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Abstract
Instructional support can be implemented in learning environments to pseudo-modify the 
difficulty or time intensity of items presented to persons. This support can affect both the response 
accuracy of persons towards items as well as the time persons require to complete items. This 
study proposes a framework to model response time in learning environments as a function of 
instructional support. Moreover, it explores the effect of instructional support on response time in 
assembly tasks training using Virtual Reality. Three models are fitted with real-life data collected 
by a project that involves both industry and academic partners from Belgium. A Bayesian approach 
is followed to implement the models, where the Bayes factor is used to select the best fitting model.

Keywords
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The last decade saw a significant increase in the variety of digital learning environments 
(DLE). There has also been a growing pressure to incorporate personalised learning into 
DLEs. Personalised learning has varying definitions and applications (Bernacki et al., 
2021). Nonetheless, the general idea focuses on providing tailored challenges according 
to the specific characteristics of learners. In addition, Järvelä (2006) argues that personal­
ised learning affects multiple dimensions, amongst which there is the encouragement 
of learning. That is why it is important to consider the challenges’ difficulties and 
learners’ skills. If the challenges are too difficult for learners, it may discourage them and 
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negatively affect their learning process. Similarly, if the content is too easy, the learners 
may not feel challenged.

A possible strategy to implement personalised learning is to provide learners with 
challenges that match their current skill level (Debeer et al., 2021). This is feasible if 
there is a large inventory of possible challenges of varying difficulty. Such is the case for 
a DLE dedicated to training mathematics skills (Klinkenberg et al., 2011). Nonetheless, 
there may also be situations where only a limited number of challenges are available 
or where learners are required to repeat and practice specific challenges (e.g., assembly 
task training). In the latter, selecting challenges in a personalised manner may not be 
an option. A different strategy can be to vary the amount of assistance across learners 
and challenges, leveraging instructional support. Instructional support is related to scaf­
folding (Quintana et al., 2004). Scaffolding is generally defined by the process where the 
instructor helps learners in completing challenges that may be too difficult for them 
without any assistance. Therefore, the difficulty of a challenge can be either increased or 
decreased with lower or higher levels of support, respectively.

This idea of increasing and decreasing the level of instructional support is implicitly 
done in escape rooms. In escape rooms, there is a time limit to solve the puzzles and 
the game masters provide hints to help the players. Educational escape rooms have 
been studied as interactive tools to promote learning and soft skills (e.g., team-working) 
(Dietrich, 2018; López-Pernas et al., 2019). The additional hints can be interpreted as 
personalised scaffolds. The hints may allow slower players to successfully complete 
the escape room. Without the provided support, slower players may not be able to 
finish. This may lead them to experience frustration during the game. Support can be 
presented in a variety of ways such as promoting social interaction between learners 
(Gopez & Gopez, 2024; Klapp & Jönsson, 2021), providing hints with chatbots in DLEs or 
instructions in training DLEs (Vanneste et al., 2024).

Research Questions
A modelling framework that considers the interplay between challenges, learners, and 
the provided support is essential for adaptability. Let us consider two learners. Learner 
one, who completed most (or all) challenges, is considered highly skilled. Learner two, 
who has not yet passed the challenges, is still learning. Support may affect them differ­
ently. It may have little to no effect for learner one who already mastered the challenges, 
whereas for learner two it may prove beneficial or even essential. Therefore, the need 
for a modelling framework comes from understanding how support affects learning 
outcomes in different situations. In doing so, we could properly design a personalised 
scaffolding system. This would allow the personalised adjustment of the level of instruc­
tional support to learners during the learning process.

It is informative to look at the response time when a learner is solving a challenge, 
particularly if the challenge is expected to be completed (e.g., assembly task training) 
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(Pinos Ullauri et al., 2021). Response time is the time necessary for the learner to 
complete that challenge. It is observable and depends on both learner and challenge 
in a particular time point (e.g., the learner could repeat the same challenge, thereby 
having many response times). Generally, the learners and challenges can be respectively 
described as persons and items, which are the terms used for the rest of the article. For 
instance, if a worker in a production line requires a certain amount of time to complete 
a step from an assembly task, the assembly step could be described as an item, the 
employee as the person, and the time as the response time. Similarly, if a player is within 
an escape room, the puzzles can be considered as items, the player as a person, and the 
time for the puzzles to be solved by the player as the response time.

