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Abstract: in this paper we establish rigorously a one dimensional model of a junction of several
ferromagnetic nanowires. Such structures appear in nano electronics or in new memory devices. We
present also a numerical scheme adapted to this configuration and we compare our results with the
3d simulation obtained with the code EMicroM.
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1 Introduction

Since the beginning of the century, interest for ferromagnetic devices has increased, in particular
with the development of solid-state magnetic random access memories (MRAMs) [27, 28] and mag-
netic logic devices [1]. The main advantages of MRAM is the non volatility, involving low energy
consumption, and also their high reactivity [2, 31, 34]. The key idea is to exploit the multiplicity
of possible magnetization configurations in nanostructures to store information, via ferromagnetic
devices involving several geometry scales (nanowires, thin films, complex and bulk structures, see for
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example [27, 28]). This idea is also exploited in an alternative approach called DWs-logic (DW for
domain wall), explained in [1], based upon complex nanowires structures (see [3, 4, 5, 6, 26, 32, 33]
for experiments).
In this paper, our goal is to develop a reduced model of junctions of several ferromagnetic nanowires.
As in [18], we aim to obtain an equivalent one dimensional model for junctions. On the one hand,
the 1d simulations will be much more simple than the 3d ones. On the other hand, we hope that
theoretical studies about DW formation, stability and dynamics will be possible in this model, as it
is the case for simple devices [15, 16, 17, 18, 20, 21, 25].
Our study is based upon the 3d micromagnetic model introduced by W.-F. Brown [9, 10]. By asymp-
totic process, we aim to obtain reduced models of connected nanowires with whatever configuration,
both in the static and the dynamic cases. First let us recall the 3d model of ferromagnetic material.

1.1 Three-dimensional model

We consider a ferromagnetic body confined in an open bounded set O ⊂ R3. We denote by M(t,x)
the magnetic moment at time t and position x ∈ O. We assume that the ferromagnetic material is
saturated so that the magnetic moment M satisfies the saturation constraint |M| = Ms. For static
configurations, the energy associated to a magnetization M : O → R3 is given by:

Emic(M) =
1

2

A

M2
s

∫
O
|∇xM|2dx+

1

2
µ0

∫
R3

|hd(M)|2dx,

where A is the exchange constant, and µ0 = 4π · 10−7 kg.m.s−2.A−2 is the vacuum permeability, and
the demagnetizing field hd(M) is given by:

curl hd(M) = 0 and div(hd(M) +M) = 0 in R3, (1.1)

where M is the extension of M by zero outside O.
In the stationary case, the observed configuration are critical points of E under the constraint
|M| = Ms. In the non stationary case, the dynamics of M : (t,x) 7→ M(t,x) is described by the
Landau Lischitz equation:

∂M

∂t
= −γM×He −

αγ

Ms
M× (M×He), (1.2)

where γ is the gyromagnetic ratio, α is the damping coefficient, and He is the effective field derived
from the energy E and given by:

He =
A

M2
s

∆xM+ µ0hd(M).

We obtain a dimensionless model by writing:

M(t,x) = Msm(
t

τ
,
x

ℓ
), with ℓ2 =

A

µ0M2
s

and τ =
1

γMsµ0
.

We denote by t =
t

τ
(resp. x =

x

ℓ
) the adimensioned time (resp. position). The adimensioned

magnetic moment : (t, x) 7→ m(t, x) is defined on R+ ×Ω, where Ω = 1
ℓO. It satisfies the saturation

constraint |m(t, x)| = 1 for a. e. (t, x). We introduce the set H1(Ω;S2) defined by:

H1(Ω;S2) =
{
u ∈ H1(Ω;R3), such that |u| = 1 a.e.

}
.

The renormalized energy is given by:

Emic(m) =
1

Aℓ
E(M) = Eexch(m) + Edem(m), (1.3)
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where the exchange term is given by

Eexch(m) =
1

2

∫
Ω

|∇m|2 dx,

and the demagnetizing term is given by

Edem(m) =
1

2

∫
R3

|hd(m)|2 dx,

where hd(m) is obtained from m by the relations:

curl hd(m) = 0 and div (hd(m) + m̄) = 0 in R3, (1.4)

where we denote by m̄ the extension of m by zero outside Ω. We remark that −hd(m) is the
orthogonal projection of m̄ onto the fields of gradients, so that we have:

Edem(m) = −1

2

∫
Ω

hd(m) ·mdx.

The static configurations m are the local minimizers of Emic in H1(Ω;S2), i.e. under the saturation
constraint. Existence of minimizers is standard (see [30] for example). Partial regularity results for
minimizers or critical points are established in [19] and [11].

In the time-dependent case, the adimensioned Landau-Lifschitz equation writes:

∂m

∂t
= −m×He − αm× (m×He) in R+ × Ω,

He = −∂mEmic = ∆m+ hd(m),

∂m

∂ν
= 0 on ∂Ω,

(1.5)

For regular solutions, the previous equation is equivalent to the Landau-Lifschitz-Gilberg equation
we will deal with to construct weak solutions:

∂m

∂t
− αm× ∂m

∂t
= −(1 + α2)m×He. (1.6)

Existence results for weak solutions of (1.6) are obtained in [7, 12, 22, 30]. Existence of strong
solutions is established in [13, 14].

We will focus on the case of a ferromagnetic domain formed by a junction of several nanowires of
characteristic thickness η. Let us describe such a domain.

1.2 Geometry of the junction

We consider a junction of n ferromagnetic nanowires described as follows. The ith wire, denoted by
W η

i , is a straight round cylinder of length Li and radius ηβi directed by the unit vector u⃗i. It is
described by the change of coordinates:

Ψη
i : [0, Li]×B2(0, 1) → R3

(s, ξ1, ξ2) 7→ (ηγi + s)u⃗i + βiη(ξ1v⃗i + ξ2w⃗i),
(1.7)

where the vectors v⃗i and w⃗i are chosen so that (u⃗i, v⃗i, w⃗i) is a direct orthonormal basis of R3, and
where γi > 0. We assume that the u⃗i, i ∈ {1, . . . , n} are distinct two by two.

