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Abstract

We propose an error analysis for a numerical approximation of the the transient
Stokes problem which combines an incremental pressure-correction fractional-
step scheme in time with a PSPG (pressure stabilized Petrov–Galerkin) finite
element method in space. Optimal velocity convergence is obtained for affine
approximations, whereas an inverse CFL condition is required with high-order
polynomials and for the pressure.

Keywords: Transient Stokes equations, fractional-step scheme, PSPG finite element
method.

1 Introduction

The pressure stabilized Petrov–Galerkin (PSPG) method, is a widespread approach for
the numerical approximation of the Stokes equations using equal-order velocity/pre-
ssure interpolations. Though the analysis of the method in the steady cased has been
well understood since its introduction in [1], the transient case in conjunction with an
implicit time-stepping has been much more involved (see [2–5]).

The first studies (see [2, 3]) indicated that an inverse CFL-condition (h2 ≤ τ ,
with τ and h respectively denoting the time and space discretization parameters) is
required for stability, notably for the pressure. In [4], unconditional optimal conver-
gence of the velocity is obtained for piecewise affine approximations. For higher order
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polynomials, the results holds, but under the above mentioned inverse CFL-condition.
This condition is also required for the error estimate of the pressure, even for affine
approximations. In [5], the inverse CFL-condition is circumvented by using a particular
discrete initial velocity.

The aim of this work is to investigate numerical approximations of the transient
Stokes problem which combine the PSPG method in space with a fractional-step time-
marching, thus segregating the computation of the velocity and of the pressure. To the
best of our knowledge no error analysis for this class of methods has been reported in
the literature so far.

For a general overview of fractional-step methods for incompressible flow we refer
to [6]. The analysis of the incremental fractional-step scheme in its time semi-discrete
version can be found in [7]. The fully discrete method with a spatial discretization
based on inf-sup stable finite elements has ben analyzed in [8]. As regards non inf-sup
stable approximations in space, all the existing results rely on symmetric stabilization
methods. Energy stability estimates without error bounds are provided in [2] (see also
[9]) and [10], with the Brezzi-Pitkäranta stabilization [11] and the orthogonal subscales
stabilization [12], respectivey. The error analysis for an incremental fractional-step
scheme with a general class of symmetric finite element stabilizations has been reported
in [13]. An error analysis with the Brezzi-Pitkäranta stabilization can also be found
in [14, 15].

Non-symetric stabilizations, such as the PSPG method considered in this paper, do
not fit in the analysis framework of the above mentioned studies. In this paper, we pro-
pose a numerical method for the transient Stokes problem, which combines the PSPG
method with an incremental pressure-correction fractional-step projection scheme. A
priori error estimates are provided in the case of the first-order time-stepping variant.
The results obtained for the velocity are similar to those reported in [4] with mono-
lithic time-stepping schemes. Numerical results are discussed for both the first- and
secon-order time-stepping variant.

The rest of the paper is organized as follows. The considered setting together with
somme notation are introduced in Section 2. Section 3 describes the proposed numer-
ical method. The error analysis of the first-order variant is carried out in Section 4.
Some numerical experiments are shown in Section 5, and a summary of the results is
provided in Section 6.

2 Problem setting

Let Ω be a convex domain in Rd (d = 2 or 3) with a polyhedral boundary ∂Ω. For T >
0, we consider the problem of solving, for u : Ω×(0, T ) −→ Rd and p : Ω×(0, T ) −→ R,
the following time-dependent Stokes problem:

∂tu− ν∆u+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(1)
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Here, f : Ω × (0, T ) −→ Rd stands for the source term, u0 : Ω −→ Rd for the initial
velocity and ν > 0 for a given constant viscosity. In order to introduce a variational
setting for (1) we consider the following standard velocity and pressure spaces

V
def
= [H1

0 (Ω)]
d, H

def
= [L2(Ω)]d, Q

def
= L2

0(Ω),

normed with

∥v∥H
def
= (v,v)

1
2 , ∥v∥V

def
= ∥ν 1

2∇v∥H , ∥q∥Q
def
= ∥ν− 1

2 q∥H ,

where (·, ·) denotes the standard inner product in L2(Ω). The standard norm of Hk(Ω)
will be denoted by ∥ · ∥k.

The transient Stokes’ problem may be formulated in weak form as follows: For all
t ∈ (0, T ), find

(
u(t), p(t)) ∈ V ×Q such that

(∂tu,v) + a(u,v) + b(p,v) = (f ,v) in (0, T ),

b(q,u) = 0 in (0, T ),

u(·, 0) = u0 in Ω

(2)

for all (v, q) ∈ V ×Q, and with the notations

a(u,v)
def
= (ν∇u,∇v), b(p,v)

def
= −(p,∇ · v) = (∇p,v).

Throughout this paper, C stands for a generic positive constant independent of
the discretization parameters and of ν, but not of the mesh-geometry. We also use the
notation a ≲ b meaning a ≤ Cb.

3 Numerical methods: space and time discretizations

In this section we fully discretize problem (2), using the pressure stabilized PSPG
method in space, and a fractional-step time-marching scheme which segregates the
computation of the velocity and pressure approximations.

