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Abstract

We study the problem of Bayesian fixed-budget best-arm identification (BAI) in structured bandits.
We propose an algorithm that uses fixed allocations based on the prior information and the structure of
the environment. We provide theoretical bounds on its performance across diverse models, including the
first prior-dependent upper bounds for linear and hierarchical BAI. Our key contribution is introducing
new proof methods that result in tighter bounds for multi-armed BAI compared to existing methods. We
extensively compare our approach to other fixed-budget BAI methods, demonstrating its consistent and
robust performance in various settings. Our work improves our understanding of Bayesian fixed-budget
BAI in structured bandits and highlights the effectiveness of our approach in practical scenarios.

1 Introduction
Best arm identification (BAI) addresses the challenge of finding the optimal arm in a bandit environment
(Lattimore and Szepesvári, 2020), with wide-ranging applications in online advertising, drug discovery or
hyperparameter tuning. BAI is commonly approached through two primary paradigms: fixed-confidence and
fixed-budget. In the fixed-confidence setting (Even-Dar et al., 2006; Kaufmann et al., 2016), the objective is
to find the optimal arm with a pre-specified confidence level. Conversely, fixed-budget BAI (Audibert et al.,
2010; Karnin et al., 2013; Carpentier and Locatelli, 2016) involves identifying the optimal arm within a fixed
number of observations. Within this fixed-budget context, two main metrics are used: the probability of
error (PoE) (Audibert et al., 2010; Karnin et al., 2013; Carpentier and Locatelli, 2016)—the likelihood of
incorrectly identifying the optimal arm—and the simple regret (Bubeck et al., 2009; Russo, 2016; Komiyama
et al., 2023)—the expected performance disparity between the chosen and the optimal arm. We focus on PoE
minimization in fixed-budget BAI.

Existing algorithms for PoE minimization in fixed-budget BAI are largely frequentist and often employ
elimination strategies. Bayesian approaches have predominantly focused on the minimization of the simple
regret (Komiyama et al., 2023; Azizi et al., 2023), or were studied under a frequentist lens (Hoffman et al.,
2014), which do not capture the advantages of knowing informative priors. It was only recently that Atsidakou
et al. (2022) introduced a Bayesian version of the well-known Sequential Halving (SH) algorithm (Karnin
et al., 2013), offering a prior-dependent bound on the probability of error in multi-armed bandits (MAB),
albeit under certain limiting assumptions on the prior. Their proofs are still largely influenced by frequentist
approaches and come with strong constraints.

Several recent works have shed new light on adaptive methods for frequentist fixed-budget BAI. For instance,
Qin (2022); Degenne (2023); Wang et al. (2023) examined whether adaptive algorithms can consistently
surpass the best static algorithm for any bandit instance. Remarkably, Degenne (2023) established the
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absence of such universally superior adaptive algorithms in several BAI problems, including Gaussian BAI.
Wang et al. (2023) demonstrated that in Bernoulli BAI with two arms, no algorithm consistently outperforms
uniform sampling. Inspired by these recent results, we develop a method based on fixed and non-adaptive
allocations in the Bayesian setting. These allocations leverage both prior information and the structure of
the environment. As demonstrated in our experiments in Section 5, our static but prior-informed algorithm
can outperform adaptive baselines. Moreover, our proofs incorporate fully Bayesian techniques, diverging
from existing works. This novel technical approach not only produces a tighter upper bound but also applies
under milder assumptions.

As a motivating example, consider a scenario with three arms (K = 3), where the information a priori
strongly suggests that either of the first two arms is more likely to be optimal than the third one. A pivotal
question arises: what strategic approach should be employed to allocate resources (or budget) to the seemingly
suboptimal third arm? Furthermore, if greater confidence is placed on the first arm compared to the second,
what is the optimal budget distribution between them? This situation underlines a fundamental challenge
not directly addressed by the frequentist approach, which lacks knowledge about the bandit instance prior to
interaction.

Relation to prior works. While Atsidakou et al. (2022) considers prior information, their method does
not exploit it to its full potential. To maintain adaptivity, they impose restrictive assumptions on the prior.
Moreover, their results are only valid for a specific budget allocation, while ours are applicable for any fixed
and non-adaptive allocation rule. This facilitates the creation of ad-hoc allocation strategies, informed and
guided by our theoretical results. Additionally, a particularly relevant application of prior information is
found in structured bandit problems, such as linear bandits (Abbasi-Yadkori et al., 2011; Hoffman et al., 2014;
Katz-Samuels et al., 2020; Azizi et al., 2021) and hierarchical bandits (Hong et al., 2022b; Aouali et al., 2023),
where arm rewards are determined by underlying latent parameters. Our approach captures the structure of
these problems as reflected in the prior, leading to more efficient exploration thanks to arm correlations. This
aspect of our work also extends beyond the scope of Atsidakou et al. (2022), which primarily addressed MAB.

Contributions. 1) We present and analyze Prior-Informed BAI, PI-BAI, a fixed-budget BAI algorithm
that leverages prior information for efficient exploration. Our main contributions include establishing upper
prior-dependent bounds on its expected PoE in multi-armed, linear, and hierarchical bandits. Specifically, in
the MAB setting, our upper bound is smaller and is valid under milder assumptions on the prior. 2) The proof
techniques developed for PI-BAI provide a fully Bayesian perspective, significantly diverging from existing
methodologies that rely on frequentist proofs. This allows a more comprehensive framework for understanding
and analyzing Bayesian BAI algorithms, while also enabling us to relax previously held assumptions. 3)
Our algorithms and proof techniques are naturally applicable to structured problems, such as linear and
hierarchical bandits, leading to the first Bayesian BAI algorithm with a prior-dependent PoE bound in these
settings. 4) We empirically evaluate PI-BAI and its variants in various numerical setups. Our experiments
on synthetic and real-world data show the generality of PI-BAI and highlight its good performance.

2 Background
Notation. Let ∆K be the K-simplex and ∆+

K = {ω ∈ ∆K ; ωi > 0 , ∀i ∈ [K]}. For any positive-definite
matrix A ∈ Rd×d and vector v ∈ Rd, we define ∥v∥A =

√
v⊤Av. Also, λ1(A) and λd(A) denote the maximum

and minimum eigenvalues of A, respectively. We denote by ei the i-th vector of the canonical basis.
We consider a scenario involving K arms. In each round t ∈ [n], the agent selects an arm At ∈ [K], and

then receives a stochastic reward Yt ∼ P (·; θ,At), where θ is the unknown parameter vector and P (·; θ, i) is
the known reward distribution of arm i, given θ. We denote by r(i; θ) = EY∼P (·;θ,i) [Y ] the mean reward
of arm i, given θ. We adopt the Bayesian view where θ is assumed to be sampled from a known prior
distribution P0. Given a bandit instance characterized by θ ∼ P0, the goal is to find the (unique) optimal
arm i∗(θ) = argmaxi∈[K] r(i; θ) by interacting with the bandit instance for a fixed-budget of n rounds. These
interactions are summarized by the history Hn = {(At, Yt)}t∈[n], and we let Jn ∈ [K] be the arm selected by
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the agent after n rounds. In this Bayesian setting, Atsidakou et al. (2022) introduced the expected PoE as

Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
, (1)

a Bayesian metric that corresponds to the average PoE across all bandit instances sampled from the prior,
θ ∼ P0. This is different from the frequentist counterpart where the performance is assessed for a single
instance θ.

2.1 Multi-Armed Bandit
In this setting, each component of θ = (θi)i∈[K] is sampled independently from the prior distribution. We
focus on the Gaussian case where θi ∼ N (µ0,i, σ

2
0,i), with µ0,i and σ2

0,i being the known prior reward mean
and variance for arm i. Then, given θ, the reward distribution of arm i is N (θi, σ

2) where σ2 is the (known)
observation noise variance1,

θi ∼ N (µ0,i, σ
2
0,i) ∀i ∈ [K]

Yt | θ,At ∼ N (θAt , σ
2) ∀t ∈ [n] . (2)

Under (2), the posterior distribution of θi given Hn is a Gaussian N (µ̂n,i, σ
2
n,i) (Bishop, 2006), where

σ̂−2
n,i =

1

σ2
0,i

+
ni

σ2
, µ̂n,i = σ̂2

n,i

(µ0,i

σ2
0,i

+
Bn,i

σ2

)
, (3)

where Ti = {t ∈ [n], At = i} is the set of rounds when arm i is chosen, ni = |Ti| is the number of times
arm i is chosen and Bn,i =

∑
t∈Ti

Yt is the sum of rewards of arm i. Here the mean posterior reward is
E [r(i; θ) | Hn] = µ̂n,i.

2.2 Linear Bandit
One major drawback of model (2) is that is is not able to model situations where arms are dependent, thus
leading to suboptimal exploration.

In linear bandits (Abbasi-Yadkori et al., 2011), arms share a common low-dimensional representation
through parameter θ ∈ Rd. We denote X = {x1, . . . xK} the set of arms where each xi ∈ Rd. We focus on the
Gaussian case where θ is sampled from a Gaussian distribution with mean µ0 ∈ Rd and covariance matrix
Σ0 ∈ Rd×d. Given θ, the reward distribution of arm i is Gaussian with mean r(i; θ) = x⊤

i θ and variance σ2,

θ ∼ N (µ0,Σ0)

Yt | θ,At ∼ N (θ⊤xAt , σ
2) ∀t ∈ [n] . (4)

Similarly to (2), this model offers closed-form formulas, where the posterior of θ given the history Hn

containing ni samples from arm i is a Gaussian N (µ̂n,Σn):

Σ̂−1
n = Σ−1

0 + σ−2
∑
i∈[K]

nixix
⊤
i , µ̂n = Σ̂n

(
Σ−1

0 µ0 + σ−2Bn

)
, (5)

where Bn =
∑

t∈[n] YtxAt
. The mean posterior reward of arm i is given by E [r(i; θ) | Hn] = µ̂⊤

n xi. Note that
the MAB (2) can be recovered from (4) when xi = ei ∈ RK and Σ0 = diag(σ2

0,i)i∈[K].

2.3 Hierarchical Bandit
Another practical model that captures arm correlations is the hierarchical (or mixed-effect) model (Bishop,
2006; Wainwright et al., 2008; Hong et al., 2022b; Aouali et al., 2023), defined in the Gaussian case as

µ ∼ N (ν,Σ)

θi ∼ N (b⊤i µ, σ
2
0,i) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt , σ
2) ∀t ∈ [n] . (6)

1Arm-dependent observation noise variances could be used but we choose to keep the notation simple.
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This generative model reads as follows. First, µ = (µℓ)ℓ∈[L] is an unknown latent vector composed of L effects
µℓ and it is sampled from a multivariate Gaussian with mean ν ∈ RL and covariance Σ ∈ RL×L. Then, given
µ, the mean rewards θi are independently sampled as θi ∼ N (b⊤i µ, σ

2
0,i), where (bi)i∈[K] represent known

mixing weights. In particular, b⊤i µ creates a linear mixture of the L effects, with bi,ℓ indicating a known score
that quantifies the association between arm i and the effect ℓ. Concrete examples of bi,ℓ are provided in
Appendix A.1. Note that arm correlations arise because θi are derived from the same effect parameter µ.
Finally, given µ and θ, the reward distribution of arm i is similar to the MAB (2) and writes N (θi, σ

2).
With abuse of notation, the effect posterior distribution Qn(µ) = P(µ | Hn) induces a conditional arm

posterior distribution for each arm i, Pn,i(θi | µ) = P(θi | Hn, µ). Then, the marginal arm posterior density
can be computed by marginalizing over Qn such as P(θi | Hn) = Eµ∼Qn [Pn,i(θi | µ)]. Therefore, despite the
hierarchical structure, these distributions can be derived in closed-form2. First, the effect posterior writes
Qn(µ) = N (µ̆n, Σ̆n) with

Σ̆−1
n = Σ−1 +

∑
i∈[K]

ni

niσ2
0,i + σ2

bib
⊤
i , µ̆n = Σ̆n

(
Σ−1ν +

∑
i∈[K]

Bn,i

niσ2
0,i + σ2

bi

)
. (7)

Then, given µ ∼ Qn, the conditional arm posteriors are Pn,i(θi | µ) = N (µ̃n,i, σ̃
2
n,i), where

σ̃−2
n,i =

1

σ2
0,i

+
ni

σ2
, µ̃n,i = σ̃2

n,i

(µ⊤bi
σ2
0,i

+
Bn,i

σ2

)
. (8)

Finally, combining (7) and (8) leads to the marginal arm posterior P(θi | Hn) = N (µ̂n,i, σ̂
2
n,i) where

σ̂2
n,i = σ̃2

n,i +
σ̃4
n,i

σ4
0,i

b⊤i Σ̆nbi , µ̂n,i = σ̃2
n,i

( µ̆⊤
n bi
σ2
0,i

+
Bn,i

σ2

)
, (9)

and we have that E [r(i; θ)|Hn] = µ̂n,i.

