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Abstract: Hypohidrotic ectodermal dysplasia is a developmental defect characterized by sparse or 

absent hair, missing or malformed teeth and defects in eccrine glands. Loss-of-function variants in 

the X-chromosomal EDA gene have been reported to cause hypohidrotic ectodermal dysplasia in 

humans, mice, dogs and cattle. We investigated a male cat exhibiting diffuse truncal alopecia with a 

completely absent undercoat. The cat lacked several teeth, and the remaining teeth had an abnormal 

conical shape. Whole-genome sequencing revealed a hemizygous missense variant in the EDA gene, 

XM_011291781.3:c.1042G>A or XP_011290083.1:p.(Ala348Thr). The predicted amino acid exchange is 

located in the C-terminal TNF signaling domain of the encoded ectodysplasin. The corresponding 

missense variant in the human EDA gene, p.Ala349Thr, has been reported as a recurring pathogenic 

variant in several human patients with X-linked hypohidrotic ectodermal dysplasia. The identified 

feline variant therefore represents the likely cause of the hypohidrotic ectodermal dysplasia in the 

investigated cat, and the genetic investigation confirmed the suspected clinical diagnosis. This is the 

first report of an EDA-related hypohidrotic ectodermal dysplasia in cats. 

Keywords: Felis catus; WGS; dermatology; skin; development; X-linked; precision medicine; animal 

model 

 

1. Introduction 

One of the first scientific descriptions of hypohidrotic ectodermal dysplasia was 

provided in 1875 by Charles Darwin, who studied reports on a four-generation Hindu 

family from India with ten affected male relatives. These studies enabled him to deduce 

fundamental principles of X-linked recessive inheritance [1]. 

The clinical phenotype in humans involves sparse or absent hair, abnormal dentition 

characterized by partially missing teeth and remaining teeth exhibiting a distinctive 

pointed morphology, as well as a deficiency in various glands, notably sweat glands, 

resulting in heat intolerance [2]. This phenotype has been interchangeably termed 

hypohidrotic ectodermal dysplasia (HED), anhidrotic ectodermal dysplasia, or Christ–

Siemens–Touraine syndrome [3]. The vast majority of human HED patients carry loss-of-

function variants in the X-chromosomal EDA gene encoding ectodysplasin A [2,4]. 

Ectodysplasin A is a homotrimeric type II transmembrane protein with an intracellular 

N-terminus, a single transmembrane domain, an extracellular short collagen-like domain 
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that mediates triple helix formation and trimerization and a C-terminal signaling domain 

that has sequence homology to tumor necrosis factor (TNF) [5–7]. Alternative splicing 

gives rise to two alternative transcripts from the ~400 kb EDA gene, which encode two 

protein isoforms termed EDA-A1 and EDA-A2 that differ by the presence or absence of 

two amino acids in the TNF signaling domain and bind to two different receptors [8]. The 

physiological functions of the shorter EDA-A2 isoform and its receptor are largely 

unknown. Expression of the longer EDA-A1 isoform during fetal development prompts 

the formation of many different ectodermal appendages, such as hair follicles, tooth buds 

or sweat glands. The signaling cascade involves extracellular proteolytic cleavage of the 

membrane-bound EDA-A1 by furin proteases to release a paracrine trimeric signaling 

molecule. The released soluble fragment can bind with its TNF signaling domain to the 

ectodysplasin A receptor (EDAR) on target cells. Activated EDAR recruits an intracellular 

adaptor protein termed EDAR associated via death domain (EDARADD), and the 

complex activates NFκB signaling to modulate the expression of target genes [9]. 

Loss-of-function of EDA, EDAR or EDARADD leads to identical clinical phenotypes 

in human patients [10,11]. However, the vast majority of human patients are due to EDA 

variants, and this specific form of the condition is termed X-linked hypohidrotic 

ectodermal dysplasia (XHED; OMIM #305100). The Leiden Open Variation Database 

currently lists 164 pathogenic or likely pathogenic variants [12]. Autosomal recessive or 

dominant inheritance is seen in very rare forms of HED due to variants in EDAR or 

EDARADD. 

EDA variants causing hypohidrotic ectodermal dysplasia were also reported in mice 

[5,6], dogs [13–16] and ca�le [17–28]. EDA-deficient dogs have been successfully used as 

animal models for therapeutic trials that are now ongoing in human patients [29,30]. 

