into our theoretical framework, we consider truncated
Gaussian noise instead. The general outline of the proof but with added steps to handle the
error due to the truncation. In particular, one must show that, without loss of generality, we
can only conider paths whose derivative has the same norm as the gradient of f . This is
done with Freidlin & Wentzell [20, Chap. 4, Lem. 3.1] that we adapt to our setting.
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Assume that U(x, ω) follows a centered Gaussian distribution with covariance σ2(f(x))I
conditioned on being in B(0, R(x)) for some R(x) > 0.

As in Definition 4, we define U(x) = 2α(f(x)) with α′ = 1
σ2 and denote by Ui the value

taken by U on Ki.
Consider some 0 < δ ≤ 1

2 and assume that

sup
x∈X

2d+4(d+ 1)e−
R2

16σ2 ≤ δ , (E.2.1)

so that the error term 2E(σ2(f(x)), R(x)) in Lemma F.2 is bounded by δ.
Moreover, assume that, for any x ∈ X

∥∇f(x)∥ ≤ R(x)

8
(E.2.2)

Lemma E.1. Consider γ ∈ C([0, T ]). Then, there exists γ̃ ∈ C([0, S]) a reparametrization of
γ such that, for any t ∈ [0, S],

∥ ˙̃γs∥ = ∥∇f(γ̃s)∥ . (E.2.3)
and

ST (γ) ≥
∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2(1 + δ)σ2(f(γ̃s))
ds . (E.2.4)

Proof. By the proof Freidlin & Wentzell [20, Chap. 4, Lem. 3.1], there exists t(s) change of
time such that, with γ̃s = γt(s), ∥ ˙̃γs∥ = ∥∇f(γ̃s)∥.

We have that

ST (γ) =
∫ t−1(T )

0

ṫ(s)L(γ̃s, (ṫ(s))−1 ˙̃γs) ds , (E.2.5)

so it suffices to bound L(γ̃s, ˙̃γs) from below: by definition, we have

L(γ̃s, (ṫ(s))−1 ˙̃γs) ≥ sup

{
⟨p, (ṫ(s))−1 ˙̃γt +∇f(γ̃s)⟩ − H̄(γ̃s, p) : ∥p∥ ≤

R(γ̃s)

2σ2(f(γ̃s))

}
≥ sup

{
⟨p, (ṫ(s))−1 ˙̃γt +∇f(γ̃s)⟩ − (1 + δ)

σ2(f(γ̃s))

2
∥p∥2 : ∥p∥ ≤ R(γ̃s)

2σ2(f(γ̃s))

}
,

(E.2.6)

by Lemma F.2. Applying Lemma F.3 with λ← ṫ(s), now exactly yields, for almost all s,

L(γ̃s, (ṫ(s))−1 ˙̃γs) ≥ ṫ(s) sup

{
⟨p, ˙̃γt +∇f(γ̃s)⟩ − (1 + δ)

σ2(f(γ̃s))

2
∥p∥2 : ∥p∥ ≤ R(γ̃s)

2σ2(f(γ̃s))

}
= ṫ(s)

∥ ˙̃γs +∇f(γ̃s)∥2

2(1 + δ)σ2(f(γ̃s))
, (E.2.7)

since ∥ ˙̃γs +∇f(γ̃s)∥ ≤
R(γ̃s)

2 . ■

Lemma E.2. With this setting, for any i ∈ I

Ei = Ui +
∑

(j→l)∈Ti

Bj,l −
∑
j∈I

Uj +O(δ) (E.2.8)

Proof. Consider γ ∈ C([0, T ]) such that γ0 ∈ Ki, γT ∈ Kj and ST (γ) < +∞. Then, by the
previous lemma Lemma E.1, there exists γ̃ ∈ C([0, S]) a reparametrization of γ such that,
for any t ∈ [0, S],

ST (γ) ≥
∫ S

0

∥ ˙̃γs +∇f(γ̃s)∥2

2(1 + δ)σ2(f(γ̃s))
ds
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=

∫ S

0

∥− ˙̃γs +∇f(γ̃s)∥2

2(1 + δ)σ2(f(γ̃s))
ds+

U(γT )− U(γ0)