3.1 PSPG finite element semi-discrete approximation

We introduce the approximation space Xh with optimal approximation properties.
The approximation space consists of finite element functions, with Xh ⊂ C0(Ω), where

Xh
def
= {vh ∈ H1(Ω) : vh|K ∈ Pk(K), ∀K ∈ Th}, (3)

with Th denoting a conforming, shape-regular triangulation of Ω. The discrete spaces

for velocities and pressure respectively are given by V h
def
= [Xh]

d∩V andQh
def
= Xh∩Q.

We denote by πh : H → V h the standard L2-projection operator onto V h.
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The PSPG finite element approximation of (2) read as follows: For all t > 0, find(
uh(t), ph(t)) ∈ V h ×Qh such that

(∂tuh,vh) + a(uh,vh) + b(ph,vh) = (f ,vh) in (0, T ),

b(qh,uh) = δ
(
∂tuh − ν∆uh +∇ph − f ,∇qh

)
h

in (0, T ),

uh(·, 0) = u0,h in Ω,

(4)

for all (vh, qh) ∈ V ×Q. Here, (·, ·)h denotes the element-wise L2-scalar product and
δ > 0 the stabilisation parameter given by

δ
def
=

γh2

ν
,

where γ > 0 is a dimensionless algorithmic parameter (whose value will be specified
in the analysis below).

The numerical analysis of the spatial semi-discrete approximation provided by (4)
can be found in [5]. The case of fully discrete approximations been addressed in [4, 5]
using monolithic time-stepping schemes. In the next section, we introduce a fractional-
step time discretization of (4) which splits the computation of the velocity and the
pressure.

3.2 Fully discrete method: fractional-step scheme

The fractional-step time-marching of (1) combined with finite elements and symmet-
ric stabilization has been considered in [7, 9, 16] and analyzed in [13, 14] (see also
[2, 10]). Unfortunately, nonsymetric stabilizations such as (4) do not fit in the analy-
sis framework therein. In this section, we propose an incremental pressure-correction
fractional-step projection scheme for the time discretization of (4).

In what follows, the parameter τ > 0 denotes the time-step length and tn
def
= nτ ,

for n = 0, . . . , NT . We also introduce, for l ∈ {1, 2}, the following notations for the
l-th order backward differences

∂ℓτx
n def
=

(ℓ+ 1)xn − 2ℓxn−1 + (ℓ− 1)xn−2

2τ
,

Dℓ
τ x̃

n def
=

(ℓ+ 1)x̃n − 2ℓxn−1 + (ℓ− 1)xn−2

2τ
.

We assume that the approximations of the initial velocity and pressure, (u0
h, p

0
h) ∈

V h×Qh, are given (see Section 4.1). For n ≥ ℓ, with ℓ ∈ {1, 2}, we propose to compute
(ũn

h,u
n
h, p

n
h) as reported in Algorithm 1.

In the so-called pressure-Poisson problem (6), the PSPG stabilization operator Sh

is defined as

Sh

(
ũn
h, p

n
h,f

n; qh
) def
= δ

(
Dℓ

τ ũ
n
h − ν∆ũn

h +∇pnh − fn,∇qh
)
h
. (8)
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Algorithm 1 Fractional-step scheme with PSPG stabilization.

For n ≥ ℓ:

1. Find the intermediate velocity ũn
h ∈ V h such that(

Dℓ
τ ũ

n
h,vh

)
+ a

(
ũn
h,vh

)
+ b(pn−1

h ,vh) =
(
fn,vh

)
(5)

for all vh ∈ V h.
2. Find pnh ∈ Qh such that

τ
(
∇(pnh − pn−1

h ),∇qh
)
+ Sh

(
ũn
h, p

n
h,f

n; qh
)
=
ℓ+ 1

2
b(qh, ũ

n
h) (6)

for all qh ∈ Qh.
3. Find the end-of-step velocity un

h ∈ V h such that

ℓ+ 1

2τ

(
un
h − ũn

h,vh

)
+
(
∇(pnh − pn−1

h ),vh

)
= 0 (7)

for all vh ∈ V h.

Since step (7) can equivalently be rewritten as

ũn
h = un

h +
2τ

ℓ+ 1
πh∇(pnh − pn−1

h ),

the PSPG stabilization operator (8) is also given by the relation

Sh

(
ũn
h, p

n
h,f

n; qh
)
= δ

(
∂ℓτu

n
h − ν∆ũn

h +∇pnh − fn,∇qh
)

+ δ
(
πh∇(pnh − pn−1

h ),∇q
)
. (9)

This relation will be a fundamental ingredient in the numerical analysis of Section 4.
The key feature of (8) is that the residual is fully computable without the need of
simultaneously evaluating the unknown global projection πh∇pnh (in contrast to some
symmetric pressure stabilization methods [12]).

