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Multistage stochastic optimization
of a mono-site hydrogen infrastructure

by decomposition techniques

Raian Lefgoum∗ Sezin Afsar† Pierre Carpentier‡

Jean-Philippe Chancelier∗ Michel De Lara∗

June 28, 2024

Abstract

The development of hydrogen infrastructures requires to reduce their costs. In this
paper, we develop a multistage stochastic optimization model for the management of
a hydrogen infrastructure which consists of an electrolyser, a compressor and a storage
to serve a transportation demand. This infrastructure is powered by three different
sources: on-site photovoltaic panels (PV), renewable energy through a power purchase
agreement (PPA) and the power grid. We consider uncertainties affecting on-site pho-
tovoltaic production and hydrogen demand. Renewable energy sources are emphasized
in the hydrogen production process to ensure eligibility for a subsidy, which is awarded
if the proportion of nonrenewable electricity usage stays under a predetermined thresh-
old. We solve the multistage stochastic optimization problem using a decomposition
method based on Lagrange duality. The numerical results indicate that the solution
to this problem, formulated as a policy, achieves a small duality gap, thus proving the
effectiveness of this approach.

Keywords Hydrogen infrastructure · Stochastic optimization · Lagrange decomposition

1 Introduction

Hydrogen, a versatile energy carrier, is predominantly produced using fossil fuels, for
example through steam methane reforming (SMR) of natural gas, a process that releases
significant carbon dioxide (CO2) emissions. As concerns over climate change intensify, there
is a growing imperative to shift towards cleaner methods of hydrogen production. Water
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electrolysis, which generates hydrogen by splitting water molecules using electricity, offers a
promising solution. However, the environmental benefits of hydrogen are contingent upon
the use of renewable electricity sources.

In addition to environmental considerations, the economic viability of the hydrogen pro-
duced by water electrolysis hinges significantly on electricity costs. The cost of electricity
represents a significant proportion of the total operational expenses [9], which presents a
significant challenge to the widespread adoption of this technology. Thus, optimizing the
cost of electricity becomes essential to ensure the competitiveness of hydrogen.

Hydrogen production has several characteristic features. Firstly, the electrolyser, which
is the equipment used to produce hydrogen, has a nonlinear electrical consumption given the
quantity of hydrogen produced. Typically, the pressure of hydrogen produced by the elec-
trolyser is quite low and since it is the lightest element, a small quantity of it fills up a large
space. Therefore, it is customarily compressed and stored at a higher pressure. Furthermore,
hydrogen production, which requires electricity, is achieved through an energy mix primar-
ily composed of renewable energy sources. This has led to the recent emergence of various
contracts, known as Power Purchase Agreements (PPA), to provide consumers with greater
flexibility in producing green hydrogen. However, the optimization of hydrogen production
faces significant barriers. Renewable energy sources, such as solar or wind power, while
abundant, are characterized by inherent variability and intermittency. Moreover, the uncer-
tainty surrounding hydrogen demand adds complexity to production optimization. Aligning
this demand variability with renewable energy intermittency poses a significant challenge in
achieving efficient and sustainable hydrogen production.

In the literature related to hydrogen management, a large number of studies incorporates
uncertainties in optimization problems by relying on stochastic programming. More precisely,
in [8, 10, 3, 12, 13, 5], two-stage stochastic models are proposed where the first stage decision
is a design decision concerning the supply chain (equipment sizes, capacities, contracts, etc.)
and the second stage is a management decision.

All the previous described works are modeled as two-stage stochastic programming prob-
lems, and most of them are numerically solved through the use of mixed integer linear
programming solvers (MILP). However, it is worth noting that solving MILP models be-
comes computationally intractable as the number of scenarios increases. As a result, the
operations aspect of the problems are simplified, leading to a representation that may not
fully capture the complexity of real-world problems.

Few studies, like [17, 16] rely on multistage stochastic optimization models taking into
account nonanticipativity constraints. In [17], a fast backward scenario reduction algorithm
[6] is used to derive twenty representative scenarios and then the optimization problem
is solved as a MILP. In [16], the hydrogen is produced using renewable energies and is
later converted using a fuel cell to satisfy electricity demand. The optimization problem,
formulated as a multistage stochastic optimization problem, is solved using Stochastic Dual
Dynamic Integer Programming (SDDiP) [18].

To the best of our knowledge, [15] appears to be the most closely aligned with our work.
In this study, the authors employ dynamic programming to address a multistage stochastic
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problem. Their work revolves around hydrogen production utilizing both wind power and
grid electricity, with subsequent conversion back into electricity. This process serves the
dual purpose of meeting Power Purchase Agreement obligations and potentially generating
revenue through grid sales.

In this paper, we formulate and solve a multistage stochastic optimization problem to
manage a hydrogen infrastructure. Our contributions are the following.

1. Compared with two-stage stochastic programming models, the proposed model ade-
quately considers the sequential decisions (every hour) with the gradual revealing of
the uncertainty over time.

2. The nonlinear electricity consumption of the electrolyser and its functioning modes are
taken into consideration.

3. An electricity mix of on-site photovoltaic, renewable electricity through PPA and power
grid is used to supply the infrastructure. Renewable energy sources are prioritized in
the hydrogen production process to ensure eligibility for a subsidy.

4. Leveraging Lagrange duality, we decompose the original problem into two separate
problems. The first one, that we call the operational problem, involves the management
of the hydrogen equipment and the demand satisfaction. The second one, that we call
the electricity allocation problem, is related to the allocation of the electricity sources.

The paper is organized as follows. In Sect. 2, we describe the studied system. In Sect. 3,
we give the problem formulation and propose a method based on Lagrange duality to solve
the problem. In Sect. 4, we give the numerical results. Finally, we provide the conclusion of
this work in Sect. 5. We relegate proofs and technical points in Appendix.

2 Hydrogen infrastructure management problem

The following work is motivated by a real-life optimization problem proposed by a com-
pany. More precisely, we want to take into account in the modeling process that first, the
company owns a fleet of diesel trucks and aims to decarbonize it, and second, they have sev-
eral buildings with large roofs suitable for photovoltaic installations and has been awarded
an investment subsidy to help develop green hydrogen infrastructure. In §2.1, we describe
the characteristics of the hydrogen infrastructure under study and, in §2.2, we give its math-
ematical description.

2.1 Hydrogen infrastructure case study

We consider the hydrogen infrastructure described in Figure 1 that is specific to the case
study and which is composed of an electrolyser, a compressor that compresses the hydrogen
to an adequate pressure and a storage that stores the compressed hydrogen in the same site.
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Figure 1: Diagram of the hydrogen infrastructure (using free icons from Flaticon.com)

This hydrogen infrastructure is powered by solar panels, PPA and the grid to satisfy an
uncertain hydrogen demand.

The optimization is done during one week (168 hours), by making decision every hour.
Thus, the time horizon is T = 168, the set of hours without the time horizon is H =
{0, 1, .., T − 1}, the set of hours with the time horizon is H = H∪ {T} and a generic hour is
denoted by h ∈ H.

In what follows, we describe the main components of the studied infrastructure: the
electricity sources, the electrolyser, the volumetric compressor, the gaseous storage and the
hydrogen demand.

2.1.1 Electricity sources

The hydrogen infrastructure is powered by the three following electricity sources.

• Photovoltaic (PV): energy produced from solar radiation through photovoltaic solar
panels or power plants. The PV source is costless and its production is uncertain.

• Power Purchase Agreement (PPA): is a long-term contract between an energy producer
and a purchaser. This agreement outlines the terms under which the producer will sell
electricity to the purchaser. PPAs are widely used in the renewable energy sector
to secure financing for projects by providing a stable revenue stream. They mitigate
risks for both producers and consumers, ensuring a reliable market for the energy
produced. In this case study, we focus on PPA pay as consumed, where the purchaser
pays a price cs per kWh of electricity consumed, rather than a pre-agreed volume, and
where, a maximal cumulated quantity of consumed electricity EPPA is fixed over a given
timespan.

• Grid: electricity available through purchase from the electricity network. In this study,
the price of grid electricity is deterministic. Unlike the other two sources, the grid
supplies electricity generated from nonrenewable sources.
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2.1.2 Electrolyser

An electrolyser is a system made up of “stacks” (of cells) and of a BOP (Balance of
plant: rectifier/purifiers for water and gases, etc.). Cell stacks convert chemical energy into
electricity, and vice versa, by means of electrochemical reactions involving an anode and a
cathode. The electrochemical reaction that produces hydrogen (H2) and oxygen (O2) from
water (H2O) occurs in each of the cells of the stacks. The set of possible modes of an
electrolyser is denoted by

M = {cold, idle, start} , (1)

where the three possible modes are defined as follows.