1 + δ
, (E.2.9)

where we performed the same computations as above in Appendix E.1. Considering the
path (γ̃S−s)s∈[0,S] and invoking the upper-bound on the Lagrangian from Lemma F.2 with
− ˙̃γs +∇f(γ̃s) which still has norm less than R(γ̃s)/4, we get that

ST (γ) ≥
1− δ

1 + δ
Bj,i +

U(γT )− U(γ0)

1 + δ
. (E.2.10)

The result now follows from the same computations as in Appendix E.1. ■

E.3. Local dependencies. Under local assumptions similar to Mori et al. [56], we demonstrate
how the modelling of the noise influences the invariant measure.

Lemma E.3. Consider Ki minimizing, σ2 : R → (0,+∞) continuous, and take α : R → R
such that α′ = 1

σ2 . Assume that H∗ is a positive definite matrix such that, locally near Ki, it
holds that:

α(f(x)) =
∑

λ∈eigH∗

gλ(xλ) , (E.3.1)

where xλ denotes the orthogonal projection of x on the eigenspace of the eigenvalue λ and
where gλ : X → R is continuously differentiable. Define the potential U : X → R by

U(x) =
∑

λ∈eigH∗

2gλ(xλ)

λ
. (E.3.2)

If we have the anistropic subGaussian bound: for x in a neighborhood of Ki, p ∈ B(0, ∥U(x)∥),

H̄(x, p) ≤ σ2(f(x))

2
⟨p,H∗p⟩ , (E.3.3)

then there is δ > 0 such that, for all j ̸= i, any 0 < δ′ ≤ δ,

Ej ≥ min{U(x)− Ui : x, d(x,Ki) = δ′} > 0 , (E.3.4)

where Ui is the value of U on Ki.
Moreover, there exists R > δ such that, if there exists c > 0, s2 > 0, such that, for all

x ∈ B(0, R) \ Uδ(Ki), v ∈ B(∇f(x), c),

L̄(x, v) ≤ ∥v∥
2s2

, (E.3.5)

then there exists C > 0 that depends only on r,R, c, f restricted to X \ Ur(Ki) such that

Ei ≤
C

s2
. (E.3.6)

The assumptions on the Hamiltonian and the Lagrangian roughly say that the noise share
some similarities with Gaussian distributions with the prescribed variances. In particular,
they are satisfied in the (truncated) Gaussian case, as shown in Lemma F.2.

Moreover, a takeaway of this lemma is that, if σ2 or the eigenvalues of H∗ are small
enough, then Ki must be the ground state even if it may not be the global minimum of U .
This lemma is general enough to handle non-constant variance: a notable example is when
σ2(f(x)) is linear in f(x) and where the resulting potential U then depends logarithmically
on the value f .
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Proof. Denote Pλ ∈ Rd×d the orthogonal projection on the eigenspace of H∗ associated with
the eigenvalue λ. U can thus be rewritten as

.U(x) =
∑

λ∈eigH∗

2gλ(Pλx)

λ
, (E.3.7)

so that its gradient is given by

∇U(x) =
∑

λ∈eigH∗

2Pλ∇gλ(Pλx)

λ
. (E.3.8)

In particular, we obtain that for x close enough to Ki, using the orthogonality of the
projections,

H̄(x,∇U(x)) ≤ σ2(f(x))

2
⟨∇U(x), H∗∇U(x)⟩

=
σ2(f(x))

2

∑
λ∈eigH∗

4∥Pλ∇gλ(Pλx)∥2

λ

=
σ2(f(x))

2
⟨∇U(x), 2∇(α ◦ f)(x)⟩

= ⟨∇U(x),∇f(x)⟩ . (E.3.9)

Therefore, for x close enough to Ki, we have that

H(x,∇U(x)) = −⟨∇U(x),∇f(x)⟩+ H̄(x,∇U(x)) ≤ 0 . (E.3.10)

For x close to Ki, let us compute ⟨∇U(x),∇f(x)⟩:

