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Abstract. Quantifier Elimination (QE) concerns finding a quantifier-
free formula that is semantically equivalent to a quantified formula in
a given logic. For the theory of non-linear arithmetic over reals (NRA),
QE is known to be computationally challenging. In this paper, we show
how QE over NRA can be solved approximately and efficiently in prac-
tice using a Boolean combination of constraints in the linear arithmetic
over reals (LRA). Our approach works by approximating the solution
space of a set of NRA constraints when all real variables are bounded.
It combines adaptive dynamic gridding with application of Handelman’s
Theorem to obtain the approximation efficiently via a sequence of lin-
ear programs (LP). We provide rigorous approximation guarantees, and
also proofs of soundness and completeness (under mild assumptions) of
our algorithm. Interestingly, our work allows us to bootstrap on earlier
work (viz. [41]) and solve quantified SMT problems over a combination
of NRA and other theories, that are beyond the reach of state-of-the-
art solvers. We have implemented our approach in a preprocessor for
Z3 called POQER. Our experiments show that POQER+Z3EG outper-
forms state-of-the-art SMT solvers on non-trivial problems, adapted from
a suite of benchmarks.

1 Introduction

Given a first-order logic formula with quantifiers, quantifier elimination (or QE)
requires us to find a quantifier-free formula that is semantically equivalent to
the given quantified formula. Not every first-order theory admits QE; however,
several important ones do, and QE for several such theories are implemented
in modern Satisfiability Modulo Theories (SMT) solvers (viz. [1,9,39,28,32]).
QE in combinations of first-order theories is particularly challenging, and algo-
rithms that achieve this for some theories used in practical applications have
been reported in earlier works (e.g. [11,54,41]). However, QE (even approximate
versions) in combinations of theories including non-linear real arithmetic (NRA)
has proved more difficult. This is not surprising since QE over NRA is compu-
tationally challenging by itself [30]. In this paper, we add to the repertoire of
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practically efficient techniques for reasoning about NRA constraints by showing
how NRA constraints over bounded variables can be approximated efficiently
using a Boolean combination of real interval constraints. This yields a practical
algorithm for approximately solving QE over NRA, and also allows us to boot-
strap on existing QE techniques that work well for combinations of LRA and
other theories (viz. [41]) to solve QE in combinations of theories including NRA.

At the heart of our approach lies a practically efficient technique for ap-
proximating a Boolean combination of polynomial inequalities over bounded
reals with a Boolean combination of real interval constraints. This immediately
yields a practically efficient approximate QE algorithm for NRA. This prob-
lem is also popularly called QE over reals (henceforth called QER). QER is a
central problem in computer algebra and real algebraic geometry, with many
practical applications, including control system design [38,45,49], program ver-
ification [65,70,68,53,14], analysis of hybrid systems [6,83] and robot motion
planning [56,60,81]. The study of QER has a long and storied history. Tarski
first showed the decidability of QER in [75]. By the Tarski-Seidenberg theorem,
the projection of a semi-algebraic set (i.e. solutions of a Boolean combination
of polynomial inequalities) is always semi-algebraic [75,71]. Hence, it suffices to
eliminate existentially quantified variables from a conjunction of polynomial in-
equalities. A landmark result in this area was the development of the cylindrical
algebraic decomposition (CAD) algorithm by Collins [29] in 1975. Over the past
half century, CAD has remained one of the most important algorithms for QER,
although several improvements have been proposed over the years. An excellent,
albeit dated, survey of these algorithms can be found in [30,16], while more recent
works have been reported in [12,61,62,72,52,27,69,55,3]. The book by Basu, Pol-
lack and Roy [10] is a definitive treatise on exact algorithms for QER and related
problems. Over the years, practical scalability concerns have also motivated re-
searchers to investigate versions of QER for special cases [33,66,58,79,80,63,51,50].
Advances resulting from these efforts have been implemented in state-of-the-art
tools, including open-source academic tools such as QEPCAD [31,13], RED-
LOG [37], SMT-RAT [32] and SageMath [76], as well as commercial tools such
as Mathematica [47,72,73] and Maple [26,48].

The verification community has long been interested in QER, thanks to
its many applications in problems related to automated reasoning. For exam-
ple, QER for polynomial equalities and disequalities has been used to compute
strongest post- and weakest pre-conditions of programs [65,14], to compute ab-
stract transformers for program statements [64], and for inductive assertion and
program invariant generation [70,53]. In hybrid systems verification, reach set
computation has been shown to reduce to QER [6,83]. In [82], QER has been
used to find parametric optimal strategies for Markov decision processes. Quan-
tifier elimination in mixed theories including the theory of linear real arithmetic
(LRA) has been reported in several earlier works (see e.g. [11,54,41]). For ex-
ample, [11] gives model based projection techniques for several combinations
of theories and [41] gives e-graph based techniques for similar combinations.
However, quantifier elimination (even approximate versions) in combinations of
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theories including NRA has remained elusive in practice, primarily because of
the high-degree polynomials that result in general from QER.

The approach proposed in this paper can also be viewed as a step towards ap-
proximate quantifier elimination using knowledge compilation. Knowledge com-
pilation is a popular framework used in AI and related communities, where a
formula is compiled into a representation that renders quantifier elimination
(and other operations) tractable [34]. This approach has been used primarily
for problems in the Boolean domain, such as in model counting [57], certified
QBF solving and Boolean functional synthesis [67,4], although there are exam-
ples from non-Boolean domains as well [17,8]. We take inspiration from this
approach to compile a problem in a combination of theories including NRA
(e.g., NRA+ADT) to a problem in a combination of simpler-to-reason theories
(e.g., LRA+ADT), such that it is amenable to effective downstream reasoning
by SMT solvers.

Our algorithm provides strong guarantees of approximation and allows the
user to trade off precision for performance. It builds upon the well-known theo-
rem of Handelman [44] which characterizes positive polynomials over polytopes.
This theorem has previously been used in developing static analysis methods for
termination and runtime analysis [18,20,19,46], cost analysis [22,78,25,74,15,24],
invariant generation [21], reachability [77,7] and LTL verification [23], as well
as program synthesis [42,5]. Most of these approaches are template-based and
use Handelman’s theorem to solve for unknown variables in their templates. In
contrast, our approach is gridding-based and uses techniques similar to PROPh-
ESY [36] but combines them with Handelman-based reasoning. The primary
workhorse we use at the backend is a linear-programming (LP) solver, with oc-
casional invocations of an SMT solver. This allows our method to scale well on
many non-trivial examples. Our primary contributions are as follows:

1. We formalize two notions of approximation for QER, called ε-approximation
and (ε, δ)-approximation, that are motivated by practical applications and
introduce union of (adaptively sized) hyperrectangles as a knowledge rep-
resentation form for approximate QER. This allows us to compute ε- and
(ε, δ)-approximations of QER, for every ε, δ > 0, efficiently in practice.

2. We present an approach to over- and under-approximate NRA constraints
with a Boolean combination of LRA constraints, where each dimension is
bounded. Specifically, we use Handelman’s Theorem in combination with
dynamic adaptive gridding to reduce the approximation problem to multiple
linear programming (LP) instances, that are then discharged by a state-of-
the-art LP solver.

