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Abstract. BoNesis is a Python library which offers a declarative frame-
work for the synthesis of Boolean networks from advanced dynamical
properties, such as reachability, bifurcation, minimal trap spaces, sta-
ble states, and mutations. It combines recent theoretical advances on
Boolean networks with the Most Permissive update mode and efficient
resolution of logic programs expressed in Answer-Set Programming. Its
main application domain is the inference of Boolean models from bulk
and single-cell gene expression data of cell-fate, differentiation and re-
programming processes.
BoNesis is distributed under the GPLv3-compatible free software license
CeCILL and is available at https://bnediction.github.io/bonesis.

1 Introduction

Boolean networks (BNs) are executable models with an extensive record of appli-
cations in biology and medicine, with the modeling of cellular processes such as
cell cycle [9,10,21], lineage differentiation [14,20,22,32], fate decision [18,23,35],
and reprogramming [1, 8]. Yet, the design of BNs that are able to reproduce
observed behaviors while satisfying desired structural properties (typically on
its influence graph), and reflecting background and expert knowledge, is an out-
standing challenge at different levels.

First, the model properties need to be specified, both in terms of structure
and dynamics. In case of data-driven modeling, e.g. from multiscale sequencing
data, a premilinary interpreting step is necessary in order to translate quanti-
tative data into dynamic Boolean properties. This modeling task requires bio-
logical and statistical expertise, and an upstream well-defined goal about the
BN reconstruction. Moreover, dealing with quantitative observations of the sys-
tem typically involves uncertainty, e.g. measurement noise or lack of statistical
significance for gene activity classification or cell clustering.

Then, provided a specification of what characterizes a good model arises
the challenge of constructing such a model. Most of BNs described in systems
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biology literature have been designed by hand, either entirely, or by combining
previously handmade models. This involves a huge workload, expertise, rules
of thumb, trials and errors. Obviously, the automatic construction, also known
as logical model inference or synthesis, is a long-lived goal [33]. However, the
combinatorics of the search space and the complexity of BN verification form
a strong bottleneck for realistic applications. Provided a specification and an
algorithm for BN synthesis, one would potentially face an issue with a huge
number of solutions. Indeed, the experimental observations of cellular dynamics
are often derived from few initial conditions and few perturbations with regard
to the number of genes, resulting in a largely under-specified synthesis problem.
There is consequently a pressing need for efficient computational methods to
explore the solution space of BNs.

Recently, there have been several noticeable advances to provide application-
focused tools that are tailored for specific type of data and biological and dy-
namical interpretation of those data [2, 11, 16, 17, 19, 25, 27]. Efforts for provid-
ing more generic engines for BN synthesis led to notable frameworks, such as
RE:IN [36], involving domain specific language (DSL) and Satisfiability-Modulo-
Theory (SMT) technologies, or BRE:IN [13] and AEON [3,4], involving temporal
logics and model-checking technologies.

We present the software BoNesis, which aims at providing a general logi-
cal modeling environment and solving engine for the synthesis of BNs from rich
dynamical properties. It takes the form of a Python library and offers a declar-
ative interface to specify the synthesis problem, together with various methods
for browsing the solution space. The synthesis itself relies on logic Answer-Set
Programming (ASP) solving. The flexibility of the framework enables to exploit
different types of data (bulk/single-cell RNA-seq, perturbation data) with dif-
ferent interpretations, depending on the biological context of the observations.
Moreover, BoNesis can also be employed for the verification and reprogramming
of a given BN, to identify mutations enforcing a specified dynamical property.
Compared to the prior mentioned softwares, one of the main specificity of BoNe-
sis is that it accounts for the Most Permissive (MP) dynamics of BNs, which
bring a strong connection with quantitative models and a lower complexity of
analysis [29]. BoNesis is available at https://bnediction.github.io/bonesis, with
tutorials and documentation. It is distributed as part of the CoLoMoto Docker
image [26], as well as standard pip and conda packages. It can be tried online
at https://bnediction.github.io/bonesis/online-demo.html.

2 Features

BoNesis is dedicated to the synthesis of BNs from the combination of two kinds
of inputs (Fig. 1): the domain of candidate BNs, describing the model search
space, and the specification of dynamical properties that must be verified. BoNe-
sis offers various methods to browse the BNs which belong to the input domain
and possess the declared dynamical properties: enumeration of solutions, sam-
pling of diverse solutions, projections over subsets of components, enumeration

https://bnediction.github.io/bonesis
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Fig. 1. Overview of BoNesis features

of involved influence graphs, etc., with the possibility to specify optimization
criteria, such as model size.