One of the most popular modelling approaches to response time is the lognormal 
model proposed by Van der Linden (2006), which is inspired by Item Response Theory 
(IRT) (Lord, 1952; Rasch, 1960). IRT models focus generally on the estimation of latent 
parameters based on the correctness of answers. By defining person and item time 
characteristics, Van der Linden (2006)’s lognormal model can predict response times. 
However, this framework currently does not consider the effect of support. Support 
could affect both the person’s probability of correctly answering an item as well as the 
time an item requires to be completed by persons. This problem motivated us to address 
the following research questions.

RQ1: How can the lognormal response time model be extended to 
account for the effect of instructional support?

RQ2: Which extensions of the lognormal model perform best in an 
empirical dataset?

The general aim of this study is to investigate the impact of support on response time. 
This would allow us to understand how to consider the effect of different levels of 
support during situations such as assessments, assembly-task training or educational 
escape rooms.

Response Time
Response time has been studied within the field of psychological and educational re­
search, where considerable modelling approaches have been proposed. The overview 
by De Boeck and Jeon (2019) describes four different, though possibly overlapping, 
modelling approaches. These approaches leverage response time to provide insight into 
the underlying factors involved in the item-person solving process. These underlying 
factors are described by latent variables related to person or item characteristics. For 
instance, a student in a test may be faster or slower than others. Likewise, some exercises 
may in general need more (or less) time to be completed than others. Similarly, there can 
be puzzles that can be solved in less time if the persons are faster than others.

Support-Response Time Modelling 102

Methodology
2024, Vol. 20(2), 100–120
https://doi.org/10.5964/meth.12943

https://www.psychopen.eu/


Response time plays an important role in many applications. It can be used to design 
tests so that items are calibrated allowing their completion within the established time 
limits. It can be studied with the speed-accuracy trade-off, which describes situations 
where persons tend to make more mistakes when they increase their speed in solving 
items due to time constraints (Luce & Luce, 1986). Aberrant patterns can be analysed 
in response time (Marianti et al., 2014). It can serve to study speededness and its impli­
cations for high-stakes assessments, such as changing the item order within a test for 
security (Becker et al., 2021, 2022).

Response times cannot be negative and are typically right skewed (especially if the 
mean response time is close to zero and/or the variance is large). Therefore, response 
time distributions are often assumed to follow Gamma, exGaussian, Weibull or lognormal 
distributions. Figure 1 shows two plots. The left plot represents a fictitious, but realistic 
response time distribution where most of the density is accumulated on the left side. The 
right plot depicts its transformation through a natural logarithm. Van der Linden (2006) 
modelled real-life response time data with lognormal and normal distributions, where the 
lognormal models presented a better fit than normal models. Moreover, the logarithmic 
transformation completely changes the scale. For instance, if the unit of measure of raw 
response time is in seconds, then 1 second would become 0 in a logarithmic scale. The 
equivalent of 2.47 minutes in seconds would be 5, and the conversion of 2.25 hours to 
seconds would be equal to 9.

Figure 1

Common Example of Raw and Log Response Time Distributions
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Lognormal Model
Response time Tip describes the time length a person p requires to complete an item i. 
It is important to remark that the completion of the item does not imply its accuracy 
(e.g., students can finish exams having wrong answers). In the same way as accuracy 
gives information on the persons’ latent proficiency and the items’ difficulties, response 
time can be used to estimate underlying characteristics from persons and items. In 
addition, there may be situations where accuracy is not as informative as response time. 
For instance, when solving puzzles in educational escape rooms or training in assembly 
tasks, everyone is expected to come to the correct answer. However, there can be much 
variation in the time needed to finish the items.

In line with Klotzke and Fox (2019) and Van der Linden (2006), let us assume the log 
response time logT ip can be approximated with a normal distribution with an expected 
value μip and variance σerror2, as shown in Equation 1. μip corresponds to the expected 
log response time of person p solving item i. The variance σerror2 describes the residual 
differences between the expected and actual values of the log response time.