Link to linear bandit. (6) is a special case of a linear bandit (4), as can be seen by realizing that
θi = b⊤i µ+ ηi where ηi ∼ N (0, σ2

0,i) and the ηi are independent of µ. Hence, (6) can be rewritten by replacing
ν with ν̄ ∈ RL+K defined as ν̄⊤ = (ν⊤, 0, . . . , 0) and Σ with a block-diagonal matrix Σ̄ = ⟨Σ, σ2

0,1, . . . , σ
2
0,K⟩

with new actions b̄i ∈ RL+K defined as b̄⊤i = (b⊤i , e
⊤
i ), leading to a linear bandit

µ̄ ∼ N (ν̄, Σ̄)

Yt | µ̄, At ∼ N (b̄⊤At
µ̄, σ2) ∀t ∈ [n] . (10)

Note that reinterpreting hierarchical bandits in this way does not lead to practical benefits. In contrast,
adhering to the initial formulation in (6) and the subsequent derivations in (9) is more computationally
efficient. Indeed, this is one of the motivations behind the concept of hierarchical bandits.

3 Algorithm and Error Bounds
PI-BAI takes as input a budget n and an arbitrary vector of allocation weights ω = (ωi)i∈[K] ∈ ∆K . Then, it
collects ni = ⌊ωin⌋ samples for each arm i, and finally returns the arm with the highest posterior mean, defined
as Jn = argmaxi∈[K] E [r(i; θ) | Hn]. PI-BAI is described in Algorithm 1 where we make its dependence on
the allocation weights ω explicit and call it PI-BAI(ω).

Our algorithm consists in coupling PI-BAI to a well-chosen allocation vector ω that depends on the prior.
We will discuss the allocation strategies further below, but we first give theoretical guarantees that hold for
any choice of fixed ω. This idea has the benefit of its versatility, as it naturally generalizes to structured
bandit settings such as the linear or hierarchical problems defined above. The structure is a direct prior
information and is taken into account in the computation of the allocation weights as well as in the posterior
updates. Similarly and despite additional technicality, our novel proof scheme (see Section 4) is preserved
across all settings and allows us to state our main theorems below.

2Full derivations are in Appendix C.
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Algorithm 1 Prior-Informed BAI: PI-BAI(ω)
Input: Budget n, allocation weights ω ∈ ∆K .
for i = 1, . . . ,K do

Get ni = ⌊ωin⌋ samples of arm i
Compute mean posterior reward E [r(i; θ) | Hn]

Set Jn = argmaxi∈[K] E [r(i; θ) | Hn].

3.1 PoE Bounds for Multi-Armed Bandits
Theorem 3.1 presents an upper bound on the expected PoE of PI-BAI(ω) for MAB (2). The bound depends
on the prior and allocation weights3 ω ∈ ∆+

K .

Theorem 3.1 (Upper bound for multi-armed bandit). For all ω ∈ ∆+
K , the expected PoE of PI-BAI(ω)

under the MAB problem (2) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + nϕi,j

,

where ϕi,j = Ω(1), and it depends on the prior parameters and allocation weights. In particular, Pn = O(1/
√
n).

Full expressions and proofs are given in Appendix C.2.

The O(1/
√
n) bound contrasts with frequentist results where PoE is typically O(e−n/f(θ)), where f(θ) is

a complexity measure that depends on the fixed bandit instance θ (Audibert et al., 2010; Carpentier and
Locatelli, 2016). However, this O(1/

√
n) rate is not surprising for the expected PoE. For instance, when

K = 2, Atsidakou et al. (2022) states the existence of a prior distribution for which the expected PoE is lower
bounded by O(1/

√
n), and our result asymptotically matches this lower bound. To give more intuition, notice

that averaging the frequentist PoE bound O(e−n/f(θ)) under a Gaussian prior θi ∼ N (µ0,i, σ
2
0,i) leads to a

O(1/
√
n) rate for the expected PoE. Indeed, this idea was employed by Atsidakou et al. (2022) to achieve

their O(1/
√
n) rate. However, while we achieve similar asymptotic rates, our proof differs significantly as we

do not average the frequentist bound. Beyond asymptotic behavior, our bound also captures the structure of
the prior. In particular, if the prior is informative, either with small prior variances σ2

0,i → 0 or large prior
gaps |µ0,i − µ0,j | → ∞, then Pn → 0 for any fixed allocation weights ω ∈ ∆+

K . After interpreting our bound,
we now compare it to that of another Bayesian algorithm, BayesElim (Atsidakou et al., 2022), in the simpler
setting where their results are valid, that is, when the prior variances are homogeneous, σ2

0,i = σ2
0 . Their

bound reads

PBayesElim
n ≤

∑
i,j∈[K]
i̸=j

log2(K)
e
−

(µ0,i−µ0,j)
2

4σ2
0√

1 +
nσ2

0

Klog2(K)σ2

.

Theorem 3.1 in this setting even with the simplest allocations ωi =
1
K simplifies to the similar expression

PPI-BAI
n ≤

∑
i,j∈[K]
i ̸=j

e
−

(µ0,i−µ0,j)
2

4σ2
0√

1 +
nσ2

0

Kσ2

.

By omitting elimination phases, we gain roughly a factor log
3/2
2 (K) over the bound of Atsidakou et al. (2022)

(highlighted in blue). This difference makes our bound smaller even in their setting with homogeneous prior
variances and choosing uniform allocation weights for PI-BAI.

3For technical reasons we only allow positive allocation weights ω ∈ ∆+
K .
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Figure 1: Upper bound value of our method instantiated with various weights compared to the upper bound
of BayesElim (Atsidakou et al., 2022) in two settings.

We numerically compare these two bounds on the 3-armed bandit example described in Section 1, where
one arm is a priori suboptimal, and one of the other two is a priori optimal, µ0 = (1, 1.9, 2). We consider two
scenarios: one with homogeneous prior variances (σ0,i = 0.3 for all i ∈ [3]) and another with heterogeneous
prior variances, (σ0,1, σ0,2, σ0,3) = (0.1, 0.5, 0.5). Since BayesElim’s bound does not handle heterogeneous
prior variances, we use an average prior variance σ2

0 = 1
K

∑
i∈[K] σ

2
0,i for comparison. As predicted, Figure 1

shows that the value of the upper bound is much lower for PI-BAI for optimized, uniform and random
allocation weights. We also plot the upper bound of PI-BAI instantiated with a heuristic weight that favors
higher prior means and higher prior variance arms, that is, ωh

i =
µ0,iσ0,i∑

k∈[K] µ0,kσ0,k
.

3.2 PoE Bounds for Structured Bandits
Importantly, our analysis extends to the linear and hierarchical bandits in (4) and (6). Theorems 3.2 and 3.3
provide upper bounds on the PoE of PI-BAI(ω) in these settings. To the best of our knowledge, these are the
first prior-dependent bounds for fixed-budget Bayesian BAI in these settings.

Theorem 3.2 (Upper bound for linear bandit). Assume that xi ̸= xj for any i ̸= j, and that there exists
S > 0 such that ∥x∥22 ≤ S for any x ∈ X . Then, for all ω ∈ ∆+

K , the expected PoE of PI-BAI(ω) under the
linear bandit problem (4) is upper bounded as

Pn ≤
∑

i,j∈[K]
i̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ0√
1 +

ci,j
∥xi−xj∥2

Σ̂n

,

where ci,j = Ω(1), λ1(Σ̂n) = O(1/n), and they depend on both prior parameters and allocation weights. In
particular, Pn = O(1/

√
n) and we recover Theorem 3.1 when xi = ei ∈ RK and Σ0 = diag(σ2

0,i)i∈[K]. Full
expressions and proofs are given in Appendix C.3.

Similarly to our results in multi-armed bandits, Pn = O(1/
√
n) since λ1(Σ̂n) = O(1/n). Also, this bound

captures the benefit of using informative priors. Indeed, Pn → 0 when the prior variances are small, i.e.
Σ0 → 0L×L, or when the prior gaps are large, |µ⊤

0 xi − µ⊤
0 xj | → ∞.
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Theorem 3.3 (Upper bound for hierarchical bandit). For all ω ∈ ∆+
K , the expected PoE of PI-BAI(ω) under

the hierarchical bandit problem (6) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2Σ+σ2
0,i

+σ2
0,j

)√
1 +

ci,j
σ̂n,i+σ̂n,j

,

where cij = Ω(1) and σ̂2
n,i = Ω(1/n) and they all depend on both the prior parameters and allocation weights.

In particular, Pn = O(1/
√
n). Full expressions and proofs are given in Appendix C.4.

The term ∥bi − bj∥2Σ + σ2
0,i + σ2

0,j accounts for the prior uncertainty of both arms and effects. If the effects
are deterministic (Σ → 0L×L) then our bound recovers the upper bound of MAB with prior mean µ0,i = ν⊤bi.
On the other hand, if the arms are deterministic given the effects (σ2

0,i → 0), the bound only depends on
the effect covariance. Finally, if the prior is informative by its gap (|ν⊤bi − ν⊤bj | → ∞ ) or by its variance
(Σ → 0L×L and σ2

0,i → 0), then Pn → 0.

3.3 Allocation Strategies
Instantiating our algorithm requires choosing the potentially prior-dependent allocation weights. Though our
bound holds for any such choice, different principles can be used to find empirically satisfying allocations.

Allocation by optimization. Our upper bounds on the PoE in Theorems 3.1 to 3.3 are of the form

Pn ≤ Cprior(ω, n) ,

where Cprior(ω, n) = O(1/
√
n) depends on the prior and allocation weights ω. Since it is valid for any ω ∈ ∆+

K ,
we define the optimized allocation weights as

ωopt = argmin
w∈∆+

K

Cprior(ω, n) . (11)

We denote this variant PI-BAI(ωopt). To fix ideas and give intuition, we give the explicit solution for MAB
with K = 2. By Theorem 3.1,

Pn ≤ e
− (µ0,1−µ0,2)2

2(σ2
0,1+σ2

0,2) + e
− (µ0,1−µ0,2)2

2(σ2
0,1+σ2

0,2)√
1 + nϕ1,2(ω1, ω2)

,

which can be optimized to obtain

ωopt
1 = Π[0,1]

(1
2
−

(σ2
0,2 − σ2

0,1)σ
2

2nσ2
0,1σ

2
0,2

)
, ωopt

2 = 1− ωopt
1 , (12)

where Π[a,b](·) is the projection on [a, b]. This expression gives much insight into the allocation strategy.
First, in the case of equal prior confidence σ2

0,1 = σ2
0,2, allocating the same amount of samples for each arm is

optimal. On the other hand, if for example σ2
0,1 ≪ σ2

0,2 for small budget n, we would have ωopt
2 ≫ ωopt

1 , and
hence most of the budget would be allocated to the arm with high prior variance (low initial confidence).
This discussion is only valid for small budgets: as n → +∞, the optimal choice is to divide the budget
equally between both arms, since the prior relevance vanishes asymptotically. On the other hand, a saturation
phenomenon happens for ‘too small’ budgets: if n < 2σ2

∣∣∣σ2
0,2

σ2
0,1

− σ2
0,1

σ2
0,2

∣∣∣, the weight of the arm with larger prior
variance is equal to 1 due to the projection. Note that (12) does not depend on the prior gap ∆0, which is
coherent since identifying the optimal arm is strictly equivalent to identifying the worst arm when dealing
with 2 arms. However, this is not necessarily the case when K is larger, as discussed in Appendix D.8.

