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Local Finite-Time Stability for a Class of
Time-Delay Systems

Xiaodi Li, Xinyi He, Dan Yang, Emmanuel Moulay and Qing Hui

Abstract—This paper studies the local finite-time stability for
a class of time-delay systems. Some Lyapunov-based sufficient
conditions are proposed in the framework of finite time, where
a potential connection between time delay and system parameters
for local FTS is established. An estimate of the upper bound of
the settling time depending on the time delay is derived. Examples
are given to illustrate the effectiveness of the proposed results.
Especially, a finite-time stabilizing memoryless controller for a class
of second-order systems with time-varying delay is proposed.

Index Terms—Finite-time stability, time-delay systems, Lya-
punov method, settling time, memoryless controller.

I. INTRODUCTION

Over the past decades, the control community has witnessed
extensive research on finite-time stability (FTS) of dynamical
systems, see [1], [2], [3], [4]. Different from asymptotic stability,
which implies the convergence of the system to a Lyapunov sta-
ble equilibrium state over infinite horizons, FTS can guarantee
the finite-time convergence of the system. At first, the concept
of FTS arose in time-optimal control, see [5], [6]. Then with the
complement of homogeneous approach and Lyapunov theorem,
the theory of FTS has been developed in the last decades. For
instance, it has been shown in [7] that a system is FTS if it
is globally asymptotically stable and homogeneous of negtive
degree; Based on Lyapunov method, a basic tool for the analysis
of FTS has been given in [5]; Whereas a necessary and sufficient
condition for FTS of continuous systems has been given in [8].
From the practical point of view, FTS plays an important role
in many engineering problems such as proportional navigation
guidance [9], [10], high-quality robot control [11], attitude
tracking of spacecraft [12], [13], etc.

Note that time delays appear in many dynamical systems,
including engineering systems, communication networks, chem-
ical process, manufacturing systems and so on. Considerable
research on the stability and stabilization of time-delay systems
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over infinite horizons can be found in [14], [15]. In the frame-
work of finite time, however, the corresponding development
is comparatively retarded due to the fact that FTS requires a
much stronger performance than classical Lyapunov stability.
Related results on FTS can be found in [16], [17], [18] and the
references therein. It is well known that there are mainly two
ways available for studying stability of time-delay systems. One
is Lyapunov-Razumikhin (L-R) approach, which has been used
for FTS analysis of time-delay systems in previous papers [17],
[18]. However, as noticed in [19], the Razumikhin condition
in [17] is insufficient for FTS of systems with time delays. To
guarantee FTS of time-delay systems, there must be additional
restrictions on the evolution of the system and one of necessary
conditions has been presented in [19] for constant delay. More
recently, by strengthening the classical Razumikhin condition,
L-R approach has been employed in [18] to ensure finite-time
convergence. Especially, the cases of exponential, finite-time
and fixed-time (with respect to a ball) convergences have been
extensively considered. But the proposed results in [18] are
based on a class of strengthening Razumikhin conditions, which
leads to a limited application. Another approach developing
the Lyapunov method to FTS analysis of time-delay systems is
Lyapunov-Krasovskii (L-K) approach, which has been success-
fully used in [16]. Although some general sufficient conditions
have been given in [16] by finding an L-K functional whose
derivative is upper bounded by a certain negative function, it
is hard to reflect the effects of time delay on system dynamics.
Moreover, it is difficult to find a suitable L-K functional to meet
all assumptions in [16]. In general, the research on FTS of time-
delay systems is still a very difficult and challenging topic.

In this paper, we shall study the FTS for a class of non-
linear systems with time-varying delays, where a Halanay-like
inequality acting on Lyapunov functions is given to ensure FTS.
An estimate of the upper bound of the settling time depending
on the time delay is derived. It shows that, when subject to
some types of time-varying delays, the local FTS of systems
can be achieved. Although this paper copes with the problem
of FTS under an additional assumption of delays, it still covers a
general case of systems. Especially, the proposed results can be
employed to finite-time stabilization under memoryless control.
The outline of this paper is as follows. In Section II, the problem
is formulated and preliminaries are given. In Section III, the
finite-time conditions are presented for time-delay systems. Two
numerical examples are given in Section IV to illustrate the
proposed results, where a stabilizing memoryless controller
for a class of second-order time-delay systems is designed.
Conclusions are given in Section V.
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Notations. Let Z+ denote the set of positive integers, R the
set of real numbers, R+ the set of nonnegative real numbers,
Rn the n-dimensional real space equipped with the Euclidean
norm | · |. A function ϕ ∈ C(R+,R+) is of class K if ϕ
is strictly increasing and ϕ(0) = 0. For given τ > 0, we
equip the linear space C([−τ, 0],Rn) (abr. Cτ ) with the norm
|| · ||τ defined by ||φ||τ = sups∈[−τ,0] |φ(s)|. For σ > 0,
Cστ = {φ ∈ Cτ : ||φ||τ < σ}. For real constants a, b, let a ∨ b
and a ∧ b denote the maximum and the minimum value of a
and b.