In general, μip can be modelled as a function of person and item parameters. In 
Equation 1, λi, which we will call time intensity, describes the time a particular item 
typically requires. It is important to note that time intensity should not necessarily be 
interpreted as item difficulty. An item could be both easily solved and time-consuming 
whereas another item may be difficult to solve without being time-demanding. For 
instance, an item with high difficulty and low time intensity could be hitting a bull’s 
eye with a dart. Throwing a dart takes a limited amount of time, even for inexperienced 
players. Yet, hitting the bull’s eye is difficult (highly skilled players would have a high 
probability of success). On the person side, τp describes the speed of person p. Finally, ϕi, 
which we call time discrimination, describes the degree of sensitivity of items towards 
variability of speed. Following Equation 1, if the original response time unit is in seconds, 
the log time intensity is 2.5, the log time discrimination is equal to 1 and log speed is 
equal to 0.5, the expected value μip would result in 2, which corresponds to 7.3 seconds.

log T ip ∼ N (μip, σerror2 ); μip = λi − ϕiτp (1)

This model is analogous with the 2 Parameter Logistic (PL) model from IRT. IRT models 
the probability of a correct response, through a logit transformation, to the difference 
between an underlying person ability and item difficulty considering a discrimination 
factor. The response time model in Equation 1, like IRT models, suffers from identifiabili­
ty issues as discussed in Curtis (2010). If all ϕi are multiplied with a constant c, and all 
τp are divided by that same constant, there would not be any changes on the expected 
response times. Moreover, if the time discrimination is not considered (ϕi=1 for all i) 
the model still has an additive identification problem. An increase in the time intensity 
parameter λi can be compensated by a decrease in the speed parameter τp. These issues 
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lead us to consider the analogous reparameterization of the 1 PL Model, by Van den 
Noortgate et al. (2003).

In this way, the previous equation can be expressed as Equation 2. In favour of 
simplicity, the time discrimination ϕi is not considered for the remainder of the manu­
script. Nonetheless, the time discrimination can be added, in principle, to the models 
we propose. In Equation 2, the intercept represents the expected log response time of 
an average person solving an average item. In addition, the latent variables λi and τp
represent the item time intensity and person speed deviations from the mean μ0 . This 
means that if a person’s speed or an item’s time intensity are different from the average, 
the differences will be shown in τp or λi . By constraining both the time intensity and 
the speed parameter to have a mean of zero, in Equation 2, the model is identifiable. 
Moreover, the work in Explanatory IRT (De Boeck & Wilson, 2004) has shown that 
models such as in Equation 2 allow flexibility regarding the addition of person or item 
covariates.

log T ip ∼ N (μip, σerror2 ); μip = μ0 + λi − τp (2)

where λi ∼ N (0, σλ), τp ∼ N (0, στ).
The next section describes an empirical application from a project on assembly train­

ing that involves both industry and academic partners from Belgium. Furthermore, three 
extensions of the lognormal model are presented in order to analyse the support effect’s 
relation with the other latent variables. The results are interpreted and the limitations of 
this work are described further. The last section presents possible alternatives to extend 
this study and further explore the support effect on logarithmic response time.

Method

Application Context
The empirical application is based on the imec.icon project COSMO (COgnitive Support 
in Manufacturing Operations). One of the aims of the project COSMO was to design and 
evaluate personalised support for assembly task training in Virtual Reality (VR). For that 
purpose, students from technical-professional secondary education from two schools in 
the region of Flanders, Belgium, trained in VR. The students followed specific sequences 
of picking, connecting and assembling mechanic parts of an agricultural machine (e.g., 
engines, petrol tanks). They were asked to train on five different assembly tasks. During 
the training, they needed to complete the tasks and repeat them up to 3 times. They were 
asked about their past experience with VR. Before starting the experiments, the students 
were presented with the VR setup in a practice session. In the practice session the 
controls and actions were carefully explained (e.g., how to teleport, pick parts, connect 
and hold the pieces).
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A random counter-balanced design was set in order to disentangle the effects of the 
order of the tasks, the repetitions and the levels of support. The order of the tasks was 
chosen randomly for all students. The number of repetitions was fixed for the tasks 
so that the first and third tasks were completed only once, the second and fourth task 
three times and the fifth task two times. The level of support was selected randomly 
for all students so that all students executed each task at least once. If the task was 
completed more than once, the support level would be maintained throughout that 
particular task. These conditions allowed us to mitigate possible confounding effects of 
the tasks, repetitions or levels of support.