Since the objective function in (11) is non-convex for K > 2, we use numerical optimization to solve it
(e.g. L-BFGS-B (Virtanen et al., 2020)). Thankfully, this optimization is done just once before interacting
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with the environment. These optimized weights remain non-guaranteed to be good, because (11) is only
optimal with respect to the bound we derived. We found it useful in practice to mix them with the heuristic
weight ωh defined in Section 3.1. This allocation is motivated by having a small probability of error when
plugged in the bound (Figure 1), and our theoretical guarantees (Theorem 3.1) still hold because the weights
are a function of the prior. Hence, we define the new optimized weight as αωopt

i + (1− α)
µ0,iσ0,i∑

k∈[K] µ0,kσ0,k
. For

simplicity, we also refer this as ωopt. We tested the value of the parameter α in various settings, and found
that it is generally around 0.5 (Appendix D.7).

Allocation by optimal design. In the linear bandit setting, we generalize ideas from optimal experimental
design (Lattimore and Szepesvári, 2020, Chapter 21) to Bayesian MAB, linear and hierarchical bandits. To
the best of our knowledge, our work is the first to exploit this idea for such settings. Finding an (approximate)
Bayesian G-optimal design (see e.g. López-Fidalgo (2023, Chapter 4) for a review) is equivalent to maximizing
the log-determinant of the regularized information matrix defined as

ωG9opt = argmax
ω∈∆+

K

log det
(
nσ−2

∑
k∈[K]

ωkxkx
⊤
k +Σ−1

0

)
.

This leads to budget allocations that minimize the worst-case posterior variance in all directions. We quantify
the effects of using such an allocation in the upper bound:

Corollary 3.4 (Upper bound of PI-BAI(ωG9opt)). Assume that xi ≠ xj for any i ̸= j, and that there exists
S > 0 such that ∥x∥22 ≤ S for any x ∈ X . The expected PoE of PI-BAI(ωG9opt) in the linear bandit problem
(4) with diagonal covariance matrix Σ0 is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ0√
1 + n

2dσ2 ci,j
,

where ci,j = Ω(1). The full expressions and proofs are given in Appendix C.3. The result also holds for the
MAB setting when xi = ei ∈ RK and Σ0 = diag(σ2

0,i)i∈[K], and for the hierarchical setting with the equivalent
model (10) when Σ is diagonal.

G-optimal design can be applied for MAB, by using xi = ei for any i ∈ [K] and Σ0 = diag(σ2
0,i)i∈[K], and

also for hierarchical bandits by using its connection to the linear model (10).
Note that both allocation weights ωopt and ωG9opt are prior-dependent but not instance-dependent. In

particular, they enjoy the theoretical guarantees we derived in Section 4.

Allocation by warm-up. Finally, we present an adaptive allocation rule, for which our theoretical results
do not apply directly, but performs well in practice. Here we use a warm-up policy πw to interact with the
bandit environment for nw rounds (the warm-up phase), and then choose some allocation weights ωπw based
on the prior and the data collected through the interaction. The warm-up policy can be any decision-making
policy that (preferably) takes as input the prior distribution. Motivated by its good performance in BAI (Lee
et al., 2023), we choose πw to be Thompson sampling, and select the allocation weights to be proportional to
the number of pulls to each arm during the warm-up phase:

ωTS
i =

∑
t∈[nw] 1{At = i}

nw
, ∀i ∈ [K] . (13)

To illustrate the differences between optimized weights (PI-BAI(ωopt)) and learned weights with Thompson
sampling as a warm-up policy (PI-BAI(ωTS)), we return to our motivating example in Section 3.1, where
K = 3, µ0 = (1, 1.9, 2) and σ0,i = 0.3 for all i ∈ [3]. We set the budget as n = 100. We repeat 104 times the
following experiment: we sample a bandit instance from the prior and run Thompson sampling for nw = 20
rounds, then construct the allocation weights ωTS. Computing the weights ωopt by numerical optimization of
(11) is done once at the beginning of these experiments.
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Figure 2 shows an empirical comparison of the weights on 2 problem instances and on average over 104

runs. We see that, in this example, both allocation strategies assign high weights to arms 2 and 3, while
allocating a small weight to arm 1. This is because, based on the prior information, arm 1 is highly unlikely
to be the optimal arm. Then, the primary objective revolves around selecting the optimal arm among arms
2 and 3. Also, while the allocation weights ωts

i vary with each bandit instance, their average values in all
instances are similar to those of ωopt

i . Thus PI-BAI(ωTS) is more adaptive than PI-BAI(ωopt), while both
have similar average behavior.

4 General Proof Scheme
We outline the key technical insights to derive our Bayesian proofs. The idea is general and can be applied to
all our settings. Specific proofs for these settings are in Appendix C.

From Frequentist to Bayesian proof. To analyze their algorithm in the MAB setting, Atsidakou et al.
(2022) rely on the strong restriction that σ0,i = σ0 for all arms i ∈ [K] and tune their allocations as a function
of the noise variance σ2 such that in the Gaussian setting, the posterior variances σ̂2

n,i in (3) are equal for all
arms i ∈ [K]. This assumption is needed to directly leverage results from Karnin et al. (2013), thus allowing
them to bound the frequentist PoE P

(
Jn ̸= i∗(θ) | θ

)
≤ B(θ) for a fixed instance θ. Then, the expected PoE,

Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
, is bounded by computing Eθ∼P0

[B(θ)]. We believe it is not possible to extend
such technique for general choices of allocations ni and prior variances σ2

0,i. Thus, we pursue an alternative
approach, establishing the result in a fully Bayesian fashion. We start with a key observation.

Key reformulation of the expected PoE. We observe that the expected PoE can be reformulated as
follows

Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
= E

[
P
(
Jn ̸= i∗(θ) | Hn

)]
.

This swap of measures means that to bound Pn, we no longer bound the probability of

Jn = argmax
i∈[K]

E [r(i; θ) |Hn] ̸= argmax
i∈[K]

r(i; θ) = i∗(θ)

for any fixed θ. Instead, we only need to bound that probability when θ is drawn from the posterior distribution.
Precisely, we bound the probability that the arm i maximizing the posterior mean E [r(i; θ) | Hn] differs from
the arm i maximizing the posterior sample r(i; θ) | Hn. This is achieved by first noticing that Pn can be
rewritten as

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

The rest of the proof consists of bounding the above conditional probabilities for distincts i and j, and
this depends on the setting (MAB, linear or hierarchical). Roughly speaking, this is achieved as follows.
P (i∗(θ) = i | Hn, Jn = j) is the probability that arm i maximizes the posterior sample r(·; θ), given that
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Figure 3: Averaged PoE with varying budgets for the Fixed and Random settings. We compare PI-BAI
instantiated with different allocations strategies to the baselines BayesElim, TTTS, SR, SH in multi-armed and
hierarchical bandits, and to BayesGap and GSE in linear bandits.

arm j maximizes the posterior mean E [r(·; θ) | Hn]. We show that this probability decays exponentially
with the squared difference (E [r(i; θ) |Hn] − E [r(j; θ) |Hn])

2. Taking the expectation of this term under
the history Hn gives the desired O(1/

√
n) rate. All technical details and full explanations can be found

in Appendix C. This proof introduces a novel perspective for Bayesian BAI, distinguished by its tighter
prior-dependent bounds on the expected PoE and ease of extension to more complex settings like linear and
hierarchical bandits. However, its application to adaptive algorithms could be challenging, particularly due
to the complexity of taking expectations under the history Hn in that case. Also, extending this proof to
non-Gaussian distributions is an interesting direction for future work. Note that PI-BAI is applicable beyond
the Gaussian case, as done in Appendices A.2 and D.2 featuring an approximate approach to logistic bandits
(Chapelle and Li, 2012).

5 Experiments
We conduct several experiments to evaluate the performance of PI-BAI. In all experiments, we set the
observation noise to σ = 1 and run algorithms 104 times and display the (narrow) standard error. The
code is available in the supplementary material, and additional experiments and details are presented in
Appendix D.1. We consider four variants of PI-BAI(ω) varying in allocation weights: PI-BAI(ωuni) (uniform
weights), PI-BAI(ωopt) (optimized weights with mixing), PI-BAI(ωG9opt) (G-optimal design) and PI-BAI(ωTS)
(warmed-up with Thompson Sampling). The question of tuning the warm-up length nw is discussed in
Appendix D.7 and we set nw = K.

Multi-armed bandit. We consider two settings, Fixed and Random. For both, we set K = 10 and σ0,i

evenly spaced between 0.1 and 0.5. In the Fixed setting, µ0,i is evenly spaced between 0 and 1 whereas
in the Random one, µ0,i ∼ U([0, 1]). We compare PI-BAI variants to state-of-the-art Bayesian methods,
top-two Thompson sampling (TTTS) (Russo, 2016; Jourdan et al., 2022) and BayesElim (Atsidakou et al.,
2022), as well as to frequentist elimination algorithms: successive rejects (SR) (Audibert et al., 2010) and
sequential halving (SH) (Karnin et al., 2013). Note that TTTS does not come with theoretical guarantees in
the fixed-budget setting, but we include it given its good empirical performance.

Linear bandit. We let d = 4 and K = 30. Then we construct the arm set X by sampling arms xi from a
multivariate Gaussian distribution with mean 0d and covariance Id. In the Fixed setting, the prior mean
is flat µ0 = (1, . . . , 1) whereas in the Random setting, the prior means are sampled uniformly from [0, 1] as
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Figure 4: Averaged PoE on MovieLens.

µ0,i ∼ U([0, 1]). For both settings, Σ0 = diag(σ2
0,i)i∈[K] where the σ0,i’s are evenly spaced between 0.1 and

0.5. We compare our methods with two algorithms that were designed for linear bandits; BayesGap (Hoffman
et al., 2014) and GSE (Azizi et al., 2021), the current (tractable4) state-of-the-art that leverages G-optimal
design to perform successive elimination. Other methods that leverage the same elimination idea and have
lower performances on these settings (Alieva et al., 2021; Yang and Tan, 2022) are not tested.

Hierarchical bandit. Here, each mixing weight bi is chosen uniformly between 0 and 1, and then
normalized to form a probability vector. In the Fixed setting, The νi’s are evenly spaced in [−1, 1], whereas
each νi ∼ U([−1, 1]) in the Random setting. In both settings, Σ is diagonal with entries evenly spaced
in [0.12, 0.52], and Σ0 is also diagonal, where the σ0,i’s are evenly spaced between 0.1 and 0.5. The prior
distribution for all Bayesian algorithms (except PI-BAI) is simply obtained by marginalizing out the effects.
This allows obtaining µ0,i and σ0,i, even for algorithms that are not suitable for hierarchical priors. Though
there is no explicit baseline for this setting, we implement TS based on meTS (Aouali et al., 2023) and
we compare with frequentist and Bayesian elimination strategies agnostic to the structure. Despite the
connection to linear bandits, we do not include such baselines as they do not perform well due to their
inefficient representation of the structure.

