
HAL Id: hal-04629205
https://hal.science/hal-04629205v1

Preprint submitted on 27 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Omega: The Power of Visual Simplicity
Benoit Sonntag, Dominique Colnet

To cite this version:

Benoit Sonntag, Dominique Colnet. Omega: The Power of Visual Simplicity. 2024. �hal-04629205�

https://hal.science/hal-04629205v1
https://hal.archives-ouvertes.fr

Ω: The Power of Visual Simplicity
Benoı̂t Sonntag

Université de Strasbourg, Strasbourg, France
Benoit.Sonntag@lisaac.org - 0009-0000-2806-1970

Dominique Colnet
Université de Lorraine - LORIA, Nancy, France

Dominique.Colnet@loria.fr - 0009-0006-7368-2235

Abstract—We are currently developing an innovative and
visually-driven programming language called Ω (Omega). Al-
though the Ω code is stored in text files, these files are not
intended for manual editing or traditional printing. Furthermore,
parsing these files using a context-free grammar is not possible.
The parsing of the code and the facilitation of user-friendly man-
ual editing both necessitate a global knowledge of the codebase.
Strictly speaking, code visualization is not an integral part of
the Ω language; instead, this task is delegated to the editing
tools. Thanks to the global knowledge of the code, the editing
process becomes remarkably straightforward, with numerous
automatic completion features that enhance usability. Ω leverages
a visual-oriented approach to encompass all fundamental aspects
of software engineering. It offers robust features, including safe
static typing, design by contracts, rules for accessing slots,
operator definitions, and more, all presented in an intuitively
and visually comprehensible manner, eliminating the need for
obscure syntax.

Index Terms—visual object-oriented, graphical operators, no
context free grammar, visual programming, software engineering,
design by contracts

I. INTRODUCTION

The thirty glorious years of computer languages from 1960
to 1990 gave rise to most of the major concepts of today’s
programming. This flourishing period has touched every major
issue in computer programming. First of all, memory manage-
ment, with the notion of execution stack and the appearance of
the first garbage collector (Lisp [15], [16]). During the same
period, different directions concerning code management have
emerged, with the fusion of code and data (again Lisp), or on
the contrary a more formal approach with functional languages
(ML [19], Caml [4], Ocaml [13]). Then a more pragmatic
approach, with a grouping of code and data present in object
languages (Simula 67 [5], Smalltalk [8]) and the notion of
inheritance which reaches its apogee with the prototype model
(SELF [25]) and its dynamic inheritance. In this context, the
semantics of languages was the battle horse to the detriment
of form, i.e. notation and syntax, which took a back seat.

For historical reasons that we can well understand, the
almost systematic use of context-free grammars, of either
kind LL or kind LR, has never been really questioned. We
can only observe the bogging down of textual syntaxes and
the appearance of real religious wars concerning syntactic
choices. We believe that traditional context-free grammar
has reached an evolutionary dead end and does not benefit
from technological advances. Today’s computers or phones
offers us much more sophisticated representation possibilities.
Also, we see appearing little by little an approach richer of

communication between the man and the machine than the
simple keyboard / mouse. It is still difficult today to predict
the impact and interest of the appearance of multiple sensors,
tactile, visual, auditory, ... that we already have in our phones
or computers. But, it seems obvious to us that there is a
growing gap between the hardware and the programming
environments we use.

Furthemore, in a way too often decorrelated to expressive-
ness, for example for the optimization of GPU , compilers
have evolved in terms of performance, but mostly for low-
level languages. This almost immutable image in the collective
mind of programmers, of the impossibility of combining
performance and expressiveness must end. Let’s note however
some efforts to marry performance and high level language
like the OCaml compiler [13], the SmartEiffel compiler [26],
or more recently with Rust [11] and Lisaac [22], [23].

We aim to continue these efforts and to break with these
various limitations and prejudices. Ω is intended to be a
high-level language with a graphic visual while maintaining a
rigorous terminology. Here we are talking about denotational
terminology related to the field of application. The goal is
to get rid of a rigid syntax to adopt the usual notations of a
domain, as for example mathematics, physics, etc.

II. THE Ω LANGUAGE AT A GLANCE USING ELIT EYES

A. Visualized Code Blocks and Auto-Indentation

The most significant innovation in the Ω language is the
concept of a visual approach that opens up a wider range of
possibilities and notations. In contrast to its predecessor, the
Lisaac language, a Ω program is not constructed as a text file
bound by established and rigid syntax. Instead, a Ω program
is represented as an editable figure using a specialized tool
called eLit, which allows you to visualize and edit the figures
and pieces of text that comprise a program.

Fig. 1. The usual Hello world! program.

Figure 1 shows an image capture inside our eLit devel-
opment environment. This is the traditional Hello World!
program in Ω. All the code visualization and, in particular,
all the colors used for rendering are not part of the language
definition. The choices for displaying and editing programs
can be redefined and are entirely up to the editing tool. Note
that eLit is an integrated development environment for Ω, itself

written in Ω1. Figure 2 shows a variant of the previous program

Fig. 2. Two print statements within a multi-line block.

that uses two print instructions to perform the same display.
The block that groups the two instructions is represented
by an opening curly brace on the left. Without any explicit
intervention on the part of the programmer, eLit automatically
selects the code representation. Its choice of representation in
a given context is based on statistics carried out on existing
code. In all cases, the display tool guarantees indentation and
visualization in accordance with the code’s semantics. When
two instructions are displayed on the same line, eLit may
utilize a semicolon as a separator or employ other types of
visual effects. Nothing is frozen by language rules.

Fig. 3. The default is to visualize comments in red and types using green.

B. Bringing Math and Computer Notations Together

The figure 3 example starts with a comment, which can be
identified by its red color, the default color of eLit for dis-
playing comments. The Ω language also makes it possible to
add images, links and videos within comments. The enclosing
block comprises three local variables ∆, x1 and x2, all of
which are of type R32, a 32-bit floating-point number. Note
that variable or type names can be composed of any unicode
characters (in UTF-8 format), with the added possibility
of subscript or superscript formatting. We’ve also resolved
the debate over CamelCase vs. snake case conventions by
allowing spaces within any type of identifier.

Fig. 4. Graphical symbols in blue color on all figures are vectorially defined.