The system provides support via several features as shown in Table 1. There are also 
three levels of support (Low, Medium and High). Figure 2 depicts six different cases. 
The left column corresponds to picking steps (e.g., steps where the students need to 
pick parts such as picking a wrench from the workbench). The right column shows 
connecting steps (e.g., putting screws in an engine). The three different levels of support 
and their features are also presented. Let us suppose a student (under High support) 
has already taken the necessary part and needs to connect it. Thus, the student would 
not only hear (Auditory information represented by the speaker icon on the lower-left 
corner of the High support condition) the recording explaining the step, but also see an 
arch that would appear (revealing the way the student needs to rotate and move the 
piece to connect it). In addition, a ghosting shape indicates the correct position of the 
part. In contrast, if another student (under Medium support) needs to pick parts, the 
support would only portray vertical lights showing the location of the necessary pieces. 
Moreover, if a student (under Low support) requires to pick something, only the ghosting 
shape appears. However, there is no indication of the location of the necessary part in 
the virtual workshop, which comprises several workbenches.

Table 1

Support Features

Feature Description Support Level

Haptic feedback Vibration in the controllers when the users pick an incorrect part or 

piece

L, M, H

Visual aids Vertical lights that pinpoint the location of the parts and shades that 

reveal the appropriate position of the parts

M, H

Auditory 

information

Recordings in Dutch regarding the instructions to follow during a step H

Note. L stands for Low, M for Medium and H for High levels of support
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Dataset
The data was collected from 86 technical secondary education students using VR-sup­
ported technology to train for five different assembly tasks. Each task includes 6 to 
12 fixed steps in a fixed sequence. There is a total of 45 steps across all tasks. The 
number of attempts or repetitions the students train at a certain step range from 1 to 
3. The previous experience in VR is measured with a four-point Likert-type scale from 
1 to 4. The response time of the step is measured in seconds. For each step, one of 
three levels of instructional support were given: Low (L), Medium (M) and High (H). A 
non-support level was not considered, which means that during the training there was 
always support. The dataset includes a total of 6195 observations at the step-level. For 
each observation, data were registered regarding the step, the student, the repetition and 
the support level.

Step response times with duration smaller than 2 seconds were taken out of the 
dataset. These extreme values indeed do not refer to real response times of the students. 
When a student was stuck in a step of the assembly sequence, the supervisors activated 

Figure 2

Levels of Support During VR Assembly Task Training
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the auto-complete feature of the VR setting. The auto-complete feature then rapidly 
(typically in less than 2 seconds) showed how the step needed to be be done. An example 
of how the data is structured is shown in Table 2.

Table 2

Dataset Structure

Student ID Step Support Attempt Prev Exp VR Response time

1 1 H 1 2 64

1 2 H 1 2 16

1 3 H 1 2 24.2

.. .. .. .. .. ..

1 1 M 2 2 91.3

1 2 M 2 2 19.7

.. .. .. .. .. ..

86 45 L 3 1 32.4

Modelling Framework
Different approaches can be considered to explore the support effect on response time. 
First, one could define a separate item characteristic parameter λil for each item-support 
level combination, with the index l referring to the support level. This would however 
lead to many parameters in the model making it inefficient and difficult to interpret. In 
addition, it assumes the impact of support is the same for all persons. A second approach 
is to consider a separate speed parameter for each person-support level pair τpl. In the 
same way as the previous approach, it would increase the number of parameters, while 
also assuming the same impact for all items. A third approach could be to include a 
support-level predictor in the model. The support can be interpreted as not belonging to 
either item or person characteristics, but rather to the system side (e.g., the DLE). The 
general intuition behind the support effect is that it reduces the expected time required 
to solve items. This means that the expected log response time can be steered to the 
left or right depending on the magnitude and relation of the item, person and support 
parameters.