Results on simulated data (Figure 3). Overall, despite setting-dependent variations, PI-BAI(ωG9opt) is
the best-performing version, closely followed by ωopt. In the hierarchical experiments PI-BAI(ωTS) surpasses
all baselines, highlighting the effectiveness of this method in capturing the underlying problem structure.
These observations reaffirm that leveraging prior information is a powerful and practical tool to scale the
applicability of BAI to cases with a large number of arms in limited data regimes.

MovieLens data experiment (Figure 4). The MovieLens (Lam and Herlocker, 2016) dataset is a large
sparse matrix of ratings from 6040 users (rows) on movies (columns, we subsampled K = 100). We first
perform a low-rank matrix factorization to obtain d = 5 dimensional vectors representing users (context) and
movies (actions) as well as estimated corresponding values. We then simulate an online interaction setting:
at each round t ∈ [n], a user vector is picked uniformly at random and a movie is chosen by the policy,
leading to a reward Yt ∼ N (x⊤

t θt, σ
2). This semi-synthetic problem allows us to assess PI-BAI’s robustness

to prior misspecification since the bandit instances are no longer sampled from the prior. More details in
Appendix D.1.

4Katz-Samuels et al. (2020) has an algorithm with tighter bounds but it is not tractable.
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6 Conclusion
We revisit the Bayesian fixed-budget BAI for PoE minimization (Atsidakou et al., 2022) and propose a simple
yet efficient algorithm for MAB, linear and hierarchical bandits. Our new proof technique reveals a flexible
and smaller upper bound on the expected PoE. In particular, this allows us to derive the first prior-dependent
Bayesian PoE upper bounds for linear and hierarchical bandits. We believe that our work sheds a new light
on the adaptativity-vs-generality trade-off in BAI algorithm design while opening several avenues for future
research. Our work relies on the assumption that the algorithm has access to the true instance-generating
distribution, i.e. the prior. Though this assumption is very common in the Bayesian bandits literature, it is
unrealistic in many scenarios. An interesting question for future work is to explore methods to learn the
generative distribution and the related consequences of prior misspecification on the expected PoE of PI-BAI
(Kveton et al., 2021; Simchowitz et al., 2021; Nguyen and Vernade, 2023).

Broader Impact Statement
In this work we have developed and analyzed generic algorithms for certain optimization problems. Employing
our methods may lead to savings in computation and energy. Since our problem setting and our algorithms
are generic, the broader (social) impact is unforeseeable and depends on the area where the methods are
applied.
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Organization of the Appendix
The supplementary material is organized as follows. In Appendix A, we provide additional general additional
remarks. In Appendix B, we mention additional existing works relevant to our work. In Appendix C, we give
complete statements and proofs of our theoretical results. In Appendix D, we provide additional numerical
experiments.

A Additional Discussions

A.1 Motivating examples for hierarchical bandits
In this section, we discuss motivating examples for using hierarchical models in pure exploration settings.

Hyper-parameter tuning. Here the goal is to find the best configuration for a neural network using n
epochs (Li et al., 2017). A configuration i is represented by a scalar θi ∈ R which quantifies the expected
performance of a neural network with such configuration. Again, it is intuitive to learn all θi individually.
Roughly speaking, this means running each configuration for ⌊ n

K ⌋ epochs and selecting the one with the highest
performance. This is statistically inefficient since the number of configurations can be combinatorially large.
Fortunately, we can leverage the fact that configurations often share the values of many hyper-parameters.
Precisely, a configuration is a combination of multiple hyper-parameters, each set to a specific value. Then
we represent each hyper-parameter ℓ ∈ [L] by a scalar parameter µℓ ∈ R, and the configuration parameter θi
is a mixture of its hyper-parameters µℓ weighted by their values. That is, θi =

∑
ℓ∈[L] bi,ℓµℓ + ϵi, where bi,ℓ is

the value of hyper-parameter ℓ in configuration i and ϵi is a random noise to incorporate uncertainty due to
model misspecification.

Drug design. In clinical trials, K drugs are administrated to n subjects, with the goal of finding the
optimal drug design. Each drug is parameterized by its expected efficiency θi ∈ R. As in the previous example,
it is intuitive to learn each θi individually by assigning a drug to ⌈ n

K ⌉ subjects. However, this is inefficient
when K is large. We leverage the idea that drugs often share the same components: each drug parameter
θi is a combination of component parameters µl, each accounting for a specific dosage. More precisely, the
parameter of drug i can be modeled as θi =

∑
l∈[L] bi,lµl + ϵi where ϵi accounts for uncertainty due to model

misspecification. Similarly to the hyper-parameter tuning example, this models correlations between drugs
and it can be leveraged for more efficient use of the whole budget of n epochs.

A.2 Beyond Gaussian distributions
The standard linear model (4) can be generalized beyond linear mean rewards. The Generalized Linear
Bandit (GLB) model with prior P0 writes (Filippi et al., 2010; Kveton et al., 2020)

θ ∼ P0 (14)
Yt | θ,At ∼ P (.; θ,At) ∀t ∈ [n] ,

where the reward distribution P (.; θ,At) belongs to some exponential family with mean reward r(At; θ) =
ϕ(θ⊤xAt). ϕ is called the link function. The log-likelihood of such reward distribution can be written

Ln(θ) =

n∑
t=1

log P(Yt; θ,Ai) =

n∑
t=1

Ytθ
⊤xAt

−A(θ⊤xAt
) + h(Yt) ,

where A is a log-partition function and h another function. Importantly, (14) encompasses the logistic bandit
model with the particular link function ϕ(z) = 1

1+e−z .
The main challenge of (14) is that closed-form posterior generally does not exist. One method is to

approximate the posterior distribution of θ given Hn with Laplace approximation: P(θ | Hn) is approximated
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with a multivariate Gaussian distribution with mean θ̂MAP and covariance Σ̂Lap, where θ̂MAP is the maximum
a posteriori,

θ̂MAP = argmax
θ

Ln(θ)P0(θ)

Σ̂−1
Lap =

n∑
t=1

ϕ̇(θ̂⊤MAPxAt)xAtx
⊤
At

,

where ϕ is assumed continuously differentiable and increasing. Note that θ̂MAP can be computed efficiently
by iteratively reweighted least squares (Wolke and Schwetlick, 1988).

Logistic Bandit. In the particular case where the reward distribution is Bernoulli, the model writes

θ ∼ N (µ0,Σ0)

Yt | θ,At ∼ B(ϕ(θ⊤xAt)) ∀t ∈ [n] , (15)

where ϕ is the logistic function. Then the mean posterior reward can be approximated as

Eθ∼N (θ̂MAP,Σ̂Lap)

[
ϕ(θ⊤xi)

]
≈ ϕ(θ̂⊤MAPxi)√

1 + π
8 ∥xi∥Σ̂Lap

,

and the decision after n rounds is Jn = argmaxi∈[K]
ϕ(θ̂⊤

MAPxi)√
1+π

8 ∥xi∥Σ̂Lap

.

Proving an upper bound on the expected PoE of this algorithm is challenging. Particularly, upper
bounding the expectation with respect to Hn is hard because one needs to show that θ̂MAP concentrates
in norm towards its expectation EHn

[
θ̂MAP

]
. We leave this study for future work. However, we provide

numerical experiments for this setting in Appendix D.2.

A.3 Additional Remarks on Hierarchical Models
The two-level prior we consider has a shared latent parameter µ = (µℓ)ℓ∈[L] ∈ RL representing L effects
impacting each of the K arm means:

µ ∼ Q

θi ∼ P0,i(·;µ) ∀i ∈ [K]

Yt | µ, θ,At ∼ P (·; θAt
) ∀t ∈ [n] ,

where Q is the latent prior on µ ∈ RL.
In the Gaussian setting (6), the maximum likelihood estimate of the reward mean of action i, Bn,i/ni,

contributes to (7) proportionally to its precision ni/(niσ
2
0,i + σ2) and is weighted by its mixing weight bi. (8)

is a standard Gaussian posterior, and (9) takes into account the information of the conditional posterior.
Finally, (9) takes into account the arm correlation through its dependence on σ̂n,i and µ̂n,i. While the
properties of conjugate priors are useful for inference, other models could be considered with approximate
inference techniques (Urteaga and Wiggins, 2018; Phan et al., 2019).

Link with linear bandit (cont.). The slightly unusual characteristic of (10) is that the prior distribution
has correlated components. This can be addressed by the whitening trick (Bishop, 2006), defining µ̃ = Σ̄−1/2µ̄
and b̃i = Σ̄1/2b̄i, giving

µ̃ ∼ N (Σ̄−1/2ν̄, IL+K)

Yt | µ̃, At ∼ N (b̃⊤At
µ̃, σ2) ∀t ∈ [n] , (16)

where IL+K is the (L+K)-dimensional identity matrix. Then, (16) corresponds to a linear bandit model with
K arms and d = K + L features. However, this model comes with some limitations. First, when computing
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posteriors under (16), the time and space complexities are O((K + L)3) and O((K + L)2) respectively,
compared to the O(K + L3) and O(K + L2) for our model (9). The feature dimension d = K + L can be
reduced to d = K through the following QR decomposition: B̃ =

(
b̃1, . . . , b̃K

)
∈ R(K+L)×K can be expressed

as B̃ = V R, where V ∈ R(K+L)×K is an orthogonal matrix and R ∈ RK×K . This leads to the following
model µ̌ ∼ N (V ⊤Σ̄−1/2ν̄, V ⊤V ) and Yt | µ̌, At ∼ N (R⊤

At
µ̌, σ2), yet the feature dimension d remains at the

order of K, and computational efficiency is not improved with respect to K.

From hierarchical bandit to MAB. Marginilizing the hyper-prior in (6) leads to a MAB model,

θi ∼ N (b⊤i ν, σ
2
0,i + b⊤i Σbi) ∀i ∈ [K] (17)

Yt | µ, θ,At ∼ N (θAt , σ
2) ∀t ∈ [n] . (18)

In this marginalized model, the agent does not know µ and he doesn’t want to model it. Therefore, only θ is
learned. The marginalized prior variance σ2

0,i + b⊤i Σbi accounts for the uncertainty of the not-modeled effects.

B Extended Related Work
In this section, we provide additional references relevant to our work.

Bayesian bandits in structured environments. Bayesian bandits algorithms under hierarchical models
have been heavily studied (Hong et al., 2020; Kveton et al., 2021; Basu et al., 2021; Hong et al., 2022a,b; Peleg
et al., 2022; Aouali et al., 2023; Aouali, 2023). All the aforementioned papers propose methods to explore
efficiently in the structured environment to minimize the (Bayesian) regret. The hierarchical model we use is
derived from Aouali et al. (2023). Beyond regret minimization, Bayesian structured models also found success
in simple regret minimization (Azizi et al., 2023) and off-policy learning in bandits (Hong et al., 2023).

Bayesian simple regret minimization. Azizi et al. (2023) considers the problem of simple regret
minimization in a Bayesian hierarchical setting. Their algorithm is based on Thompson sampling, and choose
an arm at the last round by sampling according to the number of pulls. This leads to a O(1/

√
n) rate on

the Bayesian simple regret. Recently, Komiyama et al. (2023) derived a method for Bayesian simple regret
minimization that asymptotically matches their proposed lower bound scaling in O(1/n). Their result does
not contradict our analysis because as mentioned in their work, the difference between the simple regret and
PoE matters in terms of rate when considering a Bayesian objective, unlike in the frequentist case. Moreover,
their method is designed for Bernoulli rewards, and their algorithm does not use the prior distribution.