Ω is a statically typed language and all variables, attributes
and arguments have a type. You’ll also notice that eLit visually
identifies types with a green color, as for example: R32, Z, Z32,

1As most video games, eLit relies directly on the GPU thanks to the Ω
library. The same Ω code runs on most platforms / OSes. Following link is a
demo of eLit: http://ks387606.kimsufi.com/omega
The first release of Ω will be available in a few months.

Z64, N8, String, Boolean, etc. To avoid confusion between
comparisons and assignment, we use the algorithmic arrow

for assignment. Comparison operators are naturally those
used in mathematics, such as =, ̸=, <,≤, etc. For mathematics
(still in figure 3), more advanced symbols already exist in the
library: fraction, square root, rise to power, sum, integral, etc.
These symbols are defined vectorially (see figure 4) using a
technology inspired by Tikz from LATEX [24].

C. Domain Specific Graphical Operators

If a new symbol is needed for a specific domain, it can
easily be defined and added to the library. As an example,
figure 5 shows the use of logic gates to create an adder. In the

Fig. 5. Example of a user-defined electronic symbol.

following, we’ll see how graphic symbol signatures integrate
simply and seamlessly with more common textual signatures.
Once a new graphical operator is defined, it becomes available
for use in any other prototype or context. In addition to
custom operators, Ω includes all the standard control structures
such as for loops, foreach loops, while loops, until loops,
switch statements, and more. It’s worth noting that all these
control structures, including the if then else construct depicted
in Figure 3, are implemented as library definitions.

D. Extra Built-in Literal for Two Dimentional Notations

In addition to literals for strings or numeric constants, Ω
also has literals for arrays, tuples of types or sequences of
values. Thanks to its graphic and visual approach, Ω provides
a natural way of visualizing a two-dimensional sequence of
elements. We felt it was essential to add a literal for a pleasant
representation of matrices (see figure 6). Unlike all the other

Fig. 6. The Ω language also incorporates a two-dimensional built-in literal.

graphic operators that can be defined in libraries, this two-
dimensional literal is a built-in part of the language.

III. SIGNATURE FOR SLOTS

As previously mentioned, the language is statically typed,
and all operations, whether they are textual or graphical, have
a precise signature2. Before we address how the signatures of
graphical operators are specified, let’s start with what is more
common: textual signatures.

2As Ω is a prototype-based language, we prefer to use the term signature
to provide information about the function parameters and return type.

http://ks387606.kimsufi.com/omega

Fig. 7. Strong static and explicit typing everywhere.

A. Textual Method or Attribute Signature

In the example shown in figure 7, we indicate both that the
argument n of the factorial function is of type Z and that the
result type of this function is also Z. The result returned by
the factorial function is the expression that ends the function
block. In this case, the result is the reading of the local variable
res, also of type Z. The main procedure shows an example
of how to call the factorial function. Note that with the chosen
signature for the definition of factorial, the use of parentheses
is not required in the calling form.

Fig. 8. The fiborec function return a pair of Z integers.

If required, it is also possible to define a tuple of types
in the case of a function with several results. In the example
of the figure 8, the function fiborec returns a pair of values,
each of type Z. So the pair (f0,f1) is a valid result for
this function. The fibonacci function is implemented by a call
to the recursive fiborec function. Note that this possibility of
easily returning several results, without allocation in the heap,
makes it possible here to obtain a recursive version in O(n).
This notion of tuple is generalized to all type declarations.
In this way, a result tuple can be directly injected into an
argument tuple.

B. Graphical Operator Signature

Fig. 9. A graphical operator with 2 parameters.

The visual display for defining graphical operators is identi-
cal to that used when using them. Figure 9 shows an example
of the signature for a triangle-shaped graphical operator. This
operator has two parameters, height and length, both of type
R32. The result type of this operator is also R32. In the

example, the surface area of the triangle is the result. The
main procedure below provides an example of its usage.

As we will see in more detail in section VI-C, each graphical
operator is identified by a textual signature. This signature
serves both to facilitate code editing and to determine the
order of evaluation. For example, regarding the square root,
the corresponding function name is simply sqrt.

IV. OBJECT ORIENTED PROGRAMMING IS BACK

Ω is a pure prototype-based programming language where
every entity corresponds to a prototype. This rule applies to
all objects, from the most complex to the most basic. For
example, when it comes to numeric types, like signed integers,
the Ω language allows you to use the Z type to indicate a
number of any size, with no limit other than the size of RAM
memory. As Ω also aims to program any type of device with
the best possible performance, it is also possible to explicitly
use Z8, Z16, Z32 or Z64. One can indicate that the memory
representation of some prototype must be directly mapped
onto some machine word. Here, Z8 is mapped on a 8-bit
signed integer, Z16 is mapped on 16-bit signed integer, and
so on. In case of direct mapping, there is no indirection, i.e.
no pointer, and passing a Z32 prototype is identical to passing
an int32_t value in the C language. The implementation of
the general type Z relies on attributes used to store arrays of
elementary values, enabling the manipulation of large values.
Regardless of whether an object is elementary and mapped or
defined by its attributes, it is necessary to be able to visualize
or designate the receiver as well as its type.

A. Graphical Visualization of the Receiver and its Type

Fig. 10. Definition of method at in String.

To simplify the presentation, in the preceding examples,
we intentionally omitted specifying that the disk indicates
the receiver’s position in the signature. Any instruction or
expression is always within a prototype, and this prototype
is always passed implicitly if necessary. Thus, there are no
functions or procedures without a receiver. For example, in the
code from Figure 7, all calls to the factorial method pertain
to the prototype in which this code is written. In this case, as
in all the others seen previously, the called method only uses
the data provided by the arguments. The current prototype is
implicitely passed but not used.

Let’s now explore the at method as defined in the String
prototype and illustrated in Figure 10. The purpose of this
function is to access a character at a given index in the
receiving string. Outside the context of the String prototype, it
is necessary to specify which string of characters you want to
work with. Therefore, the expression to access the character
at index i in a character string s is simply written as: s at i

The leftmost circle indicates the position of the receiver
just before the at keyword within the signature. Please be
aware that using a period in the calling form is not required. In

Fig. 11. The green circle indicates that the result matches the receiver type.

this case, the calling form, (s at i), is identical to the notation
used in Smalltalk or SELF.