In all the paper, we denote
J i = [0, Li]×B2(0, 1).
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Connexion point of size η << 1

u⃗1

v⃗1

w⃗1

L4

W η
0

W η
1

W η
2W η

3

W η
4

W η
5

Figure 1: Connexion of 5 nanowires of size proportional to η.

The junction denoted by W η
0 is centered at zero, and its characteristic size is proportional to η. It

is obtained by homothetic transformation of center 0 and factor η from a fixed pattern J0. It is
described by the change of coordinates:

Ψη
0 : J0 → R3

x 7→ ηx.
(1.8)

We assume that J0 is star-shaped with center 0, and that for all i ∈ {1, . . . , n}, ∂J0 contains the
disk Di of center γiu⃗i, contained in {u⃗i}⊥, of radius βi and that those disks are non-overlapping,
that is

Di ∩Dj = ∅ for i ̸= j.

We denote by Ωη =

n⋃
i=0

W η
i the ferromagnetic domain of characteristic thickness η. We assume that

J0 is designed so that the boundary of Ωη is Lipschitz and C1 by parts. We will parametrize Ωη

using the previous scaling in the following way:

We define F the set of the M = (M0,M1, . . . ,Mn) such that:

� Mi ∈ H1(J i;S2) for i ∈ {0, . . . , n},

� Mi(0, ξ1, ξ2) = M0(γiu⃗i + βi(ξ1v⃗i + ξ2w⃗i)) in the trace sense, for i ∈ {1, . . . , n}.

We endow F with the norm:

∥M∥F =

n∑
i=0

∥Mi∥H1(Ji).
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For M ∈ F , we define mη in H1(Ωη;S2) by

mη(x) = Mi

(
(Ψη

i )
−1(x)

)
for x ∈ W η

i . (1.9)

The trace conditions ensure that mη is in H1(Ωη).

1.3 Statement of the results in the stationary case

The micromagnetism energy on Ωη is given for m ∈ H1(Ωη;S2) by:

Eη
mic(m) =

1

2

∫
Ωη

|∇m|2 dx− 1

2

∫
Ωη

m ·hd(m) dx, (1.10)

where hd(m) is defined by

curl hd(m) = 0 and div (hd(m) + m̄) = 0 in R3, (1.11)

where we denote by m̄ the extension of m by zero outside Ωη. The static configurations mη are the
local minimizers of the problem Pη:

Pη : find mη ∈ H1(Ωη;S2) such that Eη
mic(m

η) ≤ Eη
mic(v) for all v ∈ H1(Ωη;S2).

Using the rescaling defined above, this problem is equivalent to the minimization problem set on F

P̃η : find Mη ∈ F such that Ẽη(Mη) ≤ Ẽη(V ) for all V ∈ F .

The rescaled energy Ẽη(M) =
1

η2
Eη
mic(m) is defined by

Ẽη = Ẽη
exch + Ẽη

dem, (1.12)

with

Ẽη
exch(M) =

1

2η

∫
J0

|∇M0|2 +
n∑

i=1

1

2

∫
Ji

(
β2
i |
∂Mi

∂s
|2 + 1

η2
|∂Mi

∂ξ1
|2 + 1

η2
|∂Mi

∂ξ2
|2
)
,

and with

Ẽη
dem = −η

2

∫
J0

M0Hη
0(M)−

n∑
i=1

1

2

∫
Ji

β2
i MiHη

i (M),

where Hη
i (M) represents the rescaling of the restriction on W η

i of the demagnetizing field generated
by the magnetization m:

Hη
i (M)(X) = hd(m)(Ψη

i (X)).

We denote by Hη
i,j(M) the rescaling on W η

i of the demagnetizing field generated by the restriction
of m on W η

j :

Hη
i,j(M) =

(
hd(Mi ◦ (Ψη

i )
−1)
)
◦Ψη

j .

We introduce the limit minimization problem: we define F0 the set of the M = (M0,M1, . . . ,Mn) ∈
F such that:

� M0 ∈ H1(J0;S2) is constant,

� Mi ∈ H1(J i;S2) for i ∈ {1, . . . , n}, with ∂Mi

∂ξ1
=

∂Mi

∂ξ2
= 0 (Mi only depends on s),

� Mi(0) = M0 (from the trace conditions satisfied by the elements of F).

5



We introduce the problem P:

P


find M0 ∈ F0,

Ẽ(M0) ≤ Ẽ(V ) for all V ∈ F0,

where Ẽ(M) = Ẽexch(M) + Ẽdem(M) with

Ẽexch(M) =
1

2

n∑
i=1

∫
Ji

β2
i |
∂Mi

∂s
|2ds and Ẽdem(M) =

1

4

n∑
i=1

∫
Ji

β2
i

(
(Mi · v⃗i)

2 + (Mi · w⃗i)
2
)
ds.

Remark 1.1. Using the saturation constraint |Mi| = 1 a. e., we should rewrite the limit demagne-
tizing field as:

Ẽdem(M) =
1

4

n∑
i=1

∫
Ji

β2
i

(
1− (Mi · u⃗i)

2
)
ds.

We establish in Section 2 the following Γ-convergence result:

Theorem 1.1. Ẽη Γ-converges weakly to Ẽ, that is:
� (lower semi continuity) for all sequence (Mη)η of F such that Mη weakly converges to M for

the norm ∥ · ∥F , and such that the sequence
(
Ẽη(Mη)

)
η
is bounded when η tends to zero, we

have that the limit M is in F0 and

Ẽ(M) ≤ lim inf
η→0

Ẽη(Mη),

� (reconstruction) for all U ∈ F0, there exists a sequence (Uη)η such that

Uη ∈ F ,

Uη tends to U weakly in F when η −→ 0,

lim sup
η→0

Ẽη(Uη) ≤ Ẽ(U).

Taking into account the properties of the elements of F0, the Γ-limit problem P reduces to the
following 1d problem: we define G by

G =
{
m = (m1,m2, . . . ,mn), mi ∈ H1([0, Li];S

2) with m1(0) = m2(0) = . . . = mn(0)
}
.

For m ∈ G, we set

E(m) =
1

2

n∑
i=1

∫ Li

0

β2
i |∂smi|2 +

1

4

n∑
i=1

∫ Li

0

β2
i

(
1− (mi · u⃗i)

2
)
.

Then Problem P is equivalent to solve the following Problem (Q):

(Q) find m ∈ G, ∀v ∈ G, E(m) ≤ E(v).