4 Error analysis with BDF1

This section is devoted to the energy-based error analysis of Algorithm 1 for the
case ℓ = 1. For any time dependent function x(t) we shall make use of the notation

xn
def
= x(tn).
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4.1 Preliminaries

For the convergence analysis below we introduce the following Stokes-PSPG like
projection: Find

(
Rh(u, p), Ph(u, p)

)
∈ V h ×Qh, such that

a(Rh(u, p),vh) + b(Rh(u, p),vh) =a(u,vh) + b(p,vh)

b(qh,Rh(u, p))− δ
(
−∆Rh(u, p) +∇Ph(u, p),∇qh

)
h
=b(qh,u)− δ(−∆u+∇p,∇qh)

(10)
for all (vh, qh) ∈ V h ×Qh. It is known (see, e.g., [17]) that the above Ritz-projection
satisfies the following a priori error estimate, for j = 0, 1:

∥∂jt (Rh(u, p)− u)∥H + h
(
∥∂jt (Rh(u, p)− u)∥V + δ

1
2 ∥∂jt∇(Ph(u, p)− p)∥H

+ ν−
1
2 ∥∂jt (Ph(u, p)− p)∥H

)
≤ Cνh

k+1
(
∥∂jtu∥k+1 + ∥∂jt p∥k

)
, (11)

where Cν > 0 is a constant that depends on ν. We define Πh : H → Qh as the standard
L2-projection onto Qh. As an immediate consequence of (10) and of the H1-stability
of Πh, we have the following stability result for the gradient of the pressure projection

∥∇Ph(u, p)∥H ≤∥∇Ph(u, p)−∇Πhp∥H + ∥∇Πhp∥H
≲h−1∥Ph(u, p)−Πhp∥H + ∥∇p∥H
≲h−1 (∥Ph(u, p)− p∥H + ∥p−Πhp∥H) + ∥∇p∥H
≲∥u∥2,Ω + ∥p∥1,Ω.

(12)

We introduce the following error decomposition:

un − ũn
h = un −Rh(u

n, pn)︸ ︷︷ ︸
def
= θn

+Rh(u
n, pn)− ũn

h︸ ︷︷ ︸
def
= θ̃

n

h

= θn + θ̃
n

h, n ≥ 1,

un − un
h = un −Rh(u

n, pn) +Rh(u
n, pn)− un

h︸ ︷︷ ︸
θn
h

= θn + θn
h, n ≥ 0,

pn − pnh = pn − Ph(u
n, pn)︸ ︷︷ ︸

def
= ξn

+Ph(u
n, pn)− pnh︸ ︷︷ ︸
def
= ξnh

= ξn + ξnh , n ≥ 0.

(13)

Hence, owing to (10), we have

a(θn,vh) + b(ξn,vh) =0,

b(qh,θ
n)− δ

(
−∆θn +∇ξn,∇qh

)
h
=0

(14)

for all (vh, qh) ∈ V h ×Qh and n ≥ 0.
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4.2 Velocity error estimate

For n ≥ 1, we introduce the notations

ψn−1
h

def
= ξn−1

h + τ∂τPh(u
n, pn), gn def

= ∂τu
n − ∂tu

n − ∂τθ
n. (15)

By subtracting (5)-(6) from (2) with t = tn and then by using (13)–(14), we get the

following relations for (θ̃
n

h,θ
n
h, ξ

n
h ):

1

τ

(
θ̃
n

h − θn−1
h ,vh

)
+ a

(
θ̃
n

h,vh

)
+ b(ψn−1

h ,vh) =
(
gn,vh

)
, (16)

τ
(
∇(ξnh − ψn−1

h ),∇qh
)
+ Sh

(
θ̃
n

h, ξ
n
h , g

n; qh
)
= b(qh, θ̃

n

h), (17)

1

τ

(
θn
h − θ̃

n

h,vh

)
+
(
∇(ξnh − ψn−1

h ),vh

)
= 0 (18)

for (vh, qh) ∈ V h×Qh. In other words, the discrete errors (θ̃
n

h,θ
n
h, ξ

n
h ) satisfy a system

similar to the approximations (ũn
h,u

n
h, p

n
h) but with the momentum right-hand side

gn instead of fn and the pressure extrapolation ψn−1
h instead of pn−1

h .

The following theorem provides an energy estimate for (θ̃
n

h,θ
n
h, ξ

n
h ).

Theorem 1 (Stability velocity) Assume that γ ≤ Ci/16 and let {(θ̃
n
h,θ

n
h, ξ

n
h )}n≥1 be dis-

crete errors satisfying the relations (16)–(18) with the initial data θ0h, ξ
0
h. Then, the following

estimate holds unconditionally if k = 1 and, under the condition δ ≤ τ , if k ≥ 2:

∥θnh∥
2
H+βδ∥θnh∥

2
V +τ2∥∇ξnh∥

2
H+τδ∥πh∇ξnh∥

2
H+τ

n∑
m=1

∥∥θ̃mh ∥∥2V +τδ

n∑
m=1

∥∂τθmh +∇ξmh ∥2H

+
δ

τ

n∑
m=1

∥θmh − θ̃
m
h ∥2H ≲ τ

(
C2
P

ν
+ δ

)
n∑

m=1

∥gm∥2H + τ3(τ + T )

n∑
m=1

∥∇∂τPh(u
m, pm)∥2H

+ ∥θ0h∥
2
H + βδ∥θ0h∥

2
V + τ2∥∇ξ0h∥

2
H + τδ∥πh∇ξ0h∥

2
H (19)

for 1 ≤ n ≤ NT . Here, Ci, CP > 0 denote the constants in the inverse and Poincaré
inequalities, respectively, and

β
def
=

{
0 if δ ≤ τ,

1 if δ > τ.