Within the body of a method, the symbol is used to
designate the receiver of the message. It’s the equivalent of
self in Smalltalk or this in Java. The symbol ,
allows you to note the exact type of receiver using the idea
presented in [3]. This choice ensures safe typing while at
the same time avoiding the criticisms made to Eiffel on
this subject [3]. Figure 11 presents the signature of the clone
method for which the exact type of the receiver is particularly
well-suited.

B. Multiple Inheritance, Polymorphism and Visual Selectors

Inheritance in Ω is multiple, and each inheritance link
indicates whether polymorphism is authorized or not. Further-
more, to facilitate the understanding of inheritance choices,
one can decide whether to visualize inherited methods or
not. Of course, in Ω, all these choices are made graphically.
First example of Figure 12 presents the inheritance tree of
the Boolean prototype. A dotted line indicates implementation
inheritance: all slots are inherited, but without permission for
assignment. All descendant prototypes are also displayed.

Fig. 12. No syntax for inheritance. The
graphic is directly editable.

Fig. 13. Open eyes are used solely to
assist users in browsing the code.

So in the example of Boolean we see that there are two
descendant prototypes, False and True, each of which can be
the object of an assignment in Boolean. Type Boolean inherits
Print and then Utils, each time with a dotted line. These two
prototypes, Print and Utils, are in fact simple method tanks
[7]. Note that this inheritance visualization made by eLit is
also the one used to navigate or to modify inheritance. Once
again, thanks to the visual approach, there’s no need to learn
any special syntax. Unlike a standard textual approach, we
have a global representation of the inheritance tree, including
the descendants.

Let’s take a look at the String inheritance graph shown
in figure 13. According to the selected inheritance order,
Hashable before Comparable, the visualization shows the
lookup algorithm’s scanning order from bottom to top. Thus,
if the lookup of some slot starts from String, the order of
search is as follows: Hashable (1), Clone (2), Print (3),
Utils (4), Comparable (5). If you need to modify the order of
inheritance or the nature of an inheritance link (solid or dotted

line), you can do so graphically via eLit or by using keyboard
shortcuts. It’s essential that the editing tool is sufficiently easy
and intuitive to use. To achieve this, we drew inspiration from
video games as well as GPU capabilities.

In the Ω prototype library, there are two types of String:
immutable and aliased strings of type String alias, and exten-
sible and modifiable strings of type String buffer. Of course,
all UTF-8 characters can be used with natural indexing. One
of the problems of object-oriented programming is the lack
of visibility of inherited slots when going through the code
of a prototype. In Figure 13, the open eye on Hashable and
Comparable allows you to view their inherited slots directly
within the String edition. A closed or open eye does not affect
the semantic of the code. This is purely a visual artefact for the
convenience of the code designer. Thus still on the example
in figure 13, the eyes is close on Clone and Print because
those prototypes are very familiar. As we are well aware of
the inherited slots from Clone and Print, we thereby prevent
their visualization in the child prototypes.

To further discuss Ω inheritance, it’s important to note that
there is no default root for the inheritance tree. It is entirely
possible to create a new prototype that inherits nothing, a
practice often beneficial, especially when modeling singletons
[7]. In order for a prototype to be cloneable, it must inherit,
either directly or indirectly, from the Clone prototype, which
contains the clone method – the sole method responsible for
generating an object by duplicating an existing prototype. As
True and False prototypes do not inherit from Clone, they
remain unique objects.

C. More Flexibility to Place the Receiver in the Signature

As the Ω language is above all perfectly object-oriented,
it’s thanks to dynamic binding that conditional instructions
are implemented. Figure 14 shows an extract from the code of
Boolean, which corresponds to the definition of the if then else
construct used in the previous examples. The small round
in the signature indicates the receiver’s position. So the if then

Fig. 14. The receiver between if and then mimics the traditional notation.

else method is a method whose first argument (also receiver)
is of type Boolean. The second and third arguments after then
and else are delayed evaluation blocks. Note that, compared
to Smalltalk or SELF, the great novelty of Ω is that you
can put a keyword before the receiver, but also after the last
argument. Thanks to this flexibility and simplicity when it
comes to place keywords, we avoid the many criticisms of
Smalltalk notation. Finally, it’s also possible to enclose
the receiver in braces {} for delayed evaluation. In this
way, methods with a delayed evaluation block as receiver are
arranged according to their block return type context. No more
out-of-context Block class as in Smalltalk or SELF.

Still on figure 14, the two small red rectangles at the bottom
of the method are added by eLit to indicate that there are two
redefinitions of this method, one in False and one in True. By

browsing these definitions, you will check that the evaluation
of the then and else blocks respects the expected semantics.
It is particularly easy for the compiler to detect that there are
only two possibilities for dynamic binding with a variable of
type Boolean and thus generate the optimal code as described
in [21].

D. Properties for Operators

All operators are library-defined. Unlike Smalltalk, the
Ω language lets you choose the priority, right-associativity or
left-associativity and type commutativity for each operator.
Figure 15 displays the definition of the && operator as it
is defined in the Boolean prototype. Thanks to the graphical
approach, again, there’s no need to invent any special syntax
for defining operators. The signature looks like any other
textual method, except for the red color which is used for
operators. The right-hand side features three visual controls to
select priority level, associativity, and type commutativity.

Fig. 15. Low priority level, left-associativity, and no commutativity.

As another example, figure 16 presents the definition of
the + operator. The type commutativity button is enabled.
Furthermore the other argument is typed using to indicate
that we must have exactly the same type for the argument and
the receiver.

Fig. 16. High priority level, left-associativity and type commutativity.

Returning to the definition of the && operator in Figure 15,
it’s worth noting that other is enclosed in curly braces. This
indicates the presence of a code block. Its evaluation may be
delayed and, as a result, depend on the exact nature of the
receiver. In such a situation the call form must be perfectly
compatible with the signature. So, only a call of the form
x&& {y} is valid. The aim is to fully visualize the signature
choices at call site level. This helps avoid potential errors by
highlighting the possible lazy evaluation. What’s more, we’ve
removed a special case that has no place in the elegance of a
high-level visual language.