3. We prove the soundness of our algorithm, and its completeness under two
different settings. Assuming access to a sound and complete satisfiability
oracle for polynomial inequalities (in practice, an SMT solver), we show that
our algorithm produces an ε-approximation of QER. Without access to the
above oracle, and relying only on linear programming, we can obtain (ε, δ)-
approximations of QER. Our notions of approximation for the original semi-
algebraic set are closely related to those of [40]. Due to the special format of
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our approximation as a union of hyperrectangles, we obtain approximations
of the projection set easily. Our approach extends the results of [59] which
directly approximate the projection.

4. We apply this new algorithm to show how QE over theories involving Non-
linear Real Arithmetic (NRA) can be reduced to QE over LRA and other
theories, thereby making it possible to solve problems beyond the reach of
state-of-the-art solvers.

5. We show the practical effectiveness of our algorithm through two sets of
experiments with POQER – a tool that implements our algorithm. First,
a comparison with state-of-the-art tools shows that POQER significantly
outperforms available open-source tools that perform exact QER, even with
small values of ε and δ. Comparison with Mathematica, a commercial tool,
shows that our tool almost always generates solutions (unions of hyperrect-
angles) that are easier to process subsequently than solutions generated by
Mathematica. Second, we demonstrate how POQER can find approximate
solutions for NRA+ADT benchmarks well beyond the reach of state-of-the-
art SMT-solvers like Z3 and Z3EG.

Comparison with [5]. The same authors have recently used a similar idea of
gridding, combined with heuristics inspired by Farkas’ Lemma and Handelman’s
theorem, in a different setting in [5]. While [5] has an algorithm whose skeleton
is very similar to this work, there are significant differences: (i) [5] focuses on
program synthesis and obtaining the weakest possible pre-condition, as opposed
to our focus on quantifier elimination, (ii) while we work with real variables, [5]
considers integer variables, (iii) as a result of this integrality, the problem in [5]
admits an enumeration-based brute-force method, whereas our problem does not,
(iv) the algorithm in [5] is exact over integers, but our approach provides sev-
eral novel notions of approximation for reals, (v) our approach’s approximation
guarantees depend on both sides (soundness and completeness) of Handelman’s
theorem [44], whereas [5] only uses the trivial (soundness) side of Farkas’ lemma
and Handelman’s theorem as a heuristic, and finally (vi) the reasons for having
bounded variables in [5] and our approach are entirely different. In [5], the un-
bounded version of the problem is undecidable and hence bounded variables are
necessary to have a decidable fragment. In the setting of our work, quantifier
elimination without bounded variables is already decidable, but the challenge is
that the techniques for exact quantifier elimination do not scale. Hence, we use
bounded variables to solve the problem using Handelman.

2 Algorithm

In this section, we start by formalizing our quantifier elimination problem as
computing a projection π(S) of a semialgebraic set S. We then present the
concept of ε-inflations to overapproximate semialgebraic sets, in our case the
projection π(S), to a desired level ε of precision. This is followed by our algorithm
which computes an ε-approximation of π(S).
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2.1 Problem Definition

Input Format. We are given a positive real number ε and a finite set V =
{v1, v2, . . . , vn} of real-valued variables partitioned into two sets V1 and V2.
Throughout this paper, we use the standard vector notation for valuations to
variables and assume that V1 comes before V2 lexicographically. Our input also
contains a formula ϕ from the grammar below:

ϕ := ` | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ formulas
` := f ≥ 0 | f > 0 literals

f ∈ R[V] polynomials

The input formula ϕ naturally defines the semialgebraic set

S := SAT(ϕ) := {x ∈ Rn | x |= ϕ}.

We assume the set S is bounded, i.e. there is a positive real number B given in
the input such that for all x ∈ S, we have ||x|| < B.

Projection. Given a set S ⊆ Rn, its projection π(S) onto V1 is defined as

π(S) := {x1 ∈ R|V1| | ∃x2 ∈ R|V2| (x1,x2) ∈ S}.

Our goal is to approximate π(S). We now formalize this.

ε-inflations and ε-approximations. Given ε > 0 and a set T ⊆ Rn, we define
the ε-inflation of T as

Iε(T ) := {x ∈ Rn | ∃x′ ∈ T ||x− x′|| < ε}.

In other words, Iε(T ) consists of all the points in T as well as points that are
within a distance ε to T. We say O ⊆ Rn is an ε-approximation of T iff T ⊆
O ⊆ Iε(T ). Intuitively, an ε-approximation includes everything in the original
set T and may also include some extra points, but these points are guaranteed
to be within ε distance to the boundary of T. In this work, we use the Euclidean
norm, but our results are independent of the distance metric used and can be
straightforwardly extended to other norms.

Output. Our algorithm outputs an ε-approximation of π(S).

Fig. 1: A semi-algebraic set S
(black) and its ε-inflation (red)

Example. Figure 1 shows a semi-algebraic set
in black and its ε-inflation in red.

Hyperrectangles. A hyperrectangle H ⊆ Rn
is the set of points that satisfy the inequalities

ψH :=


α1 ≤ v1 ≤ β1

α2 ≤ v2 ≤ β2

...
αn ≤ vn ≤ βn

where the αi and βi’s are real constants and we have βi > αi for every 1 ≤ i ≤ n.
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Literal Complements. Let ` be a literal. We define its complement ` as follows:

` :=

{
−f > 0 ` = (f ≥ 0)
−f ≥ 0 ` = (f > 0)

It is easy to see that ` ≡ ¬`.
Ternary Evaluation. Let ϕ be a Boolean formula and L the set of literals
appearing in ϕ. Consider a function θ : L → {0, 1, ?} that assigns a truth value
to each literal. Here, ? models uncertainty. Based on the function θ, we define
the evaluation of ϕ recursively as follows:

[|`|]θ = θ(`) [|ϕ1 ∨ ϕ2|]θ =

1 [|ϕ1|]θ = 1 ∨ [|ϕ2|]θ = 1
0 [|ϕ1|]θ = 0 ∧ [|ϕ2|]θ = 0
? otherwise

[|¬ϕ|]θ =

{
? [|ϕ|]θ =?

¬[|ϕ|]θ otherwise
[|ϕ1 ∧ ϕ2|]θ =

1 [|ϕ1|]θ = 1 ∧ [|ϕ2|]θ = 1
0 [|ϕ1|]θ = 0 ∨ [|ϕ2|]θ = 0
? otherwise

Informally, we are going to use this kind of evaluation when we want to check
whether a given ϕ holds over all points in a set (1), none of the points in the
set (0) or potentially some of them (?). We say we are uncertain about ϕ when
[|ϕ|]θ =?.

2.2 Our Overapproximation Algorithm

Oracles. Our algorithm is modular and relies on two oracles:
– Implication Oracle: Given a hyperrectangle H ⊆ Rn and a literal `, this

oracle checks whether ` holds at every point in H. Equivalently, as ψH is the
formula defining H, it checks whether ∀x ∈ Rn ψH ⇒ `.

– Satisfiability Oracle: This oracle decides whether a given semialgebraic set
is non-empty, i.e., it checks the satisfiability of a given formula ϕ.

We say that an oracle is sound if whenever it returns true, the implication
(resp. satisfiability) holds. Conversely, an oracle is complete if whenever the
implication (resp. satisfiability) holds, it returns true.