The input domain of BNs is typically defined from an influence graph which
determines the components of the network and the allowed directed pairwise
signed dependencies between them. BoNesis also supports partially defined
BNs, thanks to the aeon framework [3]. In these cases, BoNesis will account
for any BN matching with the influence graph and partially specified Boolean
functions which are locally monotone, i.e. no component has both a positive and
negative influence on another one. The domain can also be an explicit set of
BNs, or a single BN, without any restriction. This latter case is useful for veri-
fication, i.e., for checking whether the input BN verifies the specified dynamical
properties, and for reprogramming, i.e., the computation of permanent mutations
ensuring desired dynamical properties [28].

A BN maps each of its components with a Boolean function modeling its
target Boolean state with respect to the state of its regulators. A configuration
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of the BN associates to each component a Boolean state. Then, provided an
update mode, one can compute possible transitions and trajectories between these
configurations. Attractors are the smallest sets of configurations from which no
transition can leave. They represent the long-term dynamics of the BN, and can
either be a single configuration (fixed points), or a set of configurations. In the
case of MP update mode, transitions and trajectories can be computed by an
iterative process over subcubes. There, the attractors correspond to the minimal
trap spaces of the BN, that are the smallest subcubes for which no transition can
leave, whatever the update mode [24, 29]. It has been show in [29] that MP is
able to capture trajectories from any quantitative refinement of the BN, contrary
to traditional update modes that can miss possible behaviors.

The expected dynamical properties are specified using predicates, summa-
rized in Table 1. Currently, BoNesis supports properties related to observa-
tions, fixed points, minimal trap spaces, existence and absence of reachability
between configurations, and universal properties on fixed points and reachable
fixed points. The properties can be conditioned with mutations, that replace the
function of specified components with a constant value. This enables to specify
jointly wild-type and mutant properties. E.g., one can specify that, without any
mutation, all the fixed points match with an observation A or B, and that in a
mutant where g is knocked out, the fixed points match only with B. The prop-
erties can involve partially defined configurations, e.g., by requiring they match
with observations over a subset of components, as well as placeholders mutations
(Some objects). In these cases, BoNesis will search for satisfying assignments
for complete configuration and mutations so that the dynamical properties are
fulfilled. This is notably employed to identify reprogramming strategies: one can
declare that under a Some mutation, all fixed points satisfy a given property.
Then, BoNesis can enumerate all mutations that can replace Some.

In practice, BoNesis builds on the Python language to offer a declarative
language for such properties. Fig. 2 illustrates BoNesis usage for the modeling
of a simple dynamical property: the reachability of a fixed point matching with
a specific marker in the wild-type condition, and the absence of such behavior
in a given mutant.

3 Implementation and use cases

BoNesis relies on Answer-Set Programming (ASP) logic framework and the
solver clingo [12]. When requesting for solutions, BoNesis compiles the predi-
cates in ASP using the encodings defined in [6,34] and relies on clingo’s Python
API to perform the different resolution mechanisms (sampling with diversity,
projections, etc.). The ASP encodings are designed such that each solution of
the logic program corresponds to a distinct BN verifying the input properties.

Currently, for each component, the Boolean functions to synthesize are in-
ternally represented in disjunctive normal form (DNF), i.e. by a list of clauses,
each clause being a conjunction of at most m literals, where m is the number of
regulators of the component. Because the number of clauses grows exponentially
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Table 1. Overview of the main predicates to declare dynamical properties in the
scope of a Python object BoNesis(dom,data ), where dom specifies the domain of BNs,
including the set of components, and data defines the named observations. For a
complete reference, see https://bnediction.github.io/bonesis/language.html.

Objects

Observation: maps a subset of components to 0 or 1

O = obs({a:0, b:1,..}) Obs from partial mapping of components to 0/1
O = obs("name" ) Named obs defined in the data dictionnary

Configuration: maps each component to 0 or 1

C = cfg() Allocates a fresh configuration
C = +O Fresh configuration matching with obs O
C = ∼O Default configuration matching with obs O

S = Some(max_size=k) Represents a mutation of at most k components.
Use S.assignments() to get satisfying valuations.