E. Visualizing Clonable Slots and the Self Symbol

As we have seen, the symbolism to indicate the position
of the receiver in a signature is . This choice also makes
it possible to introduce the language to beginners without
having to go too quickly into the details of object-oriented
programming. At first glance, the symbol might appear to
be a simple routine separator (figures 1, 2, 7, 8). We have
also seen that within the body of a method, the symbol is
used to designate the receiver and that its exact type is . To
go a step further, given that the context of the Ω language is
prototype-based and strongly typed, there is one last important
symbols we’ll now introduce. In a slot signature, symbol
can be replaced by symbol to indicate the slot’s behavior
in the case of cloning. Thus, the symbol indicates that the

Fig. 17. The Pixel prototype example.

corresponding slot, usually an attribute, is duplicated in the
case of cloning. Figure 17 shows an example of defining a
Pixel as being represented using two attributes x and y.

Note the use of the symbol in front of x and y, indicating
the duplication of these attributes in the case of cloning. Ω
guarentees encapsulation by accepting attribute assignments
only within the prototype that holds them (or its descendants).
In addition, when reading a slot from the outside, the code
for reading an attribute or for a function call is identical. This
respects the uniform reference principle [18].

The “x px y py” method assigns the two attributes x and y.
These two attributes are assigned in a single instruction, and
the method returns to enable a cascading call. Still in figure
17, next comes the definition of the new function designed to
build a new copy of Pixel. Note here that the new keyword
precedes the receiver, to get the usual creation notation. As
with the previous method, the result type is exactly that of the
receiver. The definition block only contains a clone call on the
receiver, which is implicit (is not required). The figure ends
with the calculation of the distance and an example of its use
in main.

F. Order of Evaluation for Graphical Operators

As the Ω language is purely object-oriented, the definition
of the Σ graphical operator naturally finds its place in Numeric
(figure 18). The position of the receiver is below the Σ symbol,

Fig. 18. Graphical Σ operator definition.

then the up argument takes its place above the Σ symbol. The
parameter a is a block that returns a result of a generic type
parameter T . Here as well, thanks to the visual effects, the
generic parameters are effectively highlighted. The body of the

Fig. 19. Using the graphical symbol Σ defined on Figure 18.

method is implemented with a loop method while do defined in
Boolean. Figure 19 shows an example of using the Σ operator
to calculate an arithmetic mean. The mathematical formula is
as beautiful as on a school chalkboard.

Regarding the evaluation order of graphical operators, the
receiver is always evaluated first, just as it is the case with

textual forms. The evaluation order of the other arguments is
arbitrarily determined at the same time as the definition of the
vectorial shape of the operator. Since the same graphical op-
erator is globally defined and can appear in different contexts,
the goal is to uniformize the visually perceived semantics.

V. VISUALIZING SOFTWARE ENGINEERING ASPECTS

Fig. 20. Enlarged view of Figure 8 to show access permissions.

An obvious impact of the visualization layer concerns the
comments placed within the code. There is no need to choose
start and end markers, such as /* and */, as is often the case.
We won’t provide additional examples with comments in this
article because it’s easy to imagine that selecting typography,
shading, or boxing can distinguish comment sections from
code sections. Nevertheless, you can also incorporate anima-
tions, short videos, and links to URLs within the comments.
Additionally, you can refer to variables or types without the
need to learn a separate sub-language, similar to Javadoc, for
beautifying the comments.

A. Fine Control of Slot Access Rights Also Made Visual

The Ω language is designed for writing large projects and
therefore requires a powerful mechanism for managing slot
access permissions. Here again, a graphic effect is used to
select and visualize access permission for each slot. Figure 20
repeats the example of the Fibonacci function, revealing the
slot access rules with an enlarged view on the left. The green
margin on the left, enclosing the fibonacci function, indicates
that this slot is public. Conversely, the margin surrounding the
fiborec function is dark, indicating that this slot can only be

accessed by the receiver. It is also possible to authorize a
list of prototypes by name, or to designate a directory that
factorizes access for all the prototypes it contains. Again a
visual artifact is used. No need for reserved keywords.

B. Programming by Contract on the Stage

The Ω language offers full support for design-by-contract
programming. Figure 21 shows the abstract definition of the
at put method in Collection V . Code zones corresponding to

Fig. 21. Pre/postcondition visualized in the yellow hatched area.

assertions are outlined in yellow hatching3. Here, the at put
method is used to modify a collection by replacing a v value
at a given i index. The precondition indicates that the index
used must be valid within the index bounds before the call.
The postcondition indicates that, after execution, the value has
been written and that the number of elements in the collection,
given by the count function, has not changed. When assertions
are enabled, code is added to check that count gives the same
result before and after the call.

The precondition and postcondition are inherited and visible
in the various descendants. This direct visibility in descendants
is a major advantage over other languages. It is also possible,
in a descendant, to add new assertions or even to ignore an
inherited assertion. Note also that eLit allows quick navigation
to the original location where an assertion is written. Even
comments are subject to a similar inheritance mechanism. Here
again, the approach is visual and not, as in Eiffel [17],
constrained by reserved keywords.

VI. STORAGE FORMAT, PARSING, AND EDITING

Each prototype is stored in a file with the same name
in a format compatible with the UTF-8 encoding system.
The entire prototype is described in this single file, but we
will not delve into a detailed description of its format here.
Indeed, some aspects, such as the format for comments or the
format for storing all choices related to inheritance, pose no
particular difficulty. We will focus on the storage format of
slot signatures, both graphical and textual, and, of course, on
the format for storing method bodies. It is in these parts that
all the difficulties are concentrated. Regarding the format of
method bodies, it is important, for example, to facilitate the
use of copy and paste between different parts of the code.

The goal is to reduce the size of these files as much as
possible, and give the code-editing tool maximum freedom
for visualization. Our editing tool, eLit, itself written in Ω,
uses a graphics library also written in Ω, enabling direct use
of the GPU without dependence on an external library. So all
our tools are cross-platform and operating system independent.

3Not very visible here on paper but much clearer on a real screen.

By design, eLit is a demonstration of Ω’s ability to handle
low-level programming and large applications, while offering
optimal performance without the need for C libraries to speed
it up.