The critical points m = (m1, . . . ,mn) of E in G satisfy the following Euler Equation:

∀i ∈ {1, . . . , n}, mi × (∂ssmi + (mi · u⃗i)u⃗i) = 0,

with the boundary conditions:

∀i ∈ {1, . . . , n}, ∂smi(Li) = 0,

and with the junction conditions:
m1(0) = m2(0) = . . . = mn(0),
n∑

i=1

β2
i ∂smi(0) = 0.
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0

L1

L2L3

L4

L5

Figure 2: Limit domain for the junction of 5 nanowires.

1.4 Statement of the results in the time-dependent model

We consider now the time-dependent 3-dimensional model for the ferromagnetic domain Ωη given
by (1.6). Existence of weak solutions for (1.6) is given by the following proposition (see [30, 7, 22]):

Proposition 1.1. Let mη
0 ∈ H1(Ωη;S2). There exists mη : R+ × Ωη −→ R3 satisfying:

� mη ∈ L∞(R+;H1(Ωη)) and
∂m

∂t

η

∈ L2(R+;L2(Ωη)),

� |mη(t, x)| = 1 a.e. (saturation constraint),

� for all Ψ ∈ C∞
c (R+;H1(Ωη)),∫

R+×Ωη

(
∂m

∂t

η

− αmη × ∂m

∂t

η)
·Ψ = (1 + α2)

∫
R+×Ωη

3∑
i=1

(
mη × ∂m

∂xi

η)
·

∂Ψ

∂xi

−(1 + α2)

∫
R+×Ωη

(mη × hd(m
η)) ·Ψ,

(1.13)

� mη(0, · ) = mη
0 in the trace sense,

� for almost every t > 0, we have the following energy inequality:

Eη
mic(m

η(t)) +
α

1 + α2

∫ t

0

∫
Ωη

∣∣∣∣∂m∂t η∣∣∣∣2 ≤ Eη
mic(m

η(0)). (1.14)
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When η tends to zero, we prove the following convergence theorem:

Theorem 1.2. Let M0 = (M0
0 , . . . ,M

0
n) ∈ F0. We define m0,η ∈ H1(Ωη;S2) by

m0,η(x) = M0
i

(
(Ψη

i )
−1(x)

)
for x ∈ W η

i .

We consider mη a weak solution for the Landau-Lifschitz-Guilbert equation with initial data m0,η

given by Proposition 1.1. We introduce Mη : R+ → F the rescaling of mη defined by

Mη = (Mη
0 , . . . ,M

η
n),

with Mη
i (t,X) = mη(t,Ψη

i (X)) for X ∈ J i. Then, there exists M ∈ L∞(R+;F0) such that for all

i = 1, . . . , n, up to a subsequence, Mη
i tends to Mi in L∞(R+;H1(J i)) weak ⋆ and

∂Mη
i

∂t
tends to

∂Mi

∂t
in L2(R+ × J i) weak when η tends to zero. In addition, M ∈ F0 for almost every t so that we

can write M(t, s, ξ1, ξ2) = m(t, s) for i ≥ 1, and m satisfies:

� mi ∈ L∞(R+;H1([0, Li];S
2)) and

∂mi

∂t
∈ L2(R+ × [0, Li]),

� for almost every t, m1(t, 0) = m2(t, 0) = . . . = mn(t, 0),

� mi(0, s) = M0
i (s) in the trace sense,

� for all φ = (φ1, . . . , φn) satisfying φ ∈ C∞
c (R+;H1([0, Li]) for all i with φ1(t, 0) = . . . =

φn(t, 0) for all t, then:

n∑
i=1

β2
i

∫
R+×[0,Li]

(
∂mi

∂t
− αmi ×

∂mi

∂t

)
·φi = (1 + α2)

n∑
i=1

β2
i

∫
R+×[0,Li]

mi ×
∂mi

∂s
·

∂φi

∂s

−1 + α2

2

n∑
i=1

β2
i

∫
R+×[0,Li]

mi × (mi · u⃗i)u⃗i ·φi.

We remark that the weak formulation obtained in Theorem 1.2 is equivalent to the following problem
where the domain is described as presented in the Fig. 2:

mi ∈ L∞(R+;H1([0, Li];S
2)),

mi(0, s) = M0
i (s),

∂mi

∂t
= −mi × he

i − αmi × (mi × he
i ),

he
i = ∂ssmi +

1

2
(mi · u⃗i)u⃗i,

∂smi(t, Li) = 0,

m1(t, 0) = m2(t, 0) = . . . = mn(t, 0),

n∑
i=1

β2
i ∂smi(t, 0) = 0.

(1.15)

Remark 1.2. Note that in the model above, the coupling between the wires, described by the last two
equations, is only present at the junction. This model therefore lends itself well to parallelization.
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1.5 Organization of the paper

Sections 2 and 3 are respectively devoted to the proofs of Theorem 1.1 and 1.2. In Section 4 we
present numerical simulations comparing the 3d case and the asymptotic 1d model. 3d computations
have been performed with the simulation code EMicroM [22, 24]. 1d computations are performed
with scilab [29] using a finite difference scheme adapted to the case of the connexion node.

2 Γ-convergence for the stationary model

Proof of the lower semi-continuity
Let Mη = (Mη

0 ,M
η
1 , . . . ,M

η
n) in F such that Mη weakly converges to M in F (that is Mη

i weakly
converges in H1 to Mi), and such that there exists C such that

Ẽη(Mη) ≤ C for all η.

By compactness of the Sobolev embedding in Lipschitzian domains, we can assume that Mη tends
to M strongly in L2 and almost everywhere (by extracting a subsequence), so that M satisfies the
saturation constraint |M | = 1 almost everywhere, i.e. M ∈ F . In addition, since the demagnetizing
energy is non negative, we obtain that

∥∇Mη
0 ∥2L2(J0) ≤ Cη,

and for i ∈ {1, . . . , n},

∥∂M
η
i

∂ξ1
∥2L2(Ji) + ∥∂M

η
i

∂ξ2
∥2L2(Ji) ≤ Cη2,

so that M0 is constant in J0 and Mi only depends on s. Therefore we obtain that M ∈ F0.