1. cold: in this mode, the electrolyser is off and does not consume electricity.

2. idle: in this mode, the electrolyser is on and consumes a constant amount of electricity,
but does not produce hydrogen. The advantage of being in idle mode is that the
electrolyser can quickly switch to the start mode.

3. start: in this mode, the electrolyser is on and is able to produce hydrogen.

All the transitions between two modes are admissible. However, a transition from mode
M ∈ M to mode M ′ ∈ M requires a certain amount of time which is assumed to be less
than the timestep we consider in the modeling (1 hour). For describing this amount of time,
we introduce a function µ : M×M → [0, 1] which is such that 1 − µ(M,M ′) quantifies the
proportion of the current timestep occupied by the transition from M to M ′. An example
of a function µ for a specific electrolyser is given in Table 2b in §4.1.

The quantity me (kg) (used in Equation (9)) is the maximal quantity of hydrogen that
the electrolyser can produce during one timestep (hour). The function Φe (used in Equa-
tion (5) and (10b)) gives the unitary electricity consumption of the electrolyser, which is
the electricity consumption per kilogram of hydrogen produced as a function of the load ℓe

(quantity of hydrogen produced as a percentage of the maximal hydrogen production). An
example of a function Φe for a specific electrolyser is given in Figure 2a in §4.1.

2.1.3 Volumetric compressor

A hydrogen volumetric compressor is a device used to increase the pressure of hydro-
gen gas by reducing its volume through mechanical means, such as piston or diaphragm
compression. This process enables the efficient storage and transportation of hydrogen in
high-pressure tanks. The quantity ec (used in Equation (10c)) is the unitary electricity
consumption of the compressor per kg of hydrogen produced.

2.1.4 Gaseous storage

Gaseous storage of hydrogen refers to the containment of hydrogen gas under high pres-
sure in specialized tanks or cylinders for use in various applications such as fuel cells, indus-
trial processes, and hydrogen-powered vehicles. Each storage is characterized by its volume,
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its temperature, and the maximal/minimal possible quantity of hydrogen that can be stored,
denoted respectively by S and S (used Equation (17)).

2.1.5 Hydrogen demand Dh

The hydrogen produced is used to satisfy an uncertain hydrogen demand Dh (used in
Equation (3) and (16)) in kg at each timestep h (hour).

2.2 Hydrogen infrastructure management modeling

As shown in Figure 1, the operations of this hydrogen infrastructure consist of determin-
ing the electricity mix between the uncertain PV, PPA and grid, the mode of the electrolyser
and the quantity of hydrogen to produce to satisfy the uncertain hydrogen demand at every
hour.

In what follows, we mathematically formulate the hydrogen infrastructure management
problem. For this purpose, we introduce decision, state and uncertainty variables, as well as
cost functions and constraints.

2.2.1 Decision variables

For every timestep (hour) h ∈ H, the decision variables of the problem are described in
Table 1.

Decision Description Domain

EPPA
h Electricity from PPA (kWh) R+

EG
h+1 Electricity from the grid (kWh) R

ℓeh Load at which the electrolyser is func-
tioning

[ℓe, 1]

Me↶
h Turn the electrolyser to cold, idle or

start mode
M (see (1))

H→D
h Quantity of hydrogen extracted from

the storage (kg)
R+

Table 1: Decision variables

For every timestep (hour) h ∈ H, we gather all decision variables in the control vector

Uh =
(
EPPA

h , EG

h+1, ℓ
e
h,M

e↶

h , H→D

h

)
. (2)

2.2.2 Physical state variables

For every timestep (hour) h ∈ H, we define the physical state variables in Table 2.
Economic state variables, that we name cumulative electricity Q and PPA-stock P , will

be defined later.
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State Description Domain

Sh Quantity of hydrogen in the storage
(kg)

[S, S]

Me
h Mode of the electrolyser M (see (1))

Table 2: State variables

2.2.3 Uncertain variables

For every timestep (hour) h ∈ H, we define the uncertain variables in Table 3.

Uncertainty Description Domain

EPV
h+1 Renewable (PV) electricity (kWh)

during [h, h+1[
[0, EPV

h+1]

Dh+1 Demand of hydrogen (kg) during
[h, h+ 1[

[0, Dh+1]

Table 3: Uncertain variables

2.2.4 Cost functions

Hourly cost. For every timestep (hour) h ∈ H, the instantaneous cost is defined as

Lh

(
EPPA

h , EG

h+1, H
→D

h , Dh+1

)
= cPPAEPPA

h︸ ︷︷ ︸
PPA cost

+ cGh (E
G

h+1)+︸ ︷︷ ︸
Grid cost

+ cd(Dh+1 −H→D

h )+︸ ︷︷ ︸
Backup cost

, (3)

where x+ = max(x, 0).
The electricity cost is split into the PPA cost and the grid cost. The backup cost is

linear with respect to the unsatisfied demand, that is, when the quantity Dh+1 − H→D
h is

nonnegative and is equal to zero when the demand is satisfied, that is, when Dh+1−H→D
h ≤ 0.

Subsidy cost. We also introduce a subsidy cost

K̃
(
(EPPA

h , EG

h+1, E
PV

h+1)h∈H

)
= −cs1[0,p]

(
Grid electricity︷ ︸︸ ︷∑
h∈H

(EG

h+1)+∑
h∈H

E ∧ (EPPA

h + EPV

h+1) + (EG

h+1)+︸ ︷︷ ︸
Total electricity

)
, (4)
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where (· ∧ ·) = min(·, ·) and cs is the subsidy and E is the maximal electricity consumption
of the hydrogen infrastructure

E = Φe(1)me + ecme . (5)

The subsidy cost emphasizes the use of renewable energies. Indeed, it is equal to −cs
if the cumulated electricity consumption from the grid is less than 100p% of the cumulated
total electricity consumed (that is, from the grid, PPA and PV). This reflects the fact that
a subsidy cs is granted when renewable sources contribute to more than 100(1− p)% of the
cumulated total electricity consumption.

In the presence of uncertainty, and considering Equation (10a) which will be elaborated
upon subsequently, the electrical input from the grid EG

h+1 may take negative values when

selling excess electricity through the network. However, its impact on the subsidy cost K̃ is
only accounted when electricity is purchased from the network. Similarly, the sum of PPA
electricity EPPA

h and PV electricity EPV
h+1 supplied to the electrolyser and the compressor

might exceed the upper limit of electricity (E) that can be accepted by the infrastructure.
Therefore, the maximum contribution of PPA and PV electricity to the subsidy cost is E,
as it is delineated in Equation (4) (by employing max and min functions). We rewrite
Equation (4) as a function of a sum over h ∈ H to ease the use of Dynamic Programming in
§3.2.4

K̃
(
(EPPA

h , EG

h+1, E
PV

h+1)h∈H

)
= K

(∑
h∈H

(
(1−p)(EG

h+1)+ − p
(
E ∧ {EPPA

h + EPV

h+1}
)))

, (6a)

where the function K is defined by

K = −cs1R− , (6b)

where R− =]−∞, 0] and 1R−(x) is equal to 1 if x ∈ 1R− and 0 otherwise.
We reformulate the subsidy cost in Equation (6a) as the final cost K(QT ), where state Q,

that we name cumulative electricity, has the following dynamics{
Q0 = 0 ,

Qh+1 = Qh + (1− p)(EG
h+1)+ − pmin(E,EPPA

h + EPV
h+1) , ∀h ∈ H .

(7)

Summary table. The parameters used in the instantaneous and subsidy cost functions
are described in the following Table 4.