C Proofs
In this section, we give complete proof of our theoretical results. In Appendix C.1, we give proofs for the
Bayesian posterior derivations and we provide technical results. In Appendix C.2, we prove Theorem 3.1.
The proofs for linear bandits (Theorem 3.2 and Corollary 3.4) are given in Appendix C.3. In Appendix C.4,
we provide proofs and technical remarks for hierarchical bandits (Theorem 3.3).

C.1 Technical Proofs and Posteriors Derivations
Bayesian computations. We focus on the hierarchical Gaussian case (6) and detail the computations of
posterior distributions. We first recall the model,

µ ∼ N (ν,Σ)

θi ∼ N (b⊤i µ, σ
2
0,i) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt
, σ2) ∀t ∈ [n] ,

where we recall that Bn,i =
∑

t∈Ti
Yt and Ti = {t ∈ [n], At = i}.
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Lemma C.1 (Gaussian posterior update). For any ρ ∈ R, µ ∈ RL, b ∈ RL and σ, σ0 > 0,m ∈ N, we have∫
ρ

∏
t∈[m]

N
(
Yt; ρ, σ

2
)
N
(
ρ; b⊤µ, σ2

0

)
dρ ∝ N (µ;µm,Σm) ,

with

Σm =
m

mσ2
0 + σ2

bb⊤; µm = Σ−1
m

∑
t∈[m] Yt

mσ2
0 + σ2

b .

Proof of Lemma C.1. By keeping only terms that depend on µ,

f(µ) =

∫
ρ

∏
t∈[m]

N
(
Yt; ρ, σ

2
)
N
(
ρ; b⊤µ, σ2

0

)
dρ

∝
∫
ρ

exp

− 1

2σ2

∑
t∈[m]

(Yt − ρ)2 − 1

2σ2
0

(ρ− b⊤µ)2

dρ

∝
∫
ρ

exp

{
−1

2
ρ2
(

1

σ2
0

+
m

σ2

)
− 2ρ

(∑
t∈[m]

σ2
+

b⊤µ

σ2
0

)}
dρ exp

{
− 1

2σ2
0

µT bb⊤µ

}

∝ exp

1

2

 1

σ2

∑
t∈[m]

Yt +
b⊤µ

σ2
0

2

σ2
0σ

2

σ2 +mσ2
0

− 1

2σ2
0

µT bb⊤µ


∝ exp

{∑
t∈[m] Ytb

⊤µ

σ2 +mσ2
0

+
σ2

2(σ2 +mσ2
0)
µ⊤bb⊤µ− 1

σ2
0

bb⊤

}

∝ exp

{
−1

2

(
µ⊤ m

σ2 +mσ2
0

bb⊤µ− 2µ⊤

∑
t∈[m] Yt

σ2 +mσ2
0

b

)}
∝ N (µ;µm,Σm) .

Lemma C.2 (Joint effect posterior). For any n ∈ [N ], the joint effect posterior is a multivariate Gaussian
Qn(µ) = N

(
µ̆, Σ̆n

)
, where

Σ̆−1
n = Σ−1 +

∑
i∈[K]

ni

niσ2
0,i + σ2

bib
⊤
i , µ̆n = Σ̆n

(
Σ−1ν +

∑
i∈[K]

Bn,i

niσ2
0,i + σ2

bi

)
.

Proof of Lemma C.2. The joint effect posterior can be written as

Qn(µ) ∝
∫
θ

Lθ (YA1 , ..., YAn)P0(θ | µ)dθQ(µ)

=
∏

i∈[K]

∫
θi

∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

⊤
i µ, σ

2
0,i

)
dθiN (µ; ν,Σ) .

Applying Lemma C.1 gives∫
θi

∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

⊤
i µ, σ

2
0,i

)
dθi ∝ N

(
µ; µ̄n,i, Σ̄n,i

)
,

with

Σ̆−1
n,i =

ni

σ2
0,ini + σ2

bib
⊤
i , µ̆n,i = Σ̆n,ibi

ni

σ2
0,ini + σ2

Bn,i

ni
.
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Therefore, the joint effect posterior is a product of Gaussian distributions,

Qn(µ) ∝
∏

i∈[K]

N
(
µ; µ̆n,i, Σ̆n,i

)
N (µ; ν,Σ) ∝ N

(
µ; µ̆n, Σ̆n

)
,

where

Σ̆n = Σ−1 +
∑
i∈[K]

Σ̆n,i = Σ−1 +
∑
i∈[K]

ni

σ2
0,ini + σ2

bib
⊤
i

µ̆n = Σ̆−1
n

Σ−1ν +
∑
i∈[K]

Σ̆−1
n,iµ̆n,i

 = Σ̆−1
n

Σ−1ν +
∑
i∈[K]

Bn,i

niσ2
0,i + σ2

bi

 .

Lemma C.3 (Conditional arm posteriors). For any n ∈ [n] and any arm i ∈ [K], the conditional posterior
distribution of arm i is a Gaussian distribution Pn,i(θi | µ) = N

(
µ̃n,i, σ̃

2
n,i

)
, where

σ̃−2
n,i =

1

σ2
0,i

+
ni

σ2
, µ̃n,i = σ̃2

n,i

(µ⊤bi
σ2
0,i

+
Bn,i

σ2

)
.

Proof of Lemma C.3. The conditional posterior of arm i can be written as

Pn,i(θi | µ) ∝ Lθi(YA1
, ..., YAn

)P0,i(θi | µ)

∝
∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

T
i µ, σ

2
0,i

)
∝ exp

{
− 1

2σ2

∑
t∈Ti

(Yt − θi)
2 − 1

2σ2
0,i

(θi − b⊤i µ)
2

}

∝ exp

{
− 1

2σ2

∑
t∈Ti

(
−2Ytθi + θ2i

)
− 1

2σ2
0,i

(
θ2i − 2θib

⊤
i µ
)}

∝ exp

{
−1

2

(
θ2i

(
ni

σ2
+

1

σ2
0,i

)
− 2θi

(
1

σ2

∑
t∈Ti

Yt +
1

σ2
0,i

b⊤i µ

))}
∝ N

(
θi; µ̃n,i, σ̃

2
n,i

)
Lemma C.4 (Marginal arm posterior). For any n ∈ [n] and any arm i ∈ [K], the marginal posterior
distribution of arm i is a Gaussian distribution P(θi | Hn) = N

(
µ̂n,i, σ̂

2
n,i

)
, where

σ̂2
n,i = σ̃2

n,i +
σ̃4
n,i

σ4
0,i

b⊤i Σ̆nbi, µ̂n,i = σ̃2
n,i

( µ̆⊤
n bi
σ2
0,i

+
Bn,i

σ2
i

)
.

Proof of Lemma C.4. The marginal distribution of arm i can be written as∫
µ

Pn,i(θi | µ)Qn(µ)dµ =

∫
µ

N
(
θi; µ̃n,i, σ̃

2
n,i

)
N
(
µ; µ̆n, Σ̆n

)
dµ

∝
∫
µ

N

(
θi; σ̃

2
n,i

(
µ⊤bi
σ2
0,i

+
Bn,i

σ2

)
, σ̃2

n,i

)
N
(
µ; µ̆n, Σ̆n

)
dµ .

The line above is a convolution of Gaussian measures, and can be written as (Bishop, 2006),∫
µ

Pn,i(θi | µ)Qn(µ)dµ ∝ N

(
θi; σ̃

2
n,i

(
µ̆⊤
n bi
σ2
0,i

+
Bn,i

σ2
i

)
, σ̃2

n,i +
σ̃2
n,i

σ2
0,i

b⊤i Σ̆n

σ̃2
n,i

σ2
0,i

bi

)
dµ

= N
(
θi; µ̂n,i, σ̂

2
n,i

)
.
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Lemma C.5 (Technical lemma). Let a > 0 and X ∼ N (µ, σ2). Then EX

[
e−

X2

2a2

]
= 1√

1+σ2

a2

e
− µ2

2(a2+σ2) .

C.2 Proofs for MAB
From now, we consider that ⌊ωkn⌋ = ωkn ∈ N for sake of simplicity.

Theorem C.6 (Complete statement of Theorem 3.1). For all ω ∈ ∆+
K , the expected PoE of PI-BAI(ω)

under the MAB problem (2) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + n

σ4
0,iωi

(
σ2

n +ωjσ2
0,j

)
+σ4

0,jωj

(
σ2

n +ωiσ2
0,i

)
σ2σ2

0,i

(
σ2

n +ωjσ2
0,j

)
+σ2σ2

0,j

(
σ2

n +ωiσ2
0,i

)
:=

∑
i,j∈[K]
i ̸=j

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + nϕi,j

,

Remark C.7. When σ2
0,i = σ2

0,j , limn→+∞ ϕi,j = limn→∞
σ4
0,iωi

(
σ2

n +ωjσ
2
0,j

)
+σ4

0,jωj

(
σ2

n +ωiσ
2
0,i

)
σ2σ2

0,i

(
σ2

n +ωjσ2
0,j

)
+σ2σ2

0,j

(
σ2

n +ωiσ2
0,i

) =
2σ2

0

σ2

ωiωj

ωi+ωj
=

O(1).

Proof of Theorem 3.1. We first write Pn as a double sum over all possible distinct arms,

E
[
P
(
Jn ̸= i∗(θ) | Hn

)]
= E [1{Jn ̸= i∗(θ)}]

= E

E
 K∑

i=1

K∑
j=1

1{i ̸= j}1{i∗(θ) = i}1{Jn = j} | Hn


=

∑
i,j∈[K]
i ̸=j

E [E [1{i∗(θ) = i}1{Jn = j} | Hn]]

=
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn)]

Since Jn : Hn → [K], P(Jn = j | Hn) = 1{Jn = j}. Considering both events {Jn = j} or {Jn ̸= j} under Hn,∑
i,j∈[K]
i ̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn)] =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn) (1{Jn = j}+ 1{Jn ̸= j})]

=
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn) | Jn = j]P(Jn = j) .

=
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

Overall,

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .
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By definition of i∗(θ) in the MAB setting and applying Hoeffding inequality for sub-Gaussian random
variables,

P

(
argmax
k∈[K]

θk = i | Hn, Jn = j

)
≤ P (θi ≥ θj | Hn, Jn = j)

= P ((θi − θj)− (µ̂n,i − µ̂n,j) ≥ −(µ̂n,i − µ̂n,j) | Hn, Jn = j)

≤ exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)
. (19)

Therefore,

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)]
(20)

We now want to compute this above expectation with respect to Hn.
First, we remark that because the scheduling of arms (A1, ..., An) is deterministic, the law of Hn =

(A1, YA1 , ..., An, YAn) is the law of (YA1 , ..., YAn). Denoting πHn the marginal distribution of Hn,

πHn
(Hn) = πHn

(YA1
, ..., YAn

) =

∫
θ

Lθ(YA1
, ...YAn

)P0(θ)dθ ,

where Lθ(YA1
, ...YAn

) denotes the likelihood of (YA1
, ...YAn

) given parameter θ and P0(θ) =
∏

i∈[K] P0,i(θi)
since each mean reward θi is drawn independently from P0,i in the MAB setting. Since rewards given
parameter θ are independent and identically distributed,

πHn (Hn) =

∫
θ

∏
i∈[K]

Lθi

(
(Yt)t∈Ti

)
P0,i(θi)dθi

=

∫
θ

∏
i∈[K]

N
(
(Yt)t∈Ti

; θi1ωin, σ
2Iωin

)
N
(
θi;µ0,i, σ

2
0,i

)
dθi , (21)

where 1q denotes the vector of size q whose all components are 1s.
(21) is a convolution of Gaussians and can be computed easily (Bishop, 2006),

N
(
(Yt)t∈Ti

; θi1ωin, σ
2Iωin

)
N
(
θi;µ0,i, σ

2
0,i

)
= N

(
(Yt)t∈Ai

;µ0,i1ωin, σ
2Iωin + σ2

0,i1ωin1
⊤
ωin

)
.