Moreover, for n = 1, we also have∥∥θ1h∥∥2H+βδ
∥∥θ1h∥∥2V +τ2∥∇ξ1h∥

2
H+τδ∥πh∇ξ1h∥

2
H+τ

∥∥θ̃1h∥∥2V +τδ
∥∥∂τθ1h+∇ξ1h

∥∥2
H
+
δ

τ
∥θ1h−θ̃

1
h∥2H

≲ τ(τ+δ)∥g1∥2H+τ4∥∇∂τPh(u
1, p1)∥2H+∥θ0h∥

2
H+βδ∥θ0h∥

2
V +τ2∥∇ξ0h∥

2
H+τδ∥πh∇ξ0h∥

2
H .
(20)

Proof The first part of the proof follows the steps of [8, Theorem 5.5] (see also [13, Theorem

4.1]). We start by taking vh = τ θ̃
n
h in (16), which yields

1

2

(
∥θ̃

n
h∥2H − ∥θn−1

h ∥2H + ∥θ̃
n
h − θn−1

h ∥2H
)
+ τ∥θ̃

n
h∥2V + τ(∇ψn−1

h , ũn
h) = τ(gn, θ̃

n
h). (21)
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In order to control the last term of the right-hand side, we take qh = τψn−1
h in (17), which

gives

τ(∇ψn−1
h , θ̃

n
h) =

τ2

2

(
∥∇ξnh∥

2
H − ∥∇ψn−1

h ∥2H − ∥∇(ξnh − ψn−1
h )∥2H

)
+τSh(θ̃

n
h, ξ

n
h , g

n;ψn−1
h ).

(22)
Now, owing to (18), we have the identity

θnh − θ̃
n
h = −τπh∇(ξnh − ψn−1

h ), (23)

so that, taking vh = τθnh in (18) yields

1

2

(
∥θnh∥

2
H − ∥θ̃

n
h∥2H + τ2∥πh∇(ξnh − ψn−1

h )∥2H
)
+ τ
(
∇(ξnh − ψn−1

h ),θnh
)
= 0. (24)

On the other hand, by taking vh = τπh∇(ξnh − ψn−1
h ) in (18), we have

τ
(
θ̃
n
h,∇(ξnh − ψn−1

h )
)
= τ

(
θnh,∇(ξnh − ψn−1

h )
)
+ τ2∥πh∇(ξnh − ψn−1

h )∥2H (25)

and qh = τ(ξnh − ψn−1
h ) in (17) yields

τ2∥∇(ξnh − ψn−1
h )∥2H + τSh(θ̃

n
h, ξ

n
h , g

n; ξnh − ψn−1
h ) = τ

(
θ̃
n
h,∇(ξnh − ψn−1

h )
)
.

Hence, by inserting this last identity into (25), we get

τ
(
θnh,∇(ξnh − ψn−1

h )
)
= τ2∥(I − πh)∇(ξnh − ψn−1

h )∥2H + τSh(θ̃
n
h, ξ

n
h , g

n; ξnh − ψn−1
h ). (26)

Owing to (26), the relation (24) yields

1

2

(
∥θnh∥

2
H − ∥θ̃

n
h∥2H + τ2∥πh∇(ξnh − ψn−1

h )∥2H
)
+ τ2∥(I − πh)∇(ξnh − ψn−1

h )∥2H

+ τSh(θ̃
n
h, ξ

n
h , g

n; ξnh − ψn−1
h ) = 0. (27)

At last, by inserting (22) into (21) and by adding (27) to the resulting expression, we get the
velocity energy estimate

1

2

(
∥θnh∥

2
H − ∥θn−1

h ∥2H
)
+

1

2
∥θ̃

n
h − θn−1

h ∥2H + τ∥θ̃
n
h∥2V

+
τ2

2

(
∥∇ξnh∥

2
H − ∥∇ψn−1

h ∥2H
)
+
τ2

2
∥(I − πh)∇(ξnh − ψn−1

h )∥2H

+ τSh(θ̃
n
h, ξ

n
h , g

n; ξnh )︸ ︷︷ ︸
def
= T1

= τ(gn, θ̃
n
h). (28)

It should be noted the lack of telescoping sum on ∥∇ξnh∥
2
H −∥∇ψn−1

h ∥2H is not an issue here

since, owing to the definition of ψn−1
h in (15), we have

∥∇ψn−1
h ∥2H ≤ (1 + τ/T )∥∇ξn−1

h ∥2H + (1 + T/τ)τ2∥∇∂τPh(u
n, pn)∥2H , (29)

so that this term can be treated via Gronwall’s Lemma (see, e.g., [18, Lemma 5.1]).
The main difficulty lies in the estimation of the term coming form the PSPG stabilization,

namely, the term T1 in (28). This is the fundamental contribution of the present analysis,
notably with respect to [8, 13, 14].