This study was prompted by the presentation of a male cat with clinical signs 

resembling hypohidrotic ectodermal dysplasia in humans and other species. The aim of 

our study was to provide a detailed characterization of the clinical phenotype together 

with an investigation of the underlying causative genetic variant. 

2. Materials and Methods 

2.1. Ethics Statement 

The affected and all 96 control cats in this study were privately owned. Blood samples 

were collected with the consent of the owners. The diagnostic work-up of the index case 

did not constitute an animal experiment in the legal sense. The collection of blood samples 

from control animals was approved by the Cantonal Commi�ee for Animal Experiments 

(Canton of Bern; permit BE94/2022). All animal experiments were conducted in 

accordance with local laws and regulations. 

2.2. Clinical Examination 

The affected cat underwent regular general and dermatologic examinations. Regular 

monitoring of atypical dermatitis and chronic calicivirus was carried out for two years. 

Hematological and biochemical check-ups, urinary analyses and abdominal ultrasound 

scans were regularly carried out as part of the animal’s clinical follow-up. 

The 96 control cats represented population controls without any reports of combined 

tooth and hair abnormalities. As the phenotype in the affected cat was very striking, we 

considered all 96 control cats as clinically unaffected. 

2.3. DNA Isolation and Whole-Genome Sequencing 

Genomic DNA was isolated from EDTA blood on a Maxwell RSC 16 or 48 instrument 

using the Maxwell RSC Whole Blood DNA Kit (Promega, Dübendorf, Swi�erland). A 

PCR-free library with ~400 bp insert size was prepared from genomic DNA of the affected 

cat. The library was sequenced with 2 × 150 bp paired-end chemistry at 20× coverage on 

an Illumina NovaSeq 6000 instrument (Illumina, San Diego, CA, USA). The raw reads in 
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fastq files were processed into a binary alignment map (bam-file) with respect to the 

F.catus_Fca126_mat1.0 genome reference assembly (GCF_018350175.1). Subsequently, 

single-nucleotide variants and small indels were called as described before [31]. The 

accession numbers of the sequence data were deposited in the European Nucleotide 

Archive and are listed in Table S1. Functional effects of the called variants were predicted 

with the SnpEff version 4.3t software [32] together with NCBI annotation release 105 for 

the F.catus_Fca126_mat1.0 genome reference assembly. 

2.4. Variant Filtering 

We filtered for private variants in the affected cat by comparing its genome sequence 

data to a control cohort comprising 96 publicly available WGS datasets from genetically 

diverse cats (Table S1). Variants in the affected cat that also occurred in at least one of the 

control cats were excluded from further analysis. In a second step, protein-changing 

variants were prioritized. We considered variants with an SnpEff predicted impact of 

“high” or “moderate” as protein-changing. 

2.5. In Silico Pathogenicity Prediction 

The online classification tools Polyphen-2 [33], PredictSNP [34] and MutPred2 [35] 

were utilized to predict the potential functional impact of the 

XP_011290083.1:p.Ala348Thr missense variant. The Mol*3D viewer [36] from the RCSB 

Protein Data Bank was used to visualize the protein structure 1RJ7 of the TNF signaling 

domain of the human ectodysplasin A protein [37]. 

3. Results 

3.1. Clinical Phenotype 

A 9-year-old neutered male European domestic shorthair cat was presented for 

pruritus of the limbs and abdomen. The cat had been adopted at the age of 7 years old 

from a rescue organization. The cat had been given regular external antiparasitic 

treatment. 

At presentation, diffuse truncal alopecia with complete alopecia of the abdomen, 

alopecia and hyperpigmentation of the inner thighs and alopecia of ungual ridges was 

evident (Figure 1). Coat inspection revealed reduction to absence of the undercoat with 

presence of guard hair only. Diffuse squamosis, follicular casts, diffuse erythema and 

overall loss of skin elasticity were also present. The hair loss had not changed since 

adoption, and the erythema and pruritus appeared a few weeks prior to presentation. The 

cat had a history of chronic rhinitis. 
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Figure 1. Diffuse hypotrichosis of the affected cat. (a) Complete abdominal alopecia and a lack of 

undercoat on the remaining haired skin. (b) Alopecia and hyperpigmentation of the inner thighs. 

(c) Alopecia of ungual ridges. 

At the time of presentation, the cat had only six teeth, the four canines and two lower 

premolars. The incisors, upper premolars and molars were missing. The canines and the 

present premolars had an abnormal conical shape (Figure 2). 
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Figure 2. Abnormal dentition in the affected cat. Only the four canines and the two lower premolars 

with an abnormal, extremely pointed shape were present. The incisors, upper premolars and molars 

were missing. (a) Four canines are visible. (b) The right lower premolar is indicated with an arrow. 