2.2.5 Constraints

In this section, we describe the electrolyser, production and electricity constraints, and
we give the electrolyser mode and stock dynamics.
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Variable Description Value

cPPA Unitary cost of energy provided by PPA (€/kWh) 0.075€/kWh

cGh
Unitary cost of energy provided by buying from Grid (€/kWh)
at timestep h

Figure 3c

cd Unitary cost of not satisfying the hydrogen demand (€/kg) 5,000€/kg
cs Subsidy (€) 5× 106€
p Subsidy threshold 0.2

E
Maximal electricity consumption of the hydrogen infrastruc-
ture (kWh)

1,403 kWh

Table 4: Parameters of the instantaneous and subsidy cost functions

Electrolyser constraints. For every timestep (hour) h ∈ H, the load decision ℓeh and the
decision Me↶

h to change the electrolyser mode are linked one to the other. Indeed, first,
if we turn the electrolyser to idle mode (resp. cold mode) by using Me↶

h = idle (resp.
Me↶

h = cold), then the electrolyser cannot produce hydrogen and therefore the load must
be equal to zero (ℓeh = 0). Second, if we turn the electrolyser to start mode, Me↶

h = start,
then the load is to be set in the interval [ℓe, 1]. The coupling constraint, between the load
decision and the decision to change the electrolyser mode, is mathematically formalized as
follows

ℓeh ∈ L(Me↶

h ) , with L : M ∋Me↶

h 7→

{
{0} if Me↶

h ∈ {cold,idle} ,
[ℓe, 1] if Me↶

h = start .
(8)

Production constraints. The hydrogen production (in kg) during a time interval [h, h+
1[, is given by

He
h = ℓehµ(M

e
h ,M

e↶

h )me , (9)

where ℓeh is the load decision, the function µ(Me
h ,M

e↶
h ) : M×M→ [0, 1] gives the proportion

– expressed in % – of the current time interval [h, h+1[ which is used for hydrogen production
when the electrolyser evolves from mode Me

h to mode Me↶
h , and me is the maximal quantity

of hydrogen that the electrolyser can produce during one hour.
The total electricity furnished by the three energy sources is used by both the electrolyser

and the compressor, that is

EPPA

h + EG

h+1 + EPV

h+1︸ ︷︷ ︸
total electricity

= Ee
h︸︷︷︸

electricity used by

the electrolyser

+ Ec
h︸︷︷︸

electricity used by

the compressor

, (10a)

where the electricity used by the electrolyser is

Ee
h = Φe(ℓeh)H

e
h︸ ︷︷ ︸

electricity used by the

electrolyser on start mode

+ eidle1idle(M
e↶

h )µ(Me
h ,M

e↶

h )︸ ︷︷ ︸
electricity used by the

electrolyser on idle mode

, (10b)

9



and the electricity used by the compressor is

Ec
h = ecHe

h . (10c)

Equation (10a) implies that if the electricity generated by photovoltaic solar panels EPV
h+1

is high, the surplus is sold to the grid, resulting in EG
h+1 taking negative values.

Electricity constraints. We now describe the electricity constraints. The first and third
one are induced constraints derived from Equation (10a). The second one is a constraint
induced by the PPA contract.

• As the right hand side of Equation (10a), that is, the electricity consumption of the
hydrogen infrastructure, is upper bounded by E, we obtain that the left hand side of
Equation (10a) is also upper bounded, that is

EPPA

h + EG

h+1 + EPV

h+1 ≤ E . (11)

• The cumulated energy from PPA is upper bounded (as imposed by the contract)∑
h∈H

EPPA

h ≤ EPPA , (12)

where EPPA is the maximal available quantity of PPA electricity during the time horizon.

• As EPPA
h is upper bounded by EPPA (see Equation (12)), EPV

h+1 is upper bounded by EPV
h+1

(see Table 3) and as the right hand side of Equation (10a) is nonnegative for all h ∈ H,
we obtain that the grid electricity EG

h+1 is lower bounded for all h ∈ H

EG ≤ EG

h+1 with EG = −EPPA − EPV . (13)

To ease the use of Dynamic Programming, we reformulate Constraint (12) as PT ≥ 0, where
state P , that we name PPA-stock, has the following dynamics

P0 = EPPA and Ph+1 = Ph − EPPA

h , ∀h ∈ H . (14)

Assuming constraint (14), and noting that EPPA
h is nonnegative for all h ∈ H, it is imme-

diate to see that constraint PT ≥ 0 is equivalent to EPPA
h ≤ Ph for all h ∈ H.

Electrolyser mode dynamics. The dynamics of the mode of the electrolyser is given by

Me
h+1 =Me↶

h . (15)
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Stock dynamics and constraints. The dynamics of the stock is given by

Sh+1 = Sh +He
h −min(Dh+1, H

→D

h ) , (16)

where min(Dh+1, H
→D
h ) reflects that, if the quantity (H→D

h ) extracted from the stock is greater
than the demand (Dh+1), we re-inject the unused quantity of hydrogen in the stock. More-
over, the stock is upper and lower bounded

S ≤ Sh ≤ S . (17)

3 Problem formulation and resolution

In Sect. 2, we have presented the hydrogen infrastructure and given its mathematical
modeling. We now turn to formulate an optimization problem corresponding to the man-
agement of this infrastructure at minimum cost. In §3.1, we give the problem formulation
and, in §3.2, we propose a resolution method based on price decomposition.

3.1 Problem formulation

We consider a probability space (Ω,F ,P). Mathematical expectation is denoted by E.
Random variables are denoted by bold capital letters like Z. The σ-field generated by Z is
denoted by σ(Z). This notation is used to represent nonanticipativity constraints. All the
variables introduced in Sect.2 are now random variables, hence represented by bold letters.
We assume that (Dh+1,E

PV
h+1) has a given probability distribution with finite support for all

h ∈ H.
Gathering all that has been done in Sect.2, we formulate the following minimization

problem

min
(Uh)h∈H
(Xh)h∈H

E
[∑
h∈H

cd(Dh+1 −H→D

h )+︸ ︷︷ ︸
backup cost

+
∑
h∈H

cPPAEPPA

h + cGh (E
G

h+1)+ +K(QT )︸ ︷︷ ︸
electricity cost

]
(18a)

subject to the following constraints for all h ∈ H

operational
constraints



He
h = ℓehµ(M

e
h,M

e↶
h )me ,

Ee
h = Φe(ℓeh)H

e
h + eidle1idle(M

e↶
h )µ(Me

h,M
e↶
h ) ,

Ec
h = ecHe

h ,

ℓeh ∈ L(Me↶
h ) ,

S0 given , Sh+1 = Sh +He
h −min(Dh+1,H

→D
h ) ,

Me
0 given , Me

h+1 = Me↶
h ,

S ≤ Sh ≤ S ,

0 ≤ H→D
h ,

(18b)
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electricity
constraints



P0 = EPPA , Ph+1 = Ph − EPPA
h ,

Q0 = 0 , Qh+1 = Qh + (1− p)(EG
h+1)+

−pmin(E,EPPA
h + EPV

h+1) ,

EPPA
h ≤ Ph ,

0 ≤ EPPA
h ,

EPPA
h + EG

h+1 + EPV
h+1 ≤ E ,

EG ≤ EG
h+1 ,

(18c)

coupling
constraint

{
EPPA

h + EG
h+1 + EPV

h+1 = Ee
h + Ec

h , (18d)

nonanticipativity
constraints

{
σ(EPPA

h , ℓeh,M
e↶
h ,H→D

h ) ⊂ σ
(
(Dh′ ,EPV

h′ ) , h′ ≤ h
)
,

σ(EG
h+1) ⊂ σ

(
(Dh′ ,EPV

h′ ) , h′ ≤ h+ 1
)
,

(18e)

where for every timestep (hour) h ∈ H, the state vector Xh is defined by

Xh =
(
Sh,M

e
h,Ph,Qh

)
. (19)

The state at initial time, X0, is deterministic. Now, we comment the different blocks of
constraints.

Operational constraints The block constraints (18b) describes the constraints related to
the electrolyser, compressor and storage, as outlined in Equations (8), (9), (10b), (10c),
(15), (16) and (17).

Electricity constraints The block constraints (18c) describes the constraints related to
the electricity sources, as discussed in Equations (7), (11), (12), (13) and (14).

Coupling constraint The constraints (18d) links the electricity consumption of the equip-
ment and the electricity furnished by the three electricity sources, as described in
Equation (10a).

Nonanticipativity constraints The decisions (EPPA
h , ℓeh,M

e↶
h ,H→D

h ) at hour h are taken
knowing the uncertainties up to hour h, which can be written as the first constraint
of (18e). Moreover, EPV

h+1 is observed at the end of hour h; therefore, we require a
recourse action to ensure the validity of constraint (18d). For that reason, the decision
EG

h+1 is taken knowing the uncertainties up to h+1, which can be written as the second
constraint of (18e).