In this section, we provide the main procedure of our algorithm, assuming
that the two oracles above are available. In Section 2.3, we will provide an
LP-based implication oracle. Thus, calls to the implication oracle are relatively
cheap in practice. In contrast, we rely on SMT solvers as satisfiability oracles.
Thus, for practical scalability, our approach calls this oracle as late as possible
and only in ε-diameter subsets of Rn. Finally, in Section 2.4 we show that our
over-approximation remains sound even in the absence of a satisfiability oracle
but can only provide a weaker guarantee of approximation quality.

Intuition. The intuition behind our algorithm is as follows: We first find an
ε-approximation of the set S by a dynamic gridding approach. We repeatedly
find grid cells, i.e. hyperrectangles, that are either entirely within S or entirely
outside it. In the former case, we include the cell in our approximation and in
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the latter we exclude it. If a grid cell intersects S but is not completely covered
by it, then we further divide it into smaller cells and handle them recursively. We
continue this until the diameters of our remaining cells are less than ε, at which
point we include all of them. This gives us an ε-approximation of the original set
S. However, we need such an approximation for the projection π(S). Fortunately,
since our approximation is in the form of the union of a finite number of grid
cells, we can simply project each such cell separately. This is because, unlike
semialgebraic sets, projections of hyperrectangles are easy to compute.

✗

✗

✗

✗

✗

SMT
✓

Fig. 2: An example of our gridding algo-
rithm with memoization

Our Algorithm. Based on the in-
tuition above, we are now ready to
present our algorithm that finds an ε-
approximation of π(S). Our algorithm
consists of three steps and a pseu-
docode is provided in Algorithm 1.

Step 1. Literal Extraction. In the
first step, our algorithm generates a
set L consisting of all literals ` that
appear in the formula ϕ. This is done
by a standard parsing of ϕ.

Step 2. Dynamic Gridding. In this
step, our initial goal is to produce an
ε-approximation O of S itself, rather
than its projection. Given that S is
bounded, we can apply the idea of
gridding. However, we do this in a dy-
namic and recursive manner, creating smaller grid cells only when necessary. We
keep a set A of hyperrectangles whose union forms our answer. Initially A = ∅.
We start with a hyperrectangle H0 which covers all of S as the initial grid cell.
For example, we can set H0 = {(x1, x2, . . . , xn) | − B ≤ xi ≤ B}. When pro-
cessing each grid cell H, our algorithm does the following:

(a) For every literal ` ∈ L, use the implication oracle to decide whether ` holds
at every point in H, i.e. check ∀x ∈ Rn ψH ⇒ `.

(b) For every literal ` ∈ L, use implication oracle to decide whether its comple-
ment ` holds at every point in H, i.e. query the oracle for ∀x ∈ Rn ψH ⇒ `.

(c) Create a ternary valuation θ : L→ {0, 1, ?} in which θ(`) = 1 if the check in
(a) passes, θ(`) = 0 if the check in (b) passes and otherwise θ(`) =?. Use this
valuation to evaluate [|ϕ|]θ, thus deciding whether ϕ holds at every point in
H.

(d) If [|ϕ|]θ = 1, then add the grid cell H to the answer A. Conversely, if
[|ϕ|]θ = 0, exclude H from A. The only remaining case is if we are uncertain
about ϕ. We break this down into two further cases:

(i) If the diameter of H is more than ε, cut H into two halves H ′ and H ′′

by bisecting its longest edge. Apply the algorithm recursively on both.
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(ii) If the diameter of H is at most ε, then use the satisfiability oracle on
ψH ∧ ϕ. This will tell us whether there exists at least one point in H
that satisfies ϕ. If such a point exists, include H in A. Else, exclude H.

Memoization. If one of the checks in (a) or (b) above succeed, then the corre-
sponding (complement) literal holds at every point in H. Thus, if the algorithm
later divides H in (d), we do not need to check the same literals again in H ′ and
H ′′. Hence, our algorithm memoizes the set of literals that are known to hold or
not hold at every point in H. This is shown as L1 and L0 in the pseudocode.

Example. Figure 2 shows a simple example of our dynamic gridding. Our goal is
to approximate the intersection ϕ = `1 ∧ `2 of the two red circles, i.e. each circle
corresponds to a literal `i. A grid cell is shown in blue in part (i). Initially, our
algorithm finds out that `1 holds at every point in the cell, but `2 is uncertain.
Thus, in part (ii), we divide our cell in two. At this point we already know that `1
holds in both halves. This is memoized (shown in green) and not recomputed. In
the left half, `2 does not hold at any point. Thus, we have θ(`2) = 0 and exclude
this half from the solution. In part (iii), we cut the right half in two. The bottom
part is excluded from the solution since no point in it satisfies `2. In the top right
part, `1 is known to hold everywhere (memoized) and `2 is uncertain. However,
at this point the diameter of the cell is less than ε. Thus, our approach makes an
SMT call in part (iv) and realizes that there is a point in this cell that satisfies
ϕ. Hence, the top right cell is included in the answer.

Step 3. Projection. Let O =
⋃
H∈AH. We will prove further below that O is

an ε-approximation of S. However, we would like an ε-approximation of π(S).
In this step, the algorithm computes π(O) =

⋃
H∈A π(H) and outputs it as the

answer. We note that projecting each hyperrectangle H ∈ A is a simple matter
of dropping some constraints. Specifically, we have:

ψH =


α1 ≤ v1 ≤ β1

...
αn ≤ vn ≤ βn

⇒ ψπ(H) =


α1 ≤ v1 ≤ β1

...
α|V1| ≤ v|V1| ≤ β|V1|

.

Theorem 1 (Correctness, Proof in Appendix A). Assume that we have a
sound implication oracle and a sound and complete satisfiability oracle. Given
ϕ, ε, n,V,V1,V2, and B as input, let S := {x ∈ Rn x |= ϕ} be bounded by a
ball of radius B around the origin. Then, Algorithm 1 (POQER), outputs an
ε-approximation of π(S), i.e. the projection of S onto V1, as desired.

Parallelization. We note that our algorithm is perfectly parallelizable since
the two recursive calls at lines 27 and 28 are completely independent and can
be executed in parallel. Additionally, the calls to the implication oracle in lines
13-21 are also independent and parallelizable.

2.3 Our Implication Oracle

As mentioned in the previous section, our algorithm depends on a sound oracle to
check whether a given polynomial inequality (literal) ` of the form f ≥ 0 or f > 0
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Algorithm 1 POQER

1: A← ∅
2: L← ∅
3: procedure Main(ϕ, ε, n,V,V1,V2, B)
4: L← literals in ϕ . Step 1
5: ψH0

←
∧n
i=1−B ≤ vi ≤ B

6: Grid(H0, ∅, ∅, ϕ, ε, n,V) . Step 2
7: X ← ∅
8: for all H ∈ A do . Step 3
9: X ← X ∪ Project(H,V1)

10: return X
11: procedure Grid(H,L0, L1, ϕ, ε, n,V)
12: θ ← ∅
13: for all ` ∈ L do
14: if ` ∈ L1 ∨ ImplicationOracle(H, `, n,V) then . Step 2 (a)
15: θ[`]← 1
16: L1 = L1 ∪ {`} . Memoization

17: else if ` ∈ L0 ∨ ImplicationOracle(H, `, n,V) then . Step 2 (b)
18: θ[`]← 0
19: L0 = L0 ∪ {`} . Memoization
20: else
21: θ[`]←?