The above covariance matrix exhibits σ2 + σ2
0,i on the diagonal and σ2

0,i out of diagonal.
We are now ready to compute some useful statistics : for any i ∈ [K],

E [µ̂n,i] = E

[
σ2

σ2 + σ2
0,iωin

µ0,i +
σ2
0,i

σ2 + σ2
0,iωin

∑
t∈Ti

Yt

]
= µ0,i (22)

V (µ̂n,i) =
σ4
0,i(

σ2 + σ2
0,iωin

)2V
(∑

t∈Ti

Yt

)
=

σ4
0,i(

σ2 + σ2
0,iωin

)ωin (23)

E

[
1

ωin

∑
t∈Ti

Yt

]
= µ0,i (24)

V

(
1

ωin

∑
t∈Ti

Yt

)
=

1

ω2
i n

2

(
ωin

(
σ2 + σ2

0,i

)
+
(
ω2
i n

2 − ωin
)
σ2
0,i

)
=

σ2

ωin
+ σ2

0,i (25)

Applying Lemma C.5 on (20) and simplifying terms gives

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)]
=

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + nϕi,j

.
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C.3 Proofs for Linear Bandits
Theorem C.8 (Complete statement of Theorem 3.2). Assume that xi ̸= xj for any i ̸= j, and that there
exists S > 0 such that ∥x∥22 ≤ S for any x ∈ X . Then, for all ω ∈ ∆+

K , the expected PoE of PI-BAI(ω) under
the linear bandit problem (4) is upper bounded as

Pn ≤
∑

i,j∈[K]
i̸=j

1√
1 +

ci,j
∥xi−xj∥2

Σ̂n

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0 ,

where:

ci,j = ∥xi − xj∥2Cov(µ̂n)
, Cov(µ̂n) =

1

σ4
Σ̂n


∑
i∈[K]

(
ωin(σ

2 + x⊤
i Σ0xi)

)
xix

⊤
i︸ ︷︷ ︸

variance terms

+
∑
i∈[K]

∑
j∈[K]\{j}

x⊤
i Σ0xjωiωjn

2xix
⊤
j︸ ︷︷ ︸

covariance between arms

 Σ̂n .

Proof of Theorem 3.2. The proof for the linear model follows the same steps as the MAB model by
rewriting Pn as

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

By definition of i∗(θ) and Jn in the linear bandit setting,

P (i∗(θ) = i | Hn, Jn = j) = P
(
∀k ∈ [K], θ⊤xi ≥ θ⊤xk | Hn, Jn = j

)
≤ P

(
θ⊤xi ≥ θ⊤xj | Jn = j,Hn

)
≤ exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)
,

where the last inequality follows from Hoeffding inequality for sub-Gaussian random variables. Taking the
expectation with respect to Hn,

E [P (i∗(θ) = i | Hn, Jn = j)1{Jn = j}] ≤ E

[
exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)]
. (26)

Then we remark that the expectation of µ̂n with respect to Hn is

E [µ̂n] = E

Σ̂n

Σ−1
0 µ0 +

1

σ2

∑
t∈[n]

YtxAt

 = Σ̂n

Σ−1
0 µ0 +

1

σ2
E

∑
t∈[n]

YtxAt

 ,

since the scheduling (A1, . . . An) is known beforehand. Now,

E

∑
t∈[n]

YtxAt

 =
∑
t∈[n]

E [Yt]xAt
=
∑
t∈[n]

µ⊤
0 xAt

xAt
,

where E [Yt] was obtained by marginalizing the likelihood over the prior distribution as in (21).
Rearranging the terms permits to conclude that E [µ̂n] = µ0. Then we can compute the expectation in

(26) by applying Lemma C.5, Sylvester identity, and some simplifications:

E

[
exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)]
=

1√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

e
− 1

2∥µ0∥2
Λij . (27)
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where from Lemma C.5,

Λi,j = Cov(µ̂n)
−1 − Cov(µ̂n)

−1

(
Cov(µ̂n)

−1 +
(Ai −Aj)(Ai −Aj)

∥Ai −Aj∥2Σ̂n

)−1

Cov(µ̂n)
−1

= Cov(µ̂n)
−1 − Cov(µ̂n)

−1

(
Id +Cov(µ̂n)

(xi − xj)(xi − xj)

∥xi − xj∥2Σ̂n

)−1

=
(xi − xj)(xi − xj)

⊤

∥xi − xj∥2Σ̂n
+ ∥xi − xj∥2Cov(µ̂n)

.

The last equality follows from an application of Sherman-Morrison identity. Applying the law of total
expectation,

Cov(θ) = E [Cov(θ | Hn)] + Cov(E [θ | Hn]) = Σ̂n +Cov(µ̂n) .

Therefore,

∥xi − xj∥2Σ̂n
+ ∥xi − xj∥2Cov(µ̂n)

= ∥xi − xj∥2Σ̂n+Cov(µ̂n)
= ∥xi − xj∥2Σ0

.

Plugging these into (27), we obtain

E [P (i∗(θ) = i | Hn, Jn = j)] ≤ e
−

∥µ0∥2
(xi−xj)(xi−xj)

⊤

2∥xi−xj∥2Σ̂0√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

=
e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

.

Computation of Cov(µ̂n). By definition of Gaussian posteriors in linear bandit in (5),

Cov(µ̂n) = Cov

(
Σ̂n

(
Σ−1

0 µ0 +
1

σ2
Bn

))
= Σ̂nCov

(
Σ−1

0 µ0 +
1

σ2
Bn

)
Σ̂n =

1

σ4
Σ̂nCov(Bn)Σ̂n ,

and

Cov(Bn) =
∑
t∈[n]

V(YtxAt
) +

∑
t∈[n]

∑
t′∈[n],t̸=t′

Cov(YtxAt
, Yt′xAt′ )

=
∑
t∈[n]

V(Yt)xAt
x⊤
At

+
∑
t∈[n]

∑
t′∈[n],t̸=t′

Cov(Yt, Yt′)xAt
x⊤
At′

=
∑

k∈[K]

ωknV(Yxk
)xkx

⊤
k +

∑
i,j∈[K]
i ̸=j

ωiωjn
2Cov(Yxi

, Yxj
)xix

⊤
j

=
∑

k∈[K]

ωkn(σ
2 + x⊤

k Σ0xk))xkx
⊤
k +

∑
i,j∈[K]
i ̸=j

ωiωjn
2(x⊤

i Σ0xj)xix
⊤
j .

Proof of Corollary 3.4. We first prove a useful lemma that holds for Bayesian G-optimal design.

Lemma C.9. Let X a finite set such that |X | = K, ξ : X → [0, 1] a distribution on X so that
∑

x∈X ξ(x) = 1,
Vn(ξ) =

∑
x∈X ξ(x)xx⊤ + σ2

n Σ−1
0 , Σ0 ∈ Rd×d a diagonal matrix, and f(ξ) = log det

(
Vn(ξ)

)
. If ξ∗ =

argminξ∈∆K
f(ξ), then maxx∈X ∥x∥2Vn(ξ)−1 ≤ d.

Proof of Lemma C.9. By concavity of ξ 7→ f(ξ), we have for any ξ that

0 ≥ ⟨∇f(ξ∗), ξ − ξ∗⟩ =
∑
x∈X

ξ(x)
[
∇f(ξ∗)

]
x
− ⟨ξ∗,∇f(ξ∗)⟩ ,
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and since this holds for any pdf ξ, choosing ξ = δx′ for an arbitrary action x′ yields[
∇f(ξ∗)

]
x′ ≤ ⟨ξ∗,∇f(ξ∗)⟩ for any x′ ∈ X .

Since r.h.s. does not depend on x′,

max
x∈X

[
∇f(ξ∗)

]
x
≤ ⟨ξ∗,∇f(ξ∗)⟩ . (28)

By the property of the gradient of log-determinant,
[
∇f(ξ∗)

]
x
= ∥x∥Vn(ξ∗)−1 . Therefore, for any ξ,

⟨ξ,∇f(ξ)⟩ =
∑
x∈X

ξ(x)∥x∥2V −1(ξ)

=
∑
x∈X

ξ(x)x⊤Vn(ξ)
−1x

= Tr

(∑
x∈X

ξ(x)x⊤Vn(ξ)
−1x

)

= Tr

∑
x∈X

ξ(x)xx⊤

(∑
x′∈X

ξ(x′)x′x′⊤ +
σ2

n
Σ−1

0

)−1


= Tr

(
A

(
A+

σ2

n
Σ−1

0

)−1
)

where E =
∑
x∈X

ξ(x)xx⊤

= Tr

((
Id +

σ2

n
Σ−1

0 E−1

)−1
)

= Tr

(
Id −

σ2

n
Σ−1

0

(
Id +

σ2

n
E−1Σ−1

0

)−1

E−1

)
(Woodburry)

= Tr(Id)−
σ2

n
Tr

((
EΣ0 +

σ2

n
Id

)−1
)

≤ Tr(Id) = d .

All putting together in (28) with ξ∗ = argminξ∈∆K
f(ξ) implies maxx∈X ∥x∥V (ξ∗)−1 ≤ d.

A direct implication of Lemma C.9 is that maxx∈X ∥x∥Σ̂n
≤ dσ2

n . Therefore,

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

ci,j
∥xi−xj∥2

Σ̂n

≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

ci,j
2maxx∈X ∥x∥2

Σ̂n

≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 + n

ci,j
2dσ2

.

C.4 Proofs for Hierarchical Bandits
We begin by stating the complete proof.

Theorem C.10 (Complete statement of Theorem 3.3). For all ω ∈ ∆+
K , the expected PoE of PI-BAI(ω)

under the hierarchical bandit problem (6) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1 +

ci,j
σ̂n,i+σ̂n,j

e
−

(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2Σ+σ2
0,i

+σ2
0,j

) ,

24



where

ci,j = V(µ̂n,i − µ̂n,j) =
σ4
0,i

(σ2
0,iωin+ σ2)2

V(Bn,i) +
σ4
0,j

(σ2
0,jωjn+ σ2)2

V(Bn,j)

+
σ4

(σ2
0,iωin+ σ2)2

∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k)

2
V(Bn,k) +

σ4

(σ2
0,jωjn+ σ2)2

∑
k∈[K]

(b⊤k Σ̆nbj)
2

(σ2 + ωknσ2
0,k)

2
V(Bn,k)

+
σ4

(σ2
0,iωin+ σ2)2

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbi).(b
⊤
k′Σ̆nbi)

(σ2
0,kωkn+ σ2).(σ2

0,k′ωk′n+ σ2)
cov(Bn,k, Bn,k′)

+
σ4

(σ2
0,jωjn+ σ2)2

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbj).(b
⊤
k′Σ̆nbj)

(σ2
0,kωkn+ σ2).(σ2

0,k′ωk′n+ σ2)
cov(Bn,k, Bn,k′)

− 2σ4

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)

 ∑
k∈[K]

(b⊤k Σ̆nbi)(b
⊤
k Σ̆nbj)

(σ2 + ωknσ2
0,k)

2
V(Bn,k) +

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbi).(b
⊤
k′Σ̆nbj)

(σ2
0,kωkn+ σ2).(σ2

0,k′ωk′n+ σ2)
cov(Bn,k, Bn,k′)


−

2σ2
0,iσ

2
0,j

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)
cov(Bn,i, Bn,j)

+
2σ2σ2

0,i

(σ2
0,iωin+ σ2)2

 ∑
k∈[K]\{i}

b⊤k Σ̆nbi
(σ2

0,kωkn+ σ2)
cov(Bn,k, Bn,i) +

b⊤i Σ̆nbi
(σ2

0,iωin+ σ2)
V(Bn,i)


+

2σ2σ2
0,j

(σ2
0,jωjn+ σ2)2

 ∑
k∈[K]\{j}

b⊤k Σ̆nbj
(σ2

0,kωkn+ σ2)
cov(Bn,k, Bn,j) +

b⊤j Σ̆nbi

(σ2
0,jωjn+ σ2)

V(Bn,j)


−

2σ2σ2
0,j

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)

 ∑
k∈[K]\{j}

b⊤k Σ̆nbi
σ2 + ωknσ2

0,k

cov(Bn,k, Bn,i) +
b⊤j Σ̆nbi

σ2 + ωjnσ2
0,j

V(Bn,j)


−

2σ2σ2
0,i

(σ2
0,jωjn+ σ2)(σ2

0,iωin+ σ2)

 ∑
k∈[K]\{i}

b⊤k Σ̆nbj
σ2 + ωknσ2

0,k

cov(Bn,k, Bn,j) +
b⊤i Σ̆nbj

σ2 + ωinσ2
0,i

V(Bn,i)

 ,

where we defined Σ̆n from (7),

Σ̆−1
n = Σ−1 +

∑
k∈[K]

ωkn

σ2 + ωknσ2
0,k

bkb
⊤
k ; V(Bn,k) = ωknσ

2 + ω2
kn

2(σ2
0,k + b⊤k Σbk) ; cov(Bn,k, Bn,k′) = ωkωk′n2b⊤k Σbk′ .