Figure 3 shows how the support effect can potentially influence in both raw and log 
response time distributions. The vertical lines show the location of the means. In the 
left, the density of the distribution visually changes, whereas on the right plot there is a 
displacement of the mean. In both plots, the blue dashed distribution could be considered 
using a medium level of support. If there is a change to a higher level of support, the 
distribution would become the dotted green one. Similarly, if the level of support would 
decrease, the overall expected log response time distribution would be represented by the 
red one.
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Model 1

In order to introduce the support effect in the lognormal model, we include a dummy 
variable as a predictor, for all but one level of support. Their coefficients thus express 
what the overall effect is on the response time of this level of support, compared to the 
reference level of support. This means that if there are L levels of support, then there 
would be L − 1 parameters. Let us formally define αl as the instructional support effect 
of a level l compared to the reference. This means the expected log response time μipl

would also depend from the support aside from the person and item parameters. Model 
1 is shown in Equation 3, which describes the log response time of a particular item i, 
person p and level of support l.

log T ipl ∼ N (μipl, σerror2 ); μipl = μ0 + λi − τp + αl (3)

where λi ∼ N (0, σλ), τp ∼ N (0, στ). αl refers to the effect that support level 
l = 0, 1, 2, . . . , L − 1 has on the expected log response time, compared to the reference 
support level.

Model 1 assumes the impact of support to be additive (on the logarithmic scale) and 
independent of either persons or items. Equation 3 describes the generalised linear mixed 

Figure 3

Potential Effect of Support Level on the Raw and Log Response Time
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model that explains the expected value μipl . Given its low complexity, this model can 
serve as a benchmark to compare with the other models. The parameters λi and τp are 
assumed to be normally distributed, respectively, with means constrained to zero and 
standard deviations σλ and στ. If the reference is the highest level of support, the support 
effect αl is expected to be positive. That is, to increase the expected log response time and 
steer the logarithmic distribution to the right. Moreover, the support effect is considered 
as a fixed effect. For each level, except the reference level, the effect is estimated.

Even though the support level effect is constant on the logarithmic scale, its effect 
on the response time scale is multiplicative. For instance, let us imagine a support level 
coefficient equal to -1. If the log-response time expected value decreases from 3 to 2, 
the change on response time scales would result in 12.69 seconds. However, that same 
difference in a log-response time scale from 4 to 3 would translate to 34.51 seconds.

Furthermore, this model as well as the next ones can be extended to include addition­
al predictors (e.g., a repetition predictor describing the amount of times a person p has 
attempted to solve an item i).

Model 2

Instead of assuming a given level of support increases or decreases the log response 
time by a constant, it may also be realistic that the expected log response time is multi­
plied by a constant given a certain level of support. Therefore, this model considers a 
multiplicative approach, shown in Equation 4. In this case, the support effect αl multiplies 
the overall linear combination of the item and person characteristics. This means the 
support effect acts as either an increasing or decreasing factor on the overall expected 
μipl, depending on whether αl is smaller or larger than 1. This in turn can steer the 
response time distribution to either side. Moreover, the impact of the support becomes 
larger when the expected log time for an average person solving an average time μ0 

increases.

log T ipl ∼ N (μipl, σerror2 ); μipl = (μ0 + λi − τp)αl (4)

where λi ∼ N (0, σλ), τp ∼ N (0, στ).

Model 3

The low complexity of the previous models may be considered an advantage in the sense 
that they are easier to estimate. Nonetheless, they also assume the support effect to 
be independent of items and persons. The main rationale behind this model is that the 
support effect may depend on the item-person combination. If the match is adequate 
(small difference between item time intensity and person speed), support may have 
a higher effect. For instance, persons who are expected to complete very rapidly a 
low time-intensive or average item, may find support distracting, compared to slower 
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persons who may find it helpful. Similarly, if an item is highly time-intensive, and hence, 
requires a lot of time to be completed, an average person may not benefit as much from 
support compared to a fast person, which may indeed be able to finish.

A possible implementation of these notions is presented in Equation 5, which de­
scribes a similar linear relation of the latent variables presented in Model 1 with the 
inclusion of a term that depends on the difference λi − τp. Several functional forms (such 
as e−(λi − τp)2 and 1

1 + |λi − τp| ) were also tested to portray the intended intuition. However, 
the reciprocal reciprocal quadratic item-person difference produced a better fit to the 
dataset, compared to the previous functional forms.

log T ipl ∼ N (μipl, σerror2 ); μipl = μ0 + λi − τp + αl
1

1 + (λi − τp)2 (5)

where λi ∼ N (0, σλ), τp ∼ N (0, στ).

Model Extension
The previous models are applied to the dataset from the assembly task training study. 
The models are fitted at the step level considering context-specific characteristics. For 
instance, students may have trained on a particular assembly task multiple times, there­
fore an effect related to learning can be defined. This effect could be considered a 
person characteristic as the learning rate from a student’s mastery of an assembly step. 
Moreover, an effect from the students’ previous experience with Virtual Reality is also 
included in the models.