22: if [|ϕ|]θ = 1 then . Step 2 (d), Ternary Evaluation
23: A← A ∪ {H} . Adding H to the overapproximation
24: else if [|ϕ|]θ =? then
25: if Diameter(H) ≥ ε then
26: H′, H′′ ← CutInHalves(H)
27: Grid(H′, L0, L1, ϕ, ε, n,V) . Recursive Calls on Halves of H
28: Grid(H′′, L0, L1, ϕ, ε, n,V)
29: else if SatisfiabilityOracle(ψH ∧ ϕ, n,V) then
30: A← A ∪ {H} . Adding H to the overapproximation

holds over the entirety of a hyperrectangle H. In this section, we provide such
an oracle. Specifically, given the inequalities ψH that define the hyperrectangle
H, our goal is to check whether ∀x ∈ Rn ψH ⇒ ` holds. Our algorithm is sound
and can also provide semi-completeness guarantees for strict literals, i.e. literals
of the form f > 0.

We first present the standard definition of a semi-group and a well-known
theorem by Handelman. This theorem is later used in our semi-completeness
proof, but our oracle’s soundness does not depend on it.

Semi-group generated by Φ. Consider the set V = {v1, . . . vn} of real-valued
variables and the following system of linear inequalities over V:

Φ :=


a1,0 + a1,1 · v1 + . . .+ a1,n · vn ./1 0

...

am,0 + am,1 · v1 + . . .+ am,n · vn ./m 0

where ./i∈ {>,≥} for all 1 ≤ i ≤ m. Let gi be the left hand side of the i-th
inequality, i.e. gi(v1, . . . , vn) := ai,0 +ai,1 ·v1 + . . . ai,n ·vn. The semi-group of Φ is

defined as: SG(Φ) :=
{∏m

i=1 g
ki
i | m ∈ N ∧ ∀i ki ∈ N ∪ {0}

}
. In other words,

this semi-group contains all polynomials that can be obtained as a multiplication
of the gi’s. Note that 1 ∈ SG(Φ). We define SGd(Φ) as the subset of polynomials
in SG(Φ) of degree at most d.
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Theorem 2 (Handelman’s Theorem [44]). Consider the following system
of equations over V:

Φ :=


a1,0 + a1,1 · v1 + . . .+ a1,n · vn ≥ 0

...

am,0 + am,1 · v1 + . . .+ am,n · vn ≥ 0

.

If Φ is satisfiable, its solution set is compact, f ∈ R[V] and we have

∀x ∈ Rn Φ⇒ f > 0,

then there exist non-negative real numbers λ0, . . . λk and semigroup elements
h1, . . . , hk ∈ SG(Φ) such that:

f = λ0 + λ1 · h1 + · · ·+ λk · hk.

Basic Idea of Our Implication Oracle. Consider the hyperrectangle H and
its defining inequalities ψH which can be rewritten in the following form:

ψH =



g1 := v1 − α1 ≥ 0
g2 := β1 − v1 ≥ 0

...
g2·n−1 := vn − αn ≥ 0
g2·n := βn − vn ≥ 0

It is clear by definition that every gi is non-negative at every point in H. Thus,
any multiplication h ∈ SGd(ψH) of the gi’s will also be non-negative throughout
H. Finally, we can take any linear combination of such polynomials with non-
negative coefficients, i.e.

f = λ0 + λ1 · h1 + · · ·+ λk · hk (1)

hi ∈ SGd(ψH) λi ≥ 0, and such an f will be non-negative at every point in H.
Moreover, if we require λ0 > 0, then f will be strictly positive at every point in
H.

2 1 0 1 2

2

1

0

1

2

Fig. 3: The hyper-
rectangle H defined
by ψH lying inside
the region f > 0.

The Oracle. Our implication oracle is provided in Al-
gorithm 2. Given a fixed degree d ∈ N, it first generates
SGd(ψH). It then symbolically computes a linear combi-
nation of the polynomials in SGd(ψH) by creating fresh
variables for each λi as in the RHS of Equation (1). This
allows us to write Equation (1) symbolically. Note that
both sides of this equation are polynomials in R[V], thus
they are equal if and only if each monomial has the same
coefficient on both sides. The algorithm computes the co-
efficient of each monomial on both sides and equates them.
This leads to a linear programming instance over the λi’s,
which is in turn handled by an external solver.
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Example. Consider the literal ` = (f > 0) where f = 4 − x2 − y2. Let H be
the hyperrectangle defined by the inequalities −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. We
have ψH = {x + 1 ≥ 0,−x + 1 ≥ 0, y + 1 ≥ 0,−y + 1 ≥ 0}. Let d = 2. Then,
SGd(ψH) contains all polynomials of degree at most 2 that can be obtained as
a multiplication of the gi’s. This includes g2

1 , g1 · g2, g1 · g3, g1 · g4, g
2
2 , g2 · g3, g2 ·

g4, g
2
3 , g3 ·g4, g

2
4 , g1, g2, g3, g4, 1. Since ` holds at every point in the hyperrectangle

H, we can write f as a linear combination of these polynomials as follows: 4 −
x2 − y2 = 1 · (1− x2) + 1 · (1− y2) + 2 · 1 = 1 · g1 · g2 + 1 · g3 · g4 + 2 · 1

We now show that our algorithm is sound for all literals and semi-complete for
strict literals. It is semi-complete in the sense that for any given input instance,
there exists a degree bound d that would suffice for completeness.

Algorithm 2 Our Implication Oracle

1: procedure ImplicationOracle(H, `, n,V, d)
2: LP ← ∅
3: SG← {1} . SG will become SGd(ψH)
4: M ← {1} . M will become the set of all monomials of degree ≤ d
5: for 1 ≤ i ≤ d do
6: SG← SG ∪ {g · h | g ∈ ψH ∧ h ∈ SG}
7: M ←M ∪ {vi · h | vi ∈ V ∧ h ∈M}
8: k ← |SG|
9: Create k + 1 fresh variables λ0, λ1, . . . , λk in LP

10: if ` = (f > 0) then
11: Add the constraint λ0 > 0 to LP
12: else if ` = (f ≥ 0) then
13: Add the constraint λ0 ≥ 0 to LP

14: for 1 ≤ i ≤ k do
15: Add the constraint λi ≥ 0 to LP

16: LHS ← f where ` = (f > 0) or ` = (f ≥ 0)

17: RHS ←
∑k
i=0 λi · SG[i]

18: for all m ∈M do
19: l = coefficient of m in LHS
20: r = coefficient of m in RHS
21: Add the constraint l = r to LP
22: if LP has a solution then
23: return true
24: else
25: return false

Theorem 3 (Soundness and Semi-completeness, Proof in Appendix B).
Given a hyperrectangle H and a literal ` in the input, and a degree bound d, Al-
gorithm 2 is sound in deciding whether ∀x ∈ Rn ψH ⇒ `. Moreover, if ` is of
the form f > 0, then there exists a degree bound d, depending on both H and `,
for which the algorithm is complete in deciding ∀x ∈ Rn ψH ⇒ `.