We first note that, from the definition of Sh in (8) and from (23), we have

T1 = τδ
(
∂τθ

n
h +∇ξnh ,∇ξnh

)
− τδ

(
ν∆θ̃

n
h + gn,∇ξnh

)
h

+
τδ

2

(
∥πh∇ξnh∥

2
H − ∥πh∇ψn−1

h ∥2H
)
+

δ

2τ
∥θnh − θ̃

n
h∥2H . (30)
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On the other hand, the addition of (16) and (18) yields(
∂τθ

n
h,vh

)
+ a
(
θ̃
n
h,vh

)
+
(
∇ξnh ,vh

)
=
(
gn,vh

)
(31)

for all vh ∈ V h. By taking vh = τδ∂τθ
n
h in this expression, we get

0 = τδ
(
∂τθ

n
h +∇ξnh , ∂τθ

n
h

)
+ τδa

(
θ̃
n
h, ∂τθ

n
h

)
− τδ

(
gn, ∂τθ

n
h

)
.

Hence, by adding this relation to (30) and by adding and subtracting suitable terms, there
follows that

T1 = τδ∥∂τθnh +∇ξnh∥
2
H +

τδ

2

(
∥πh∇ξnh∥

2
H − ∥πh∇ψn−1

h ∥2H
)

−τδ
(
ν∆θ̃

n
h + gn,∇ξnh + ∂τθ

n
h

)︸ ︷︷ ︸
def
= T2

+ δν
(
∆θ̃

n
h,θ

n
h − θn−1

h

)
h
+ δa

(
θ̃
n
h,θ

n
h − θn−1

h

)
+

δ

2τ
∥θnh − θ̃

n
h∥2H︸ ︷︷ ︸

def
= T3

,

(32)

where the second term of the left-hand side is treated via Gronwall’s Lemma using an argu-
ment similar to (29). The term T2 is standard and can be controlled via the PSPG numerical
dissipation provided by the term τδ∥∂τθnh +∇ξnh∥

2
H in (32), viz.,

T2 ≥ − γτ

2ϵ1Ci
∥θ̃

n
h∥2V − τδ

2ϵ1
∥gn∥2H − ϵ1τδ∥∂τθnh +∇ξnh∥

2
H . (33)

with ϵ1 > 0. The estimation of the term T3 is more delicate, we will treat separately the cases
δ ≤ τ and τ < δ.

We first consider the case δ ≤ τ . By adding and subtracting suitable terms, we have

T3 = δν
(
∆θ̃

n
h,θ

n
h − θ̃

n
h

)
h
+ δν

(
∆θ̃

n
h, θ̃

n
h − θn−1

h

)
h︸ ︷︷ ︸

def
= T3,1

+ δa
(
θ̃
n
h,θ

n
h − θ̃

n
h

)
+ δa

(
θ̃
n
h, θ̃

n
h − θn−1

h

)︸ ︷︷ ︸
def
= T3,2

+
δ

2τ
∥θnh − θ̃

n
h∥2H . (34)

Using an inverse inequality and the assumption δ ≤ τ , we get

T3,1 ≥ − γτ

ϵ2Ci
∥θ̃

n
h∥2V − ϵ2δ

2τ
∥θnh − θ̃

n
h∥2H − ϵ2

2
∥θ̃

n
h − θn−1

h ∥2H ,

with ϵ2 > 0. Similarly, for T3,2, we have

T3,2 ≥ − ϵ3τ
2

∥θ̃
n
h∥2V − δ2ν

2ϵ3τ
∥∇(θnh − θ̃

n
h)∥2H − ϵ3δ

2
∥θ̃

n
h∥2V − δν

2ϵ3
∥∇(θ̃

n
h − θn−1

h )∥2H

≥ −ϵ3τ∥θ̃
n
h∥2V − γ

2ϵ3Ci

δ

τ
∥θnh − θ̃

n
h∥2H − γ

2ϵ3Ci
∥θ̃

n
h − θn−1

h ∥2H ,

with ϵ3 > 0. Therefore, by collecting these two estimates into (34), we have

T3 ≥ −τ
(

γ

ϵ2Ci
+ ϵ3

)
∥θ̃

n
h∥2V +

(
1− ϵ2 − γ

ϵ3Ci

)
δ

2τ
∥θnh−θ̃

n
h∥2H−

(
ϵ2 +

γ

ϵ3Ci

)
1

2
∥θ̃

n
h−θn−1

h ∥2H .