⟨∇U(x),∇f(x)⟩ = σ2(f(x))⟨∇U(x),∇(α ◦ f)(x)⟩

= σ2(f(x))
∑

λ∈eigH∗

2∥Pλ∇gλ(Pλx∥
λ

, (E.3.11)

which is (stricly) positive in a small neighborhood of Ki (excluding Ki itself). Therefore,
U is decreasing on trajectories of the flow in this neighborhood. With the same proof as
in Lemma D.29, we deduce that there exists δ > 0 such that argminx∈Uδ(Ki) U(x) = Ki.
Moreover, take δ > 0 small enough such that Eq. (E.3.10) holds on Uδ(Ki), Uδ(Ki) ∩
crit f = Ki and the trajectories of the flow started in Uδ(Ki) stay converge to Ki. We
now proceed as in the proof of Lemma D.33. Take δ′ ≤ δ/2, U := U ′

δ(Ki) and ∆ :=
min{U(x)− Ui : x ∈ X , d(x,Ki) = δ′}, which is positive by definition. Fix j ̸= i: we show
that Bi,j ≥ ∆. Consider some T > 0 and γ ∈ C([0, T ],X ) such that γ0 ∈ Ki and γT ∈ Kj .
By definition of δ and by continuity of γ and d(·,Ki), there exists t ∈ [0, T ] such that
d(γt,Ki) = δ′. Therefore, we have that

S0,T (γ) ≥ S0,t(γ) =
∫ t

0

L(γs, γ̇s) ds , (E.3.12)

and therefore, by definition of L as the conjugate of H, we obtain that

S0,T (γ) ≥
∫ t

0

⟨γ̇s,∇U(γs)⟩ − H̄(γs,∇U(γs)) ds ≥
∫ t

0

⟨γ̇s,∇U(γs)⟩ , (E.3.13)

where we used Eq. (E.3.10) in the last inequality. Thus, we get

S0,T (γ) ≥ U(γt)− U(γ0) ≥ ∆ , (E.3.14)

with any δ′ ≤ δ/2 (and therefore δ in the statement corresponds to δ/2 here).



THE LONG-RUN DISTRIBUTION OF STOCHASTIC GRADIENT DESCENT 63

Finally, it remains to show that, any l ≠ i, El ≥ ∆. Consider any tree rooted at l: it must
have an edge of the form i→ j for some j ∈ I and therefore the sum of its weights will be at
least Bi,j ≥ ∆. Hence, since it holds for any such tree, we have that El ≥ ∆.

We now prove the second part of the lemma. δ was chosen small enough so that it is
possible to find R > δ such that B(0, R) \ Uδ(Ki) contains all the Kj for j ̸= i and not Ki.
The assumption on the Lagrangian implies that, for any x ∈ B(0, R) \ Uδ(Ki), v ∈ B(0, c),

L(x, v) ≤ ∥v +∇f(x)∥
2

2s2
. (E.3.15)

Fix j ̸= i and take γ ∈ C1([0, T ],X ) such that γ0 ∈ Kj , x := γT ∈ Uδ(Ki) and γ re-
mains in B(0, R) \ Uδ(Ki). Without loss of generality, at the expense of replacing γ by a
reparametrization, we can assume that γ̇t in B(0, c) for all t ∈ [0, T ]. Then, we have that

S0,T (γ) ≤
∫ T

0

L(γs, γ̇s) ds ≤
∫ T

0

∥γ̇s +∇f(γs)∥2

2s2
ds , (E.3.16)

which depends only on the value of ∇f outside of Uδ/2(Ki). But, by the same reasoning as
in Lemma D.31, since the flow started at x converges to Ki, we have that B({x},Ki) = 0.
Therefore, we have that,

Bj,i ≤
∫ T

0

∥γ̇s +∇f(γs)∥2

2s2
ds , (E.3.17)

and, taking the maximum of such quantities over all j ≠ i, we obtain C > 0 such, for any
j ̸= i,

Bj,i ≤
C

s2
. (E.3.18)

To conclude on the value of Ei, we consider the tree rooted at i made of all the edges (j, i) for
j ̸= i. It has weight at most (K− 1)C/s2 and therefore, we have that Ei ≤ (K− 1)C/s2. ■

Appendix F. Auxiliary results

F.1. Truncated Gaussian distribution.