Blood hematology and biochemistry revealed only moderate eosinophilia and 

marked neutrophilic leukocytosis, probably secondary to chronic dermatopathy (Tables 

S2 and S3). Cushing syndrome was ruled out by abdominal ultrasonography, which 

revealed normal, normoechoic adrenal glands of normal size and shape, as well as normal 

blood and urine tests and a normal urine specific gravity of 1.050 (Table S4). FIV and FelV 

tests were negative. The owner declined skin biopsies for further histopathological 

examinations. 

Altogether, the clinical signs of hypotrichosis, squamosis, follicular casts and dental 

agenesis, along with the exclusion of a metabolic disease such as Cushing syndrome, led 

to a suspicion of hypohidrotic ectodermal dysplasia [13,16,38,39]. 

3.2. Genetic Analysis 

We sequenced the genome of the affected cat and compared the sequence data to 96 

genetically diverse control genomes in a search for plausible causative variants. Several 

filtering steps were performed based on hypothetical dominant or recessive modes of 

inheritance, allele frequency in the control cohort and predicted variant impact. Variants 

in the known candidate genes EDA, EDAR and EDARADD were prioritized (Tables 1 and 

S5). 

Table 1. Variants detected by whole-genome sequencing of the affected cat. 

Filtering Step 
Heterozygous 

Variants 

Homozygous 

Variants 1 

All variants 8,698,639 4,662,163

Private variants 101,930 3933

Private protein-changing variants 536 20

Private protein-changing variants in three candidate 

genes 
0 1

1 Includes hemizygous variants on the X chromosome. 

The analyses identified a single candidate variant on the X chromosome, 

NC_058386.1:g.57,148,944G>A. It is a missense variant in the EDA gene, 
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XM_011291781.3:c.1042G>A, predicted to change an alanine into a threonine residue on 

the protein level, XP_011290083.1:p.(Ala348Thr). This predicted amino acid substitution 

is located in the TNF signaling domain of ectodysplasin A (Figure 3). The mutant allele 

was absent from 404 cat genomes of the 99 Lives Consortium [40,41]. 

 

Figure 3. Details of the EDA:p.Ala348Thr variant. (a) Integrative Genomics Viewer screenshot of the 

short-read alignments from the affected cat and an unrelated control demonstrates the hemizygous 

c.1042G>A single-base substitution in the affected cat. The reading frame and amino acid translation 

of the reference sequence are indicated. (b) Genomic organization of the ~444 kb feline EDA gene 

with its 8 exons. The c.1042G>A missense variant is located in the last exon. (c) Evolutionary 

conservation of ectodysplasin A in the region of the predicted amino acid exchange. The alanine at 

position 348 of the feline ectodysplasin A protein is strictly conserved across all vertebrates. The 

sequences were derived from the following database accessions: cat XP_011290083.1, human 

NP_001390.1, mouse NP_034229.1, rat NP_001292172.1, chicken NP_001409628.1, frog 

XP_004916866.1 and zebrafish NP_001108537.1. (d) Structure of the human trimeric EDA-A1 TNF 

signaling domain [37]. Ala-349 (which corresponds to Ala-348 in the feline protein) is located within 

a β-sheet at the contact surface between the three monomers. (e) Details of the structure. The small 
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methyl side chain of Ala-349 is densely packed between the phenyl-rings of Phe-302 and the phenyl-

rings of two Tyr-347 residues from two different monomers, which form a hydrogen bond in the 

trimeric structure. 

In silico pathogenicity prediction tools classified the p.Ala348Thr variant as 

potentially deleterious. MutPred2 gave a score of 0.541, marginally above the 

pathogenicity threshold of 0.5. PredictSNP classified the p.Ala348Thr variant as 

deleterious with 72% probability. Polyphen-2 classified the variant as probably damaging 

with a score of 0.995. 

The amino acid sequence of the TNF signaling domain is highly conserved between 

vertebrates. The alanine corresponding to the feline Ala-348 residue is invariable in all 

vertebrate sequences analyzed (Figure 3c). This alanine is located in a β-sheet at the contact 

interface between the three EDA-A1 monomers (Figure 3d). The small methyl side chain is 

in close proximity to three phenyl rings from neighboring amino acids (Figure 3e). 