Runtime Analysis. In Algorithm 2, let d be the degree, n the number of vari-
ables, and m the number of linear inequalities in our hypothesis hyperrectangle
H. Then, the size of |M | =

(
n+d
d

)
and |SG| =

(
m+d
d

)
. For each element of SG, we

add a λi to our linear programming instance. Similarly, for each monomial in M ,
we add a constraint equating its coefficients on the two sides. Thus, we have an

LP instance with O
((
m+d
d

))
variables and O

((
n+d
d

))
constraints. We note that
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current state-of-the-art LP-solving algorithms work in polynomial-time O(Nω)
where N is their input size and ω is the matrix multiplication constant.

2.4 Removing the Satisfiability Oracle

Our approximate quantifier elimination algorithm in Section 2.2 requires two
oracles: one for implication and another for satisfiability. As mentioned above, we
use SMT calls for the satisfiability oracle, but the implication oracle (Section 2.3)
is much more practical and relies only on linear programming. Moreover, it
provides a semi-completeness guarantee (Theorem 3) which is not used in the
main algorithm (Theorem 1). So, a natural question is whether we can remove
the satisfiability oracle altogether. We first argue that this is unlikely to lead to
an efficient algorithm with our notion of ε-approximation, since it is an ETR-hard
problem. However, we can provide a weaker guarantee for positive formulas.

ETR-Hardness. Let ψ := (∃v1, v2, . . . , vn ϕ) be a formula in the existential
theory of the reals. ψ holds if and only if SAT(ϕ) 6= ∅, but we have

SAT(ϕ) 6= ∅ ⇔ π(SAT(ϕ)) 6= ∅ ⇔ Iε(π(SAT(ϕ))) 6= ∅.

Thus, to decide ψ, we can simply find an ε-approximation of π(SAT(ϕ)) and
check its non-emptiness.

Positive Formulas. A formula ϕ is called positive if it is generated from the
grammar below:

ϕ := ` | ϕ ∧ ϕ | ϕ ∨ ϕ positive formulas
` := f ≥ 0 | f > 0 literals

f ∈ R[V] polynomials

The only difference between this grammar and that of Section 2.1 is the absence
of the negation operator. We note that any formula can be written as an equiva-
lent positive formula since the complement of each literal is itself a literal. Thus,
in the remainder of this section, we assume that the formula ϕ is positive.

(ε, δ)-perturbation. Let ε, δ > 0 and ϕ be a positive formula. We define the
(ε, δ)-perturbation SATε,δ(ϕ) of SAT(ϕ) recursively as follows:
– For every literal ` = (f > 0) or ` = (f ≥ 0) we have

SATε,δ(`) = Iε(SAT(f + δ ≥ 0)).

Intuitively, we are overapproximating SAT(`) in two ways: (i) we are allowing
the value of f to decrease to −δ instead of just 0, and (ii) we are taking an
ε-inflation of the resulting solutions. In other words, we are considering that
our evaluation of f might have a numerical error of up to δ and that our
approximation of the solution set might contain some extra points which are
within ε distance to the original set.

– If ϕ = ϕ1 ∧ ϕ2, then SATε,δ(ϕ) := SATε,δ(ϕ1) ∩ SATε,δ(ϕ2).
– If ϕ = ϕ1 ∨ ϕ2, then SATε,δ(ϕ) := SATε,δ(ϕ1) ∪ SATε,δ(ϕ2).
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We remark that we always have SAT(ϕ) ⊆ Iε(SAT(ϕ)) ⊆ SATε,δ(ϕ). We say
that a set O is an (ε, δ)-approximation of SAT(ϕ) if SAT(ϕ) ⊆ O ⊆ SATε,δ(ϕ).
We note that there are subtle yet important differences in the definitions of ε-
approximation and (ε, δ)-approximation, thus an (ε, 0)-approximation is not the
same as an ε-approximation as defined in Section 2.1.

Modified Algorithm. We take the exact same algorithm as in Section 2.2
(Algorithm 1), but only change Step 2 (d)(ii) as follows:
– If the diameter of H is at most ε, for every literal ` ∈ L of the form f > 0

or f ≥ 0, use the implication oracle to decide the following formula:
• ∀x ∈ Rn ψH ⇒ −f − δ > 0

If the check passes, update θ(`) to 0. Otherwise, update it to 1. Finally,
compute [|ϕ|]θ and if it is 1 then include H in the answer A.

Algorithm 3 in Appendix C provides a psuedocode of this variant.

Intuition. We are only modifying how we handle small grid cells H with less
than ε diameter on which we are unsure about ϕ. On such cells, we are necessarily
unsure about some of the literals. Let ` be one of them. This means we could
not prove that ` holds at every point in H, but could also not prove that ¬`
holds at every point in H. Let f be the polynomial in `. We are asking whether
f + δ is negative at every point in H. If it is, then f is also negative at every
point in H and we should update θ(`) to 0. Otherwise, we err on the side of
overapproximation and update θ(`) to 1. Given that ϕ is a positive formula, this
might cause the cell H to be included in the answer. Moreover, since −f − δ > 0
is a strict inequality, our semi-completeness result from Theorem 3 holds.

Theorem 4 (Proof in Appendix C). Assume that we have a sound and
complete implication oracle. Given ϕ, ε, δ, n,V,V1,V2 and B as input, let SAT(ϕ)
be bounded by a ball of radius B around the origin. Then, Algorithm 3 (Modified
POQER), outputs a set X such that π(SAT(ϕ)) ⊆ X ⊆ π(SATε,δ(ϕ)). In other
words, it outputs an (ε, δ)-approximation of SAT(ϕ).

3 Experimental Results

We implemented our approach in a prototype tool called POQER (Practical
Overapproximate Quantifier Elimination for Reals) and assessed its performance
in two separate experiments:
– Our first experiment considers QER over formulas in Non-linear Real Arith-

metic (NRA). To the best of our knowledge, we are providing the first approx-
imate solution for quantifier elimination over NRA. Thus, we had to compare
our scalability with previous exact solutions. Note that under-approximating
the result of applying QER to a polynomial constraint ϕ is equivalent to com-
plementing the over-approximation of QER applied to ¬ϕ. Hence, we focus
only on over-approximating QER in this experiment. Moreover, since every
Boolean combination of polynomial constraints can be equivalently expressed
in disjunctive normal form, and since existential quantification distributes
over disjunction, we focus only on conjunctions of polynomial constraints.
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– In our second experiment, we considered the problem of satisfiability check-
ing for mixed formulas in NRA+ADT, i.e. theories of Non-linear Real Arith-
metic and Algebraic Data Types. We first used POQER to eliminate quan-
tifiers in the NRA part of the formula, obtaining both over- and under-
approximations, and writing it as a union of hyperrectangles. We then com-
bined this approximation with the ADT part and passed it to a state-of-
the-art tool for LRA+ADT, namely Z3EG. As baselines, we compared our
performance with state-of-the-art SMT solvers Z3 and Z3EG.

Implementation and Environment Details. We implemented POQER (Al-
gorithm 1) in C++, with Z3 as the satisfiability oracle (see Section 2). We used
Gurobi [43] as our LP-solver. The results were obtained on a 3.5GHz Intel Core
i5 1030NG7 Machine with 8 GB of RAM running MacOS. We will submit our
tool (POQER) for artifact evaluation and make it publicly available as free and
open-source software.