A. File Format and Compact Source Code Encoding

Symb UTF-8 Range Description
CB99 The Receiver aka ’Self’
CB91 Receiver Shared / signature
CB90 Receiver Cloned / signature
CB9A Exact Type of the Receiver

CBB1+[‘0’..‘9’] Left Associativity + Priority

CBB2+[‘0’..‘9’] Right Associativity + Priority

CBA0 Commutativity Switch On
CB84/CB86 Start/Stop Superscript
CB85/CB87 Start/Stop Subscript

CBBF Assignment Arrow

Fig. 22. The Ω language only reserves 64 UTF-8 codes.

Being a programming language halfway between purely
textual and graphical languages, the Ω language requires the
encoding of many meta-information: blocks on one or more
lines, indexing or exponentiation for a specific part of a name,
multi-line or mono-line function calls, differentiation of types,
local variables, and so on. Storing information on disk must
adhere to both the semantics and the choices of presentation or
formatting. In order to facilitate readability while avoiding a
binary format incompatible with tools like Git or Subversion,
we have chosen to use tags within the source files.

An XML-type markup was quickly discarded due to the
obvious file size overhead. A lighter markup system in the
style of LaTeX was attempted, but eventually, we settled on a
markup using special UTF-8 characters. The UTF-8 encoding
principle allows defining 221 characters in its normalized form,
limited to 4 bytes4. Our idea is simply to reserve a small
range of UTF-8 characters to define our tags in a minimal
number of bytes. Within the two-byte UTF-8 character set,
we chose the following range, [0xCB80..0xCBBF], which
represents 64 special characters reserved for Ω. These are
compact characters, all occupying two bytes and having no
direct usage corresponding to any human language. This
lightweight approach is completely transparent to tools like
Git/Subversion, which are capable of handling standard UTF-8
encoded files.

We will not explain here the meaning of each character
within this range. It is worth noting that at present time,
we utilize less than a quarter of the 64 reserved characters,
thereby allowing space for future developments of Ω. Figure
22 illustrates the encoding of some basic building blocks and
style tags of Ω.

Initially, we opted for systematic tag usage to resolve all
potential ambiguities within the code of a method. However,
this approach proved to be too rigid and required challenging
maintenance of tag consistency within the source file. In

4Its principle could be extended up to eight bytes for a single code point,
thereby increasing the count to 242 characters. However, for compatibility
reasons, we chose to ignore this potential extension.

fact, the validation of this markup is no longer assured when
updating from an external source to the current edition, such as
through Git/Subversion updates, for example. Furthermore, it
was particularly problematic to perform copy/paste operations
between different code blocks.

For all these reasons, when it comes to method bodies,
we have opted for a plain representation without any tags.
This approach also facilitates the initial code typing during
editing. Consequently, with each environment loading, such
as when eLit starts, the method bodies need to be reanalyzed.
In other words, the use of formatting tags is only present in the
prototype header, for a type, or when defining a slot signature.
There is no markup within the method bodies.

It should be noted that in Ω, formatting an element as
a subscript or superscript is not part of the namespace for
identifying a slot or a type. For example, the type N32 conflicts
with a type defined as N32 or N32. In practice, this slight
limitation is particularly useful in avoiding names that are too
similar and could lead to confusion. The same limitation is
applied when it comes to method selectors.

In the definition of slot signatures, we distinguish between
two types of slots: Operator and Standard. As the name
suggests, an Operator slot should be writable with a single
symbol or unique keyword, such as + or && or ||. An
Operator slot can be unary, either pre- or post-fixed, or binary
with associativity, priority, and potentially type commutativity.
A slot in the Standard category can have any number of
arguments and is left-associative with the highest priority. The
type commutativity property applies, of course, only to slots
in the Operator category.

Finally, each slot, whether in the Standard or Operator
category, may matched with a graphical slot. If such a corre-
spondence exists, it is not mentioned in the method bodies. The
corresponding textual representation should be used instead
(detailed later in VI-C).

B. Parsing and Building of the Abstract Syntax Tree

During the design of our language, we set significant
requirements regarding the flexibility of writing source code.
These requirements led to significant challenges during syntax
analysis. Aspects such as the ability to use spaces in identifiers,
the absence of an explicit dot to denote dynamic binding, and
the ability to add user-defined operators through libraries made
it impossible to use an LALR-type parser.

To address the inherent ambiguities in the grammar, an up-
ward parsing approach with dynamic programming CYK [9],
[20] can effectively handle context-free ambiguous grammars.
However, in the context of a strongly typed computer lan-
guage, a purely context-free approach is suboptimal. It’s worth
noting that the complexity of this algorithm is O(|m|3 · |G|),
where |m| is the length of the word to be analyzed, and
|G| is the size of the grammar. For more precise control and
reduced computational cost, we have chosen an approach that
utilizes semantic knowledge to make informed rule reductions.
The parsing process occurs in two distinct phases. The first
phase, aided by the markup system, is dedicated to acquiring

semantic knowledge about the entire environment (see VI-B1).
It primarily focuses on prototype headers and slot signatures.
Once this knowledge is acquired for all prototypes, a second
phase of parsing the plain text of slot bodies, without markup,
can begin (see VI-B2).

Fig. 23. Example of a syntax tree including global type information.

1) First Step: Reading the Prototype Header and Slot Sig-
natures: The first phase is quite straightforward and very fast
as it involves reading a pre-positioned markup system in all
source files. This allows us to locate and analyze all semantic
information without ambiguity, facilitating the second parsing
phase. The parsing of the marked portion enables the rapid
collection of the following information:

a) : Complete list of prototypes with or without general-
ity. Formatting instructions for each prototype name, subscript
or superscript for each prototype name.

b) : Directed acyclic inheritance graph, nature of links,
polymorphic or not, open eyes, etc.

c) : Signature of all Standard Slots: sequence of iden-
tifiers and formatting, presence of exponents or subscripts,
receiver position, argument types, and return value types if
any.

d) : Signature of Operator Slots: similar data collection
as for Standard slots, with additional information on priority,
unary pre or post-fix, or binary; priority, right or left associa-
tivity, and commutativity type if applicable.

For Operator Slots, a global dictionary is constructed. It
will facilitate, in the second phase, the segmentation of a
complex expression into multiple sub-expressions separated by
operators. Regarding Standard Slots, we build a single syntax
derivation tree for all the signatures in the environment (all
libraries together with the current application). For example,
for slots with identifiers such as while, if then, if then else,
add first, add last, add to, and append, we construct the tree
shown in Figure 23. Thanks to this tree, we are now able to
proceed to the second phase of parsing: the analysis of the
plain text that makes up the slot bodies.