Lemma F.1. Consider X ∼ N (0,Σ) a multivariate Gaussian distribution Σ ∈ Rd×d positive
definite. For R > 0, define the truncated Gaussian random variable (r.v.) XR by conditioning
X to the ball B(0, R). Define

H̄(p) := logE
[
e⟨p,XR⟩

]
(F.1.1)

and

Ẽ(Σ, R̃) := e
− R̃2

4∥Σ∥ (tr Σ + ∥Σ∥)2d+3 (F.1.2)

Then, for R̃ > 0 such that
R̃ ≥

√
∥Σ∥(2d+ 4) log 2 , (F.1.3)

it holds that, for any p ∈ X such that ∥Σp∥ ≤ R− R̃,∣∣H̄(p)− 1
2 ⟨p,Σp⟩

∣∣ ≤ 1
2 Ẽ(Σ, R̃)∥p∥2 (F.1.4a)∥∥∇H̄(p)− Σp

∥∥ ≤ Ẽ(Σ, R̃)∥p∥ (F.1.4b)∥∥Hess H̄(p)− Σ
∥∥ ≤ Ẽ(Σ, R̃) . (F.1.4c)

Proof. Define, for S a measurable set,

Z(S) =

∫
S

e−
1
2x·Σ

−1x dx , (F.1.5)
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and, for convenience, K := B(0, R). For notational convenience, in this proof, we will denote
the inner product between two vectors x and p with a simple dot x · p. We have that

E
[
eXR·p] = e

1
2p·Σp

Z(K)

∫
K
e−

1
2 (x−Σp)·Σ−1(x−Σp) dx

=
e
1
2p·Σp

Z(K)

∫
K−Σp

e−
1
2x

′·Σ−1x′
dx′

= e
1
2p·ΣpZ(K − Σp)

Z(K)
, (F.1.6)

where we performed the change of variable x′ ← x− Σp.
Define

f(p) := Z(K − Σp) =

∫
K
e−

1
2 (x−Σp)·Σ−1(x−Σp) dx . (F.1.7)

so that

H̄(p) = logE
[
eXR·p] = 1

2
p · Σp+ log

f(p)

f(0)
. (F.1.8)

Therefore it suffices to bound log f(p)
f(0) and its derivatives.

Differentiating yields

∇f(p) =
∫
K
(x− Σp)e−

1
2 (x−Σp)·Σ−1(x−Σp) dx (F.1.9a)

Hess f(p) =

∫
K
(x− Σp)(x− Σp)⊤e−

1
2 (x−Σp)·Σ−1(x−Σp) dx− Σf(p) . (F.1.9b)

Note that, by symmetry of B(0, R), ∇f(0) = 0.
We first bound Hess f(p). Performing the change of variable x′ ← x− Σp again gives us

Hess f(p) =

∫
K−Σp

x′x′⊤e−
1
2x

′·Σ−1x′
dx′ − Σf(p)

=

∫
K−Σp

(x′x′⊤ − Σ)e−
1
2x

′·Σ−1x′
dx′

= −
∫
X\(K−Σp)

(x′x′⊤ − Σ)e−
1
2x

′·Σ−1x′
dx′ , (F.1.10)

where we used that
∫
X (x′x′⊤ − Σ)e−

1
2x

′·Σ−1x′
dx′ = 0.