Note that the constraints defined in Problem (18) are almost sure constraints, that means
they hold for P-almost all realizations of the random vector (Dh+1,E

PV
h+1)h∈H (P-a.s.). The

solutions of Problem (18) are sequences of hourly policies, that return the optimal decision
for each hour h ∈ H given the current state of the infrastructure Xh.
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3.2 Resolution using price decomposition

When the random variables (Dh+1,E
PV
h+1)h∈H are stagewise independent, Dynamic Pro-

gramming provides an optimal solution to Problem (18). Anyway, without stagewise in-
dependence, Dynamic Programming can be used to obtain admissible solution. However,
Solving Problem (18) using Dynamic Programming is numerically difficult for the following
reasons: one week horizon with hourly decisions gives 168 timesteps; a four dimensional
state (see Equation (19)) where the PPA-stock (P ) and the cumulated electricity (Q) take
values in large interval and require a fine discretization which is numerically demanding; five
decisions at each hour (see Equation (2)) have to be taken into account in the optimization
algorithm.

3.2.1 Sketch of the method

As solving Problem (18) using Dynamic Programming is numerically difficult, we pro-
pose an original decomposition method in order to improve numerical tractability with the
following steps.

1. We use Lagrangian relaxation of coupling constraints (18d) to obtain an additive dual
function ϕ[K] : λ ∈ RT 7→ ϕO(λ) + ϕE[K](λ), where K is the final cost defined in
Equation (6b). Denoting by val(D[K]) the value of the associated dual problem, that is
val(D[K]) = supλ∈RT ϕ[K](λ), we obtain by weak duality that val(D[K]) ≤ val(P [K]),
where val(P [K]) is the value of Problem (18).

2. We make a detour by considering a new additive function ϕ̂[K̂] : λ ∈ RT 7→ ϕO(λ) +

ϕ̂E[K̂](λ), where K̂ is a nondecreasing convex proper function, and where, for each

value of λ ∈ RT , ϕ̂E[K̂](λ) is the value of a convex optimization problem which is
equivalent (in the sense that the value of the two problems coincide and solutions to
either problem can be derived from one another) to the optimization problem whose

value is ϕE[K̂](λ). Moreover, we prove in Proposition 1 that K̂ can be chosen in such

a way that val(D[K̂]) ≤ val(D[K]).

3. We have that supλ∈RT ϕ̂[K̂](λ) = supλ∈RT ϕ[K̂](λ) = val(D[K̂]) where val(D[K̂]) is
the value of the Lagrangian dual (with respect to the coupling constraint (18d)) of

Problem (18) where the final cost K is replaced by K̂. We numerically maximize the

new function ϕ̂[K̂].

4. For each value of λ, we can build an admissible policy πλ for the original Problem (18)
and we can obtain by Monte-Carlo simulation an approximation of the cost associated
to that policy denoted by val(Pπλ [K]) which gives an upper bound of val(P [K]) the
value of Problem (18). We use this fact to simulate an admissible policy associated to
the best λ obtained at the previous step 3.
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Summarizing the previous steps, we have

︸ ︷︷ ︸
using Proposition 1

val(D[K̂]) ≤
Weak duality︷ ︸︸ ︷

val(D[K̂]) ≤ val(D[K]) ≤ val(P [K]) ≤ val(Pπλ [K])︸ ︷︷ ︸
Feasibility of policy πλ

, (20)

where the final cost function K̂ is the one described at item 3 of Proposition 1.
The duality gap of Problem (18), which is defined by val(P [K])− val(D[K]), is numeri-

cally intractable as it requires maximizing the dual function ϕ[K]. However, by using Equa-

tion (20), we can bound the duality gap val(P [K])− val(D[K]) by val(D[K̂])− val(Pπλ [K]),
which is numerically tractable.

3.2.2 Relaxation with deterministic Lagrange multiplier

We observe that Problem (18) is the minimum of the sum of a backup cost and an
electricity cost with two different blocks of constraints (18b) and (18c) (each block having
its own variables) and one coupling constraint (18d) for all h ∈ H.

We consider a decomposition algorithm by dualizing the coupling constraint (18d). As
constraint (18d) is stochastic, it is natural to dualize with stochastic Lagrange multipli-
ers. However, the optimization over stochastic Lagrange multipliers presents intractability
challenges. Therefore, we only consider deterministic Lagrange multipliers. Indeed, we will
observe that weak duality is enough to obtain good numerical bounds. We recall that max-
imizing the stochastic dual function over the restricted set of deterministic multipliers leads
to a lower bound of the optimal value of the original problem. The decomposition method
is presented now.

Given a deterministic multiplier λ = (λh)h∈H ∈ RT , we denote by ϕ[K](λ) the dual
function associated with the final cost K of Problem (18)

ϕ[K](λ) = min
(Uh)h∈H
(Xh)h∈H

E
[∑
h∈H

cd(Dh+1 −H→D

h )+ +
∑
h∈H

cPPAEPPA

h + cgh(E
G

h+1)+

+K(QT ) +
∑
h∈H

λh(−EPPA

h − EG

h+1 − EPV

h+1 + Ee
h + Ec

h)
]

(21)

s.t. (18b), (18c), (18e) .

Note that the final cost K is put as a parameter of the dual function ϕ for future use
and, we denote by Problem [K]-(21) the Problem (21) where the final cost K is considered.

By weak duality, the dual function ϕ[K](λ) is a lower bound of the value of Problem (18)
for all deterministic multiplier λ ∈ RT

ϕ[K](λ) ≤ val(P [K]) , ∀λ ∈ RT . (22)

We rewrite the dual function ϕ[K] as a sum

ϕ[K](λ) = ϕO(λ) + ϕE[K](λ) , (23a)
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where the function ϕO, which represents what we call the operational problem, is defined for
all λ ∈ RT by

ϕO(λ) = min
(Me↶

h ,ℓeh,H
→D
h )h∈H

(Sh,M
e
h)h∈H

E
[∑
h∈H

cd(Dh+1 −H→D

h )+ +
∑
h∈H

λh(E
e
h + Ec

h)
]

(23b)

s.t. (18b) ,

and σ(ℓeh,M
e↶

h ,H→D

h ) ⊂ σ
(
Dh′ , h′ ≤ h

)
, ∀h ∈ H ,

and the function ϕE, which represents what we call the electricity allocation problem, is
defined for all λ ∈ RT by

ϕE[K](λ) = min
(EPPA

h ,EG
h+1)h∈H

(Ph,Qh)h∈H

E
[∑
h∈H

LE

h

(
EPPA

h ,EG

h+1,E
PV

h+1, λh
)
+K(QT )

]
(23c)

s.t. (18c) ,

and σ(EPPA

h ) ⊂ σ
(
EPV

h′ , h′ ≤ h
)
, ∀h ∈ H ,

σ(EG

h+1) ⊂ σ
(
EPV

h′ , h′ ≤ h+ 1
)
, ∀h ∈ H ,

where for all h ∈ H

LE

h

(
EPPA

h ,EG

h+1,E
PV

h+1, λh
)
= cPPAEPPA

h + cGh (E
G

h+1)+ − λh(EPPA

h + EG

h+1 + EPV

h+1) . (23d)

Given λ ∈ RT , each subproblem (23b) and (23c) can be solved independently.

3.2.3 An equivalent convex electricity allocation problem

The electricity allocation Problem [K]-(23c) obtained by decomposing Problem [K]-(18)
is still a challenge for Dynamic Programming as it requires a fine discretization of the two
states P and Q. An approximation by a convex optimization problem would enable the use
of faster algorithms for its resolution, like Stochastic Dual Dynamic Programming (SDDP)
[11], which does not rely on state discretization, and is particularly adapted to the stochastic
case.