Body → {(idf slot|idf local) ’ ’} [op] Exp {op Exp } [op]
Exp → Atom | Msg
Atom → | number | string | external | Type

| ’(’Grp’)’ | [’[’Loc’]’] ’{’ Grp’}’
Grp → {Loc’\n’ } [Body {(’,’ | ’\n’) Body}]
Loc → { idf local[’:’Type]’,’ } idf local’:’Type
Type → | idf type[Prm { idf type Prm }]
Prm → ’(’Type {’,’Type }) | idf type
Msg → idf slot[Arg { idf slot Arg }] | idf local[Arg]
Arg → Atom | idf slot | idf local
Fig. 24. The ambiguous grammar of a slot body (EBNF representation).

2) Second Step: Parsing the Slot Bodies: The ambiguous
grammar of a slot’s body is presented in Figure 24. The first
four rules of the grammar identify assignments, declarations
of local variables, blocks, constants, and tuples. Furthermore,
Operator Slots are easily recognizable thanks to the dictionary
built in the previous phase. This allows complex expressions
to be divided into interleaved sub-expressions with invocations
of Slot Operators. After analyzing each sub-expression, their
static type precisely identifies the invoked Operator Slots.
Building the evaluation tree, taking into account associativities
and priorities, becomes possible. However, it is important to
note that a semantic error at this level of analysis is still
possible. For instance, three interleaved sub-expressions of a
left-associative operator and a right-associative operator, both
with the same priority, make the construction indeterministic.
In this case, the use of parentheses becomes essential to
enforce the order of evaluation.

The most challenging part of the analysis lies in the termi-
nals idf local, idf slot, and idf type. Each use of one of these
terminals corresponds to a potential ambiguity, indicated in
Figure 24 by the symbol. The three terminals that give
rise to ambiguity are: idf local for local variables, idf slot for
Standard Slots, and idf type for types. It’s important to note
that in Ω, these three categories share the same namespace.

For parsing the content of an idf *, we use a CYK-type
algorithm, utilizing the syntax tree built in the first step.
The types of parameters help reduce complexity by making
cuts in the tree of possibilities. Finally, among the different
interpretations, we choose the longest recognized phrase.

In theory, it’s easy to create a code example with two valid
interpretations of the same size. However, in practice, thanks
to the naming convention of types starting with an uppercase
letter, in contrast to lowercase for slots, and by adhering to
typing constraints, we haven’t encountered any ambiguity in
all the code currently written in Ω. However, if such ambiguity
were to arise, the simple addition of parentheses would be
sufficient to enforce the evaluation in one direction or another,
thus eliminating the ambiguity.

C. Integration and Definition of Graphical Operators

In general, thanks to the knowledge of the formatting of
types and slots gathered during the first phase (see VI-B1),
it is the responsibility of the editor to provide a correct
visualization for each use of these elements. In the example of
the type N32, the raw written version, N32, must be displayed
correctly, as N32.

All graphical slots (fraction bar, logic gate, square root, etc.)
have a textual signature that identifies them. Each graphical
symbol is defined in an external file that contains not only
this textual signature but also instructions for the placement
of arguments and vector drawing instructions (see Figure 25).

Without going into too much detail, we have a dictionary of
graphical symbols with keys corresponding to the identifiers
of a slot’s signature without a type. For example, the keys ”A0
sqrt” and ”A0 div A1” represent the symbols for the square
root and fraction bar, respectively. The visual application of

A0 div A1 // Textual corresponding form.
v0 <- SP * 0.46
v1 <- 2
Push // Draw arg #A0 and push.
Push // Draw arg #A1 and push.
v2 <- Max(A0.Width,A1.Width)
dx <- (A0.Width - A1.Width) / 2
dy <- A1.Ascent - A0.Descent + v1 * 2
Pop (dx, dy) // Pop and translate #A1.
dx <- (v2 - A0.Width) / 2 + 5
dy <- A0.Descent-v1-v0
Pop (dx, dy) // Pop and translate #A0.
Move (Ox + 3, Oy - v0) // Trace the fraction line.
Line (Ox + v2 + 7, Oy - v0)
Stroke 3
// Return new Ascent & new Descent.
Ascent <- A0.Ascent - A0.Descent + v1 + v0
Descent <- -A1.Ascent + A1.Descent - v1 + v0
Width <- v2 + 10 // Return global Width.

Fig. 25. Vectorial operator description file for fraction.

the graphical symbol within a program is simply the use of a
slot with a profile corresponding to the key of the symbol
in question. For example, the presence of the message in
the source 42 sqrt will be directly interpreted graphically as
follows:

√
42. This solution, both simple and flexible, even

allows for improving the graphical representation of old code
without any modification to it. For editing, entering 1 div 2
is sufficient to obtain 1

2 .

D. Global Knowledge and Static Typing for Easy Editing

To provide the most enjoyable user experience, it is essential
that the programmer can enter their code without worrying too
much about formatting (e.g. subscripts, superscripts, graphics,
and indentation). When entering source code, we avoid the use
of complex keyboard commands or mouse-driven graphical in-
terventions. It is crucial that the programmer feels comfortable
and can type their code with, at the very least, the same ease
as in a purely textual language.

It is essential to emphasize that Ω’s choice of being a
strongly statically typed language not only provides valuable
parsing assistance but is also a powerful tool for code auto-
completion. More than a constraint and somewhat paradox-
ically, explicit typing makes the code entry process easier
and even shorter. It should be noted that there is a slight
constraint on type names, which are the only ones that can
start with a capital letter. Thus, entering an existing type name
always triggers auto-completion, and a type name is most often
obtained in just a few keystrokes. Since all prototypes are
preloaded by eLit, the absence of auto-completion indicates
an error while typing the code.

For auto-completing slot calls, the syntax derivation tree
built for parsing is also utilized by eLit. For example, at the
current time, within all the prototypes, the only slot that starts
with if corresponds to methods of Boolean. Simply typing if
initiates auto-completion. Another example is if you enter new,
you are presented with a list of types that have this method
selector before the receiver. Finally, by entering the initial
letters of while, auto-completion is unique and straightforward
because the only possible current receiver is a block of type

Boolean. Auto-completion is semantic and is based on global
knowledge of prototypes and possible signatures.