Properties

Constraints on configurations

C != C’ C and C’ differ on at least one component
C[a] == C’[b] | 0 | 1 State of component a in C is equal (resp. different)
C[a] != C’[b] | 0 | 1 to state of component b in C’ (resp. 0 and 1)
C != O C does not match with O

Attractor properties

fixed(C) C is a fixed point
fixed(O) there exists a trap space where O is fixed
in_attractor(C) C belongs to an attractor

Reachability

C >= C’ or reach(C,C’) Exists an MP trajectory from C to C’
C >= O ... to a config matching with O (equiv to C >= +O)
C >= fixed(O) ... to a config in a trap space where O is fixed
Note: can be composed, e.g., C1 >= C2 >= fixed(C3)
C / □ or nonreach(C,□) Absence of MP traj from C to ... (same as reach)

Universal properties

all_fixpoints({O,O’,..}) All the fps match with at least one given obs
C >> "fixpoints" ^ {O,O’,..} All the fps reachable from C ...

Contexts

with mutant({a:0,..} | S): Properties within the with block are subject to
... mutation specified by {a:0,..} (resp. S)

https://bnediction.github.io/bonesis/language.html
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Fig. 2. Example use of BoNesis in a Jupyter session

with m, BoNesis allows setting an arbitrary upper bound on the number of
clauses for Boolean functions. This enables synthesing functions that depend on
numerous components, but have a limited number of clauses. As shown in [5,6],
BoNesis can tackle the synthesis of BNs with thousands of components.

BoNesis has been employed for different concrete biological applications.
In [7], authors revisited a published BN of cell fate in cancer (32 components)
with ensembles of diverse alternative models synthetized by BoNesis from the
same observations in different mutation conditions. In [30], authors included
BoNesis in a pipeline to infer an ensemble of BNs over 232 genes from gene per-
turbation experiments for the study of epilypsy. To model early hematopoiesis
aging, [15] employed BoNesis from scRNA-seq data and an expert influence
graph (15 components) and results in the discovery of new explanatory regula-
tory mechanisms. [5] also integrated scRNA-seq with BoNesis but with a large
influence graph from a public database (>1,000 nodes) to identify key genes
involved in hematopoiesis and analyze variability of candidate BNs.

4 Conclusion

BoNesis aims at offering a flexible and efficient framework for BN synthesis
from rich dynamical properties, for instance generated from experimental data.
Thanks to its flexibility, BoNesis can also be employed for the verification and
reprogramming of BNs. The defined predicates form a domain-specific language
that enables to express a large variety of dynamical properties over BNs with a
higher abstraction level than classical temporal logic. Moreover, the intertwining
with Python greatly facilitates the programmatic generation of the dynamical
properties (loops, variables), and the combination with other tools, both as pre-
processing of input data and post-processing of obtained models. In future work,
we plan to extend support for the synthesis of non-monotone BNs, and for further
constraints over attractors and trajectories, notably by generalizing the universal
reasoning over minimal trap spaces introduced in [31].



BoNesis 7

References

1. Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V.,
Chaouiya, C., Thieffry, D.: Model checking to assess t-helper cell plasticity. Fron-
tiers in Bioengineering and Biotechnology 2 (2015). https://doi.org/10.3389/fbioe.
2014.00086

2. Aghamiri, S.S., Delaplace, F.: Taboon boolean network synthesis based on tabu
search. IEEE/ACM Transactions on Computational Biology and Bioinformatics p.
1–1 (2021). https://doi.org/10.1109/TCBB.2021.3063817

3. Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: Attractor bi-
furcation analysis of parametrised boolean networks. In: Computer Aided Verifi-
cation, pp. 569–581. Springer International Publishing (2020). https://doi.org/10.
1007/978-3-030-53288-8_28

4. Beneš, N., Brim, L., Huvar, O., Pastva, S., Šafránek, D.: Boolean network sketches:
a unifying framework for logical model inference. Bioinformatics 39(4) (2023).
https://doi.org/10.1093/bioinformatics/btad158

5. Chevalier, S.: Inférence logique de réseaux booléens à partir de connaissances
et d’observations de processus de différenciation cellulaire. Ph.D. thesis, Univer-
sité Paris-Saclay (Sep 2022), https://theses.hal.science/tel-03917566/file/106218_
CHEVALIER_2022_archivage.pdf

6. Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of boolean net-
works from biological dynamical constraints using answer-set programming. In:
2019 IEEE 31st International Conference on Tools with Artificial Intelligence (IC-
TAI). pp. 34–41. IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00014

7. Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., Paulevé, L.: Synthesis and Sim-
ulation of Ensembles of Boolean Networks for Cell Fate Decision. In: CMSB 2020 -
18th International Conference on Computational Methods in Systems Biology. Lec-
ture Notes in Computer Science, vol. 12314, pp. 193–209. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60327-4_11

8. Collombet, S., van Oevelen, C., Sardina Ortega, J.L., Abou-Jaoudé, W., Di Stefano,
B., Thomas-Chollier, M., Graf, T., Thieffry, D.: Logical modeling of lymphoid
and myeloid cell specification and transdifferentiation. Proceedings of the National
Academy of Sciences 114(23), 5792–5799 (2017). https://doi.org/10.1073/pnas.
1610622114

9. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS ONE 3(2), e1672 (2008). https://doi.org/10.1371/journal.
pone.0001672

10. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14),
e124–e131 (2006). https://doi.org/10.1093/bioinformatics/btl210

11. Gao, S., Sun, C., Xiang, C., Qin, K., Lee, T.H.: Learning asynchronous Boolean net-
works from single-cell data using multiobjective cooperative genetic programming.
IEEE Trans. Cybern. 52(5), 2916–2930 (2022). https://doi.org/10.1109/TCYB.
2020.3022430

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. CoRR (2014). https://doi.org/10.48550/arXiv.1405.3694

13. Goldfeder, J., Kugler, H.: BRE:IN - a backend for reasoning about interaction
networks with temporal logic. In: Computational Methods in Systems Biology,
pp. 289–295. Springer International Publishing (2019). https://doi.org/10.1007/
978-3-030-31304-3_15

https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.1109/TCBB.2021.3063817
https://doi.org/10.1109/TCBB.2021.3063817
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1093/bioinformatics/btad158
https://doi.org/10.1093/bioinformatics/btad158
https://theses.hal.science/tel-03917566/file/106218_CHEVALIER_2022_archivage.pdf
https://theses.hal.science/tel-03917566/file/106218_CHEVALIER_2022_archivage.pdf
https://doi.org/10.1109/ICTAI.2019.00014
https://doi.org/10.1109/ICTAI.2019.00014
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1371/journal.pone.0001672
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1093/bioinformatics/btl210
https://doi.org/10.1109/TCYB.2020.3022430
https://doi.org/10.1109/TCYB.2020.3022430
https://doi.org/10.1109/TCYB.2020.3022430
https://doi.org/10.1109/TCYB.2020.3022430
https://doi.org/10.48550/arXiv.1405.3694
https://doi.org/10.48550/arXiv.1405.3694
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1007/978-3-030-31304-3_15


8 S. Chevalier et al.

14. Hamey, F.K., Nestorowa, S., Kinston, S.J., Kent, D.G., Wilson, N.K., Göttgens, B.:
Reconstructing blood stem cell regulatory network models from single-cell molecu-
lar profiles. Proceedings of the National Academy of Sciences 114(23), 5822–5829
(2017). https://doi.org/10.1073/pnas.1610609114

15. Hérault, L., Poplineau, M., Duprez, E., Remy, É.: A novel Boolean network infer-
ence strategy to model early hematopoiesis aging. Computational and Structural
Biotechnology Journal 21, 21–33 (2023). https://doi.org/10.1016/j.csbj.2022.10.
040

16. Heydari, T., Langley, M.A., Fisher, C.L., Aguilar-Hidalgo, D., Shukla, S., Yachie-
Kinoshita, A., Hughes, M., McNagny, K.M., Zandstra, P.W.: Iqcell: A platform
for predicting the effect of gene perturbations on developmental trajectories using
single-cell rna-seq data. PLOS Computational Biology 18(2), e1009907 (2022).
https://doi.org/10.1371/journal.pcbi.1009907

17. Hung-Cuong, T., Yung-Keun, K.: Cga-bni: A novel constrained genetic algorithm-
based boolean network inference method from steady-state gene expression data.
Bioinformatics 37, i383–i391 (2021). https://doi.org/10.1093/bioinformatics/
btab295

18. Ikonomi, N., Kühlwein, S.D., Schwab, J.D., Kestler, H.A.: Awakening the HSC:
Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway
and Quiescence. Frontiers in Physiology 11 (2020). https://doi.org/10.3389/fphys.
2020.00848