By definition of R̃, K − Σp contains B(0, R̃). We now bound the operator norm of
Hess f(p):

∥Hess f(p)∥ ≤
∫
X\(K−Σp)

(∥x′∥2 + ∥Σ∥)e−
1
2x

′·Σ−1x′
dx′

≤
∫
X\B(0,R̃)

(∥x′∥2 + ∥Σ∥)e−
1
2x

′·Σ−1x′
dx′

≤ e
− R̃2

4∥Σ∥
∫
X
(∥x′∥2 + ∥Σ∥)e−

1
4x

′·Σ−1x′
dx′

= e
− R̃2

4∥Σ∥ (tr Σ + ∥Σ∥)(4π)d/2 det(Σ)1/2 , (F.1.11)
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We now bound ∇f(p). The change of variable x′ ← x− Σp yields

∇f(p) =
∫
K−Σp

x′e−
1
2x

′·Σ−1x′
dx′ =

∫
X\(K−Σp)

x′e−
1
2x

′·Σ−1x′
dx′ , (F.1.12)

where we used that
∫
X x′e−

1
2x

′·Σ−1x′
dx′ = 0.

Therefore, similar computations as above yield that

∥∇f(p)∥ ≤
∫
X\(K−Σp)

∥x′∥e−
1
2x

′·Σ−1x′
dx′

≤
∫
X\B(0,R̃)

∥x′∥e−
1
2x

′·Σ−1x′
dx′

≤ e
− R̃2

4∥Σ∥
∫
X
∥x′∥e−

1
4x

′·Σ−1x′
dx′

≤ e
− R̃2

4∥Σ∥
√
tr Σ(4π)d/2 det(Σ)1/2 . (F.1.13)

Let us now lower-bound f(p). In the same fashion as above, we have that

f(p) =

∫
K−Σp

e−
1
2x

′·Σ−1x′
dx′

≥
∫
B(0,R̃)

e−
1
2x

′·Σ−1x′
dx′

≥ (2π)d/2 det(Σ)1/2

(
1− 2d/2e

− R̃2

4∥Σ∥

)
, (F.1.14)

so that, if R̃ ≥
√
∥Σ∥(2d+ 4) log 2, it holds that

f(p) ≥ 1
2 (2π)

d/2 det(Σ)1/2 (F.1.15)

The Hessian of log f/f(0) is then given by

Hess log
f(p)

f(0)
=

Hess f(p)

f(p)
− ∇f(p)∇f(p)

⊤

f(p)2
. (F.1.16)

Eqs. (F.1.11), (F.1.13) and (F.1.15) combined yield that∥∥∥∥Hess log
f(p)

f(0)

∥∥∥∥ ≤ e
− R̃2

4∥Σ∥ (tr Σ + ∥Σ∥)2d/2+1 +

(
e
− R̃2

4∥Σ∥
√
tr Σ2d/2+1

)2

≤ e
− R̃2

4∥Σ∥ (tr Σ + ∥Σ∥)2d+3 = Ẽ(Σ, R̃) . (F.1.17)

Taylor-Lagrange inequality now yields the full result since log f(0)/f(0) = 0 and∇ log f(0) =
0. ■

Lemma F.2. Consider X ∼ N (0, σ2I) a multivariate Gaussian distribution with σ2 > 0. For
R > 0, define the truncated Gaussian r.v. XR by conditioning X to the ball B(0, R). Define

H(p) := logE
[
e⟨p,XR⟩

]
(F.1.18a)

L(p) := H∗(p) , (F.1.18b)

and

E(σ2, R) := e−
R2

16σ2 2d+3(d+ 1) (F.1.19)
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and assume that R > 0 satisfies

R ≥ 4σ
√
(d+ 3) log 2 + log(d+ 1) . (F.1.20)

Then, for any p ∈ X such that ∥p∥ ≤ R
2σ2 , v ∈ X such that ∥v∥ ≤ R

4 , it holds that(
1− E(σ2, R)

)σ2∥p∥2

2
≤H̄(p) ≤

(
1 + E(σ2, R)

)σ2∥p∥2

2
(F.1.21a)(

1− 2E(σ2, R)
)∥v∥2
2σ2

≤L̄(v) ≤
(
1 + 2E(σ2, R)

)∥v∥2
2σ2

. (F.1.21b)

Proof. First, let us show that, for any r > 0, ∇H
(
B(0, r)

)
is an open ball centered at 0.