To account for the multiple attempts, the models are extended including an index t 
for the time a student p may train on a step i with a support level l. Furthermore, the 
following coefficients and variables are considered for the models:

• The variable attemptipt , which ranges from 0 to 2, corresponds to the number of 
repetitions the student p trained on an assembly step i on a moment t. On that 
account, for the first attempt, attemptipt is equal to 0 and for the third attempt has a 
value of 2.

• The a coefficient describes the learning effect on log response time. In general, we 
would expect response time to decrease as the students train on the steps multiple 
times.

• The variable prevexpp , which ranges between 0 and 3, corresponds to the self-
assessment of the student p regarding its previous experience in VR, where 0 relates to 
having no experience at all and 3 to be fully experienced in VR.

• The e coefficient which relates to the previous experience in VR effect on log response 
time. Similarly to a, we would expect e to have a negative effect on log response time. 
In other words, student with more experienced background in VR would be expected 
to have a lower response time.
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Equation 6 describes the extension of Model 1 (Equation 3) with the addition of the 
learning and previous experience in VR effects.

μiplt = μ0 + λi − τp + αl + a(attemptipt) + e(prevexpp) (6)

Models 2 and 3 are extended in a similar way as with Model 1.
In addition, by including the coefficients a and e the interpretation of μ0 changes. In 

this case, μ0 describes the expected log response time for an average student (τp = 0), 
without previous experience in VR (prevexpp = 0), taking an average step (λi = 0) for the 
first time (attemptipt = 0) at the reference support level.

Furthermore, the reference support level is the High Level. This means that the 
support effects α1 and α2 represent its change to Medium and Low levels respectively. 
In the case of the first and third models, α1 and α2 are therefore expected to be greater 
than zero (High level constraint), increasing the response time and moving the mean to 
the right. On the other hand, for the second model, α1 and α2 are expected to be greater 
than 1 (High level constraint), because for this model, a larger α corresponds to a higher 
response time.

Bayesian Modelling
A Bayesian approach was considered over frequentists statistics given the flexibility 
the former allows when defining models. It also has the advantage that not only point 
estimates are obtained, but rather whole posterior probability distributions. There are 
various software packages that employ Markov Chain Monte Carlo (MCMC) to estimate 
the posteriors. The software Stan by Carpenter et al. (2017) and package RStan by Stan 
Development Team (2020) were selected for the analysis (see Pinos Ullauri, 2024 for the R 
and Stan codes for the proposed models). These employ Hamiltonian Monte Carlo, which 
in general provides posterior distributions more efficiently compared to the traditional 
MCMC algorithm (Radivojević & Akhmatskaya, 2020).

The models are estimated providing posterior distributions of the parameters that 
explain the log-response time of the steps. Depending on the number of parameters, the 
models may require more iterations to converge. In this case, the number of iterations 
chosen are 10000 with 2000 burn-in samples with 4 different chains, having a total of 
36,000 post burn-in samples. The chains are randomly initialised with Stan’s default 
initialisation with a fixed seed of 1, in order to allow reproducible results.

Bayesian estimation can profit from the use of previous information through priors. 
Given that this experiment was performed for the first time, we could not provide 
informative priors on the latent variables. Nonetheless, the models can still benefit from 
weakly informative priors. Weakly informative priors assist in stabilising the chains 
by guiding the algorithm to accumulate probability mass in reasonable regions. Table 
3 shows the weakly informative priors for the model parameters. It can be seen that 
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a sufficiently large standard deviation of 100 (especially for a logarithmic scale) is set 
for the effects. The standard deviations σλ and στ are estimated through the flat prior 
U(0, 100) (since time and standard deviations are positive by definition) whereas the 
other effects with N (0, 100). Using similar priors for the standard deviations can have 
similar effects on the results as using constraints (Gelman, 2009).