19. Liu, X., Wang, Y., Shi, N., Ji, Z., He, S.: Gapore: Boolean network inference using
a genetic algorithm with novel polynomial representation and encoding scheme.
Knowledge-Based Systems 228, 107277 (2021). https://doi.org/https://doi.org/
10.1016/j.knosys.2021.107277

20. Martínez-Sosa, P., Mendoza, L.: The regulatory network that controls the differ-
entiation of t lymphocytes. Biosystems 113(2), 96–103 (2013). https://doi.org/10.
1016/j.biosystems.2013.05.007

21. Meyer, P., Maity, P., Burkovski, A., Schwab, J., Müssel, C., Singh, K., Ferreira,
F.F., Krug, L., Maier, H.J., Wlaschek, M., Wirth, T., Kestler, H.A., Scharffetter-
Kochanek, K.: A model of the onset of the senescence associated secretory pheno-
type after dna damage induced senescence. PLOS Computational Biology 13(12),
e1005741 (2017). https://doi.org/10.1371/journal.pcbi.1005741

22. Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A.J., Tanaka, Y., Wilkinson,
A.C., Buettner, F., Macaulay, I.C., Jawaid, W., Diamanti, E., Nishikawa, S.I.,
Piterman, N., Kouskoff, V., Theis, F.J., Fisher, J., Göttgens, B.: Decoding the
regulatory network of early blood development from single-cell gene expression
measurements. Nature biotechnology 33(3), 269–276 (2015). https://doi.org/10.
1038/nbt.3154, pMC4374163[pmcid]

23. Montagud, A., Béal, J., Tobalina, L., Traynard, P., Subramanian, V., Szalai, B.,
Alföldi, R., Puskás, L., Valencia, A., Barillot, E., Saez-Rodriguez, J., Calzone, L.:
Patient-specific boolean models of signalling networks guide personalised treat-
ments. eLife 11 (2022). https://doi.org/10.7554/elife.72626

24. Moon, K., Lee, K., Paulevé, L.: Computational complexity of minimal trap spaces
in boolean networks. ArXiv e-prints (2022). https://doi.org/10.48550/ARXIV.
2212.12756

25. Muñoz, S., Carrillo, M., Azpeitia, E., Rosenblueth, D.A.: Griffin: A tool for sym-
bolic inference of synchronous boolean molecular networks. Frontiers in Genetics
9 (2018). https://doi.org/10.3389/fgene.2018.00039

https://doi.org/10.1073/pnas.1610609114
https://doi.org/10.1073/pnas.1610609114
https://doi.org/10.1016/j.csbj.2022.10.040
https://doi.org/10.1016/j.csbj.2022.10.040
https://doi.org/10.1016/j.csbj.2022.10.040
https://doi.org/10.1016/j.csbj.2022.10.040
https://doi.org/10.1371/journal.pcbi.1009907
https://doi.org/10.1371/journal.pcbi.1009907
https://doi.org/10.1093/bioinformatics/btab295
https://doi.org/10.1093/bioinformatics/btab295
https://doi.org/10.1093/bioinformatics/btab295
https://doi.org/10.1093/bioinformatics/btab295
https://doi.org/10.3389/fphys.2020.00848
https://doi.org/10.3389/fphys.2020.00848
https://doi.org/10.3389/fphys.2020.00848
https://doi.org/10.3389/fphys.2020.00848
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107277
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107277
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107277
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107277
https://doi.org/10.1016/j.biosystems.2013.05.007
https://doi.org/10.1016/j.biosystems.2013.05.007
https://doi.org/10.1016/j.biosystems.2013.05.007
https://doi.org/10.1016/j.biosystems.2013.05.007
https://doi.org/10.1371/journal.pcbi.1005741
https://doi.org/10.1371/journal.pcbi.1005741
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1038/nbt.3154
https://doi.org/10.7554/elife.72626
https://doi.org/10.7554/elife.72626
https://doi.org/10.48550/ARXIV.2212.12756
https://doi.org/10.48550/ARXIV.2212.12756
https://doi.org/10.48550/ARXIV.2212.12756
https://doi.org/10.48550/ARXIV.2212.12756
https://doi.org/10.3389/fgene.2018.00039
https://doi.org/10.3389/fgene.2018.00039