Regarding the basic elements of Ω, they are entered using
user-redefinable shortcuts. For example, for the assignment
arrow , the default shortcut is ’<-’, but someone familiar
with the Eiffel language might opt for ’:=’. Many shortcuts
are obvious and almost natural, such as the shortcut ’<=’
for ’≤,’ for example. The default shortcut for is currently
’self’. All shortcuts are redefinable, and they can even
be associated with function keys or other specific devices.
Users simply need to make their choice according to their
preferences while avoiding conflicts.

Furthermore, the syntax tree of possible signatures (similar
to the one shown in Figure 23) is annotated with probabilities
of single-line or multi-line indications. In this tree, each node
corresponding to either a receiver or an argument has this
information calculated based on the code encountered so far.
We use these probabilities to represent blocks during their
initial creation. For example, for the slot while { . . .} do {
. . .}, the first block has a high probability of being on a single
line, while the second block has a high probability of being
multi-line. During auto-completion, we use this information to
make the initial display choice. Of course, the programmer has
complete freedom to correct this choice. His preference will
then be stored as is and become part of the input statistics for
future usage.

In the end, intuitive editing, acting directly on the visual
representation of Ω code, is very straightforward for the user.
This is made possible in part by the minimalist nature of the
Ω language and also by the global knowledge of the entire
existing code. What was achieved for the efficient compilation
of the code presented in [21] also proves to be usable to facil-
itate editing. The benefits of abandoning the archaic approach
of editing a single source file and separate compilation are
clearly evident in an era where the capabilities of random-
access memory easily support this comprehensive approach.
We have not discussed memory consumption regarding the
consideration of all existing prototypes which are all loaded
because it has remained, so far, remarkably small.

VII. RELATED LANGUAGES OR ENVIRONMENTS

In the history of programming languages, the first language
that started using visual effects for programming is most
certainly Smalltalk [8]. Indeed, already in 1980, all the
indications concerning the inheritance are done via an interface
with the mouse, using the famous browser of Smalltalk.
No real syntax for the classes either and only the methods
are defined using a text that has to respect a fixed syntax, but
otherwise very pleasant.

In Smalltalk the definition of control structures and
conditionals is already part of the library. Note that the
operators are also redefinable, but they are all left associative
with the same priority. Huge progress, Smalltalk invents
the keyword notation and generalizes the concept of object
for all manipulated data, even the simplest. Thus, Ω is in
the direct line of Smalltalk’s heirs, with a new, more flexible

notation, statically typed and compiled language, which swaps
the classes of Smalltalk for the prototypes of SELF.

In 1983, the Prograph language [1] [14] is completely
graphic and avoids the use of text for programs. The under-
lying language is class-based and data flow driven. The most
successful implementation is the one that works on Macintosh.
The same implementation, apparently unchanged for a very
long time, is still available today on MacOS X. The greatest
fault of Prograph is probably to have been too far ahead of
his time. Indeed, the cheap computers of that time were not
powerful enough and, in any case, did not even have a mouse!

In the right line of the Logo language [6], itself non-
graphical, Scratch [2] is probably one of the most success-
ful visual programming environments. Scratch is a simple
coding language with a visual interface that allows young
children to create digital stories, games and animations. The
name of the language, Scratch, is supposed to evoke the
sound of DJs on their turntables. The craze for Scratch
is palpable with many users and a wide diffusion as well as
multiple translations of this language. Many videos on the
web show its use and not only by children, showing a certain
interest for a less austere and more graphic programming
language.

Even if Scratch allows for example to program the
equivalent of loops and conditionals, the language remains
however rather limited. All graphical constructs are frozen and
the language is essentially event driven and block assembly
driven.

Fig. 26. The fiborec function of figure 8 in Snap!.

The Snap! language5 [10] is largely inspired by Scratch.
The name is meant to evoke the noise that blocks of code
make when they are assembled with each other. Snap! is a
language that allows the definition of its own blocks, with the
use of anonymous functions. The concept of First class sprites
corresponds to that of the prototype and Snap! integrates all
aspects of object-oriented programming. The purely functional
style can also be used with the possibility of having higher
order functions. Thus, Snap! is a significant advance in terms

5Do not confuse Snap!, note the use of the exclamation mark, with Snap
which is a language from the 1960s and which is dedicated to the teaching
of computer science to students of humanities.

of a more general-purpose visual programming language, and
not only dedicated to programming initiation for beginners or
children.

Figure 26 shows the Snap! program for the fibonacci
function of figure 8 following a very similar approach. The
definition is recursive but remains of linear complexity thanks
to the use of a result in the form of a pair of values. Therefore,
the ability to return multiple values at once is not merely a
syntactic gimmick. Without going into details, this possibility
is offered in Ω without ever having to allocate a container to
group the different results. The Snap! language is very similar
to Ω in that these two visual languages each provide full access
to a real underlying programming language. In both cases, it
is no longer possible to use an ordinary text editor to edit
your code. A Snap! block name also uses a keyword system
very similar to that used for a slot name in Ω. This being said,
Snap!, with its Lego-like visuals, is resolutely oriented towards
the discovery of programming. Ω retains a more traditional
visual style that remains quite textual and integrates many
aspects specific to software engineering (e.g. programming by
contracts, exportation rules, static typing, etc.).

For integrating visual aspects into the source code of
programs, Jupyter Lab [12] is often cited as a reference.
This approach allows users to incorporate graphics, diagrams,
images, and other visual elements alongside the code, thus
providing an interactive and immersive experience. However,
within the scope of Ω, we aim to push the boundaries of
this approach by introducing a new language that offers even
deeper integration of visual elements. This seamless fusion
between code and graphical elements represents a significant
advancement in the communication and presentation of source
code, fostering deeper exploration and a more intuitive under-
standing of complex concepts or calculations.

VIII. CONCLUSION

We have presented Ω, a statically typed language de-
signed to facilitate the development of large-scale software.
In addition to ensuring safety, static typing also promotes
achieving the best runtime performance [21]. Like Eiffel
[18], Ω integrates all programming-by-contract tools into a
fully object-oriented environment.