(35)
where the first and third terms can be controlled via the physical and numerical dissipation

provided by the terms 1
2∥θ̃

n
h − θn−1

h ∥2H + τ∥θ̃
n
h∥2V in (28). Indeed, it suffices to take ϵ1 =

ϵ2 = ϵ3 = 1/4 and γ ≤ Ci/16.
The energy estimate (19) with β = 0 hence follows by inserting (33) and (35) into (28)

and by summing over m = 1, . . . , n. It should be noted that this a priori energy bound is
valid for all polynomial order k ≥ 1 under the condition δ ≤ τ . This completes the proof.
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We now consider the case τ < δ and k = 1. Since the local Laplacian contributions vanish,
we have T3,1 = 0. The term T3 = T3,2 can hence be estimated as follows, using an inverse
inequality and the assumption τ < δ:

T3 =
δ

2

(
∥θnh∥

2
V − ∥θ̃

n
h∥VH − ∥θ̃

n
h − θnh∥

2
V

)
+
δ

2

(
∥θ̃

n
h∥2V − ∥θn−1

h ∥2V + ∥θ̃
n
h − θn−1

h ∥2V
)
+

δ

2τ
∥θnh − θ̃

n
h∥2H

>− δ

2
∥ θ̃

n
h − θnh∥

2
V +

δ

2

(
∥θnh∥

2
V − ∥θn−1

h ∥2V + ∥θ̃
n
h − θn−1

h ∥2V
)
+

1

2
∥θnh − θ̃

n
h∥2H

≥
(
1

2
− γ

2Ci

)
∥θnh − θ̃

n
h∥2H +

δ

2

(
∥θnh∥

2
V − ∥θn−1

h ∥2V + ∥θ̃
n
h − θn−1

h ∥2V
)
.

(36)

The energy estimate (19) with β = 1 then follows by applying (33) and (36) to (28) and by
summing over m = 1, . . . , n.

The energy estimate (20) is derived using similar arguments. The sole difference is that,
since we consider a single step n = 1, we do not need to rely on telescoping or Gronwall
arguments. More precisely, instead of (21), we have

∥θ̃
1
h∥2H + ∥θ̃

1
h − θ0h∥

2
H + τ∥θ̃

1
h∥2V ≲ ∥θ0h∥

2
H + τ2

(
∥g1∥2H + ∥∇ψ0

h∥
2
H

)
, (37)

where, for the last term (instead of (29)), we simply have

∥∇ψ0
h∥

2
H ≲ ∥∇ξ0h∥

2
H + τ2∥∇∂τPh(u

1, p1)∥2H .
Taking vh = τθ1h in (18) with n = 1, yields

1

2
∥θ1h∥

2
H +

τ2

2
∥πh∇(ξ1h − ψ0

h)∥
2
H + τ

(
∇ξ1h,θ

1
h

)
=

1

2
∥θ̃

1
h∥2H + τ

(
∇ψ0

h,θ
1
h

)
, (38)

On the other hand, by taking vh = τπh∇ξ1h in (18) with n = 1, we have

τ
(
θ̃
1
h,∇ξ1h

)
= τ

(
θ1h,∇ξ1h

)
+ τ2

(
πh∇(ξ1h − ψ0

h),∇ξ1h
)

and qh = τξ1h in (17) with n = 1 yields

τ2
(
∇(ξ1h − ψ0

h),∇ξ1h

)
+ τSh(θ̃

1
h, ξ

1
h, g

1; ξ1h) = τ
(
θ̃
1
h,∇ξ1h

)
. (39)

Therefore,

τ
(
θ1h,∇ξ1h

)
= τ2

(
(I − πh)∇(ξ1h − ψ0

h),∇ξ1h
)
+ τSh(θ̃

1
h, ξ

1
h, g

1; ξ1h).

By inserting this expression into (38), we get the relation

1

2
∥θ1h∥

2
H +

τ2

2
∥πh∇(ξ1h − ψ0

h)∥
2
H + τ2

(
(I − πh)∇(ξ1h − ψ0

h),∇ξ1h
)
+ τSh(θ̃

1
h, ξ

1
h, g

1; ξ1h)

≤ 1

2
∥θ̃

1
h∥2H + τ2∥∇ψ0

h∥
2
H .

The estimate (20) then follows from (37) and by applying the same arguments as above to

the PSPG stabilization term τSh(θ̃
1
h, ξ

1
h, g

1; ξ1h).
We now assume that τ ≤ δ and k = 1. We start by multiplying (39) by 1/(τδ), which

yields
τ

δ

(
∇(ξ1h − ψ0

h),∇ξ1h

)
+
(
Dτ θ̃

1
h +∇ξ1h − g1,∇ξ1h

)
=

1

δ

(
θ̃
1
h,∇ξ1h

)
.

We then have

τ

2δ
∥∇ξ1h∥

2
H +

1

2
∥∇ξ1h∥

2
H ≤ 1

2τ2
∥θ̃

1
h∥2H +

τ2

2δ2
∥∇ξ1h∥

2
H +

τ

2δ
∥∇ψ0

h∥
2
H +

1

2
∥Dτ θ̃

1
h − g1∥2H .
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As a result,

τ

2δ

(
1− τ

δ

)
∥∇ξ1h∥

2
H +

1

2
∥∇ξ1h∥

2
H ≤ 1

2τ2
∥θ̃

1
h∥2H +

τ

2δ
∥∇ψ0

h∥
2
H +

1

2
∥Dτ θ̃

1
h − g1∥2H .

Using the assumption τ ≤ δ, we hence have

∥∇ξ1h∥
2
H ≲

1

τ2
∥θ̃

1
h∥2H + ∥∇ψ0

h∥
2
H + ∥Dτ θ̃

1
h∥2H + ∥g1∥2H .