II. PRELIMINARIES

Consider the following nonlinear delay system{
ẋ(t) = f(x(t), x(t− τ(t))), t > 0,

x(t) = φ(t), t ∈ [−τ̄ , 0],
(1)

where x(t) ∈ Rn, ẋ(t) denotes the upper right-hand derivative
of x(t); τ(t) : R+ → [0, τ̄ ] is the time-varying delay, and φ ∈ Cτ̄
represents the initial condition, where τ̄ is a positive constant;
f ∈ C(Rn × Rn,Rn) satisfying f(0, 0) = 0. We assume
that function f satisfies suitable conditions so the solution
x(t) := x(t, φ) uniquely exists in forward time within relevant
time intervals, see [20], [21]. For a locally Lipschitz continuous
function V : Rn → R+, the upper right-hand Dini derivative
along system (1) is defined by

D+V [x(t)] = lim sup
h→0+

1

h
[V (x(t+ h))− V (x(t))].

When τ(t) ≡ τ∗ is a constant, it has been shown in [16]
that system (1) cannot be FTS if the origin is the only point of
f(x, y) = 0. Thus, to guarantee FTS in the case of constant
delay, the system needs to be equipped with some special
structure, f(u, v) ≡ 0 when u = 0 for example, so that the
effect of the constant delay disappears when the system reaches
the origin [16]. In this paper, to study the FTS problem of time-
delay system (1) without additional constraint on the system
structure, the following assumption on τ(t) is needed.

Assumption 1: There exist a positive constant b and a function
a ∈ C(R+,R+) satisfying a(t) ≤ 1 for all t > b such that

τ(t) ≤ a(t) · |b− t|, t ≥ 0.

Remark 1: Assumption 1 indicates that the time-varying
delay τ(t) vanishes at some instants, especially, τ(b) = 0.
Although it imposes a certain restriction on the time-varying
delay, it still covers many types of time delays, such as the
sinusoidal type τ(t) = a(t) · | sin(πb t + ϕ)|, the linear type
τ(t) = a(t) ·

∏m
i=1 |bi − t| and so on, see Figure 1.

Definition 1: [16] System (1) is said to be
(a) Lyapunov stable (LS) if there exist a function α ∈ K and a
constant σ > 0 such that for any φ ∈ Cστ̄ , |x(t, φ)| ≤ α(||φ||τ̄ )
for all t ≥ 0;

(b) (locally) finite-time stable (FTS) if it is LS and for
any φ ∈ Cστ̄ there exists 0 ≤ Tφ < +∞ such that
x(t, φ) = 0 for all t ≥ Tφ. The functional T (φ) =

Figure 1. The bound of τ(t) and different types of delays.

inf { Tφ ≥ 0 | x(t, φ) = 0, ∀t ≥ Tφ } is called the settling time
of system (1).

Moreover, for given σ > 0, if there exists a constant η > 0
such that T (φ) ≤ η for any φ ∈ Cστ̄ , then settling time T (φ) of
system (1) is said to be uniformly bounded by η over Cστ̄ .

III. MAIN RESULTS

In this section, some Lyapunov-based sufficient conditions are
presented for the FTS of nonlinear time-delay system (1).

Theorem 1: Assume that Assumption 1 holds for some func-
tion a ∈ C(R+,R+) and constant b > 0. If there exist functions
ω1, ω2 ∈ K, constants γ ∈ (0, 1), µ1 > 0, σ > 0, µ2 ≥ 0 and
a locally Lispchitz continuous function V : Rn → R+ such that

(i) ω1(|x|) ≤ V (x) ≤ ω2(|x|), ∀x ∈ Rn;

(ii) the derivative of V along the solution x(t) := x(t, φ) of
system (1) with φ ∈ Cστ̄ satisfies

D+V [x(t)] ≤ −µ1V
γ(x(t)) + µ2V

γ(x(t− τ(t))); (2)

(iii) µ ≥ ω1−γ
2 (σ)

(1−γ)b , where µ := µ1 − (1 + ā)
γ

1−γ µ2 and ā =

maxs∈[0,b] a(s).