From classical convexity arguments, it is clear that

Ẽexch(M) ≤ lim inf Ẽη
exch(M

η).

Concerning the rescalled demagnetizing field, we split it in 4 parts:

� the effect of the demagnetizing field on the junction will be neglected by application of the
following lemma:

Lemma 2.1. There exists a constant C such that for all η > 0, for all V = (V0, V1, . . . , Vn) ∈
F , ∣∣∣∣η ∫

J0

V0 ·Hη
0(V )

∣∣∣∣ ≤ C
√
η.

Proof. Let V be in F . We denote by vη the rescaling of V defined by (1.9). We have

η

∫
J0

V0 ·Hη
0(V ) =

1

η2

∫
Wη

0

vη ·hd(vη),

so ∣∣∣∣η ∫
J0

V0 ·Hη
0(V )

∣∣∣∣ ≤ 1

η2
∥vη∥L2(Wη

0 )∥hd(vη)∥L2(R3),

≤ 1

η2
∥vη∥L2(Wη

0 )∥vη∥L2(Ωη),

≤ 1

η2
(meas(W η

0 ))
1
2 (meas(Ωη))

1
2 ,

≤ 1

η2
C
(
η3 · η2

) 1
2 ,

≤ C
√
η.
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� The demagnetizing field generated by the junction will be neglected thank’s to the following
lemma:

Lemma 2.2. There exists a constant C such that for all η > 0 for all V ∈ F and all i ∈
{1, . . . , n}, ∣∣∣∣β2

i

∫
Ji

ViHη
0,i(V )

∣∣∣∣ ≤ C
√
η.

Proof. Let V be in F . We denote by vη the rescaling of V defined by (1.9). We have

β2
i

∫
Ji

Vi ·Hη
0,i(V ) =

1

η2

∫
Wη

i

vη ·hd(vηχWη
0
),

so ∣∣∣∣β2
i

∫
Ji

Vi ·Hη
0,i(V )

∣∣∣∣ ≤ 1

η2
∥vηχWη

i
∥L2(Wη

i )∥hd(vηχWη
0
)∥L2(R3),

≤ 1

η2
(meas(W η

i ))
1
2 ∥vηχWη

0
)∥L2(R3),

≤ 1

η2
(Cη2)

1
2 (meas(W η

0 ))
1
2 ,

≤ 1

η
C(η3)

1
2 ≤ C

√
η.

� The demagnetizing field generated by the wire i on the wire j will vanish:

Lemma 2.3. For all i ≥ 1 and j ≥ 1, with i ̸= j, for all η > 0 and all M ∈ F ,∣∣∣∣β2
i

∫
Jj

Mj ·Hη
i,j(M)

∣∣∣∣ ≤ Cη.

Proof. Let V be in F . We denote by vη the rescaling of V defined by (1.9). The demagnetizing
field generated by vηi χWη

i
is described by the formula:

hd(m1Wη
i
)(y) =

1

4π

∫
Wη

i

∇ydiv y

vη(z)1Wη
i
(z)

|z − y|
dz,

so that

|hd(m1Wη
i
)(y)| ≤ C

∫
Wη

i

1

|z − y|3
dz.

We claim the following inequality:

Claim: there exists K > 0 such that for all η > 0, if i ̸= j, if y = Ψη
i (s, ξ) and z = Ψη

j (s
′, ξ′),

then
|z − y| ≥ K(η + s+ s′).

Proof of the Claim: let us assume that the claim is false. For all n we find ηn ∈]0, 1], ξn and
ξ′n in B2(0, 1), sn ∈ [0, Li] and s′n ∈ [0, Lj ] such that

|Ψηn

j (sn, ξn)−Ψηn

i (s′n, ξ
′
n)| <

1

n
(ηn + sn + s′n),

that is

|ηn [Xn −X ′
n] + snu⃗i − s′nu⃗j | <

1

n
(ηn + sn + s′n), (2.16)

10



with Xn = (γiu⃗i + βi(ξn,1v⃗i + ξn,2w⃗i)) ∈ Di and X ′
n = (γj u⃗j + βi(ξ

′
n,1v⃗j + ξ′n,2w⃗j)) ∈ Dj . By

extracting a subsequence, we assume that Xn −→ X in Di and X ′
n −→ X ′ in Dj .

First case: if
sn
ηn

and
s′n
ηn

are bounded, dividing (2.16) by ηn, we obtain that |X−X ′| = 0 wich

is contradictory to the fact that Di ∩Dj = ∅.

Second case: if
sn
ηn

is unbounded and if we can extract a subsequence (still denoted by the index

n) such that s′n ≤ sn and
sn
ηn

−→ +∞, then we divide (2.16) by
sn
ηn

, extracting a subsequence

so that
s′n
sn

−→ τ ∈ [0, 1], we obtain that

|u⃗i − τ u⃗j | = 0,

with is impossible since u⃗i and u⃗j are distinct unitary vectors, and since τ ≥ 0.

Third case: if
s′n
ηn

is unbounded and if we can extract a subsequence (still denoted by the

index n) such that sn ≤ s′n and
s′n
ηn

−→ +∞, by the same argument, we obtain a contradiction.

This concludes the proof of the Claim.

So from the Claim, if y ∈ W η
j is given by y = Ψη

j (s, ξ), we have dist(y,W η
i ) ≥ αη + Cs so∣∣∣∣∫

Jj

Mj ·Hi,j(M)

∣∣∣∣ ≤ ∫ Lj

0

Kη2

(αη + Cs)2
ds ≤ Kη,

so this term tends to zero when η tends to zero.

� The behavior of the demagnetizing field generated by the wire i onto itself is described in [15].
For the convenience of the reader we explicit the limit of this contribution in the following
lemma:

Lemma 2.4. Let i ∈ {1, . . . , n} to be fixed. If Mη
i tends strongly to Mi in L2(J i), then

Hη
i,i(M

η) tends to −1

2
((Mi · v⃗i)v⃗i + (Mi · w⃗i)w⃗i) in L2(J i) strongly, so that

lim
η→0

β2
i

∫
Ji

Mη
i ·Hη

i,i(M
η
i ) = −1

2
β2
i

∫
Ji

(
(Mi · v⃗i)

2 + (Mi · w⃗i)
2
)
.