To obtain a convex approximation of Problem [K]-(23c), we use the two following keys.
First, we substitute the nonconvex final cost function K with a proper nondecreasing con-
vex function K̂. Second, we replace the cumulative electricity Q dynamics (nonlinear) as
described in Equation (7) with a linear dynamics by introducing new decisions and con-
straints. The new optimization problem we consider is defined by

ϕ̂E[K̂](λ) = min
(EPPA

h ,EG
h+1,E

N
h+1,E

R
h+1)h∈H

(Ph,Qh)h∈H

E
[∑
h∈H

LE

h

(
EPPA

h ,EG

h+1,E
PV

h+1, λh
)
+ K̂(QT)

]
(24a)
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subject to the following constraint, ∀h ∈ H

reformulation of (18c)
as linear constraints



P0 = EPPA , Ph+1 = Ph − EPPA
h ,

Q0 = 0 , Qh+1 = Qh + (1− p)EN
h+1 − pER

h+1 ,

EPPA
h ≤ Ph ,

0 ≤ EPPA
h ,

EPPA
h + EG

h+1 + EPV
h+1 ≤ E ,

EG ≤ EG
h+1 ,

(24b)

additional constraints


0 ≤ EN

h+1 ,

EG
h+1 ≤ EN

h+1 ,

ER
h+1 ≤ E ,

ER
h+1 ≤ EPPA

h + EPV
h+1 ,

(24c)

nonanticipativity
constraints

{
σ(EPPA

h ) ⊂ σ
(
EPV

h′ , h′ ≤ h
)
,

σ(EG
h+1,E

N
h+1,E

R
h+1) ⊂ σ

(
EPV

h′ , h′ ≤ h+ 1
)
.

(24d)

In (24c), the constraints on EN
h+1 model the positive part of EG

h+1 in the dynamics of Q. The
constraints on ER

h+1 model the min function in the dynamics of Q.

In Proposition 1, we show that Problem [K̂]-(23c) and Problem [K̂]-(24) when consid-

ered with the same final cost K̂ are equivalent, in the sense that from a feasible solution
of Problem [K̂]-(23c) (resp. Problem [K̂] -(24)), we can construct a feasible solution for

Problem [K̂]-(24) (resp. Problem [K̂]-(23c)) that yields the same value. Moreover, we give

in Proposition 1 conditions on the choice of K̂ to obtain lower bounds on the value of
Problem (23c) with the original final cost K.

Proposition 1 We consider Problem (23c) and Problem (24).

1. If the final cost function K in the definition of Problem [K]-(24) is proper1 and non-
decreasing, then Problem [K]-(24) is equivalent to Problem [K]-(23c). Moreover, if K
is convex, then Problem [K]-(24) is a convex optimization problem.

2. If K ≤ K in the interval [Q,Q], where Q and Q are defined respectively

by Q = T (1− p)E and Q = −TpE, then we have that ϕE[K] ≤ ϕE[K].

3. The final cost K̂ : R→ R is defined by K̂(x) = max(β1x, β2x)−cs with β1, β2 such that
0 ≤ β1 < β2 ≤ cs

Q
and where cs is the subsidy, as described in §2.2.4 satisfies previous

items 1 and 2. As a consequence we have that ϕ̂[K̂] ≤ ϕ[K] where ϕ̂[K̂] = ϕO + ϕ̂E[K̂].

Proof. See Appendix A for the proof of Proposition 1. 2

1that is K : R→]−∞,+∞] and there exists x ∈ R such that K(x) ̸= +∞
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3.2.4 Maximizing the new additive function ϕ̂[K̂] = ϕO + ϕ̂E[K̂]

In what follows, we assume that K̂ satisfies the assumptions of item 3 of Proposition 1,
and thus, for any λ ∈ RT , ϕ̂[K̂](λ) gives a lower bound of val(P [K]). In order to obtain the

best lower bound, we numerically maximize the function ϕ̂[K̂] using an iterative gradient-
like2 based algorithm whose steps are now detailed.

Step 1: Initialization of the Lagrange multiplier λ0

In order to choose a good initial value for the Lagrange multiplier, we use a determin-
istic idealized problem (convex optimization problem) whose optimal solution satisfies
certain conditions and for which we are able to find a lower bound for λ. This is done
by applying Lemma 2 for all h ∈ H, which gives us the following lower bounds

λ0h = pcGh + (1− p)cPPA , ∀h ∈ H . (25)

Note that λ0 only depends on the parameters of the electricity allocation Problem (23c).
We use these lower bounds in our numerical experiments as a starting point to maximize
the dual value function ϕ̂[K̂]. This initialization gives good results as displayed in
Figure 4.

Step 2: Gradient-like based maximization of the dual function ϕ̂[K̂]

Second, at each iteration k of the algorithm, the gradient-like of the function ϕ̂[K̂]
at point λk is computed using Equation (28). For that purpose, we need to compute
the optimal decisions of the operational Problem (23b) and the electricity allocation
Problem (23c), which is done as follows.

Step 2.1: Solving the operational problem ϕO

The operational Problem (23b) is solved by Stochastic Dynamic Programming
with the pair (S,Me) composed of the stock of hydrogen and the mode of the
electrolyser as state variables. The Bellman value functions [1] is given by the
following induction. For all h ∈ H, for all Sh,M

e
h

V O,λ
h (Sh,M

e
h) = min

(Me↶
h ,ℓeh,H

→D
h )

EDh+1

[
cd(Dh+1 −H→D

h )+ + λh(E
e
h + Ec

h)

+ V O,λ
h+1

(
Sh+1,M

e
h+1

)]
(26)

s.t. (18b) ,

where the Bellman value function at time h = T is null. When the random
variables (Dh+1)h∈H are stagewise independent, Dynamic Programming provides
an optimal solution.

2that is a substitute of the gradient
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Step 2.2: Solving the electricity allocation problem ϕE[K̂]

While Stochastic Dynamic Programming is applicable to the problem, its practical
implementation is computationally intensive due to the need for precise discretiza-
tion of the states P and Q. Alternatively, Stochastic Dual Dynamic Programming
(SDDP), leveraging the convex nature of the problem, offers a promising alterna-

tive way of obtaining a solution. Note that using the final cost K̂ defined in Item 3
of Proposition 1 is preferred when using SDDP, given its polyhedral nature.

The Bellman value functions associated with the electricity allocation Problem (24)
are given by the following induction.

At time h = T , we have V E,λ
T (PT , QT ) = K̂(QT ) for all PT , QT

and for all h ∈ H, for all Ph, Qh

V E,λ
h (Ph, Qh) = min

EPPA
h

EEPV
h+1

[
min

(EG
h+1,E

N
h+1,E

R
h+1)

LE

h

(
EPPA

h ,EG

h+1,E
PV

h+1, λh
)

+ V E,λ
h+1

(
Ph+1,Qh+1

)]
(27)

s.t. (24b), (24c) .

Stochastic Dual Dynamic Programming provides lower bounds (V E,λ
h )h∈H for the

Bellman functions given by the Equations (27).

Step 2.3: Computation of the gradient of the function ϕ̂[K̂]

If the function ϕ̂[K̂] was differentiable, we would obtain that

∂ϕ̂[K̂]

∂λh
(λ) = ∇̂h = E

[
Ee

h + Ec
h

]
+ E

[
− EPPA

h − EG

h+1 − EPV

h+1

]
, (28)

for all h ∈ H, where E·
h is the optimal value of the control E·

h of Problems (23b)

and (23c) that depend on λ. Here, as the function ϕ̂[K̂] is not differentiable (pres-
ence of integer controls in Problem (23b)), we use Equation (28) as a gradient-

like heuristic to update the multiplier λ when maximizing the function ϕ̂[K̂].
The gradient-like is defined by the sum of two expectations. The second one,
E
[
−EPPA

h −EG
h+1−EPV

h+1

]
, is approximated using a Monte-Carlo method while the

first one, E
[
Ee

h +Ec
h

]
, is more efficiently computed using the discrete probability

law of the state driven by the optimal policy (Fokker-Planck equation).

The algorithm used to maximize ϕ̂[K̂] using Stochastic Dynamic Programming for the
operational Problem (23b) and Stochastic Dual Dynamic Programming for the electricity
allocation Problem (23c) is described in Algorithm 1.

3.2.5 Producing an admissible policy

A (state) policy is a mapping from states to controls that determines the action to take
at a given time in a given state.
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Algorithm 1 Maximizing the function ϕ̂[K̂] by gradient ascent

Input: λ0, nb iterations, γ, S0,M
e
0 , P0, Q0

k ← 0
Initialize λ0 using Equation (25)
while k < nb iterations do

Run SDP on operational problem to obtain (V O,λk−1

h )h∈H (26)

Run SDDP on the electricity problem to obtain (V E,λk−1

h )h∈H (27)

λk ← λk−1 + γ(∇̂h)h∈H (see (28))
k ← k + 1

end while
return λnb iterations

For a fixed deterministic multiplier λ = {λh}h∈H, we obtain a feasible policy πλ ={
πλ
h

}
h∈H for Problem (18) by considering the following one step optimization problem which

uses the sum of the computed Bellman value functions (26) for the operational problem and
the lower bounds of the Bellman value functions (27) for the electricity allocation problem

πλ
h(Sh,M

e
h , Ph, Qh) = argmin

(EPPA
h ,Me↶

h ,ℓeh,H
→D
h )

E
[
min
EG

h+1

Lh

(
EPPA

h ,EG

h+1,Dh+1, H
→D

h

)
V O,λ
h+1(Sh+1,M

e
h+1) + V E,λ

h+1(Ph+1,Qh+1)︸ ︷︷ ︸
surrogate additive value function

]
(29)

s.t. (18b), (18c), (18d) .