Then system (1) is FTS with settling time T (φ) uniformly
bounded by b over Cστ̄ .

Proof: For any given initial data φ ∈ Cστ̄ , let x(t) := x(t, φ)
be the solution of system (1) through (0, φ). Without loss of
generality, we assume that ||φ||τ̄ > 0. Set

V (t) := V (x(t)), ψ(t) := V 1−γ(t) + ε(1− γ)(t ∨ 0),

where ε :=
ω1−γ

2 (||φ||τ̄ )
(1−γ)b . First, we claim that

ψ(t) ≤ ω1−γ
2 (||φ||τ̄ ), ∀t ∈ [0, b). (3)

Obviously, ψ(0) = V 1−γ(0) ≤ ω1−γ
2 (||φ||τ̄ ). Suppose that (3)

does not hold on (0, b), then there exists t∗ ∈ (0, b) such that
ψ(t∗) = ω1−γ

2 (||φ||τ̄ ), D+ψ(t∗) ≥ 0, and ψ(t) ≤ ψ(t∗) for
t ∈ [0, t∗]. Then there are two cases: t∗ − τ(t∗) ≥ 0 and t∗ −
τ(t∗) < 0. When t∗ − τ(t∗) ≥ 0, it follows from ψ(t) ≤ ψ(t∗)
for t ∈ [0, t∗] that

V 1−γ(t∗ − τ(t∗)) + ε(1− γ)(t∗ − τ(t∗)) ≤ V 1−γ(t∗) + ε(1− γ)t∗,

which implies that

V 1−γ(t∗ − τ(t∗)) ≤ V 1−γ(t∗) + ε(1− γ)τ(t∗). (4)
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When t∗ − τ(t∗) < 0, it follows from condition (i) that

V 1−γ(t∗ − τ(t∗)) ≤ ω1−γ
2 (||φ||τ̄ )

= V 1−γ(t∗) + ε(1− γ)t∗

= V 1−γ(t∗) + ε(1− γ)τ(t∗) + ε(1− γ)(t∗ − τ(t∗))

≤ V 1−γ(t∗) + ε(1− γ)τ(t∗).

Hence, in both cases, (4) always holds. Moreover, it is easy to
see that V (t∗) 6= 0. In fact, if V (t∗) = 0, then it follows from
ψ(t∗) = ω1−γ

2 (||φ||τ̄ ) and the definition of ε that

ω1−γ
2 (||φ||τ̄ )

b
t∗ = ε(1− γ)t∗ = ω1−γ

2 (||φ||τ̄ ),

i.e., t∗ = b, which leads to a contradiction with t∗ < b. Since
V (t∗) 6= 0, there exists δ0 > 0 such that V (t) > 0 on the
interval (t∗ − δ0, t∗ + δ0). It then can be deduced that

D+ψ(t) |t=t∗= (1− γ)
D+V [x(t∗)]

V γ(t∗)
+ ε(1− γ)

≤− µ1(1− γ) + µ2(1− γ)
V γ(t∗ − τ(t∗))

V γ(t∗)
+ ε(1− γ)

= µ2(1− γ)

(
−µ1 + ε

µ2
+
V γ(t∗ − τ(t∗))

V γ(t∗)

)
. (5)

Note that τ(t∗) ≤ a(t∗)(b− t∗), which leads to

ε(1− γ)τ(t∗)

ω1−γ
2 (||φ||τ̄ )− ε(1− γ)t∗

=
τ(t∗)

b− t∗
≤ a(t∗). (6)

According to condition (iii), one may obtain that µ > ε, i.e.,

1 + a(t∗) ≤ 1 + max
s∈[0,b]

a(s) <

(
µ1 − ε
µ2

) 1−γ
γ

. (7)

Combining (4), (6) and (7), we have

V 1−γ(t∗ − τ(t∗))

V 1−γ(t∗)
≤ 1 +

ε(1− γ)τ(t∗)

ω1−γ
2 (||φ||τ̄ )− ε(1− γ)t∗

<

(
µ1 − ε
µ2

) 1−γ
γ

,

which implies that

V γ(t∗ − τ(t∗))

V γ(t∗)
<
µ1 − ε
µ2

.