Since the distribution of XR is invariant by rotation, this set can be rewritten as

∇H
(
B(0, r)

)
=
{
v ∈ X : ∥v∥ ∈

{
∥∇H(p)∥ : p ∈ B(0, r)

}}
. (F.1.22)

But, by connectedness of B(0, r) and continuity of∇H,
{
∥∇H(p)∥ : p ∈ B(0, r)

}
is an interval.

Since ∇H(0) = 0, it is either [0, ∥∇H(r)∥] or [0, ∥∇H(−r)∥). ∇H
(
B(0, r)

)
being compact

and therefore closed, it must be the latter. Hence, we have shown that

∇H
(
B(0, r)

)
= B

(
0, sup

B(0,r)
∥∇H∥

)
. (F.1.23)

We apply Lemma F.1 with R̃← R
2 . Note that our choice of R implies that R̃ satisfies the

condition of Lemma F.1 and, moreover, that E(σ2, R) ≤ 1
2 . Lemma F.1 directly implies the

bound on H̄.
Consider p ∈ X such that ∥p∥ ≤ R

2σ2 . Then, by Lemma F.1, we have that∥∥∇H̄(p)∥∥ ≥ σ2∥p∥ − e−
R2

16σ2 2d+3
(
tr
(
σ2I
)
+
∥∥σ2I

∥∥)∥p∥
= σ2∥p∥(1− E(σ2, R))

≥ σ2∥p∥
2

, (F.1.24)

where we used that E(σ2, R) ≤ 1
2 . Therefore, we obtain that sup

{∥∥∇H̄(p)∥∥ : p ∈ B
(
0, R

2σ2

)}
≥

R
4 so that ∇H

(
B(0, R

2σ2 )
)

contains B(0, R
4 ).

Take p ∈ B(0, R
4 ) which therefore belongs to ∇H

(
B(0, R

2σ2 )
)
. Therefore, L̄(v) can be

rewritten as
L̄(v) = sup

p∈B(0, R
2σ2 )

⟨v, p⟩ − H̄(p) . (F.1.25)

Using Lemma F.1 again, we obtain that

sup
p∈B(0, R

2σ2 )

⟨v, p⟩ − σ2

2
(1 + E(σ2, R))∥v∥2 ≤ L̄(v) ≤ sup

p∈B(0, R
2σ2 )

⟨v, p⟩ − σ2

2
(1− E(σ2, R))∥v∥2 ,

(F.1.26)

so that, since E(σ2, R) ≤ 1
2 , we obtain that

∥v∥2

2σ2(1 + E(σ2, R))
≤ L̄(v) ≤ ∥v∥2

2σ2(1− E(σ2, R))
. (F.1.27)

Since, for x ∈ [0, 1/2], both 1
1+x ≥ 1− 2x and 1

1−x ≤ 1 + 2x hold, we get

∥v∥2

2σ2

(
1− 2E(σ2, R)

)
≤ L̄(v) ≤ ∥v∥

2

2σ2

(
1 + 2E(σ2, R)

)
(F.1.28)

which concludes the proof. ■
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We will require the following technical lemma.

Lemma F.3. Consider v, w ∈ X such that 0 < ∥w∥ ≤ µR
2 for some R,µ > 0. Define,

f(u) = sup
p∈X :∥p∥≤R

⟨p, u⟩ − µ

2
∥p∥2 , (F.1.29)

then, with λ = ∥v∥
∥w∥ ,

λf
( v
λ
+ w

)
≤ f(v + w) . (F.1.30)

Proof. Define p := 1
µ

(
v
λ + w

)
which has norm at most R since ∥w∥ ≤ R

2µ . Then, we have
that

λf
( v
λ
+ w

)
− f(v + w) ≤ λ

(〈
p,

v

λ
+ w

〉
− µ

2
∥p∥2

)
−
(
⟨p, v + w⟩ − µ

2
∥p∥2

)
= (λ− 1)

(
⟨p, w⟩ − µ

2
∥p∥2

)
= (λ− 1)× 1

µ

(
⟨v, w⟩
λ

+ ∥w∥2 − 1

2

(
2∥w∥2 + 2

⟨v, w⟩
λ

))
= 0 , (F.1.31)

and our proof is complete. ■
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