On the other hand, from (38) we infer that

∥θ1h∥
2
H +

τ2

2
∥πh∇(ξ1h − ψ0

h)∥
2
H ≲ ∥θ̃

1
h∥2H + τ2

(
∥∇ψ0

h∥
2
H + ∥∇ξ1h∥

2
H

)
.

□

In order to derive an error estimate for the velocity in the energy norm, we assume
that the discrete initial data u0

h, p
0
h are generated in such a way that∥∥θ0

h

∥∥
H

≲ Cν,u0
hk+1,

∥∥θ0
h

∥∥
V
≲ Cν,u0

hk,
∥∥∇ξ0h

∥∥
H

≲ Cν,u0
. (40)

Corollary 2 (Velocity error estimate) Let {(ũn
h,u

n
h, p

n
h)}n≥1 be given by Algorithm 1 ini-

tialized in such a way that (40) holds. Under the assumptions of Theorem 1, we have the
following error estimates:

∥un − un
h∥l∞(0,T ;H) ≲ Cν,u,p

(
τ + hk+1

)
,∥∥un − ũn

h

∥∥
l2(0,T ;V )

≲ Cν,u,p

(
τ + hk

)
.

(41)

Proof It suffices to note that from (11), (15) and using Taylor expansions, in (19) we have

∥gm∥2H ≤ τ∥∂ttu∥2L2(tm−1,tm;L2(Ω)) + τ−1h2k+2∥∂tu∥2L2(tm−1,tm;Hk+1(Ω))

and similarly, using (12),

∥∇∂τPh(u
m, pm)∥2H =∥∇Ph(∂τu

m, ∂τp
m)∥2H

≲∥∂τum∥22,Ω + ∥∂τpm∥21,Ω

≤τ−1
(
∥∂tu∥2L2(tm−1,tm;H2(Ω)) + ∥∂tp∥2L2(tm−1,tm;H1(Ω))

)
.

The desired error estimates (41) then follow in a standard fashion, from (13), (11), (19) and
(40). □

Some observations are in order. Theorem 1 guarantees the unconditional conver-
gence of the velocity approximations provided by Algorithm 1 for k = 1. For k ≥ 2
convergence is obtained under the condition δ ≤ τ . Similar results were obtained in
[4, Lemma 1] with a monolithic BDF1 time-stepping scheme. Unconditional error esti-
mates for the monolithic scheme with k ≥ 2 has been reported in [5] (using a specific
construction of the initial velocity approximation u0,h), but the arguments therein do
not seem to fit the time-marching framework of Algorithm 1.
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4.3 Pressure error estimate

In what follows, we assume that Algorithm 1 is initialized with

u0
h = Rh(u

0, p0), p0h = Ph(u
0, p0), (42)

where the initial pressure p0 is determined (up to a constant) from (1) at t = 0, by
solving the following elliptic problem (see, e.g., [5, 19]):{

−∆p0 = −∇ · f0 in Ω,

∇p0 · n = (f0 + ν∆u0) · n on ∂Ω.

It should be noted that this initialisation procedure yields

θ0
h = 0, ξ0h = 0, (43)

so that the assumption (40) is fulfilled.
The a priori analysis of the pressure error builds on the following modified inf-sup

condition.

Lemma 3 For all ξh ∈ V h and qh ∈ Qh we have

∥qh∥Q ≲ sup
vh∈Vh

|(qh,∇ · vh)|
∥vh∥V

+ (δ/γ)
1
2 ∥∇qh + ξh∥H . (44)

Proof See [4, Lemma 3]. □

Owing to (44) and (31), we have

τ

n∑
m=2

∥ξmh ∥2Q ≲δτ
n∑

m=2

∥∇ξmh + ∂τθ
m
h ∥2H + τ

n∑
m=2

∥θm
h ∥2V

+
C2

Pτ

ν

n∑
m=2

∥gm∥2H +
C2

Pτ

ν

n∑
m=2

∥∂τθm
h ∥2H . (45)

We hence need to estimate the acceleration error

τ

ν

n∑
m=2

∥∂τθm
h ∥2H .

This is the purpose of the next result.
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Theorem 4 (Stability acceleration) Under the assumptions of Theorem 1 and with the
initialisation procedure (42), the following estimate holds:

∥∂τθnh∥l∞(0,T ;H) +
∥∥∂τ θ̃nh∥∥l2(0,T ;V )

≲

(
1 +

√
δ

τ

)(
τ + hk

)
.