It then follows from (5) that D+ψ(t) |t=t∗< 0, which is a
contradiction with D+ψ(t∗) ≥ 0 and thus (3) holds.

Next, we shall show that V (t) = 0 for t ≥ b. To this end, we
first consider the instant t = b. If V (b) 6= 0, i.e., V (b) > 0, then
in view of the continuity of function V , there exists δ1 ∈ (0, b]
such that V (t) > 1

2V (b) on the interval (b − δ1, b). Take δ2 =

δ1∧ V 1−γ(b)
21−γε(1−γ) , then b− t ≤ V 1−γ(b)

21−γε(1−γ) for any t ∈ (b− δ2, b).
From (3) and the definition of ε, one can derive that

V 1−γ(t) + ε(1− γ)t ≤ ε(1− γ)b, ∀t ∈ (b− δ2, b),

which gives V 1−γ(t) ≤ ε(1−γ)(b− t). It indicates that V (t) ≤
1
2V (b) for t ∈ (b− δ2, b), which is a contradiction with V (t) >
1
2V (b). Thus it holds that V (b) = 0. Then we show that V (t) ≡
0 for all t > b. For any ε > 0, consider an auxiliary function

Fε(t) := V (t) − εt, t ≥ b. We show that Fε(t) ≤ 0 for all
t > b. It is obvious that Fε(b) < 0. Suppose that there exists
some t > b such that Fε(t) > 0, and define t? := inf{t > b |
Fε(t) > 0}. Then Fε(t

?) = 0, D+Fε(t
?) ≥ 0, and Fε(t) ≤ 0

for t ∈ [b, t?]. Since Fε(b) < 0, it holds that t? > b. Moreover,
one can obtain that V (t?) = εt?, V (t) ≤ εt for t ∈ [b, t?]. In
view of a(t) ∈ [0, 1] for all t > b, it holds that

t?−τ(t?) ≥ t? − a(t?) · (t? − b)

= (1− a(t?))t? + a(t?)b ≥ (1− a(t?))b+ a(t?)b = b,

which leads to

V (t? − τ(t?)) ≤ ε(t? − τ(t?)) ≤ εt? = V (t?). (8)

It then can be derived from (8) and condition (iii) that

D+Fε(t) |t=t?= D+V [x(t?)]− ε
≤− µ1V

γ(t?) + µ2V
γ(t? − τ(t?))− ε

≤ (−µ1 + µ2)V γ(t?)− ε < 0.

This is a contradiction. Thus Fε(t) ≤ 0 for all t > b. That is
V (t) ≤ εt for all t > b. Considering the arbitrary of ε, we have
that V (t) ≡ 0 for all t > b. In fact, if there exists t′ > b such
that V (t′) > 0, one can choose ε = 1

2t′V (t′) > 0, then V (t) ≤
t

2t′V (t′) for all t > b. When t = t′ > b, V (t′) ≤ 1
2V (t′),

which is impossible. Consequently, it holds that V (t) ≡ 0 for
all t ≥ b. Combining (3) with condition (i), it then follows
that |x(t, φ)| ≤ ω−1

1 ◦ ω2(||φ||τ̄ ) for any t ≥ 0 and φ ∈ Cστ̄ ,
which ensures that system (1) is Lyapunov stable. Hence, the
FTS of system (1) can be concluded. This completes the proof
of Theorem 1. 2

Remark 2: It is worth mentioning that the classical Halanay’s
inequality only requires µ1 > µ2 for asymptotic stability over
an infinite horizon, see [22]. In Theorem 1, however, one can see
that such condition is strengthened by condition (iii) in order
to achieve FTS. Moreover, with the help of Assumption 1, any
trajectory of system (1) will reach the equilibrium point before
the instant t = b and stay there thereafter. But we mention
that, although the uniform upper bound of the settling time is
estimated by T (φ) ≤ b, the proposed FTS result in Theorem 1
is different from the conventional fixed-time stability [23], [24],
[25]. Because estimation T (φ) ≤ b of the settling time only
holds for the solution x(t) = x(t, φ) of system (1) with initial
state φ within Cστ̄ . Thus the FTS considered in this paper is of
local feature, while fixed-time stability is generally related to the
global property of the system. In addition, it should be noted
that, although the upper bound of the settling time is estimated
by T (φ) ≤ b, it does not mean that b is the settling time of the
system. This assertion is illustrated in Section IV.