First Experiment (QER). Due to the lack of publicly-available tools perform-
ing approximate quantifier elimination in NRA (non-linear real arithmetic), we
are unable to present an apples-to-apples comparison. However, we report com-
parisons with several tools that perform exact QER. There are several (academic
and commercial) tools implementing CAD and its variants, but we observe that
the result of QER given by them is often as high-degree polynomials or their
radicals. This makes it practically impossible to use these results in downstream
processing using modern SMT solvers. Hence, we study not only whether these
tools are able to solve a QER problem within a time budget, but also the format
in which they provide the answer. Although our algorithm is parallel, we only
compare using a sequential variant to be as fair as possible.

CAD (and variant algorithms for QER) are reported to be implemented in
publicly available SMT solvers such as SMT-RAT [32], Yices2 [39], Z3 [35] and
cvc5 [9]. However, SMT solvers are decision procedures for checking satisfaction
of (possibly quantified) formulas in a combination of theories. Hence, they do
not provide the result of quantifying a subset of variables in a formula. While
this suffices in applications where the goal is to check if a formula is satisfiable,
it falls short of the requirements in other applications, viz. weakest pre-condition
computation, where we genuinely require the result of quantifying a subset of
variables from NRA constraints. SMT-RAT [32] appears to have had a soundness
issue in the quantifier elimination for QER (as noted in [2]) which we were un-
able to circumvent. Therefore, we compare our approach to two state-of-the-art
methods: (a) SageMath [76], a versatile open-source computer algebra system,
that includes an implementation of QEPCAD [31,13], and (b) Mathematica [47],
a widely-used and highly-optimized commercial computer algebra system, that
employs a portfolio of powerful algorithms and heuristics for QER. We aim to
answer the following research questions through our first experiment:

RQ1: Given a time of 30 minutes, how many QER tasks from our bench-
mark suite are solved by SageMath, Mathematica and POQER? We use
the Reduce function in Mathematica and qepcad in SageMath.
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RQ2: For each of the above three tools, is the output of a QER problem free
of further NRA constraints?

RQ3: Does using Handelman’s Theorem and linear programming in POQER
help achieve better performance compared to the use of a state-of-the-art
SMT solver (Z3)? To answer this, we performed an ablation study by remov-
ing our Handelman-based implication oracle and instead directly applying
Z3 as both implication and satisfiability oracles.

Benchmarks. Given the lack of standard benchmarks for QER, we designed a
suite of benchmarks, each of which is a conjunction of polynomial inequalities,
with range constraints on each dimension. Our benchmarks (Appendices D.2
and D.3) have 2-8 variables, degrees 2-6, and between 2 to 10 polynomials each.

Results. Our results are summarized in Table 1. We computed ε-approximations
using POQER for three different values of ε to understand how POQER’s per-
formance scales with decreasing values of ε. We observe that SageMath failed
to complete the QER task within the timeout in all but four cases, where it
provided a solution in NRA, as indicated by the asterisks. Mathematica per-
formed significantly better, generating solutions in NRA in most instances. In 4
instances, the solutions are generated in a form that would require NRA with
quantifiers, if we were to encode them in SMT. We show these solutions in
Appendix D.4. Clearly, these solutions are intractably complicated and pose se-
rious challenges for downstream automated reasoning tasks. Since SageMath and
Mathematica implement exact QER, it is not possible to circumvent these com-
plicated solution forms in general. POQER with ε = 0.1 successfully solved all
benchmarks within the 30-minute timeframe, showcasing the effectiveness of our
tool. POQER with ε = 0.05 and 0.01, fell short only in two and three instances
respectively. Thus, our experiments answer research question RQ1 in favor of
POQER for all three values of ε considered, when compared to SageMath or
Mathematica. RQ2 is answered in the positive for POQER in all cases, while it
is mostly in the negative for SageMath and Mathematica, since they compute
exact solutions which are often non-linear (in NRA) and sometimes even quan-
tified. Finally, for RQ3, from columns Z3dir.05 and PQ.05 of Table 1, we can
conclude that using Handelman’s Theorem and LP-solving significantly improves
the performance of POQER vis-a-vis using a state-of-the-art SMT solver (Z3)
in all but one example. On Benchmark Ex11, the Z3 approach is unusually fast,
which is presumably due to its internal heuristics. We also report the number of
hyperrectangles that we generate as well as number of hyperrectangles after the
projection of variables (shown in last two columns of Table 1). Finally, more de-
tails are reported in Appendix D.1. Looking deeper into the results, we observe
that Mathematica tends to solve most benchmarks efficiently, but has difficulty
in solving problems with a larger number of eliminations, as each quantifier
elimination results in increasingly complex solutions. In contrast, our approach
benefits from the simpler structure of our solutions, enabling us to deliver faster
results even when multiple quantifiers must be eliminated. Furthermore, Math-
ematica produces solutions in a complicated format, i.e. as degree polynomial
inequalities in multiple variables (see Appendix D.4 for more details).
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#B SM MA PQ.1 PQ.05 PQ.01 Z3dir.05 PQ.05 #H #PH

Ex1 7 u 3 7 7 1100 233 526 103
Ex2 7 7 3 7 7 TO TO – –
Ex3 7 s 3 3 3 370 199 1144 256
Ex4 7 7 3 3 3 TO 31 334 76
Ex5 u 3 3 3 3 5 3 35 6
Ex6 7 u 3 3 3 71 14 151 33
Ex7 u u 3 3 3 8 3 20 5
Ex8 u u 3 3 3 97 19 426 148
Ex9 7 s 3 3 3 321 223 1144 256
Ex10 u 3 3 3 3 17 7 46 6
Ex11 7 s 3 3 3 191 340 695 140
Ex12 7 7 3 3 3 212 46 16 8
Ex13 7 7 3 3 7 409 91 89 26
Ex14 7 7 3 3 3 204 40 16 8
Ex15 7 s 3 3 3 231 97 687 140

Table 1: Results of our First Experiment. SM refers to Sagemath, MA refers to Math-
ematica, PQ.1, PQ.05, PQ.01 refer respectively to POQER with ε = 0.1, 0.05, 0.01.
3 indicates that the method terminates within 30 minutes, 7 indicates a timeout. u

indicates that the solution is in QF-NRA. s indicates NRA (with quantifiers). The
columns PQ.05 and Z3dir.05 respectively refer to time taken in seconds by POQER
and POQER where the Implication Oracle is replaced by Z3. #H is the number of
hyperrectangles computed by POQER while #PH is the number of hyperrectangles
computed by POQER after the projection.
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Overall, our results suggest that while our method performs well even with
a tight computational budget, there is a trade-off between precision and per-
formance. Our approach is the only one that allows the user control over the
precision-performance tradeoff while guaranteeing that the generated solution is
ε-approximate and always in the theory of linear real arithmetic (LRA). This
makes the results particularly suitable for downstream processing using auto-
mated reasoning tools for LRA.

Second Experiment: NRA+ADT. The last observation above enables the
use of approximate quantifier elimination in a combination of NRA and other
theories, such as ADT (theory of algebraic data types), by reducing it to LRA+ADT.
NRA+ADT formulas are often highly intractable and beyond the reach of mod-
ern SMT solvers. To the best of our knowledge, there are no approximate solu-
tions for NRA+ADT in the literature, either. In contrast, an effective tool for
LRA+ADT, called Z3EG, has recently been developed in [41].