We denote by val(Pπλ [K]) the total cost of Problem (18) when applying the feasible policy
given by Equation (29).

4 Numerical case study results

In this section, we present numerical results obtained for Problem (18) described in §3.1.

4.1 Case study data

We present the different data needed to formulate Problem (18). Some of the data were
already presented in Table 4. The optimization problem is formulated at hourly step over
one week, thus we have H = {0, . . . , 167}.

• The electrolyser has the following characteristics.

– The electrolyser function Φe (used in Equation (10b)) is given in Figure 2a.

– Table 2b gives the numerical values of the function µ (see Equation (9)).
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– The maximal hydrogen production me (used in Equation (9)) is equal to 23 kg/h.

– The consumption on idle mode eidle (used in Equation (10b)) is equal to 3 kWh
per hour.

(a)

Me|Me↶ cold idle start

cold 1 5
6

99
120

idle 119
120

1 299
300

start 119
120

119
120

1

(b)

Figure 2: In (2a), we draw the evolution of electricity consumption as a function of the
load of the electrolyser and in (2b) the values of the function µ given Me and Me↶

• The compressor consumption ec (used in Equation (10c)) is equal to 6 kWh/kg.

• The minimal capacity of the storage, S, is 25 kg and its maximal capacity, S, is 750 kg
(see Equation (17)).

• The electricity sources have the following characteristics.

– The stock of PPA, EPPA (used in Equation (12)), is equal to 41,650 kWh.

– The unitary price of PPA (used in Equation (3)) is equal to 0.075€/kWh.

– The subsidy cs is 5 × 106€, and the ratio of grid electricity p is 0.2 (used in
Equation (4)).

– Figure 3c shows the time evolution of the grid cost.

– For a given h ∈ H, the PV energy produced during the time interval [h, h + 1[,
EPV

h+1, is a random variable with a discrete probability distribution displayed in
Table 5, where the set of parameters (µpv

h+1)h∈H are given in Figure 3a.

Table 5: Probability distribution of EPV
h+1

Outcome 0.8µpv
h+1 0.9µpv

h+1 µpv
h+1 1.1µpv

h+1 1.2µpv
h+1

Probability 1
5

1
5

1
5

1
5

1
5

• The hydrogen demand has the following characteristics.

– For a given h ∈ H, the hydrogen demand during the time interval [h, h+1[, Dh+1,
is a random variable with a discrete probability distribution displayed in Table 6,
where the set of parameters (µd

h+1)h∈H are given in Figure 3b.
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(a) (b) (c)

Figure 3: Values of the parameters (µpv
h+1)h∈H (a), (µd

h+1)h∈H (b) and the grid cost
(cGh+1)h∈H (c)

– The dissatisfaction cost cd is equal to 5,000€/kg (see Equation (3)).

Table 6: Probability distribution of Dh+1

Outcome 0.8µd
h+1 0.9µd

h+1 µd
h+1 1.1µd

h+1 1.2µd
h+1

Probability 1
5

1
5

1
5

1
5

1
5

4.2 Implementation of Algorithm 1

Algorithm 1 is implemented in Julia 1.9.2. For the SDP component, we use our own
implementation developed in Julia. As for the SDDP component, we employ SDDP.jl as the
SDDP solver [2], with SDDP.jl utilizing JuMP [7] as the modeler and Gurobi 11.0 [4] as the
LP solver. All computations were performed on a Linux system equipped with 4-processor
Intel Xeon E5-2667, 3.30GHz, with 192 GB of RAM.

4.3 Numerical results of Algorithm 1

The value of the parameter β1 is set to 0. The value of parameter β2 is set to 26.5 to
penalize grid consumption over 20% of the total electricity consumption. The decisions ℓeh and
H→D

h and the state Sh are discretized for all h ∈ H for solving the operational Problem (23b)
using SDP. In Table 7, we give the bounds and cardinality of the set of discrete values of
these variables. The bounds of the variables ℓeh and Sh are derived from the data of the
problem, while the upper bound of H→D

h is the maximum possible hydrogen demand.
The SDDP algorithm is iterated 60 times, which is enough to obtain a small duality gap

as discussed later. The gradient step is initialized at 5×10−6 and diminishes by half each 15
iterations across a span of 51 iterations. The number of Monte-Carlo simulation to compute
the gradient-like of the function ϕ̂E[K̂] and the total cost val(Pπλ [K̂]) using the policy (29)
are 2,300 and 5,000 respectively.

We display in Figure 4 the value of the function ϕ̂[K̂] at each iteration of Algorithm 1

and the value returned by the policy (29) when applied to primal problems val(Pπλ [K̂]) and
val(Pπλ [K]) each 5 iterations.
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Variable Lower bound Upper bound Cardinality

ℓeh ℓe=0.1 1 30
H→D

h (kg) 0 1.2µd
h+1 7

Sh (kg) 25 750 300

Table 7: Bounds and cardinality of the set of discrete values of the variables of the opera-
tional Problem (23b)

As K̂ highly penalizes positive values of QT , it is expected to obtain nonpositive values
for QT when using the policy πλ and therefore to obtain the subsidy cs. However, during
some simulations of the policy πλ before iteration 30, the subsidy cs is not obtained, leading
to the high values observed in the red curve. After iteration 30, QT takes nonpositive values,
and, as the same policy πλ is applied to both problems P [K̂] and P [K], the red and green
curves coincide.

Figure 4: The blue curve represents the evolution of the function ϕ̂[K̂] along the iterations
when using Algorithm 1. The green and red curves represent the evolution of the primal
problems Pπλ

[
K̂] and Pπλ

[
K] respectively when applying the policy πλ. The blue point

represents the maximal value obtained for the function ϕ̂[K̂] + cs. The red point represents
the minimal value obtained for val(Pπλ [K])+ cs. The costs displayed on the vertical axis are
the real costs added with the subsidy cs to ease the reading

As shown in Equation (20), the true duality gap val(P [K])−val(D[K]) is bounded by the

difference val(Pπλ [K]) − val(D[K̂]), that is, the difference between the red and blue points
in Figure 4.

This difference of 418€ is 4% of the minimal value obtained for val(Pπλ [K]). This implies
that Algorithm 1 gives good results and that the policy (29) for Problem (18) is 4% optimal.
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4.4 Analysis of some scenarios

We use the policy (29) to simulate the evolution of the stock of hydrogen for an initial
stock of 250 kg and for three different scenarios. The evolution of the hydrogen stock is
displayed in Figure 5. We note that the hydrogen stock for scenario 2 reaches high values
during the first half of the week. This observation implies a low demand for hydrogen within
this scenario. Additionally, it suggests that a maximal capacity of at least 500 kg is required
to execute the policy effectively. It is noteworthy that nearly all the hydrogen in the storage
is depleted by the end of the horizon for each scenario, which is expected, given the absence
of final cost associated with hydrogen stock.

Figure 5: Time evolution of the optimal stock for the three different scenarios

We show in Figure 6 the evolution of the demand and the quantity of hydrogen extracted
from the storage to satisfy the hydrogen demand for the three scenarios. As expected, there
is low demand during the first half of the week for scenario 2, which explains the large stock
of hydrogen during the same period. Note that the demand is always satisfied for every
scenario.

In Figure 7, the electricity consumption is displayed for the three scenarios. We note a
pattern where grid electricity is predominantly utilized during the night, taking advantage
of its lowest cost. Conversely, PV electricity generation aligns with daytime consumption.

Figure 6: Demand satisfaction for the three different scenarios. The brown bars correspond
to the quantity of hydrogen H→D extracted from the storage to satisfy the demand
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For both day and night periods, we complement our energy requirements with PPA. At
the end of the week, grid electricity consumption falls below 20% of the total electricity
consumption, leading to the acquisition of the subsidy cs for each scenario.