Proof. We rewrite Mη
i and Hη

i,i(M
η) in the basis (u⃗i, v⃗i, w⃗i) in the following way: Mη

i =
mη

1 u⃗i +mη
2 v⃗i +mη

3w⃗i and Hη
i,i(M

η) = Hη
1 u⃗i +Hη

2 v⃗i +Hη
3w⃗i.

We first remark that Hη is uniformly bounded in L2(R3) since

∥Hη∥2L2(R3) =
1

η2
∥hd(mη

i )∥
2
L2(R3) ≤

1

η2
∥mη

i ∥
2
L2(R3),

≤ 1

η2
meas(Ωη

i ) ≤ C,

so we can assume (by extracting a subsequence) that Hη ⇀ H in L2(R3) weakly.
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Rewriting (1.4) in the coordinates system (s, ξ1, ξ2) (using that the basis (u⃗i, v⃗i, w⃗i) is orthono-
mal and direct), we obtain that:

ηβi∂s(H
η
1 +mη

1) + ∂ξ1(H
η
2 +mη

2) + ∂ξ2(H
η
3 +mη

3) = 0,

∂ξ1H
η
3 − ∂ξ2H

η
2 = 0,

∂ξ1H
η
1 − ηβi∂sH

η
2 = 0,

ηβi∂sH
η
3 − ∂ξ2H

η
1 = 0.

Taking the weak limit we obtain that:

∂ξ1(H2 +m2) + ∂ξ2(H3 +m3) = 0,

∂ξ1H3 − ∂ξ2H2 = 0,

∂ξ1H1 = 0,

∂ξ2H1 = 0.

Therefore since H ∈ L2(R3), we obtain that H1 = 0 and that the transversal part of H is the
2-dimensional (in the plane {s} × R2) demagnetizing field associated to the transversal part
of m (that is (m2,m3)(s, · )). Since the section of the wire is a ball of R2, since (m2,m3) is
constant in the section of the wire, the calculation of the two-dimensional demagnetizing field
generated by the constant configuration is classical (see [15] for an elementary proof in 2d),
and we obtain that H is given by:

H(t, s, ξ1, ξ2) =



−1

2

 0
m2(t, s)
m3(t, s)

 for (s, ξ1, ξ2) ∈ J i,

1

2

1

((ξ1)2 + (ξ2)2)2

 0
m2(t, s)((ξ1)

2 − ξ22) + 2m3(t, s)ξ1ξ2
−m3(t, s)((ξ1)

2 − (ξ2)
2)− 2m2(t, s)ξ1ξ2


for s ∈ [0, Li] and (ξ1)

2 + (ξ2)
2 > 1,

0 for s /∈ [0, Li].

Since for all η > 0, ∫
R3

|Hη|2 = −
∫
Ji

Hη
·mη,

since Hη ⇀ H in L2 weak and mη −→ m0 in L2 strong, we obtain that

lim
η→0

∫
R3

|Hη|2 =
1

2

∫
Ω1

(
|H2|2 + |H3|2

)
=

∫
R3

|H|2,

so that Hη tends strongly to H in L2(R3) when η tends to zero.

Using the previous lemmas, we obtain that Ẽη
dem(Mη) tends to Ẽdem(M0).

This concludes the proof of the lower semi continuity.

12



Proof of the reconstruction.

Let M be fixed in F0. For η > 0 we set Mη = M . Let us study the limit of Ẽη(Mη) when η tends
to zero.
We have:

Ẽη(Mη) =
1

2

n∑
i=1

∫
Ji

β2
i |
∂Mi

∂s
|2 − η

2

∫
J0

M0 ·Hη
0(M)− 1

2

n∑
i=1

β2
i

∫
Ji

Mi ·Hη
i (M).

As in the previous step, we obtain on the one hand that

−η

∫
J0

M0 ·Hη
0(M) −→ 0 when η −→ 0,

and on the other hand that

−
∫
Ji

Mi ·Hη
i (M) −→ π

2

∫
[0,Li]

(
(M0

i · v⃗i)
2 + (M0

i · w⃗i)
2
)
ds,

that is
Ẽη(Mη) −→ Ẽ(M) when η −→ 0.

This concludes the proof of Theorem 1.1.

3 Asymptotic process in the dynamic case

First step: estimates
By rescaling of the energy formula (1.14), we obtain that for almost every t,

Ẽη(Mη(t)) +
α

1 + α2

∫ t

0

(
n∑

i=1

β2
i

∫
Ji

∣∣∣∣∂Mη
i

∂t

∣∣∣∣2 + η

∫
J0

|∂M
η
0

∂t
|2
)

≤ Ẽη(M0). (3.17)

We remark that since M0 ∈ F0,

Ẽη(M0) =
1

2

n∑
i=1

πβ2
i

∫ Li

0

∣∣∣∣dM0
i

ds

∣∣∣∣2 − η

2

∫
J0

M0
0 ·Hη

0(M
0)− 1

2

n∑
i=1

∫
Ji

β2
i M

0
i ·Hη

i (M
0).

Applying lemmas 2.1-2.4, we obtain that when η tends to zero:

Ẽη(M0) −→ 1

2

n∑
i=1

πβ2
i

(∫ Li

0

∣∣∣∣dM0
i

ds

∣∣∣∣2 + 1

2

∫ Li

0

((M0
i · v⃗i)

2 + (M0
i · w⃗i)

2)

)
. (3.18)

In particular, we obtain that there exists a constant C such that for almost every t,

1

η

∫
J0

|∇Mη
0 |2 +

n∑
i=1

∫
Ji

(
β2
i

∣∣∣∣∂Mη
i

∂s

∣∣∣∣2 + 1

η2

∣∣∣∣∂Mη
i

∂ξ1

∣∣∣∣2 + 1

η2

∣∣∣∣∂Mη
i

∂ξ2

∣∣∣∣2
)

+

∫ t

0

(
n∑

i=1

β2
i

∫
Ji

∣∣∣∣∂Mη
i

∂t

∣∣∣∣2 + η

∫
J0

∣∣∣∣∂Mη
0

∂t

∣∣∣∣2
)

≤ C,

so by extracting a subsequence (still denoted by Mη), when η tends to zero, we have:

� ∇Mη
0 −→ 0 in L∞(R+;L2(J0)),

�

∂Mη
i

∂ξ1
and

∂Mη
i

∂ξ2
tends strongly to zero in L∞(R+;L2(J i)) for i = 1, . . . , n,
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� Mη
i ⇀ Mi in L∞(R+;H1(J i)) weak ∗,

� Mη
0 ⇀ M0 in L∞(R+;H1(J0)) weak ∗,

�

∂Mη
i

∂t
⇀

∂Mi

∂t
in L2(R+ × J i) weak.