The major innovation of the Ω language is to eliminate
syntactic constraints (LALR grammar and parser, reserved
keywords, etc.), through the use of a visual approach. For
example, key software engineering concepts such as mul-
tiple inheritance, access rights management, pre- and post-
conditions are represented by non-fixed visual artifacts in the
language. The visualizations presented in this article (from
Figure 1 to Figure 21) come from our specialized editor for
Ω, named eLit, itself entirely developed in Ω.

In order to benefit from tools like Git or Subversion, the
source code of programs written in Ω is stored in ordinary
UTF-8 text files. Thanks to static typing and the global
understanding of the entire source code, the Ω language
parser can easily resolve ambiguities inherent in the language’s
flexibility. Furthermore, global knowledge of the source code

also allows for very intuitive editing of the source code,
minimizing keyboard typing as well as menu usage.

Graphical operators are not limited to mathematical op-
erators alone, and it is quite easy to add new ones. The
definition of operators is completely vectorial, and our eLit
visualizer/editor does not use any external libraries to directly
access the GPU. All libraries used in the implementation of
eLit are written in Ω. Thus, eLit is the first example of a large
program written with Ω.

REFERENCES

[1] Prograph. Acadia University / Andescotia Software, 1983. Still available
at andescotia.com.

[2] Scratch. Scratch Foundation, 2003.
[3] Dominique Colnet and Luigi Liquori. Match-O, a dialect of Eiffel with

match-types. In IEEE, editor, 37th International Conference on Technol-
ogy of Object-Oriented Languages and Systems, 2000. TOOLS-Pacific
2000. Proceedings., pages 190 – 201, Sydney, Australia, November
2000.

[4] Guy Cousineau. Caml. Université Paris-Diderot (Paris VII) et INRIA,
1985.

[5] Ole-Johan Dahl and Kristen Nygaard. Simula 67. Norwegian Computing
Center of Oslo, 1967.

[6] Wally Feurzeig, Cynthya Solomon, and Seymour Papaert. Logo. In Bolt
Benarek and Newman. Cambridge Massachusetts, 1967.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1 edition, 1994.

[8] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley, 1983. ISBN 0201113716, 1366
pages.

[9] Dick Grune. Parsing Techniques: A Practical Guide (2nd ed.). Springer,
New York, 2008.

[10] Brian Harvey and Jens Mönig. Snap! Build Your Own Blocks. In
snap.berkeley.edu, 2011.

[11] Graydon Hoare. Rust. In www.rust-lang.org. Mozilla Research, 2006.
[12] Jupyter Lab. https://jupyter.org/, 2014.
[13] Xavier Leroy. OCaml. www.ocaml.org, 1990.
[14] S. Matwin and T. Pietrzykowski. Prograph: A preliminary report.

Computer Languages, 10(2):91–126, 1985.
[15] John McCarthy. Lisp. Massachusetts Institute of Technology, 1958.
[16] John McCarthy. Récursive-function of symbolic expression and their

computation by machine, part i. Communications of the ACM (Associ-
ation for Computing Machinery), 1960.

[17] B. Meyer. Eiffel, The Language. Prentice Hall, Englewood Cliffs, 1992.
ISBN 0-13-247925-7.

[18] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1997.

[19] Robin Milner. ML. University of Edinburgh, 1970.
[20] Itiroo Sakai. Syntax in universal translation. In 1961 International Con-

ference on Machine Translation of Languages and Applied Language
Analysis, Teddington, England, volume II, pages 593–608, London,
1962. Her Majesty’s Stationery Office.

[21] Benoit Sonntag and Dominique Colnet. Efficient compilation strategy for
object-oriented languages under the closed-world assumption. Software:
Practice and Experience, 44(5):565–592, 2013.

[22] Benoit Sonntag and Dominique Colnet. Lisaac: the power of simplicity
at work for operating system. In In 40th conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific’2002), pages
45–52. Australian Computer Society, 2022.

[23] Benoit Sonntag, Dominique Colnet, and Olivier Zendra. Dynamic
inheritance: a powerful mechanism for operating system design. In
5th ECOOP Workshop on Object-Orientation and Operating Systems
- ECOOP-OOOSWS’2002, Lecture Notes in Computer Science, page 5
p, Malaga, Espagne, June 2002. Springer Verlag. Colloque avec actes
et comité de lecture. internationale.

[24] Till Tantau. The TikZ and PGF Packages. In https://ctan.org/pkg/pgf .
Institut für Theoretische Informatik, Universität zu Lübeck, 2020.

[25] David Ungar and Randall B. Smith. Self: The power of simplicity.
In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA ’87, page 227–242, New York,
NY, USA, 1987. Association for Computing Machinery.

[26] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient
dynamic dispatch without virtual function tables: The smalleiffel com-
piler. In Proceedings of the 12th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’97, page 125–141, New York, NY, USA, 1997. Association
for Computing Machinery.

andescotia.com
snap.berkeley.edu
www.rust-lang.org
www.ocaml.org
https://ctan.org/pkg/pgf

	Introduction
	The language at a glance using ELIT eyes
	Visualized Code Blocks and Auto-Indentation
	Bringing Math and Computer Notations Together
	Domain Specific Graphical Operators
	Extra Built-in Literal for Two Dimentional Notations

	Signature for Slots
	Textual Method or Attribute Signature
	Graphical Operator Signature

	Object Oriented Programming is Back
	Graphical Visualization of the Receiver and its Type
	Multiple Inheritance, Polymorphism and Visual Selectors
	More Flexibility to Place the Receiver in the Signature
	Properties for Operators
	Visualizing Clonable Slots and the Self Symbol
	Order of Evaluation for Graphical Operators

	Visualizing software engineering aspects
	Fine Control of Slot Access Rights Also Made Visual
	Programming by Contract on the Stage

	Storage Format, Parsing, and Editing
	File Format and Compact Source Code Encoding
	Parsing and Building of the Abstract Syntax Tree
	First Step: Reading the Prototype Header and Slot Signatures
	Second Step: Parsing the Slot Bodies

	Integration and Definition of Graphical Operators
	Global Knowledge and Static Typing for Easy Editing

	Related languages or environments
	Conclusion
	References