Remark 3: When applying Theorem 1, one needs to find a
Lyapunov function of system (1) with parameters µ1, µ2 satis-
fying Halanay-like inequality (2), which together with condition
(iii) then gives an upper bound of σ to restrict the initial
function for the FTS. It shows that to relax the constraint
of initial function φ, a bigger µ would be needed for the
FTS of system (1), which implies that µ1 should be relatively
bigger than µ2. The construction of such a Lyapunov function
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satisfying conditions of Theorem 1 is given in Section IV for a
second-order time-delay system.

Remark 4: Comparing with the existing FTS results in [16],
[18], where the FTS problem for general time-delay systems has
been studied via strengthening Lyapunov functional or Razu-
mikhin method, this paper focuses on the FTS problem subjects
to a class of time-varying delays. Although the restriction on
time delay is strengthened to certain extent, construction of
Lyapunov function is easier than that in the existing results,
which can be seen from Example 2.

0 1 2 3 4 5 6 7 8

0

1

0 1 2 3 4 5 6 7 8

0

1

0 1 2 3 4 5 6 7 8 9 10
10

-8

10
-4

10
0

Figure 2. State trajectory of system (9)-(10) with φ = 0.9.

IV. EXAMPLES

In this section, two examples are given to demonstrate the
efficiency of the obtained results.

Example 1: Consider a scalar time-delay system

ẋ(t) = −|x(t)| 17 sign(x(t))g(x(t), x(t− τ(t))), t ≥ 0, (9)

where τ(t) satisfies Assumption 1 for a(t) = 0.2, b = 5, and

g(x(t), x(t− τ(t))) = 3x
2
3 (t)− x 2

3 (t− τ(t)). (10)

The FTS of system (9) with g = 1 + x2(t − τ(t)) has been
studied in Example 5 of [16]. It is easy to see that the effect of
time delay vanishes during the differentiation of the Lyapunov
functional. For some general cases such as (10), the theoretical
result proposed in [16] becomes invalid because it is difficult
to find a suitable L-K functional to meet those assumptions. In
addition, one may find that the proposed result in [18] is also
invalid for (10) due to its conservative Razumikhin condition.
To determine the dynamics of system (9)-(10) following the
proposed result, one can choose Lyapunov function V (x(t)) =
|x(t)|. Then it is easy to verify that conditions in Theorem 1
hold with µ1 = 2.82, µ2 = 0.83 and γ = 17/21. Note that µ =
1.0186. Thus, according to Theorem 1, any solution x(t, φ) of
system (9)-(10) with φ ∈ Cστ̄ is FTS, where σ = 0.83 satisfying
condition (iii). In simulations, we take τ(t) = 0.1| sin(0.4πt)|,
t 6= 2k, and τ(2k) = 0.2|2k − 5|, k ∈ Z+, then Figure 2
(solid black) illustrates the trajectories of system (9)-(10) and
the discontinuous delay τ(t). It shows that the state trajectory
maintains at the equilibrium point after arriving it and moreover,
the settling time satisfies T (φ) < 3 < b. Moreover, if we take

τ(t) = τc = 1 as a constant delay, then it is shown in Figure 2
(dashed black) that system (9)-(10) has no FTS proposition. It
verifies the discussion before Assumption 1.

Example 2: Consider second-order system{
ẋ1(t) = x2(t) + cxλ1 (t− τ(t)),

ẋ2(t) = u(t),
(11)

where c ≥ 0, λ = q
p ∈ ( 1

2 , 1) with odd constants p, q > 0,
τ(t) is the time delay, u ∈ R is the control input. We now
give the following proposition, and the detailed computation of
Lyapunov functions is presented in the proof.

Proposition 1: Given σ > 0, if there exist constants α1 >
c+21−λ

λ+1 and α2 >
21−λλ
λ+1 such that condition (iii) in Theorem 1

holds with µ1 = 2
λ+1

2 (α1 − c+21−λ

λ+1 ) ∧ (α2 − 21−λλ
λ+1 ), µ2 =

2
λ+1

2 cλ
λ+1 and ω2(s) = ᾱs, where ᾱ = ( 1

2 +α
2
λ
1 +α

1
λ
1 )∨(1+α

1
λ
1 ).

Then system (11) is FTS with memoryless controller

u = −α2(x
1
λ
2 + α

1
λ
1 x1)2λ−1, (12)

for any τ(t) satisfying Assumption 1 and φ ∈ Cστ̄ .

Proof: The computation of a Lyapunov function satisfying
conditions in Theorem 1 consists of three steps.