4. Discussion 

In this study, we investigated a male cat with a syndromic phenotype involving 

partially missing hair and missing or abnormally shaped teeth. This combination of 

clinical signs was classified as hypohidrotic ectodermal dysplasia. This phenotype is 

highly characteristic, and especially in male individuals, the X-chromosomal EDA is the 

primary functional candidate gene. Many pathogenic variants in EDA have been reported 

in human patients [4,7,12,42,43], dogs [13–16] and ca�le [17–28]. The history of chronic 

rhinitis in the affected cat might have been caused by defects in respiratory mucous 

glands, which are a common feature of hypohidrotic ectodermal dysplasia in humans, 

ca�le and dogs [13,44,45]. Keratoconjunctivitis sicca, another frequent phenotype in 

human X-linked hypohidrotic ectodermal dysplasia due to defects in lacrimal glands, was 

not observed in the investigated cat. 

For practicing veterinarians, it is important to consider all organ systems that may be 

affected in XHED to provide an optimal management of potential future cases. Special 

a�ention should be paid to good management of respiratory infections and surveillance 

of eye irritations due to possible gland defects in XHED-affected animals. 

The identified EDA missense variant in the affected cat, p.Ala348Thr, is predicted to 

affect a single amino acid within the TNF signaling domain, located at the contact interface 

between the three monomers. Interestingly, the homologous human variant, p.Ala349Thr, 

has been identified in at least two independent human XHED families [7,43]. The available 

knowledge on the homologous human variant provides very strong support for the 

pathogenicity of the feline p.Ala348Thr variant. It seems conceivable that replacement of 

the alanine with the slightly larger and more polar threonine might interfere with correct 

assembly of the trimeric TNF signaling domain. The hydroxy group of the mutant 

threonine might potentially disrupt a hydrogen bond that normally bridges two adjacent 

tyrosine side chains from two different subunits [37]. 

At the nucleotide level, the substitution affects a CpG dinucleotide. CpG 

dinucleotides represent known mutational hotspots due to the spontaneous deamination 

of 5-methylated or unmethylated cytosines, which results in CG → TG or CG → CA 

substitutions as in the cat described herein [46]. 

The ~400 kb EDA gene is one of the largest genes in the mammalian genome. Many 

different types of deleterious sequence variants have been identified that lead to a loss of 

function of ectodysplasin A and result in XHED. These include single-nucleotide variants 

representing missense variants such as in the cat described herein and several examples 

in humans [7,42,43] and ca�le [27,28]. Other single-base substitutions represent nonsense 

variants [19] or were reported to disrupt splicing [13,18]. Additionally, small coding 

insertions and deletions, either in-frame [41] or frame-shifting [20], and large structural 

variants were reported in XHED-affected individuals [17,25]. Exon 2 of the EDA gene is 

flanked by very large introns on either side, which complicates the correct splicing of the 
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primary transcript. Splicing aberrations in XHED-affected ca�le have been reported in an 

animal with a partial LINE-1 insertion into intron 1 that resulted in “exonization” of the 

inserted sequence and a non-functional transcript [21]. Finally, in three XHED-affected 

dogs, skipping of exon 2 was observed, although the genomic sequence of exon 2 and its 

flanking splice sites were unaltered. The genomic variant causing this splice defect has not 

yet been identified [14]. 

5. Conclusions 

We characterized the clinical phenotype of a male cat with X-linked hypohidrotic 

ectodermal dysplasia (XHED). Similar to XHED in other mammalian species, the primary 

phenotypic alterations include partially missing hair and a complete absence of the 

undercoat. Furthermore, the affected cat lacked most teeth, and the remaining teeth had 

an abnormal conical shape. The genetic investigation identified EDA:c.1042G>A, a single-

nucleotide variant affecting a CpG dinucleotide and resulting in the p.Ala348Thr missense 

change as the most likely causative defect. A homologous missense variant, p.Ala349Thr, 

caused by recurring mutations of the homologous CpG dinucleotide has been reported in 

several human patients with XHED. To the best of our knowledge, we report the first 

instance of an EDA-related hypohidrotic ectodermal dysplasia in a cat. 

Supplementary Materials: The following supporting information can be downloaded at: 

h�ps://www.mdpi.com/article/10.3390/genes15070854/s1, Table S1: Accession numbers of 97 cat 

genome sequences; Table S2: Hematology results of the affected cat; Table S3: Serum biochemistry 

of the affected cat; Table S4: Urinalysis of the affected cat; Table S5: Private protein-changing private 

variants in the affected cat. 
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