Proof of Theorem C.10. This proof follows the same idea of the proof of Theorem 3.1. We first write Pn as

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

Following (19), by applying Hoeffding inequality for sub-Gaussian random variables,

P

(
argmax
k∈[K]

θk = i | Hn, Jn = j

)
≤ P (θi ≥ θj | Hn, Jn = j)

= P ((θi − θj)− (µ̂n,i − µ̂n,j) ≥ −(µ̂n,i − µ̂n,j) | Hn, Jn = j)

≤ exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)
,

where µ̂n,i and σ̂2
n,i are given by (9). Taking the expectation with respect to the history Hn,

E [P(i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
e
−

(µ̂n,j−µ̂n,i)
2

2(σ̂2
n,i

+σ̂2
n,j

)

]
.
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Since µ̂n,i − µ̂n,j ∼ N
(
E [µ̂n,i]− E [µ̂n,j ] ,V(µ̂n,i − µ̂n,j)

)
, applying Lemma C.5 gives

E

[
e
−

(µ̂n,j−µ̂n,i)
2

2(σ̂2
n,i

+σ̂2
n,j

)

]
=

1√
1 +

V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

exp

− (E [µ̂n,i]− E [µ̂n,j ])
2

2(σ̂2
n,i + σ̂2

n,j)

1

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j


Therefore,

E [P(i∗(θ) = i | Jn = j,Hn)] ≤
1√

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

e
− (E[µ̂n,i]−E[µ̂n,j ])

2

2(σ̂2
n,i

+σ̂2
n,j

+V(µ̂n,i−µ̂n,j)) .

Now we want to simplify σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j). on one hand, by the law of total variance,

V(θi − θj) = E [V(θi − θj | Hn)] + V(E [θi − θj | Hn]) = σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j) ,

On the other hand,

V(θi − θj) = E [V(θi − θj | µ)] + V(E [θi − θj | µ]) = σ2
0,i + σ2

0,j + V((bi − bj)
⊤µ)

= σ2
0,i + σ2

0,j + ∥bi − bj∥2Σ .

Combining these two last equations gives σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j) = σ2
0,i + σ2

0,j + ∥bi − bj∥2Σ .
Therefore,

E [P(i∗(θ) = i | Jn = j,Hn)] ≤
1√

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

e
− (E[µ̂n,i]−E[µ̂n,j ])

2

2(σ2
0,i

+σ2
0,j

+∥bi−bj∥2Σ) . (29)

Computing V(µ̂n,i − µ̂n,j).
The rest of the proof consists to compute E [µ̂n,i] and V(µ̂n,i − µ̂n,j) for (i, j). Denoting Q the latent

prior distribution µ ∼ Q and πHn
the law of Hn,

πHn
(Hn) = πHn

(YA1
, ..., YAn

)

=

∫∫
(θ,µ)

Lθ(YA1
, ..., YAn

)P0(θ | µ)Q(µ)dθdµ

=

∫∫
(θ,µ)

∏
i∈[K]

Lθi ((Yt)t∈Ti
)P0,i(θi | µ)Q(µ)dθidµ

=

∫
µ

 ∏
i∈[K]

∫
θi

N
(
(Yt)t∈Ti

); θi1ωin, σ
2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi

Q(µ)dµ .

From properties of Gaussian convolutions (Bishop, 2006),∫
θi

N
(
(Yt)t∈Ti

); θi1ωin, σ
2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi = N

(
(Yt)t∈Ti

); (b⊤i µ)1ωin, σ
2.Iωin + 1ωin1

⊤
ωinσ

2
0,i

)
.

Therefore, ∏
i∈[K]

∫
θi

N
(
(Yt)t∈Ti

); θi1ωin, σ
2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi

= N (Hn;
∑
i∈[K]

ei
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

⊗ µ, IK ⊗ (σ2Iωin + 1ωin1
⊤
ωinσ

2
0,i)) ,
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where we define explicitly ei
(
RK
)

as the ith base vector of RK .
Therefore,

π(Hn) =

∫
µ

N (Hn;
∑
i∈[K]

ei
(
RK
)
⊗

( ∑
t∈ωin

et (Rωin)⊗ b⊤i

)
⊗ µ, IK ⊗ (σ2Iωin + 1ωin1

⊤
ωinσ

2
0,i))N (µ; ν,Σ)dµ

= N (Hn; µ̊, Σ̊) ,

where µ̊ ∈ Rn, Σ̊ ∈ Rn×n with

µ̊ =
∑
i∈[K]

ei
(
RK
)
⊗

( ∑
t∈ωin

et (Rωin)⊗ b⊤i

)
⊗ ν

Σ̊ = IK ⊗ (σ2Iωin + 1ωin1
⊤
ωinσ

2
0,i)

+

∑
i∈[K]

e
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

Σ

∑
i∈[K]

ei
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

⊤

. (30)

The covariance matrix Σ̊ seems complex but has a simple structure. The first term IK⊗(σ2Iωin+1ωin1
⊤
ωinσ

2
0,i)

is the same as in the standard model. The remaining term accounts for the correlation between distinct arms
(i, j), and this correlation is of the form b⊤i Σbj .

Now we are ready to compute E [µ̂n,k] for any arm k ∈ [K]: from (8) and (9),

E [µ̂n,k] = E

[
σ̃2
n,k

(
µ̆⊤
n bk
σ2
0,k

+
Bn,k

σ2

)]

= E

[
σ2σ2

0,i

σ2
0,kωkn+ σ2

(
µ̆⊤
n bk
σ2
0,k

+
Bn,k

σ2

)]

=
σ2

σ2
0,kωkn+ σ2

E
[
µ̆⊤
n bk

]
+

σ2
0,k

σ2
0,kωkn+ σ2

E [Bn,k] .

From (7),

µ̆⊤
n bk =

ν⊤Σ−1 +
∑
i∈[K]

Bn,i

σ2 + ωinσ2
0,i

b⊤i

 Σ̆nbk = ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

Bn,i

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk .

By linearity,

E [µ̂n,k] =
σ2

σ2
0,kωkn+ σ2

ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

E [Bn,i]

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk

+
σ2
0,k

σ2
0,kωkn+ σ2

E [Bn,k] .

From Equation (30), E [Bn,i] = ωinν
⊤bi. Therefore,

E [µ̂n,k] =
σ2

σ2
0,kωkn+ σ2

ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

ωinν
⊤bi

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk

+
σ2
0,k

σ2
0,kωkn+ σ2

ωknν
⊤bk = ν⊤bk

(31)
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Now we are ready to compute V(µ̂n,i − µ̂n,j) for any (i, j). From (31),

µ̂n,i − µ̂n,j =
σ2

σ2
0,iωin+ σ2

µ̆⊤
n bi +

σ2
0,i

σ2
0,iωin+ σ2

Bn,i −
σ2

σ2
0,jωjn+ σ2

µ̆⊤
n bj −

σ2
0,j

σ2
0,iωjn+ σ2

Bn,j

=
σ2

σ2
0,iωin+ σ2

ν⊤Σ−1Σ̆nbi −
σ2

σ2
0,jωjn+ σ2

ν⊤Σ−1Σ̆nbj︸ ︷︷ ︸
does not depend on observations

+
σ2

σ2
0,iωin+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi︸ ︷︷ ︸
(1)

+
−σ2

σ2
0,jωjn+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbj︸ ︷︷ ︸
(2)

+
σ2
0,j

σ2
0,iωin+ σ2

Bn,i︸ ︷︷ ︸
(3)

+
−σ2

0,j

σ2
0,jωjn+ σ2

Bn,j︸ ︷︷ ︸
(4)

.

Since (1), (2),(3) and (4) are correlated,

V(µ̂n,i + µ̂n,j) = V ((1) + (2) + (3) + (4)) =

4∑
i=1

V((i)) +
4∑

i=1

4∑
j=1,j ̸=i

2cov((i), (j)) . (32)

We now compute each term of (32):

V((1)) =
σ4

(σ2
0,iωin+ σ2)2

V

 ∑
k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi


=

σ4

(σ2
0,iωin+ σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k)

2
V(Bn,k) +

∑
(k,k′),k ̸=k′

cov

(
Bn,k

σ2 + ωknσ2
0,k

b⊤k Σ̆nbi,
Bn,k′

σ2 + ωk′nσ2
0,k′

b⊤k′Σ̆nbi

)
=

σ4

(σ2
0,iωin+ σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k)

2
V(Bn,k) +

∑
(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′Σ̆nbi)

(σ2 + ωknσ2
0,k)(σ

2 + ωk′nσ2
0,k′)

cov(Bn,k, Bn,k′)


V((2)) =

σ4

(σ2
0,jωjn+ σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbj)
2

(σ2 + ωknσ2
0,k)

2
V(Bn,k) +

∑
(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′Σ̆nbj)

(σ2 + ωknσ2
0,k)(σ

2 + ωk′nσ2
0,k′)

cov(Bn,k, Bn,k′)

 ,

V((3)) =
σ4
0,i

(σ2
0,iωin+ σ2)2

V(Bn,i)

V((4)) =
σ4
0,j

(σ2
0,jωjn+ σ2)2

V(Bn,j) ,
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cov((1), (2)) = −cov

 σ2

σ2
0,iωin+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi,
σ2

σ2
0,jωjn+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbj


= − σ4

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)
cov

 ∑
k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi,
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbj


= − σ4

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)

[ ∑
k∈[K]

(b⊤k Σ̆nbi)(b
⊤
k Σ̆nbj)

(σ2 + ωknσ2
0,k)

V(Bn,k)

+
∑

(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′Σ̆nbj)

(σ2 + ωknσ2
0,k)(σ

2 + ωk′nσ2
0,k′)

cov(Bn,k, Bn,k′)

]

cov((3), (4)) = −cov

(
σ2
0,i

σ2
0,iωin+ σ2

Bn,i,
σ2
0,j

σ2
0,jωjn+ σ2

Bn,j

)

= −
σ2
0,iσ

2
0,j

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)
cov(Bn,i, Bn,j)

cov((1), (4)) = −cov

 σ2

σ2
0,iωin+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi,
σ2
0,j

σ2
0,jωjn+ σ2

Bn,j


= −

σ2σ2
0,j

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)
cov

 ∑
k∈[K]

Bn,k

σ2 + ωknσ2
0,k

b⊤k Σ̆nbi, Bn,j


= −

σ2σ2
0,j

(σ2
0,iωin+ σ2)(σ2

0,jωjn+ σ2)

 ∑
k∈[K]\{j}

b⊤k Σ̆nbi
σ2
0,kωkn+ σ2

+
b⊤j Σ̆nbi

σ2
0,jωjn+ σ2

V(Bn,j)

 .