In particular, we see that M0 does not depend on the space variable, so that we write

M0(t,X) = m0(t).

In addition, for i ̸= 0, Mi does not depend on the transverse variables, and we denote

Mi(t, s, ξ1, ξ2) = mi(t, s).

Applying Aubin’s lemma, Mη
i tends to Mi strongly in L∞(R+;L2(J i)), so we obtain that |mi| = 1

almost everywhere.
Taking the weak limit on the traces at x = 0, we obtain that for i = 1, . . . , n, mi(t, 0) = m0(t)
for almost every t. Taking the weak limit on the trace in time, we obtain that for i = 1, . . . , n,
mi(0, s) = M0

i (s).

Second step: energy formula
Now, we aim to take the limit in the energy formula. We remark that for almost every t, we have:

1

2

n∑
i=1

β2
i

∫
Ji

∣∣∣∣∂Mη
i

∂s
(t)

∣∣∣∣2 − η

2

∫
J0

Mη
0 ·Hη

0(M
η)− 1

2

n∑
i=0

β2
i

∫
Ji

Mη
i ·Hη(Mη)

+
α

1 + α2

∫ t

0

n∑
i=1

β2
i

∫
Ji

∣∣∣∣∂Mη
i

∂t

∣∣∣∣2 ≤ Ẽη(M0).

By using lemmas 2.1 and 2.4 for the demagnetizing terms, we know that

Hη
i (M

η) tends to − 1

2

(
(mi · v⃗i)v⃗i + (mi · w⃗i)w⃗i

)
strongly in L∞(R+;L2(J i)).

Taking the limit when η tends to zero, by convexity for the derivative terms, we obtain that:

E(m(t)) +
α

1 + α2

∫ t

0

n∑
i=1

β2
i

∫ Li

0

∣∣∣∣∂mi

∂t

∣∣∣∣2 ≤ E(m0).

Third step: limit equation
Let us rewrite the weak equation satisfied by mη in the rescaled coordinates. We consider a test
function Φ ∈ C∞(R+;F)), with Φ = (Φ0, . . . ,Φn), and we define Ψ by

Ψ(t, x) = Φi(t, (Ψ
η
i )

−1(x)) if x ∈ Ωη
i .

Taking Ψ ∈ C∞
c (R+;H1(Ωη)) as a test function in (1.13), we obtain that:

n∑
i=1

∫
R+×Ji

β2
i

(
∂Mη

i

∂t
− αMη

i × ∂Mη
i

∂t

)
·Φi + η

∫
J0

(
∂Mη

0

∂t
− αMη

0 × ∂Mη
0

∂t

)
·Φi =

(1 + α2)

n∑
i=1

∫
R+×Ji

(
β2
i M

η
i × ∂Mη

i

∂s
·

∂Φi

∂s
+

1

η2
Mη

i × ∂Mη
i

∂ξ1
·

∂Φi

∂ξ1
+

1

η2
Mη

i × ∂Mη
i

∂ξ2
·

∂Φi

∂ξ2

)

+(1 + α2)
1

η

∫
J0

3∑
j=1

Mη
0 × ∂Mη

0

∂Xj
·

∂Φ0

∂Xj
− (1 + α2)

n∑
i=1

β2
i

∫
R+×Ji

Mη
i ×Hη

i (M
η) ·Φi

−(1 + α2)η

∫
J0

Mη
0 ×Hη

0(M
η) ·Φ0.

(3.19)
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In order to take the limit in the equations, we consider φ = (φ1, . . . , φn) such that for all i ∈
{1, . . . , n}, φi ∈ C∞

c (R+;H1([0, Li])) with φ1(t, 0) = φ2(t, 0) = . . . = φn(t, 0) for all t. We define
Φ = (Φ0,Φ1, . . . ,Φn) by

� Φ0(t,X) = φ1(t, 0) (= φ2(t, 0) = . . . = φn(t, 0) by hypothesis),

� Φi(t, s, ξ1, ξ2) = φi(t, s) for i ≥ 1.

We obtain that Φ ∈ C∞
c (R+;F). Since Φi does not depend on the transverse variables and since Φ0

is constant, taking this test function, (3.19) yields

n∑
i=1

∫
R+×Ji

β2
i

(
∂Mη

i

∂t
−Mη

i × ∂Mη
i

∂t

)
·Φi + η

∫
J0

(
∂Mη

0

∂t
−Mη

0 × ∂Mη
0

∂t

)
·Φi =

2

n∑
i=1

∫
R+×Ji

β2
i M

η
i × ∂Mη

i

∂s
·

∂Φi

∂s
− 2

n∑
i=1

β2
i

∫
R+×Ji

Mη
i ×Hη

i (M
η) ·Φi − 2η

∫
J0

Mη
0 ×Hη

0(M
η) ·Φ0.

We take now the limit of the previous equality when η tends to zero. Since

� Mη
i → mi strongly in L∞(R+;L2(J i)),

�

∂Mη
i

∂t
⇀

∂mj

∂t
weakly in L2(R+ × J i),

�

∂Mη
i

∂s
⇀

∂mj

∂s
in L∞(R+;L2(J i)) weak ∗,

� Hη
i (M

η) → −1

2

(
(mi · v⃗i)v⃗i + (mi · w⃗i)w⃗i

)
=

1

2
(mi − (mi · u⃗i)u⃗i) strongly in L∞(R+;L2(J i)),

we obtain that:

n∑
i=1

β2
i

∫
R+×Ji

(
∂mi

∂t
− αmi ×

∂mi

∂t

)
·φi = (1 + α2)

n∑
i=1

β2
i

∫
R+×Ji

mi ×
∂mi

∂s
·

∂φi

∂s

−1 + α2

2

n∑
i=1

β2
i

∫
R+×Ji

mi × (mi · u⃗i)u⃗i ·φi.

This concludes the proof of Theorem 1.2.