Step 1. Choose V1 = 1
2x

2
1. According to (2), we have

V̇1 = x1ẋ1 = −α1x
λ+1
1 + x1(x2 + α1x

λ
1 ) + cx1x

λ
1 (t− τ(t)),

which together with Lemma 2.4 in [26] deduces that

V̇1 ≤−
(
α1 −

c

λ+ 1

)
xλ+1

1 +
cλ

λ+ 1
xλ+1

1 (t− τ(t))

+ x1(x2 − x∗2),

where x∗2 = −α1x
λ
1 , α1 >

c+21−λ

λ+1 .

Step 2. Let

V2 = V1 +

∫ x2

x∗2

(s
1
λ − (x∗2)

1
λ )2−λds. (13)

It can be verified that V2 is positive definite, and it follows from
Lemmas 2.3 and 2.4 in [26] that the derivative of V2 satisfies

V̇2 = V̇1 +
(
x

1
λ
2 − (x∗2)

1
λ

)2−λ
· ẋ2

= V̇1 +
(
x

1
λ
2 − (x∗2)

1
λ

)2−λ
· u

≤ −
(
α1 −

c

λ+ 1

)
xλ+1

1 +
cλ

λ+ 1
xλ+1

1 (t− τ(t))

+ x1(x2 − x∗2) +
(
x

1
λ
2 − (x∗2)

1
λ

)2−λ
· u

≤ −
(
α1 −

c+ 21−λ

λ+ 1

)
xλ+1

1 +
cλ

λ+ 1
xλ+1

1 (t− τ(t))

+
21−λλ

λ+ 1

(
x

1
λ
2 − (x∗2)

1
λ

)λ+1

+
(
x

1
λ
2 − (x∗2)

1
λ

)2−λ
· u.
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Obviously, with control input (12), we have

V̇2 ≤ −
(
α1 −

c+ 21−λ

λ+ 1

)
xλ+1

1 − (α2 −
21−λλ

λ+ 1
)

·
(
x

1
λ
2 − (x∗2)

1
λ

)λ+1

+
cλ

λ+ 1
xλ+1

1 (t− τ(t))

≤ −2
λ+1

2

(
α1 −

c+ 21−λ

λ+ 1

)(
1

2
x2

1

)λ+1
2

− (α2 −
21−λλ

λ+ 1
)

(∫ x2

x∗2

(s
1
λ − (x∗2)

1
λ )2−λds

)λ+1
2

+
cλ2

λ+1
2

λ+ 1

(
1

2
x2

1(t− τ(t))

)λ+1
2

≤ −µ1V
λ+1

2
2 + µ2V

λ+1
2

2 (t− τ(t)),

where µ1 = 2
λ+1

2

(
α1 − c+21−λ

λ+1

)
∧
(
α2 − 21−λλ

λ+1

)
> 0, µ2 =

2
λ+1

2 cλ
λ+1 > 0.

Step 3. Note that α1 and α2 are selected such that µ1 and
µ2 satisfy condition (iii) with ω2(s) = ᾱs and ᾱ = ( 1

2 +α
2
λ
1 +

α
1
λ
1 )∨ (1+α

1
λ
1 ). Thus, V2 is a Lyapunov function of time-delay

system (11). Applying Theorem 1, system (11) is FTS. 2
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Figure 3. State trajectories of system (11) with (12) and φ(t) = (3,−2.55)T .

In simulation, take c = 1, λ = 3
5 , σ = 3.27 and τ(t) =

5
2(t+1) | sin( 3

10 (t − 25)2)|. Then we can choose α1 = 2 and
α2 = 46 so that condition (ii) holds with µ1 = 1.49 and µ2 =
0.82 and condition (iii) holds with µ = 0.2894. According to
Proposition 1, system (11)-(12) is FTS for any φ ∈ Cστ̄ , see
Figure 3 (blue curve). It shows that the trajectories of system
(11) are stabilized by (12) in finite time. Moreover, it is obvious
that the settling time satisfies T (φ) < b = 25, which verifies
our previous assertion in Remark 2.

V. CONCLUSIONS

In this paper, the problem of local FTS for general time delay
systems are studied, where a class of time-varying delays is fully
considered. Some sufficient conditions are proposed based on
Lyapunov method. It shows that the FTS of systems involving
some types of time-varying delays can be achieved. In addition,

an estimate of the settling time depending on time delays is
given. Future research topics include relaxing the proposed FTS
conditions and exploring the fixed-time stability of more general
time-delay systems.
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