Table 3

Weakly Informative Priors for the Latent Parameters

Parameters Distributions

Fixed intercept μ0 U(0, 100)
Time intensity λi

N (0, σλ)

SD Time intensity σλ U(0, 100)
Speed τp

N (0, στ)

SD Speed στ U(0, 100)
Support (Low) α1 N (0, 100)
Support (Medium) α2 N (0, 100)
Attempt a N (0, 100)
Previous experience e N (0, 100)

The Bayes factor (BF) is a statistical metric that estimates which model fits the data bet­
ter compared to another (Nicenboim & Vasishth, 2016). Bridge Sampling can be used to 
estimate it (Bennett, 1976). This algorithm iteratively estimates the BF by using random 
samples of its posterior distribution. Although, it requires a sufficient amount of samples 
from the parameter estimation to converge (Gronau et al., 2020). The convention for log 
BF describes that if Model X has a log BF larger than 2 compared to Model Y, then Model 
X is preferred (Kass & Raftery, 1995).

Results
Figure 4 shows the kernel density plots of the log response time in seconds of all steps 
(left plot) and separated by support level (right plot). The bandwidth was estimated 
through the rule of thumb by Silverman (1986) due to its robustness and the lognormal 
nature of the data. Moreover, a brief descriptive summary of the step log response 
time is shown in the legend of the left plot. In addition, the Low support distribution 
can be easily distinguished from the other support levels, whereas the same cannot be 
said for the Medium and High support, whose densities are similar. This may suggest 
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the difference between the effects of Medium and High levels of support was smaller 
compared to the differences with the Low level of support.

Table 4 shows the log BFs of the posterior distributions. The model in the rows are 
compared with those in columns. For instance, Model 1 has a log BF (32.83, higher than 
2) against Model 2, but a log BF towards Model 3 (-27.16, lower than 2). This summarises 
Model 3 (reciprocal quadratic difference between time intensity and speed) as the best fit, 
and Model 2 the worst. This means that for the data of this experiment, the impact of 
support on log response time is higher when the speed of students is closer to the time 
intensity of the steps.

Table 4

Models Log Bayesian Factor

Log Bayes Factor Model 1 Model 2 Model 3

Model 1 - 32.83 -27.16

Model 2 - - -59.99

Model 3 - - -

Note. Only the elements above the upper diagonal are shown. The BFs are read from row to column

Figure 4

Log Response Time Kernel Density Plots
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Given that Model 3 is the best fitting model, its results are discussed. However, the 
parameter estimates for the other models are quite similar, as shown in Table 5. The em­
pirical estimator of geometric ergodicity R̂ test suggests convergence if R̂ < 1.05 (Vehtari 
et al., 2021). In this case R̂ resulted in 1 for all the models. For Model 3, the expected 
log response time for an average person and an average item at the first attempt, μ0, is 
equal to 3.15, which corresponds approximately to 23.58 seconds. The residual variance 
is 0.54, which can be quite considerable when transformed back into response time. 
The standard deviation of speed is 0.18, whereas the deviation of time intensity is 0.73. 
The deviation of time intensity in Model 3 shows greater variability amongst assembly 
steps compared to the other models (0.63 and 0.61). This greater variability could also 
compensate the difference in the expected log response time μ0, which is lower compared 
to Models 1 and 2.

Table 5

Mean Estimate Results

Parameter Expected RT SD I.TI SD P.Speed M Supp. L Supp. Attempt Prev Exp Error Res.

Means μ0 σλ στ α1 α2 a e σerror

Model 1 3.47 0.63 0.18 0.09 0.68 -0.28 -0.06 0.55

Model 2 3.48 0.61 0.17 1.02 1.21 -0.27 -0.05 0.55

Model 3 3.15 0.73 0.18 0.12 0.9 -0.28 -0.05 0.54

The support effects show that the distance between the High and Medium level of 
support is not as wide as with the distance between the Medium and Low level further 
supporting the visual evidence in Figure 4. For Models 1 and 3, the effect of Medium level 
(compared to the High level; α1) is close to zero, whereas the effect of the Low level is 
considerably larger. For Model 2, the effect of the Medium level is close to one (High 
level reference), whereas the effect of the Low level is much larger. The attempt has 
considerable negative effect on response time suggesting learning. If a student repeated 
once (second attempt) a particular step, the effect would be a displacement of around 
0.28 in log-scales, whereas if the student repeated twice (third attempt) the change would 
result in 0.28*2 = 0.56. The previous experience has a negative effect of 0.05 providing a 
closely negligible impact on log response time.