Proof By introducing the notations

yn
h

def
= ∂τθ

n
h, ỹn

h
def
= ∂τ θ̃

n
h, snh

def
= ∂τ ξ

n
h , rnh

def
= ∂τψ

n
h , (46)

and by applying the operator ∂τ to (16)–(18) for n ≥ 2, we get that

1

τ

(
ỹn
h − yn−1

h ,vh

)
+ a
(
ỹn
h,vh

)
+ b(rn−1

h ,vh) =
(
∂τg

n,vh

)
, (47)

τ
(
∇(snh − rn−1

h ),∇qh
)
+ Sh

(
ỹn
h, s

n
h, ∂τg

n; qh
)
= b(qh, ỹ

n
h), (48)

1

τ

(
yn
h − ỹn

h,vh

)
+
(
∇(snh − rn−1

h ),vh

)
= 0 (49)

for all (vh, qh) ∈ V h ×Qh. We also note that, from the definition (15), we have

∥∇rn−1
h ∥2H ≤(1 + τ/T )∥∇sn−1

h ∥2H + (1 + T/τ)τ2∥∇∂τPh(∂τu
n, ∂τp

n)∥2H .

Therefore, by applying to (47)–(49) the same arguments as in the proof of Theorem 1, the
following estimate is inferred

∥yn
h∥

2
H + τ

n∑
m=2

∥ỹm
h ∥2V + τδ

n∑
m=2

∥∂τym
h +∇smh ∥2H

≲ τ

(
C2
P

ν
+ δ

)
n∑

m=2

∥∂τgm∥20,Ω + τ3(τ + T )

n∑
m=2

∥∇∂τPh(∂τu
m, ∂τp

m)∥2H

+ ∥y1
h∥

2
H + βδ∥y1

h∥
2
V + τ2∥∇s1h∥

2
H + τδ∥πh∇s1h∥

2
H︸ ︷︷ ︸

def
= T1

. (50)

The last terms, corresponding to n = 1, can be bounded as follows. From (43) and (46), we
have

T1 = τ−2
(
∥θ1h∥

2
H + βδ∥θ1h∥

2
V + τ2∥∇ξ1h∥

2
H + τδ∥πh∇ξ1h∥

2
H

)
.

so that, owing to (20) and (43), we get

T1 ≲

(
1 +

δ

τ

)
∥g1∥2H + τ2∥∇∂τPh(u

1, p1)∥2H .

This completes the proof. □

Corollary 5 (Pressure error estimate) Let {(ũn
h,u

n
h, p

n
h)}n≥1 be given by Algorithm 1

initialized with (42). Under the assumptions of Theorem 1, the following error estimate holds:

∥pn − pnh∥l2(0,T ;Q) ≲ Cν,u,p

(
1 +

√
δ

τ

)
(τ + hk). (51)
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5 Numerical experiment

The main purpose of this section is to provide numerical evidence on the results of
Corollaries 2 and 5 for the BDF1 variant of Algorithm 1 (ℓ = 1), and for different
values of the polynomial degree k ∈ {1, 2, 3}. We also asses numerically the convergence
properties of the BDF2 variant (ℓ = 2) of Algorithm 1, though this case is not covered
by the theory of Section 4.

We consider problem (1) with Ω = (0, 1)2 and where the source f and the boundary
conditions are chosen such that the exact solution is given by

u = cos(2πt)

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
,

p = cos(2πt)(sin(x) cos(y) + (cos(1)− 1) sin(1)).

Figures 1–3 report the convergence histories obtained with the two variants of Algo-
rithm 1 (ℓ = 1, 2) and a finite element approximation in space based of continuous
piece-wise polynomials of order k = 1, 2 and 3, respectively. All the numerical compu-
tations have been performed using FreeFem++ [20], with a similar rate of refinement
in space and in time, namely, τ = O(h).

The results of Figures 1–3 with ℓ = 1 (left) are in agreement with the convergence
rates obtained in Section 4. We can clearly observe that the global convergence rate
is limited by the first-order accuracy of the time discretization. It is also worth noting
that, for k = 2 and k = 3, optimal accuracy is obtained without the need of the inverse
CFL-condition δ ≤ τ . In Figures 1–3 with ℓ = 2 we can notice the benefit of the
second-order time-stepping, which yields an overall second order accuracy for k = 2, 3.

Fig. 1 Simulation using P1/P1, τ = 0.05/2n, h = 0.1/2n, δ = 0.01h2, with n = 1, 2, 3, 4. Algorithm 1
with ℓ = 1 (left) and ℓ = 2 (right).
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Fig. 2 Simulation using P2/P2, τ = 0.05/2n, h = 0.1/2n, δ = 0.01h2, with n = 1, 2, 3, 4. Algorithm 1
with ℓ = 1 (left) and ℓ = 2 (right).

Fig. 3 Simulation using P3/P3, τ = 0.05/2n, h = 0.1/2n, δ = 0.01h2, with n = 1, 2, 3, 4. Algorithm 1
with ℓ = 1 (left) and ℓ = 2 (right).

6 Conclusion

We have introduced an analyzed a numerical method for the transient Stokes problem
which combines a fractional-step time-marching in time with a PSPG finite element
method in space. To the best of our knowledge, this is the first time that this kind
of non-symmetric stabilization is analyzed in such a time-stepping framework. The
results obtained for the velocity are similar to those reported in [4] with monolithic
time-stepping schemes.
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(FB210005) of the PIA Program: Concurso Apoyo a Centros Cient́ıficos y Tecnológicos
de Excelencia con Financiamiento Basal, and by Universidad de Concepción (Chile)
is gratefully acknowledged.

References

[1] Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for
computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a
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