4 Numerical simulation

In the framework of this article, we will give a description of the numerical scheme developed in
order to simulate the dynamical evolution of the magnetization in the nanowires network; we will
not focus on the convergence of the scheme, we only give the discretization formulas with a swift
explanation of the computations performed in order to build it.

4.1 Discretization

Each nanowire is discretized, in this article, with a regular mesh. Then, for each i in {1, . . . , n}, we
set

∀j ∈ {1, . . . , nj}, sij =
j − 1

nj − 1
Li = (j − 1)hi.
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For each j in {1, . . . , ni}, we set also control domains associated to discretization points:

for j ∈ {2, . . . , ni}, ωi
j =

]
sij −

hj

2
, sij +

hj

2

[
,

ωi
ni

=

]
Li −

hi

2
, Li

[
,

ωi
1 =

]
0,

hi

2

[
.

Then, if we designate the Lagrange interpolation polynomial at points X for values Y (where X
and Y are two real vectors of same size p) by IY (X) ∈ Rp[X], the space of finite dimension where
discrete solutions are sought is WN , with N = {n1, . . . , nn}, and is defined by

WN = RN ((R3)n1+···+nn),

where, for all U = (ui
j)(i,j)∈{1,...,n}×{1...,ni} in (R3)n1+···+nn we set

RN (U) =
∑

j∈{1,...,n}

I{si1,si2,si3}({U
i
1, U

i
2, U

i
3})χωi

1

+
∑

i∈{1,...,n}

j∈{2,...,ni−1}

I{sij−1,s
i
j ,s

i
j+1}({U

i
j , U

i
j , U

i
j+1})χωi

j

+
∑

i∈{1,...,n}

I{sini−1,s
i
ni

}({U i
ni−1, U

i
ni
})χωi

ni
,

where χω designates the function equal to 1 in ω and to 0 outside. This gives, for all s in
∏

i∈{1,...,n}

[0, Li]:

RN (U)(s) =
∑

i∈{1,...,n}

(
U i
1

(s− hj)(s− 2hi)

2h2
i

− U i
2

s(s− 2hi)

h2
i

+ U i
3

s(s− hi)

2h2
i

)
χωi

1
(s)

+
∑

i∈{1,...,n}

j∈{2,...,ni−1}

(
U i
j

(s− sij)(s− sij+1)

2h2
i

− U i
j

(s− sij−1)(s− sij+1)

h2
i

+ U i
j+1

(s− sij−1)(s− sij)

2h2
i

)
χωi

j

+
∑

i∈{1,...,n}

−
(
U i
ni−1

s− sini

hi
+ U i

ni

s− sini−1

hi

)
χωi

ni
.

Then, the concentration phase performs a mean of the equation on each discretization domains. So
the finite difference scheme is written as follows: find u in C1([0, T ];WN ) such that, for all (i, j) in
{1, . . . , n} × {2, . . . , ni − 1}, we set∫

ωi
j

∂u

∂t
dx =

∫
ωi

j

−u× he
i (u)− αu× (u× he

i (u)) dx.

For this scheme, the integral on each subdomain is approximated via a one point quadrature formula:
the middle point approximation. Then we obtain, for all (i, j) in {1, . . . , n} × {2, . . . , ni − 1}:

dU i
j

dt
= −U i

j × he
i (u)(s

i
j)− αU i

j × (U i
j × he

i (u)(s
i
j)).

Hence, we have for the approximated magnetic field: for all (i, j) in {1, . . . , n} × {2, . . . , ni − 1}

he
i (u)(s

i
j) =

1

h2
i

(U i
j−1 − 2U i

j + U i
j+1) +

1

2
(U i

j · u⃗i)u⃗i.
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On the extremal domain, we have: for all i in {1, · · · , n},

∂u

∂n
(t, Li) =

1

hi
(U i

ni−1
− U i

ni
) = 0, then U i

ni−1
= U i

ni
,

then, we have for each i in {1, . . . , n}

he
i (u)(s

i
ni−1) =

1

h2
i

(U i
ni−2 − 2U i

ni−1 + U i
ni
) +

1

2
(U i

ni−1 · u⃗i)u⃗i,

=
1

h2
i

(U i
ni−2 − U i

ni−1) +
1

2
(U i

ni−1 · u⃗i)u⃗i.

On the central domain ω1 =
⋃

i∈{1,...,n}

ωi
1, we have first the continuity condition

U1
1 = · · · = U1

n = U1.

In addition, on ωi
1, one has:

ui(s) = U i
1

(s− hj)(s− 2hi)

2h2
i

− U i
2

s(s− 2hi)

h2
i

+ U i
3

s(s− hi)

2h2
i

,

so that
∂ui

∂s
(t, 0) = U i

1

3

2hi
− U i

2

2

hi
+ U i

3

1

2hi
.

Therefore the Neumann condition yields

0 =

n∑
i=1

β2
i

∂ui

∂s
(t, 0) =

∑
i∈{1,...,n}

β2
i

(
U i
1

3

2hi
− U i

2

2

hi
+ U i

3

1

2hi

)
.

Then we obtain

U1 =
1

n∑
i=1

β2
i

n∑
i=1

β2
i

(
−1

3
U i
3 +

4

3
U i
2

)
.

Hence, in the particular case of three nanowires (see Fig. 3), we have

U1 =

3∑
i=1

(
−1

9
U i
3 +

4

9
U i
2

)
.

In this simple case, we then give the formula of the effective field when the value of U1 is injected

∀i ∈ {1, 2, 3}, he
i (u)(s

i
2) =

1

h2
i

(U i
1 − 2U i

2 + U i
3) +

1

2
(U i

2 · u⃗i)u⃗i,

=
1

h2
i

(

3∑
k=1

(
−1

9
Uk
3 +

4

9
Uk
2

)
− 2U i

2 + U i
3) +

1

2
(U i

2 · u⃗i)u⃗i,

=
1

h2
i

−14

9
U i
2 +

8

9
U i
3 +

3∑
k=1,k ̸=i

(
−1

9
Uk
3 +

4

9
Uk
2

)+
1

2
(U i

2 · u⃗i)u⃗i.
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Figure 3: Three nanowires connexion.