Figure 7: Time evolution of the electricity consumption for the three different scenarios

5 Conclusion

In this study, we have modeled a hydrogen infrastructure consisting of an electrolyser,
compressor, and storage. This infrastructure is powered by a mix of electricity sources,
namely PV (Photovoltaic), PPA (Power Purchase Agreement) and the grid, and is managed
on an hourly basis to meet hydrogen demand. To address the uncertainties in photovoltaic
production and hydrogen demand, we formulated the problem as a multistage stochastic
optimization problem. Assuming stagewise independence of noise, we have developed a
decomposition algorithm mixed with dynamic programming to solve the problem. Our
numerical results are encouraging, with the resultant policy achieving a duality gap of 4%.
Subsequently, we have analyzed the outcomes of simulations conducted under this policy.

Data Availability All data used in the numerical experiments is generated as described
in this manuscript.

References

[1] R. Bellman. On the theory of dynamic programming. Proceedings of the National
Academy of Sciences, 38(8):716–719, 1952.

[2] O. Dowson and L. Kapelevich. SDDP.jl: a Julia package for stochastic dual dynamic
programming. INFORMS Journal on Computing, 33:27–33, 2021.

[3] M. Fochesato, P. Heer, and J. Lygeros. Multi-objective optimization of a power-to-
hydrogen system for mobility via two-stage stochastic programming. Journal of Physics:
Conference Series, 2042:012034, 11 2021.

[4] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

24



[5] U. Hasturk, A. H. Schrotenboer, K. J. Roodbergen, and E. Ursavas. Multi-period
stochastic network design for combined natural gas and hydrogen distribution, 2023.

[6] H. Heitsch and W. Römisch. Scenario reduction algorithms in stochastic programming.
Computational Optimization and Applications, 24(2-3):187 – 206, 2003. Cited by: 739.

[7] M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and J. P. Vielma. JuMP
1.0: Recent improvements to a modeling language for mathematical optimization. Math-
ematical Programming Computation, 2023.

[8] U. Mukherjee, A. Maroufmashat, A. Narayan, A. Elkamel, and M. Fowler. A stochastic
programming approach for the planning and operation of a power to gas energy hub
with multiple energy recovery pathways. Energies, 10, 06 2017.

[9] H. Nami, O. Rizvandi, C. Chatzichristodoulou, P. Hendriksen, and H. Frandsen. Techno-
economic analysis of current and emerging electrolysis technologies for green hydrogen
production. Energy Conversion and Management, 269, 2022.

[10] P. Nunes, F. Oliveira, S. Hamacher, and A. Almansoori. Design of a hydrogen supply
chain with uncertainty. International Journal of Hydrogen Energy, 40(46):16408–16418,
2015.

[11] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to energy
planning. Math. Program., 52(1-3):359–375, May 2021.

[12] R. Qi, Y. Qiu, J. Lin, Y. Song, W. Li, X. Xing, and Q. Hu. Two-stage stochastic
programming-based capacity optimization for a high-temperature electrolysis system
considering dynamic operation strategies. Journal of Energy Storage, 40:102733, 2021.

[13] A. Rezaee Jordehi, S. A. Mansouri, M. Tostado-Véliz, M. Carrión, M. Hossain, and
F. Jurado. A risk-averse two-stage stochastic model for optimal participation of hy-
drogen fuel stations in electricity markets. International Journal of Hydrogen Energy,
49:188–201, 2024.

[14] R. T. Rockafellar. Convex analysis. Princeton university press, 2015.

[15] A. H. Schrotenboer, A. A. Veenstra, M. A. uit het Broek, and E. Ursavas. A green
hydrogen energy system: Optimal control strategies for integrated hydrogen storage
and power generation with wind energy. Renewable and Sustainable Energy Reviews,
168:112744, 2022.

[16] X. Sun, X. Cao, M. Li, Q. Zhai, and X. Guan. Seasonal operation planning of hydrogen-
enabled multi-energy microgrids through multistage stochastic programming. Journal
of Energy Storage, 85:111125, 2024.

25



[17] X. Wu, W. Zhao, H. Li, B. Liu, Z. Zhang, and X. Wang. Multi-stage stochastic pro-
gramming based offering strategy for hydrogen fueling station in joint energy, reserve
markets. Renewable Energy, 180:605–615, 2021.

[18] J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming. Math.
Program., 175(1-2):461–502, 2019.

A Proof of Proposition 1

A.1 Proof of item 1 of Proposition 1

We start by preliminary notations and results. First, we consider a sequence U =
(
EPPA

h ,

EG
h+1, Ph+1, Qh+1

)
h∈H admissible for the Problem [K]-(23c). It is straightforward to check

that the derived sequence denoted by γ(U) and defined by

γ(U) :=
(
EPPA

h ,EG

h+1,Ph+1,Qh+1, (E
G

h+1)+,min(E,EPPA

h + EPV

h+1)
)
h∈H (30)

is admissible for Problem [K]-(24). Moreover, as the respective costs of Problem [K]-
(23c) and Problem [K]-(24) have the same expression only depending on the sequence(
EPPA

h ,EG
h+1,Qh+1

)
h∈H, we obtain that the two sequence gives the same cost

E
[∑
h∈H

LE

h

(
EPPA

h ,EG

h+1,E
PV

h+1, λh
)
+ K̂(QT )

]
. (31)

Second, we consider a sequence V =
(
EPPA

h ,EG
h+1,Ph+1,Qh+1,E

N
h+1,E

R
h+1

)
h∈H admissible

for Problem [K]-(24). We build the sequence (Qh)h∈H defined, for all h ∈ H by

Q0 = 0 , Qh+1 = Qh + (1− p)(EG

h+1)+ − pmin(E,EPPA

h + EPV

h+1) , (32)

and denote by φ(V) the sequence

φ(V) :=
(
EPPA

h ,EG

h+1,Ph+1,Qh+1)
)
h∈H . (33)

We straightforwardly check that the derived sequence γ(φ(V)) is admissible for Problem [K]-
(24) and gives a lower cost. Indeed, it follows from Equation (32) and (24c) that QT ≤ QT

which combined with the fact that the function K is nondecreasing gives a lower cost for
the derived sequence. Moreover, using the first part, we also have that φ(V) is admissible
for Problem [K]-(23c) with the same cost as the one given by γ(φ(V)) in Problem [K]-(24).

Now, we turn to the proof of item 1 of Proposition 1. We denote by hE (resp ĥE) the cost
function of Problem [K]-(23c) (resp. Problem [K]-(24)).

We consider λ ∈ RT and assume that ϕE[K̂](λ), the optimal cost of Problem [K]-(23c),
is finite. For ξ > 0, consider Uξ a ξ-optimal solution of Problem [K]-(23c). Using the
preliminary part, we have that

ϕ̂E[K̂](λ) ≤ ĥE
(
γ(Uξ)

)
= hE

(
Uξ)

)
≤ ϕE[K̂](λ) + ξ ,
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which gives that ϕ̂E[K̂](λ) ≤ ϕE[K̂](λ) and therefore ϕ̂E[K̂](λ) < +∞. Now, first assume

that ϕ̂E[K̂](λ) is finite and consider Vξ a ξ-optimal solution for Problem [K]-(24). We obtain
that

ϕE[K̂](λ) ≤ hE
(
φ(Vξ)

)
= ĥE

(
γ(φ(Vξ)

)
≤ ĥE

(
Vξ
)
≤ ϕ̂E[K̂](λ) + ξ ,

which gives the equality ϕE[K̂](λ) = ϕ̂E[K̂](λ). Second, it remains to consider the case

ϕ̂E[K̂](λ) = −∞. For each n ∈ N we can find an admissible Vn for Problem [K]-(23c)

satisfying ĥE(Vn) ≤ −n and proceeding as above we ϕE[K̂](λ) ≤ −n for all n ∈ N which

contradict the assumption that ϕE[K̂](λ) is finite.

The cases ϕE[K̂](λ) ∈ {+∞,−∞} can be treated in a similar way and are left to the
reader.

A.2 Proof of item 2 of Proposition 1

Proof. Fix λ ∈ RT and consider the optimization Problem (23c). As a preliminary fact, we
prove that for a feasible solution of Problem (23c), its component “cumulative electricity” at time
T satisfies QT ∈ [Q,Q]. First, using the cumulative electricity state dynamics (7), we obtain the
lower bound

QT =
T−1∑
h=0

(1− p)(EG
h+1)+︸ ︷︷ ︸

≥0

−pmin(E,EPPA
h +EPV

h+1)

≥
T−1∑
h=0

−pmin(E,EPPA
h +EPV

h+1) ≥
T−1∑
h=0

−pE = −TpE .