Discussion and Conclusion
We have addressed our research questions by proposing a framework to extend the 
lognormal response time model considering the effect of instructional support. Moreover, 
the models are very flexible and can be further extended to include context-specific 
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characteristics. Model 3 proved to be the best fit to our dataset, which suggests that 
support can indeed have a larger effect when the difference between person speed and 
time intensity is lowest. In other words, when the match between person and item is 
more adequate, the support may have a stronger effect. In cases where an item is very 
time-consuming for a person, completing this item will take its time, regardless of the 
level of support that was provided. Similarly, if an item is less time-consuming for a 
person, the item will be done faster, and there would not be a large effect of support.

The proposed models have certain limitations to consider. First, the models assume 
a constant effect (same for all items and persons) after each attempt, which may not 
necessarily be realistic. Nevertheless, the addition of more parameters (e.g., effects for 
each attempt) can, in principle, increase the computational expense needed to fit the 
models. Second, the support is modelled on the expected log response time, which may 
be difficult to interpret. Nonetheless, it also allows a flexible effect on different cases. For 
instance, let us suppose a person is expected to use 10 seconds for an item. The potential 
profit of support can never by larger than 10 seconds, whereas if the expected time is 
10 minutes, the effect of support can be much larger than 10 seconds. Third, the choice 
of time unit (e.g., seconds, minutes) for the response time scale may indeed affect the 
applicability of Model 2 (log multiplicative model). For instance, if the time intensity of 
an item is 50 seconds, it could also be expressed as 0.83 minutes. When log-transforming 
both times, 50 seconds would become 1.69, and 0.83 would result in -0.08. In that case, 
a support effect lower than 1 would decrease the former RT, and increase the latter RT 
(making it less negative). Fourth, the data of our study visually suggests a lognormal 
distribution to be a good approximation. However, it may not be the case for other 
studies, and we would recommend to check the response time density in preliminary 
analyses. Finally, we proposed three models, but other models are possible. The flexibility 
of our approach allows using a model that fits the type of data and interest of the 
researcher. However, a drawback is that the model has to be specified. If not, it could 
lead to flawed conclusions. Therefore, we propose to use multiple plausible models and 
compare the model fit.

The theoretical background behind scaffolding suggests that it can be valuable to give 
support. In doing so, the difficulty of the challenge can better match the learner’s ability 
(Quintana et al., 2004). In this case, the support design allows the item-person response 
time to vary. This can be naively interpreted as either boosting the person speed or 
decreasing the time intensity, thereby satisfying scaffolding and promoting learning. The 
results showed that the Medium and High support effects were closer compared to the 
Low level of support. This is something important to take into account. Some students 
may have experienced that the High and Medium levels made the tasks quickly solvable, 
whereas the Low support tasks still may have been too time-consuming, prolonging 
their training time. Further initial validation stages of the levels of support would be 
recommended for new studies. This would allow a more even spread of the support level 
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effects. This is essential if the aim is to provide adaptive level choosing, considering the 
wide variation of the learners’ speeds.

This methodology can be further combined with the work by Pelánek (2016), who 
proposes the use of the Elo-Rating system in DLEs. The Elo rating system has been 
proposed to update after each response the person’s ability and/or the item’s difficulty 
level. In this way, a changing ability can be tracked, and this can constitute the base 
for an adaptive item selection. This algorithm can be adapted to include response times 
and latent characteristics to track the growth of the learners speeds as they progress and 
learn (Pinos Ullauri et al., 2021). Moreover, the Elo-Rating system can be extended to 
include the effect of support, so that items with appropriate time intensities and adequate 
support can be provided for the persons’ current speeds. Furthermore, this framework is 
not only limited to modelling response time. It could be adapted and extended to model 
response accuracy or polytomous responses.

Future Work
Several extensions can be considered regarding the addition of the support effect into 
the response time models. First, the effect of the level of support on the speed can 
vary across persons. To that end, separate random person effects can be defined for 
each level of support, effects that can be correlated. In addition, interaction terms can 
be included to explore whether the variation in the effects of support can be explained 
by person background characteristics. Similarly, the effect of support can be allowed to 
vary randomly across items and/or according to item characteristics. Finally, the models 
by Klein Entink et al. (2009) and Van der Linden (2007) can be extended to explain 
the support effect on both response accuracy and response time considering correlation 
between them.
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