4.2 Simulation of the reduced model

We consider the in-plane junction at the point 0 of the vertical wire of length H [0, H]e2 with two
horizontal nanowires of length L, [0, L]e1 and −[0, L]e1 (see Fig. 4.2). The wires are supposed to
have the same dimensionless radius equal to 1 (so that βi = 1 for all wires).
The program has been developed with the software Scilab [29]. The number of discretisation points
is equal to 30 per unit length (i. e. dx = 1/30). In order to ensure stability of our explicit scheme,
we take dt = dx2/10, that is dt = 0.0001111. We consider 3 initial states:

i) M0 uniformly equal to e1,

ii) M0 = e1 on [0, L]e1, M0 = −e1 on [−L, 0]e1 and M0 = e2 on [0, H]e2,

iii) M0 uniformly equal to
√
2
2 (e1 + e2).

For initial states i) and ii), in the case L = 19, 2 and H = 9, 6, we represent the magnetisation along
the nanowires after relaxation to the equilibrium, at final time equal to 2:

Figure 4: Initial data i) Figure 5: Initial data ii)

For initial data iii), we consider two geometries:

A) L = 19, 2 and H = 9, 6,

B) L = 9, 6 and H = 0, 96.

After relaxation, we observe that the configurations is almost constant equal to e1 for short vertical
wire, which is not the case for long vertical wire:

Figure 6: Initial data iii), geometry A) Figure 7: Initial data iii), geometry B)
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4.3 Full 3D simulation

In order to compare the results obtained with the reduced 1d model to those obtained with the 3d
model, in order also to observe the convergence of the 3d model to the 1d model when the radius
of the wire becomes small, we performed 3d computation with the EMicroM code (see for example
[24, 23, 8]) taking the radius of the wire smaller and smaller.
The EMicroM code is a full 3D simulator for the magnetization evolution in the context of the
micromagnetic model. For comparison, we perform computation on a system of three connected
nanowires whose configuration is similar to the geometry adopted for the reduced model. The mesh
of the domain is regular and the simulation based upon a finite volume method; in our case we used
786 432 (mesh 16 × 128 × 128) degrees of freedom. The parameters are the following: saturated
magnetization set to 1, 7106 A/m, exchange constant set to A = 10−6 J/m, no anisotropy. The
resulting exchange length is ℓ = 0, 52µm. We first consider the 3 following geometries:

1. L = 10µm, H = 5µm, D = 2µm,

2. L = 10µm, H = 5µm, D = 1µm,

3. L = 10µm, H = 5µm, D = 0, 5µm.

After renormalisation performed in Section 1.1, the exchange length ℓ equals 0, 52µm,, so that the
corresponding dimensionless quantities are L = L

/ ℓ = 19, 2 and H = H
ℓ = 9, 6. The dimensionless

radius is given by η = D
2ℓ , so that η equal 1, 9 in the case a), 0, 95 in case b) and 0, 48 in case c).

For initial data equal to e1, we represent for each geometry a slice view of the 3d magnetization, and
an extraction of the solution along the axes of the nanowires. These extraction are to be compared
with Fig. 4

Figure 8: Slice view, geometry 1) Figure 9: extraction, geometry 1)

Figure 10: Slice view, geometry 2) Figure 11: extraction, geometry 2)
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Figure 12: Slice view, geometry 3) Figure 13: extraction, geometry 3)

In the same way, for initial data oriented along the wires, we represent for each geometry a slice
view of the 3d magnetization, and an extraction of the solution along the axes of the nanowires.
These extractions are to be compared with Fig. 5.

Figure 14: Slice view, geometry 1) Figure 15: extraction, geometry 1)

Figure 16: Slice view, geometry 2) Figure 17: extraction, geometry 2)

Figure 18: Slice view, geometry 3) Figure 19: extraction, geometry 3)

We notice, in particular in Figure 14, that when the wire diameter is not small, the magnetization
presents singularities at the junction which disappear when the diameter decreases (cf. Figure 18).
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For initial data equal to (
1√
2
,
1√
2
, 0), we consider two geometries:

a) L = 10µm, H = 5µm, D = 0, 5µm, close to 1d geometry a.

b) L = 5µm, H = 0.5µm, D = 0.2µm, close to 1d geometry b.

After relaxation, we observe in the first case the following configuration, to be compared with Fig.
6:

Figure 20: Slice view, geometry a) Figure 21: Extraction, geometry a)

In the second case, we observe the following configuration, to be compared with Fig. 7:

Figure 22: Slice view, geometry b) Figure 23: Extraction, geometry b)

In the two previous cases, the 1d model relaxes to the same configurations as the 3d model when
the wire diameter is small.

4.4 Comparison of performances

The comparison we are able to perform here is a complexity comparison. The codes (reduced and
full 3D) have not been developed on equivalent computation platforms and languages.
The discretization space steps are similar in 3D and 1D. Furthermore, the thickness of the 3D mesh,
in order to capture the variations, is at least equal to

√
N where N is the number of cells in the

nanowire length. Then, the number of degrees of freedom is equal to

3D reduced

degrees of freedom N5/2 p N
time steps (1/N)2 (1/N)2

complexity for T = 1 N9/2 ln(N) pN3

where p is the number of nanowires. The complexity ratio between the approaches is proportional
to N3/2 ln(N).
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5 Conclusion

In this article we focused on the elaboration and analysis of a new model describing the behavior
of the magnetization in ferromagnetic materials. Two versions have been developed, the static and
the dynamical version, based upon an asymptotic analysis of the micromagnetic model developed by
W.F. Brown [9] for materials in a bulk. The originality of the model is not the nanowire approxima-
tion, yet developed for infinite and isolated wires, but in the management of the connexions between
wires. Thanks to this new model we are able to manage simulation of complex net of nanowires as
those developed in the framework of the nano-electronic device elaboration. In order to illustrate the
theoretical results, we expose an adapted finite difference scheme and perform a test on a configu-
ration composed of three connected nanowires. The results obtained with the asymptotic model are
compared to those obtained thanks to a full 3D code of micromagnetism, EMicroM. The qualitative
comparison of results is totally satisfactory. Last point: the advantage of the asymptotic model for
nanowires, in its domain of validity, is clearly illustrated by the comparison of the complexity of the
two algorithms. Thank’s to this approach we are now able to simulate realistic net of nanowires.
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