The remaining terms are obtained by symmetry. Finally, for any (i, j) :

V(Bn,i) = V

(∑
t∈Ai

Yt

)
= ωinσ

2 + ω2
i n

2(σ2
0,i + b⊤i Σbi)

cov(Bn,i, Bn,j) = cov

∑
t∈Ai

Yt,
∑
t∈Aj

Yt

 =
∑
t∈Ai

∑
t∈Aj

cov(Yt, Yt) = ωiωjn
2b⊤i Σbj .

Remark C.11 (Computing the upper bound for hierarchical bandit with Theorem 3.2). The reader can wonder
why transforming the hierarchical model into a linear model thanks to (10), and plug directly the transformed
prior and actions to the linear upper bound (Theorem 3.2). While this is what we do to optimize numerically
the bound, it is challenging to give explicit terms with this method. In fact, it would yield to the following
upper bound,

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1 +

∥b̄i−b̄j∥2
¯Covn

∥b̄i−b̄j∥2
Σ̄n

e
−

(ν̄⊤ b̄i−ν̄⊤ b̄j)
2

2(∥b̄i−b̄j∥2Σ̄ =
∑

i,j∈[K]
i ̸=j

1√
1 +

∥b̄i−b̄j∥2
¯Covn

∥b̄i−b̄j∥2
Σ̄n

e
−

(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2Σ+σ2
0,i

+σ2
0,j

) ,

where

Σ̄n =

Σ̄ +
1

σ2

∑
i∈[K]

ωinb̄ib̄
⊤
i

−1

, ¯Covn =
1

σ4
Σ̄n

∑
i∈[K]

ωin(σ
2 + b̄iΣ̄b̄i)b̄ib̄

⊤
i +

∑
i,j∈[K]
i ̸=j

b̄iΣ̄b̄jωiωjn
2b̄ib̄

⊤
j

 Σ̄n .

However, computing ∥b̄i − b̄j∥2¯Covn
and ∥b̄i − b̄j∥2Σ̄n

is computationally challenging because it requires first to
compute Σ̄ with block-matrix inversion, then to recover the marginal and posterior covariances σ̃2

n,i, σ̆
2
n,i and

σ̂2
n,i from (7), (8) and (9).
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D Additional Experiments
We provide additional numerical experiments on synthetic data.

• Appendix D.1 provides additional details for the MovieLens experiments.

• Appendix D.2 provides experiments for the logistic bandit model.

• Appendix D.3 provides justifications for the choice of baselines. In particular, we discuss the choice of
the warm-up policy and the influence of adding elimination on top of our method.

• Appendix D.4 gives experiments when focusing as the simple regret as a metric.

• Appendix D.5 provides another type of confidence intervals on the experiments of Section 5.

• Appendix D.6 explains in which setting the hierarchical model benefits from model structure.

• Appendix D.7 tackles the problem of tuning the warm-up length nw and the influence of the choice of
πw on the PoE.

• Appendix D.8 provides toy example when deriving ωopt.

D.1 MovieLens Experiments
We provide more information on our MovieLens experiments in Figure 4. The MovieLens dataset contains
ratings given by 6040 users to 3952 movies. We use a subset of K = 100 randomly picked movies for our
experiments. The prior used for inference in PI-BAI and BayesGap is set to be Gaussian with mean µ0 and
Σ0. These parameters are estimated by taking the empirical mean and empirical covariance over the wall
dataset. All results are averaged over 104 rounds.

D.2 Logistic Bandits
We consider two main settings as in Section 5. In the Fixed setting, µ0 is flat, µ0 = (1, . . . , 1) whereas in the
Random setting, the prior means are uniformly sampled from [0, 1]. For both settings, Σ0 = diag(σ2

0,i)i∈[K]

where the σ0,i’s are evenly spaced between 0.1 and 0.5. We ran experiments for K = 30 arms and d ∈ {3, 4}.
Figure 5 shows that the generalization of PI-BAI with G-optimal design allocations on has good performances
beyond linear settings.
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Figure 5: Average PoE with varying budgets for fixed and randomized settings in the GLB framework.

D.3 Choice of Baselines
A remark on TTTS. Top two sampling algorithms is a family of algorithms that is known to have good
performances in BAI. In Section 5, we used TS-TCI with β = 0.5 from Jourdan et al. (2022) and denoted it
as TTTS for sake of notation simplicity.
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Choice of warm-up policy. We evaluate different warm-up policies,TS and two Top-Two algorithms,
TSTCI and T3C from Jourdan et al. (2022). The experiments shown in Figure 6 are run in the same setting as
in Section 5, with K = 10 arms in the MAB setting, and with K = 60 and d = 4 in the hierarchical setting.
Figure 6 suggests to pick TS as a warm-up policy for the MAB setting and meTS for the hierarchical setting.
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Figure 6: Average PoE of PI-BAI instantiated with different warm-up policies.

Influence of elimination. We empirically compare the influence of using elimination on top of our methods.
The elimination procedure is the same as the one used in Atsidakou et al. (2022). There are ⌊log2(K)⌋ rounds,
and each lasts ⌊ n

R⌋ steps. At each round, we pull each remaining arm i ⌊ωin
R ⌋ times. At the end of the round,

half of arms are eliminated. These correspond to the arms that have the least posterior mean reward (so µ̂n,i

in the MAB setting). The allocation ω is then normalized to allocate more budget to remaining arms. Note
that we draft all observations at the end of each round, as it is the case in (Karnin et al., 2013; Azizi et al.,
2021; Atsidakou et al., 2022). Figure 7 shows that using elimination does not give better performances, and
hence we chose to not add these baselines in Section 5.
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Figure 7: Average PoE of PI-BAI instantiated with different weights with or without elimination in the MAB
setting.

D.4 Simple Regret
Figure 8 compares the performances of our methods based on the Bayesian simple regret E

[
maxi∈[K] θ − θJn

]
,

where the expectation is taken with respect to the prior distribution over instances θ. Overall, it shows that
our methods also have low simple regret in these settings.
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Figure 8: Average simple regret with varying budgets for fixed and randomized settings.

D.5 Confidence Intervals on Sampled Instances
We provide additional plots in the same settings of Section 5. The first row of Figure 9 shows the PoE of the
methods averaged over 1000 different instances sampled from the prior distribution. For each instance, we
repeat the experiments 100 times to get an estimate of the probability. We show one standard deviation
around the averaged mean of PoE over instances. In the second row of the same figure, we plot the PoE of
each method subtracted by the PoE of the method having the least PoE in each setting, that is, PI-BAI(ωopt)
in MAB, PI-BAI(ωG9opt) in linear bandits and PI-BAI(ωTS) in hierarchical bandits.
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Figure 9: PoE of several methods (first row) and PoE of each method substracted by the PoE of the most
performing method in each setting (second row). For each instance, we repeat the experiments 100 times and
we average the results over 1000 instances. The confidence intervals show one standard deviation.

D.6 Benefits of Hierarchical Models
To illustrate the benefits of using a hierarchical structure (6), we compare the posterior variances σ̂2

n,i under a
standard model and a hierarchical model. The standard model is obtained by marginalizing over the effects µ,

θi ∼ N (b⊤i ν, σ
2
0,i + b⊤i Σbi) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt
, σ2) ∀t ∈ [n] . (33)

32



From (3), the corresponding posterior covariance of an arm i ∈ [K] is

σ̂−2
n,i =

1

σ2
0,i + bTi Σbi

+
ωin

σ2
.

For the first setting, we uniformly draw a vector u ∈ [0, 1] and set σ0 = 0.1u and Σ = 2IL. For the second
setting, we set σ0 = u and Σ = 10−3IL. In both settings, we consider K = 50 arms, and L = 10 effects.
We draw uniformly ν, bi ∈ [−1, 1]L and the allocation vector is set to uniform allocation ωuni

i = 1
K for any

i ∈ [K]. In Figure 10 we plot the average posterior covariance 1
K

∑
i∈[K] σ

2
n,i across all arms for both the

(marginalized) standard model (33) and the hierarchical model (6). The goal of this experiment is to show
for which setting the benefits of the hierarchy are pronounced. The results show that this difference is more
pronounced when the initial uncertainty of the effects Σ is greater than the initial uncertainty of the mean
rewards (σ2

0,i)i∈[K].
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Figure 10: Average posterior covariance across all arms for standard and hierarchical model for two settings.

D.7 Hyperparameters
Warm-up length nw. We try different values of warm-up length nw for our warm-up policies. We
emphasize that methods based on TTTS require nw > K because each arm has to be pulled at the beginning.
Figure 11 suggests picking nw = 2K for the warm)up with T3C and TSTCI, and nw = K for the warm-up
with TS.
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Figure 11: Average PoE of PI-BAI instantiated with different warm-up policies for different warm-up lengths
nw.

33



Mixture parameter α. We discuss the choice of the mixture parameter α. We recall that we use the
heuristic αωopt

i + (1−α)
µ0,iσ0,i∑

k∈[K] µ0,kσ0,k
in our experiments. Figure 12 shows that for the fixed setting, adding

the vector µ0,iσ0,i∑
k∈[K] µ0,kσ0,k

helps improve the performances. This is not necessarily the case in the random
setting.
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Figure 12: Average PoE of PI-BAI(ωopt) for different mixture parameter α.

D.8 Toy Experiments for ωopt

We provide additional experiments to evaluate the optimized weights ωopt in different settings. In Figure 13,
we set K = 3, µ0 = (2, 1.9, 0), (σ0,1, σ0,2, σ0,3) = (10−2, 0.5, 0.5). This corresponds to the motivating setting
depicted in the introduction (Section 1). We provide a comprehensive illustration of the prior bandit instance
µ0,i ± 2σ0,i (left plot). Then we let the budget vary, n ∈ [10, 200], and for each n we (numerically) optimize
(11) to get ωopt

n (middle plot). On the right plot, we let the prior mean of arm 2 vary, µ0,2 ∈ [0, 2], and get
ωopt as a function of µ0,2. In Figure 14, we do the same experiments for 6 arms with 2 good arms a priori,
µ0 = (2, 1.9, 1, 0.6, 0.3, 0) and σ0 uniformly spaced in [0.5, 0.1]. As n increases, ωopt suggests distributing
roughly one third of the budget for each arm 1 and 2, and the remaining to the rest of the arms.

These results give insight on the behavior of ωopt. In Figure 13, for small budgets, ωopt suggests pulling a
lot the second arm because of its wide prior confidence σ2

0,2 ≫ σ2
0,1. It does not give much allocation to the

last arm since it is statistically unlikely to become optimal. As the budget n grows, most of the allocations
are almost equal to arm 1 and arm 2. Since σ2

0,1 ̸= σ2
0,2, ω

opt
1 ̸= ωopt

2 even for a large budget n = 200. The
right plot of Figure 13 shows that ωopt depends on prior gaps. Interestingly, this was not the case for the
very special example K = 2 depicted in Section 3.3.
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Figure 13: Illustration of the prior bandit instance (left), and optimized allocation ωopt when varying budget
n (middle) or one coordinate of µ0 (right).
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Figure 14: Illustration of the prior bandit instance (left), and optimized allocation ωopt when varying budget
n (right).
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