Second, we obtain the upper bound

QT =

T−1∑
h=0

(1− p)(EG
h+1)+−pmin(E,EPPA

h +EPV
h+1)︸ ︷︷ ︸

≤0

≤
T−1∑
h=0

(1− p)(EG
h+1)+ ≤

T−1∑
h=0

(1− p)E = T (1− p)E . (as EG
h+1 ≤ E by (11))

Now, we prove that ϕ[K](λ) ≤ ϕ[K](λ). Fix λ ∈ RT . The optimal cost of Problem (23c)
ϕE[K](λ) is in R ∪ {+∞} as the feasible set of Problem (23c) is bounded, the objective function
of Problem (23c) is proper as K is proper and (EPV

h+1)h∈H has a finite support. Thus, for a given

ζ > 0, there exists
(
EPPA,ζ

h ,EG,ζ
h+1,P

ζ
h,Q

ζ
h

)
h∈H in the feasible of Problem (23c) satisfying

E
[∑
h∈H

LE
h

(
EPPA,ζ

h ,EG,ζ
h+1,E

PV
h+1, λh

)
+K(Qζ

T )
]
≤ ϕE[K] + ζ . (34)

We immediately obtain that the control
(
EPPA,ζ

h ,EG,ζ
h+1,P

ζ
h,Q

ζ
h

)
h∈H is feasible for Problem (23c)

where K is replaced by K. Therefore we have
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ϕE[K](λ) ≤ E
[∑
h∈H

LE
h

(
EPPA,ζ

h ,EG,ζ
h+1,E

PV
h+1, λh

)
+K(Qζ

T )
]

(solution feasibility)

≤ E
[∑
h∈H

LE
h

(
EPPA,ζ

h ,EG,ζ
h+1,E

PV
h+1, λh

)
+K(Qζ

T )
]

(K ≤ K in [Q,Q])

≤ ϕE[K](λ) + ζ . (using (34))

We conclude that ϕE[K](λ) ≤ ϕE[K](λ) + ζ for all ζ > 0, and therefore that
ϕE[K](λ) ≤ ϕE[K](λ). Finally, we have

ϕ[K](λ) = ϕE
[
K](λ) + ϕO(λ)

≤ ϕE[K](λ) + ϕO(λ)

= ϕ[K](λ) , ∀λ ∈ RT .

This ends the proof. 2

A.3 Proof of item 3 of Proposition 1

Proof. First, we prove that Problem (24) is a convex optimization problem. The function
K̂ is the maximum of affine functions with nonnegative slopes, we conclude that K̂ is proper,
nondecreasing and convex, which satisfies the assumptions of item 1 of Proposition 1. Consequently,
Problem (24) is a convex optimization problem for all λ ∈ RT .

Second, we prove that K̂ ≤ K in the interval [Q,Q]. We distinguish the two following cases

• For QT ≤ 0 we have

K̂(QT ) = β1QT − cs ≤ −cs = K(QT ) . (35)

• Conversely, for QT > 0, we have

K̂(QT ) = β2QT − cs , (36a)

K(QT ) = 0 , (36b)

K̂(QT ) ≤ K(QT ) , ∀QT ∈]0, Q] ⇐⇒ β2 ≤
cs

QT
, ∀QT ∈]0, Q] ⇐⇒ β2 ≤

cs

Q
. (36c)

We conclude that if β2 ≤ cs

Q
then K̂ ≤ K in [Q,Q] and therefore by using item 2 of Proposition 1

that ϕ̂[K̂] ≤ ϕ[K]. This ends the proof. 2
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B Initialization of Lagrange multiplier

Lemma 2 Let f , (gh)h∈H and K be convex functions taking finite values, Cu and Cy be
closed convex sets with Cu ⊂ Rm×T and Cy ⊂ RT , and (αh, βh, ah, bh)h∈H a sequence of
positive parameters. Given h′ ∈ H, consider the following optimization Problem for all
ϵ ≥ 0:

ψh′(ϵ) = min
(xh,yh,uh)h∈H

∑
h∈H

(
αhxh + βhyh

)
+ f
(
(uh)h∈H

)
+K

(∑
h∈H

ahxh − bhyh
)

(37a)

subject to the following constraints

(uh)h∈H ∈ Cu , (37b)

(yh)h∈H ∈ Cy , (37c)

gh(uh) ≤ xh + yh , ∀h ∈ H \ {h′} , (37d)

gh′(uh′) ≤ xh′ + yh′ + ϵ , (37e)

0 ≤ xh, yh , ∀h ∈ H . (37f)

We assume that if (yh)h∈H ∈ Cy then {(ŷh)h∈H| ŷh ≤ yh , ∀h ∈ H} ⊂ Cy. We also assume
that for ϵ ≥ 0, the Lagrangian of Problem (37) when dualizing Constraint (37e) admits a
saddle point

(
(xϵ, yϵ, uϵ), λϵh′

)
where (xϵ, yϵ, uϵ) = (xϵh, y

ϵ
h, u

ϵ
h)h∈H is the optimal solution of

Problem (37), and λϵh′ is the Lagrange multiplier associated with constraint (37e).

If x0h′ > 0 and y0h′ > 0 then λ0h′ ≥ αh′bh′
ah′+bh′

+
βh′ah′
ah′+bh′

.

Proof.
Assume that x0h′ and y0h′ are positive, and choose ϵ such that min(x0h′ , y0h′) > ϵ > 0. We

construct a solution for Problem (37) with the given ϵ, denoted by (xϵ,#h , yϵ,#h , uϵ,#h )h∈H, in the
following manner 

yϵ,#h = y0h , ∀h ∈ H \ {h′},
yϵ,#h′ = y0h′ − ah′

ah′+bh′
ϵ ,

uϵ,#h = u0h , ∀h ∈ H,
xϵ,#h = x0h , ∀h ∈ H \ {h′},
xϵ,#h′ = x0h′ − bh′

ah′+bh′
ϵ .

It is immediate to see that (xϵ,#h , yϵ,#h , uϵ,#h )h∈H is feasible for Problem (37) as it differs from

(x0h, y
0
h, u

0
h)h∈H only for h′ with xϵ,#h′ ≥ 0, yϵ,#h′ ≥ 0, (yϵ,#h )h∈H ∈ Cy, and x

ϵ,#
h′ +yϵ,#h′ + ϵ = x0h′ +y0h′ ≥

gh′(u0h′) = gh′(uϵ,#h′ ). Moreover, we have

∑
h∈H

ahx
ϵ,#
h − bhyϵ,#h =

∑
h∈H

ahx
0,∗
h − bhy

0,∗
h −

ah′bh′

ah′ + bh′
ϵ+

bh′ah′

ah′ + bh′
ϵ =

∑
h∈H

ahx
0
h − bhy0h .
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and since (xϵ,#h , yϵ,#h , uϵ,#h )h∈H is feasible for Problem (37), we have

ψh′(ϵ) ≤
∑
h∈H

(
αhx

ϵ,#
h + βhy

ϵ,#
h

)
+ f

(
(uϵ,#h )h∈H

)
+K

(∑
h∈H

ahx
ϵ,#
h − bhyϵ,#h

)
=
∑
h∈H

(
αhx

0
h + βhy

0
h

)
+ f

(
(u0h)h∈H

)
+K

(∑
h∈H

ahx
0
h − bhy0h

)
− αh′bh′

ah′ + bh′
ϵ− βh′ah′

ah′ + bh′
ϵ

= ψh′(0)−
( αh′bh′

ah′ + bh′
+

βh′ah′

ah′ + bh′

)
ϵ . (38)

Moreover, as ψh′(ϵ) is a convex function [14], we have

ψh′(z) + ∂ψh′(z)(ϵ− z) ≤ ψh′(ϵ) , ∀z ≥ 0 .

In particular, for z = 0, we have ψh′(0) + ∂ψh′(0)ϵ ≤ ψh′(ϵ).
Since −λ0h′ is a subgradient of ψh′ for ϵ = 0, it follows that

ψh′(0)− λ0h′ϵ ≤ ψh′(ϵ) . (39)

Combining Equation (38) and Equation (39), we get that λ0h′ ≥ αh′bh′
ah′+bh′

+
βh′ah′
ah′+bh′

.

This ends the proof. 2
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