Benchmarks. We took the Z3EG benchmarks which are in LRA+ADT and
added a single NRA constraint to each of them, thus obtaining NRA+ADT
formulas. The added NRA constraint is ∀x x ∈ [−10, 10]⇒ ∃y ∈ [−10, 10] x3 +
x ≥ y3 + 3 · y + 4, in which x is a variable already present in the original ADT
formula and y is a fresh variable. Thus, our formulas combine NRA and ADT
and are particularly challenging for modern SMT solvers. To each NRA+ADT
benchmark, we first applied POQER to obtain over- and under-approximations
in LRA+ADT. We then passed the resulting approximate formulas to Z3EG. As
baseline comparisons, we also passed the same NRA+ADT benchmarks to Z3
and Z3EG. We observed that POQER significantly outperforms other tools on
these SMT benchmarks. We applied a time limit of 2 minutes per instance. The
results are summarized in Table 2.

Z3EG Z3 POQER

SAT UNSAT TO SAT UNSAT TO SAT UNSAT TO

1833 1489 1518 2096 836 1908 3262 1550 28

Table 2: Results of our Second Experiment. TO stands for timeout.

4 Conclusion

In this paper, we presented an algorithm that computes ε- and (ε, δ)-approximations
of QER, for every ε, δ > 0. Our approach combines adaptive dynamic gridding
with application of Handelman’s Theorem to solve the approximation problem
via a sequence of linear programs (LP). We provide formal guarantees of sound-
ness, and guarantee completeness under mild assumptions. Our approach also
allows us to solve quantified SMT problems over mixed theories including NRA,
such as NRA+ADT. Finally, we implement our algorithm in a prototype tool
POQER, and which also finds approximate solutions for NRA+ADT bench-
marks by converting them to LRA+ADT and then using existing approaches.
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On the complexity of reachability in parametric markov decision processes. In
CONCUR, volume 140 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

83. Bai Xue, Martin Fränzle, and Naijun Zhan. Under-approximating reach sets for
polynomial continuous systems. In HSCC, pages 51–60. ACM, 2018.



23

A Proof of Theorem 1

Theorem 1. Assume that we have a sound implication oracle and a sound and
complete satisfiability oracle. Given ϕ, ε, n,V,V1,V2, and B as input, let S :=
{x ∈ Rn x |= ϕ} be bounded by a ball of radius B around the origin. Then,
Algorithm 1 (POQER), outputs an ε-approximation of π(S), i.e. the projection
of S onto V1, as desired.

Proof. First, we prove that O =
⋃
H∈AH is an ε-approximation of S. If a hy-

perrectangle H is added to A in line 23, i.e. as a result of ϕ holding at every
point in H, then clearly H ⊆ S. On the other hand, if H is added to A in line
30, then there was at least one point x ∈ H that satisfied ϕ (line 29). Moreover,
the diameter of H is less than ε, thus all of H is in the ε-neighborhood of x ∈ S.
Therefore, we have O ⊆ Iε(S). For the other side, consider a point x ∈ S. By
definition of H0, we have x ∈ H0. Let us track the grid cell Hx containing x
throughout the algorithm. This grid cell will never be excluded from the an-
swer due to [|ϕ|]θ being 0 since x ∈ Hx. Thus, at each step, we will either have
[|ϕ|]θ = 1 in this grid cell and thus include it in the answer, or otherwise cut the
cell in two halves, one of which becomes the new Hx. This can continue until
the cell’s diameter becomes less than ε, at which point the satisfiability oracle is
called, and due to the existence of x, returns true on line 29, ensuring that Hx

is added to the answer. Thus, S ⊆ O and O is an ε-approximation of S.
We now prove that the return value π(O) of our algorithm is an ε-approximation

of π(S). Since S ⊆ O, it is obvious that π(S) ⊆ π(O). Let x1 ∈ π(O). There
is a hyperrectangle H ∈ A, such that x1 ∈ π(H). Thus, there exists x2 ∈ R|V2|
for which x := (x1,x2) ∈ H. If H is added to A in line 23, then H ⊆ S, so
x ∈ S and x1 ∈ π(S). Otherwise, if H is added to A in line 30, then there
exists x′ ∈ H ∩ S and the diameter of H is less than ε. Thus, ||x − x′|| < ε,
which immediately yields ||π(x) − π(x′)|| < ε since projection cannot increase
the distance between two points. We therefore have π(O) ⊆ Iε(π(S)), which is
the desired property. ut

B Proof of Theorem 3

Theorem 3. Given a hyperrectangle H and a literal ` in the input, and a degree
bound d, Algorithm 2 is sound in deciding whether ∀x ∈ Rn ψH ⇒ `. Moreover,
if ` is of the form f > 0, then there exists a degree bound d, depending on both
H and `, for which the algorithm is complete in deciding ∀x ∈ Rn ψH ⇒ `.

Proof. Soundness is straightforward. Our algorithm returns true only if it can
find a solution to the LP, which corresponds to writing the polynomial f in the
literal ` as a linear combination with non-negative coefficients of the polynomials
in SGd(ψH) of the form in Equation (1). If ` = (f > 0), our algorithm further
requires that λ0 > 0 (lines 10 and 11).

For semi-completeness, let ` = (f > 0) be the given strict literal. Note
that we do not claim semi-completeness for non-strict literals. H satisfies all
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the requirements of Theorem 2 since it is a hyperrectangle. Specifically, it is
non-empty, closed and bounded, and therefore compact. If ∀x ∈ Rn ψH ⇒ `
holds, then by Theorem 2, we have f = λ0 + λ1 · h1 + · · · + λk · hk, for some
λi ∈ [0,∞) and hi ∈ SG(ψH). Let d∗ = maxki=1 deg hi. By this definition, it is
clear that every hi is in SGd∗(ψH). Thus, if the parameter d in Algorithm 2 is
chosen such that d ≥ d∗, then the LP will have a solution and the algorithm will
return true. ut

C POQER Without a Satisfiability Oracle

Theorem 4. Assume that we have a sound and complete implication oracle.
Given ϕ, ε, δ, n,V,V1,V2 and B as input, let SAT(ϕ) be bounded by a ball of
radius B around the origin. Then, Algorithm 3 (Modified POQER), outputs a
set X such that π(SAT(ϕ)) ⊆ X ⊆ π(SATε,δ(ϕ)).

Proof. Consider O =
⋃
H∈AH. Since X = π(O), it suffices to prove SAT(ϕ) ⊆

O ⊆ SATε,δ(ϕ).
We first show O ⊆ SATε,δ(ϕ). Let H ∈ A. If H is added in line 23, then the

same argument as in Theorem 1 shows H ⊆ SAT(ϕ) ⊆ SATε,δ(ϕ). Otherwise
H is added in line 38. Therefore [|ϕ|]θ was 1 when we reached line 37. Consider
all literals ` for whom we had θ[`] = 1 when we reached this line. Let f be the
polynomial in `. This means either (i) ` holds at every point in H, or (ii) −f−δ ≤
0 at some point in H. In case (i), H ⊆ SAT(`) ⊆ SATε,δ(`). In case (ii), we have
f+δ ≥ 0 at some point x ∈ H. Thus, x ∈ SAT(f+δ ≥ 0).Moreover, the diameter
of H is less than ε. Thus, H ⊆ Iε(SAT(f + δ ≥ 0)) = SATε,δ(`). Chasing the
definition of SATε,δ shows that H ⊆ SATε,δ(ϕ). Since O =