BoNesis 9

26. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T., Chaouiya, C., He-
likar, T., Zinovyev, A., Calzone, L., Cohen-Boulakia, S., Thieffry, D., Paulevé,
L.: The CoLoMoTo Interactive Notebook: Accessible and Reproducible Compu-
tational Analyses for Qualitative Biological Networks. Frontiers in Physiology 9,
680 (2018). https://doi.org/10.3389/fphys.2018.00680

27. Palli, R., Palshikar, M.G., Thakar, J.: Executable pathway analysis using ensemble
discrete-state modeling for large-scale data. PLoS Comput Biol 15(9), e1007317
(2019). https://doi.org/10.1371/journal.pcbi.1007317

28. Paulevé, L.: Marker and source-marker reprogramming of Most Permissive Boolean
networks and ensembles with BoNesis . Peer Community Journal 3, e30 (2023).
https://doi.org/10.24072/pcjournal.255

29. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract,
and scalable modeling of biological networks. Nature Communications 11(1), 4256
(2020). https://doi.org/10.1038/s41467-020-18112-5

30. Réda, C., Delahaye-Duriez, A.: Prioritization of candidate genes through boolean
networks. In: Computational Methods in Systems Biology, pp. 89–121. Springer
International Publishing (2022). https://doi.org/10.1007/978-3-031-15034-0_5

31. Riva, S., Lagniez, J.M., López, G.M., Paulevé, L.: Tackling universal properties of
minimal trap spaces of boolean networks. In: CMSB 2023: Proceedings of the 21st
International Conference on Computational Methods in Systems Biology (2023).
https://doi.org/10.48550/arXiv.2305.02442

32. Schwab, J.D., Ikonomi, N., Werle, S.D., Weidner, F.M., Geiger, H., Kestler, H.A.:
Reconstructing boolean network ensembles from single-cell data for unraveling dy-
namics in the aging of human hematopoietic stem cells. Computational and Struc-
tural Biotechnology Journal 19, 5321–5332 (2021). https://doi.org/10.1016/j.csbj.
2021.09.012

33. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory net-
works—ii. immunity control in bacteriophage lambda. Bulletin of Mathematical
Biology 57, 277–297 (1995). https://doi.org/10.1007/BF02460619

34. Trinh, V.G., Benhamou, B., Paulevé, L.: mpbn: a simple tool for efficient edition
and analysis of elementary properties of Boolean networks. arXiv (2024)

35. Werle, S.D., Schwab, J.D., Tatura, M., Kirchhoff, S., Szekely, R., Diels, R., Ikonomi,
N., Sipos, B., Sperveslage, J., Gress, T.M., Buchholz, M., Kestler, H.A.: Unraveling
the molecular tumor-promoting regulation of cofilin-1 in pancreatic cancer. Cancers
13(44), 725 (2021). https://doi.org/10.3390/cancers13040725

36. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A
method to identify and analyze biological programs through automated reasoning.
npj Systems Biology and Applications 2(1), 1–16 (2016). https://doi.org/10.1038/
npjsba.2016.10

https://doi.org/10.3389/fphys.2018.00680
https://doi.org/10.3389/fphys.2018.00680
https://doi.org/10.1371/journal.pcbi.1007317
https://doi.org/10.1371/journal.pcbi.1007317
https://doi.org/10.24072/pcjournal.255
https://doi.org/10.24072/pcjournal.255
https://doi.org/10.1038/s41467-020-18112-5
https://doi.org/10.1038/s41467-020-18112-5
https://doi.org/10.1007/978-3-031-15034-0_5
https://doi.org/10.1007/978-3-031-15034-0_5
https://doi.org/10.48550/arXiv.2305.02442
https://doi.org/10.48550/arXiv.2305.02442
https://doi.org/10.1016/j.csbj.2021.09.012
https://doi.org/10.1016/j.csbj.2021.09.012
https://doi.org/10.1016/j.csbj.2021.09.012
https://doi.org/10.1016/j.csbj.2021.09.012
https://doi.org/10.1007/BF02460619
https://doi.org/10.1007/BF02460619
https://doi.org/10.3390/cancers13040725
https://doi.org/10.3390/cancers13040725
https://doi.org/10.1038/npjsba.2016.10
https://doi.org/10.1038/npjsba.2016.10
https://doi.org/10.1038/npjsba.2016.10
https://doi.org/10.1038/npjsba.2016.10

	BoNesis: a Python-based declarative environment for the verification, reprogramming, and synthesis of Most Permissive Boolean networks