⋃
H∈AH, we have

O ⊆ SATε,δ(ϕ).
We now show that SAT(ϕ) ⊆ O. Let x ∈ SAT(ϕ) and trace the grid cell H

that contains x throughout the algorithm. In this grid cell, we will never have
[|ϕ|]θ = 0. Thus, it either gets added to the answer in line 23 or gets subdivided
until its diameter is less than ε. Consider any ` ∈ L for which x |= ` and let f be
the polynomial in `. We have (f + δ)(x) ≥ δ > 0. Thus, the check at line 33 is
guaranteed to fail, causing θ(`) to be set to 1 at line 36. Therefore, we will have
[|ϕ|]θ = 1 at line 37 and H is added to the answer and O ⊇ H. Thus, x ∈ O. ut
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Algorithm 3 POQER without a Satisfiability Oracle

1: A← ∅
2: L← ∅
3: procedure Main(ϕ, ε, δ, n,V,V1,V2, B)
4: L← literals in ϕ . Step 1
5: ψH0

←
∧n
i=1−B ≤ vi ≤ B

6: Grid(H0, ∅, ∅, ϕ, ε, δ, n,V) . Step 2
7: X ← ∅
8: for all H ∈ A do . Step 3
9: X ← X ∪ Project(H,V1)

10: return X
11: procedure Grid(H,L0, L1, ϕ, ε, δ, n,V)
12: θ ← ∅
13: for all ` ∈ L do
14: if ` ∈ L1 ∨ ImplicationOracle(H, `, n,V) then . Step 2 (a)
15: θ[`]← 1
16: L1 = L1 ∪ {`} . Memoization

17: else if ` ∈ L0 ∨ ImplicationOracle(H, `, n,V) then . Step 2 (b)
18: θ[`]← 0
19: L0 = L0 ∪ {`} . Memoization
20: else
21: θ[`]←?

22: if [|ϕ|]θ = 1 then . Step 2 (d), Ternary Evaluation
23: A← A ∪ {H} . Adding H to the overapproximation
24: else if [|ϕ|]θ =? then
25: if Diameter(H) ≥ ε then
26: H′, H′′ ← CutInHalves(H)
27: Grid(H′, L0, L1, ϕ, ε, n,V) . Recursive Calls on Halves of H
28: Grid(H′′, L0, L1, ϕ, ε, n,V)
29: else if Diameter(H) < ε then . The Modification
30: for all ` ∈ L do
31: f ← the polynomial in `
32: if θ[`] =? then
33: if ImplicationOracle(H,−f − δ > 0, n,V) then
34: θ[`]← 0
35: else
36: θ[`]← 1

37: if [|ϕ|]θ = 1 then
38: A← A ∪ {H}



26

D Details of Experimental Results and Benchmarks

D.1 Detailed Results of the Ablation Study

Table 3 provides more details on our ablation study. The column Z3.05 reports
the time taken by POQER with ε = 0.5 when Z3 is used as both implication and
satisfiability oracles, i.e. without applying Handelman. In contrast, the column
PQ.05 reports POQER’s time when using our implication oracle of Section 2.3.
The #SMT column reports the number of calls to the satisfiability oracle. The
PQ.05-NoSMT column reports the time taken by POQER to find a (0.5, 0.5)-
approximation without reliance on an SMT solver as the satisfiability oracle,
i.e. based on LP-solving only (see Section 2.4). All times are in seconds.

Benchmark Z3.05 PQ.05 PQ.05-NoSMT #SMT #H #PH

Ex-1 1100s 233s 185s 382 526 103
Ex-2 - - - - - -
Ex-3 370s 199s 180 792 1144 256
Ex-4 - 31s 26s 64 334 76
Ex-5 5s 3s 3s 9 35 6
Ex-6 71s 14s 11s 76 151 33
Ex-7 8s 3s 3s 16 20 5
Ex-8 97s 19s 18s 34 426 148
Ex-9 321 223s 194s 480 1144 256
Ex-10 17 7s 6s 8 46 6
Ex-11 191 340 333 97 695 140
Ex-12 212 46s 45s 16 16 8
Ex-13 409 91s 88s 87 89 26
Ex-14 204 40s 40s 16 16 8
Ex-15 231 97s 77s 114 687 140

Table 3: Details of Our Ablation Study

D.2 Benchmarks of our First Experiment

In Table 4, we provide details of each benchmark on which we evaluated the
tools. More precisely, we document the number of variables in each benchmark,
the degree and the number of polynomials whose conjunction was taken, and
also the number of quantifiers that were eliminated.

D.3 Benchmark details

In this section, we show the exact benchmarks used in our experiments (Sec-
tion 3).

Example 1.
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Benchmark #Var Degree #Poly #QE

Ex1 7 2 10 5
Ex2 8 2 10 5
Ex3 3 4 2 1
Ex4 3 2 4 1
Ex5 2 4 4 1
Ex6 3 2 3 2
Ex7 2 2 2 1
Ex8 3 2 2 1
Ex9 3 4 2 1
Ex10 2 2 3 1
Ex11 3 6 2 1
Ex12 8 2 10 5
Ex13 8 2 10 5
Ex14 8 2 10 5
Ex15 3 4 2 1

Table 4: Details of Benchmarks in our First Experiment.

Example 2.

Example 3.
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Example 4.

Example 5.

Example 6.

Example 7.

Example 8.
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Example 9.

Example 10.

Example 11.

Example 12.

Example 12.
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Example 13.

Example 14.

Example 15.

D.4 Mathematica and Sagemath Outputs

In this section, we show the outputs reported by SageMath and Mathematica.
Example 1. SageMath: Timeout Mathematica:
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Example 2. SageMath: Timeout
Mathematica: Timeout
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Example 3. SageMath: Timeout Mathematica:
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Example 4. SageMath: Timeout
Mathematica: Timeout

Example 5. SageMath: 4096x6+12288x5−213232x4−446944x3+3562264x2+
3787784x− 15492719 ≤ 0 Mathematica:

−3 ≤ x ≤ 2

Example 6. SageMath: Timeout
Mathematica:

−0.220 ≤ z ≤ 2.78

Example 7.
SageMath:

y2 − 2y + x2 − 2x+ 1 ≤ 0

y2 − 6y + x2 + 4x+ 4 ≤ 0

Mathematica:

Example 8.
SageMath:

x− 2 ≤ 0 ∧ x+ 2 ≥ 0

∧
(
x2 − 2 < 0 ∨ 2x2z2 − 4z2 + 2x3z − 28xz + x4 − 4x2 + 100 ≤ 0

∨ (x > 0 ∧ 2x2z − 4z + x3 − 14x < 0)

∨ (x < 0 ∧ 2x2z − 4z + x3 − 14x > 0)
)
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Mathematica:

Example 9.
SageMath: Timeout Mathematica:
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Example 10. SageMath: 2x2 − 9 ≤ 0 ∧ 2x2 − 6x− 3 ≤ 0.

Mathematica: 3−
√

15
2 ≤ x ≤ 3√

2

Example 11.
SageMath: Timeout
Mathematica:
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Example 12.
SageMath: Timeout
Mathematica: Timeout

Example 13.
SageMath: Timeout
Mathematica: Timeout

Example 14. SageMath: Timeout
Mathematica: Timeout

Example 15. SageMath: Timeout
Mathematica:
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